JP2002317293A - Method of electrolyzing fused salt - Google Patents

Method of electrolyzing fused salt

Info

Publication number
JP2002317293A
JP2002317293A JP2001119445A JP2001119445A JP2002317293A JP 2002317293 A JP2002317293 A JP 2002317293A JP 2001119445 A JP2001119445 A JP 2001119445A JP 2001119445 A JP2001119445 A JP 2001119445A JP 2002317293 A JP2002317293 A JP 2002317293A
Authority
JP
Japan
Prior art keywords
molten salt
amount
current
chamber
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001119445A
Other languages
Japanese (ja)
Other versions
JP3865044B2 (en
Inventor
Takashi Uedahira
隆志 上田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2001119445A priority Critical patent/JP3865044B2/en
Publication of JP2002317293A publication Critical patent/JP2002317293A/en
Application granted granted Critical
Publication of JP3865044B2 publication Critical patent/JP3865044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve current efficiency by lessening the current leakage during conducting of large current which is of a problem in electrolytic operation of a fused salt using a multipolar electrolytic cell. SOLUTION: The multipolar electrolytic cell having sub-chambers communicating with an electrolytic cell and having bath surface level regulating means is used. The bath surface level in the sub-chambers is lowered when the energizing quantity for the electrolysis increases and the bath surface level in the sub-chambers is raised when the energizing quantity decreases. The build-up quantity of the fused salt 2 on sub-electrodes 8 during energization is maintained nearly constant, by which the increase of the current leakage by the increase of the build-up during the conducting of the large current is averted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属Mgの製造等
に用いられる溶融塩電解方法に関する。
TECHNICAL FIELD The present invention relates to a molten salt electrolysis method used for production of metallic Mg and the like.

【0002】[0002]

【従来の技術】金属Mgを工業的に製造する場合、Mg
Cl2 を含む溶融塩を、Mgの融点以上の温度で電気分
解する溶融塩電解方法が多用されている。また、ここで
使用される電解槽としては、高効率なマルチポーラ型電
解槽が注目されている。マルチポーラ型電解槽を用いた
溶融塩電解方法により金属Mgを製造する方法を、図1
及び図2により説明する。図1はマルチポーラ型電解槽
の縦断側面図、図2は図1のA−A線矢示図で、電解室
の正面図である。
2. Description of the Related Art When industrially producing metal Mg, Mg
A molten salt electrolysis method of electrolyzing a molten salt containing Cl 2 at a temperature equal to or higher than the melting point of Mg is often used. Also, as an electrolytic cell used here, a highly efficient multipolar electrolytic cell has attracted attention. FIG. 1 shows a method for producing metallic Mg by a molten salt electrolysis method using a multipolar electrolytic cell.
And FIG. FIG. 1 is a vertical side view of a multipolar electrolytic cell, and FIG. 2 is a view taken along line AA of FIG. 1 and is a front view of an electrolytic chamber.

【0003】電解槽1は、MgCl2 を含む溶融塩2を
内部に収容する。電解槽1の内部は、隔壁3によって電
解室4とMg回収室5とに分離されている。電解室4に
は、炭素からなる平板状の陽極6と陰極7が、ロストル
レンガ9上で槽幅方向に交互に配置されており、隣接す
る陽極6と陰極7の間には、同じく炭素からなる平板状
の複極8が電流効率向上のために配置されている。陽極
6の上部は、通電のためにカバー10を貫通して上方へ
突出している。
An electrolytic cell 1 contains a molten salt 2 containing MgCl 2 therein. The inside of the electrolytic cell 1 is separated by a partition 3 into an electrolytic chamber 4 and a Mg recovery chamber 5. In the electrolysis chamber 4, plate-like anodes 6 and cathodes 7 made of carbon are alternately arranged in the tank width direction on the Rostor brick 9, and between the adjacent anodes 6 and cathodes 7, carbon is also used. A plate-shaped double pole 8 is arranged for improving current efficiency. The upper part of the anode 6 protrudes upward through the cover 10 for energization.

【0004】ここで、複極8の上面レベルは、陰極7の
上面レベルより高く、陽極6に近づくにつれて段階的に
高くなる。これは溶融塩2の浴対流をスムーズにするた
めである。
Here, the upper surface level of the multipole 8 is higher than the upper surface level of the cathode 7, and gradually increases toward the anode 6. This is for smooth bath convection of the molten salt 2.

【0005】一方、Mg回収室5は、隔壁3に設けた上
下2段の開口部11,11を通して電解室4に連通して
いる。Mg回収室5には、底面開放容器からなる浴面レ
ベル調節装置12が溶融塩2に浸漬して設けられてい
る。また、溶融塩2の温度調節器13として熱交換器が
浴面レベル調節装置12を取り囲むように設けられてい
る。更に、温度計14及び浴面レベル測定器15等も設
けられている。
On the other hand, the Mg recovery chamber 5 communicates with the electrolysis chamber 4 through two upper and lower openings 11 provided in the partition wall 3. In the Mg recovery chamber 5, a bath surface level controller 12 composed of a bottom-open container is provided soaked in the molten salt 2. A heat exchanger is provided as a temperature controller 13 for the molten salt 2 so as to surround the bath surface level controller 12. Further, a thermometer 14, a bath surface level measuring device 15, and the like are provided.

【0006】電解操業では、電解室4内の陽極6と陰極
7の間に直流電流が流される。これにより、溶融塩2中
のMgCl2 が電気分解し、金属Mgが生成される。ま
た、この電気分解に伴って塩素ガスが発生する。電解室
4で生成された金属Mgは、溶融塩2の循環対流によっ
てMg回収室5に運ばれ、Mg回収室5内の溶融塩2上
に浮上してMg層16を形成する。
In the electrolysis operation, a direct current flows between the anode 6 and the cathode 7 in the electrolysis chamber 4. Thus, MgCl 2 in the molten salt 2 is electrolyzed, metal Mg are generated. Further, chlorine gas is generated along with the electrolysis. The metallic Mg generated in the electrolytic chamber 4 is carried to the Mg recovery chamber 5 by the circulating convection of the molten salt 2 and floats on the molten salt 2 in the Mg recovery chamber 5 to form the Mg layer 16.

【0007】[0007]

【発明が解決しようとする課題】このようなマルチポー
ラ型電解槽を用いた溶融塩電解方法では、電解室4にお
ける溶融塩2の浴面レベルが、重要な操業条件の一つに
なっている。この浴面レベルは、図2に示すように、電
流効率の点から、通電されていない状態で陰極7の上面
レベルに一致するように設定される。このレベル調整
は、Mg回収室5内の溶融塩2に浸漬された浴面レベル
調節装置12内の不活性ガス量を調節することにより行
なわれる。この状態で通電を開始すると、電気分解に伴
う塩素ガスの発生のために、電解室4内の溶融塩2にガ
スリフトによる対流が発生し、溶融塩2が複極8の上を
乗り越えるようになる。
In the molten salt electrolysis method using such a multipolar electrolytic cell, the bath surface level of the molten salt 2 in the electrolysis chamber 4 is one of the important operating conditions. . As shown in FIG. 2, the bath surface level is set to be equal to the upper surface level of the cathode 7 in a state where no current is supplied from the viewpoint of current efficiency. This level adjustment is performed by adjusting the amount of the inert gas in the bath level controller 12 immersed in the molten salt 2 in the Mg recovery chamber 5. When energization is started in this state, convection due to a gas lift occurs in the molten salt 2 in the electrolytic chamber 4 due to generation of chlorine gas due to electrolysis, and the molten salt 2 gets over the multipole 8. .

【0008】溶融塩2が複極8の上を乗り越えることに
より、浴対流が陰極7へスムーズに流れ、Mgの滞留に
よる極間の短絡の防止が可能になるが、その一方で、こ
の乗り越えに伴う複極8上での溶融塩2の盛り上がり
が、電流効率を低下させる一因になっていることに、本
発明者は注目した。
When the molten salt 2 gets over the double pole 8, the bath convection flows smoothly to the cathode 7, and it becomes possible to prevent a short circuit between the poles due to the stagnation of Mg. The present inventor has noted that the swelling of the molten salt 2 on the double pole 8 is one of the causes for lowering the current efficiency.

【0009】即ち、マルチポーラ型電解槽における一般
的な電流効率はおおよそ80〜85%であり、残りのお
よそ15%は電気のバイパスによるカレントリーク、電
気分解されたマグネシウムと塩素が再反応するバックリ
アクションが占めるとされている。そして、これらの電
流効率低下要因を取り除くことで、生産性の高い電解操
業が可能になる。
That is, the general current efficiency in a multipolar electrolytic cell is approximately 80 to 85%, and the remaining approximately 15% is a current leak due to an electric bypass, and a backflow in which electrolyzed magnesium and chlorine react again. It is said that the reaction occupies. Then, by removing these factors of current efficiency reduction, an electrolytic operation with high productivity becomes possible.

【0010】従来、複極8上での溶融塩2の盛り上がり
量に、大きな変動はないと考えられてきた。ところが、
高効率でガスリフト対流がとりわけ顕著なマルチポーラ
型電解槽においては、通電量がこの盛り上がり量に大き
な影響を及ぼし、通電量が増加したときにこの盛り上が
り量が増大し、カレントリークが増大することが明らか
になった。
Heretofore, it has been considered that there is no large variation in the amount of swelling of the molten salt 2 on the double pole 8. However,
In a highly efficient multipolar electrolytic cell in which gas lift convection is particularly remarkable, the amount of current has a large effect on the amount of swelling, and when the amount of current increases, the amount of swelling increases and current leakage may increase. It was revealed.

【0011】図3はこの盛り上がりによるカレントリー
クの説明図である。陽極6から陰極7への電流は、基本
的には実線の如く複極8及び極間の溶融塩2を通過し、
MgCl2 の電気分解に寄与する。ところが、陰極7
上、更には複極8上に溶融塩2の盛り上がりが発生する
と、破線の如く、抵抗の小さい盛り上がりを通って陽極
6から陰極7へ電流の一部が直接流れ、電気分解に寄与
しないカレントリークが生じる。溶融塩2の盛り上がり
量が小さい場合、このカレントリークは小さいが、盛り
上がり量が大きくなると、このカレントリークも増大す
る。
FIG. 3 is an explanatory diagram of a current leak due to the swelling. The current from the anode 6 to the cathode 7 basically passes through the dipole 8 and the molten salt 2 between the poles as shown by a solid line,
It contributes to the electrolysis of MgCl 2 . However, the cathode 7
When the swelling of the molten salt 2 occurs on the top and further on the double pole 8, a part of the current flows directly from the anode 6 to the cathode 7 through the swelling having a small resistance as shown by a broken line, and a current leak which does not contribute to the electrolysis. Occurs. When the amount of swelling of the molten salt 2 is small, the current leak is small, but as the amount of swelling increases, the current leak also increases.

【0012】我が国における電解槽への通電量は、1日
を通し例えば90〜150kAの範囲内で変化する。こ
れは昼夜で電気代に大きな開きがあるためであり、夜間
に多く電流を流すことで電力原単位を低減できるからで
ある。しかし、電流量を多くすると、電解槽全体の電流
効率が向上する性質があるため、溶融塩の盛り上がりに
起因するカレントリーク増大による電流効率の損失が存
在することは、これまで知られていなかった。
The amount of electricity supplied to the electrolytic cell in Japan varies within a range of, for example, 90 to 150 kA throughout the day. This is because electricity bills vary widely between day and night, and power consumption can be reduced by flowing a large amount of current at night. However, increasing the amount of current has the property of improving the current efficiency of the entire electrolytic cell, and it has not been known until now that there is a loss of current efficiency due to an increase in current leak due to the rise of molten salt. .

【0013】本発明の目的は、マルチポーラ型電解槽を
用いた溶融塩電解操業で問題となる大電流通電時のカレ
ントリークを低減して、電流効率の向上を図る溶融塩電
解方法を提供することにある。
An object of the present invention is to provide a molten salt electrolysis method for improving current efficiency by reducing a current leak at the time of supplying a large current, which is a problem in a molten salt electrolysis operation using a multipolar electrolytic cell. It is in.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、無通電時における溶融塩の浴面レベルを下げること
が考えられる。そうすると、通電量が多いときは、溶融
塩の過大な盛り上がりが防止される。しかし、電流量が
少ないときには、溶融塩が陰極上、複極上を乗り越える
ことができず、極間の液面にMgが滞在してMg層を形
成し始める。その結果、極間が導電体であるMgにより
短絡されることになり、そのMg層を通じて電流がリー
クすることにより、電流効率の低下が生じる。
In order to achieve the above object, it is conceivable to lower the bath level of the molten salt when power is not supplied. Then, when the amount of electricity is large, excessive rise of the molten salt is prevented. However, when the amount of current is small, the molten salt cannot cross over the cathode and the double pole, and Mg stays on the liquid level between the electrodes to start forming an Mg layer. As a result, the poles are short-circuited by the conductor Mg, and current leaks through the Mg layer, resulting in a decrease in current efficiency.

【0015】そこで本発明者らは、通電量の変動に応じ
て溶融塩の浴面レベルを変化させることを企画し、種々
調査検討を行なった。その結果、このレベル調整によ
り、通電量の増減に関係なく、溶融塩の盛り上がりを適
正値に維持でき、大電流通電時に問題となるカレントリ
ークの増大を回避できることを知見し、本発明を完成さ
せるに至った。
Therefore, the present inventors have planned to change the bath surface level of the molten salt in accordance with the fluctuation of the amount of electricity and made various investigations and studies. As a result, it has been found that by this level adjustment, the rise of the molten salt can be maintained at an appropriate value irrespective of the increase or decrease in the amount of current, and an increase in current leak, which is a problem when a large current is applied, can be avoided, and the present invention is completed. Reached.

【0016】即ち、本発明の溶融塩電解方法は、電解室
に連通し、且つ浴面レベル調整手段を備えた副室を有す
るマルチポーラ型電解槽を用いた溶融塩電解方法におい
て、電解のための通電量の変動に合わせて、前記副室内
の浴面レベルを調節するものである。
That is, in the molten salt electrolysis method of the present invention, a molten salt electrolysis method using a multipolar electrolytic bath having a sub-chamber communicating with an electrolysis chamber and having a bath surface level adjusting means is used for electrolysis. The bath surface level in the sub-chamber is adjusted in accordance with the variation in the amount of electricity.

【0017】具体的には、電解のための通電量が増大す
るときに副室内の浴面レベルを下げ、その通電量が低減
するたときに副室内の浴面レベルを上げる。これによ
り、通電時の複極上における溶融塩の盛り上がり量をほ
ぼ一定に維持することができる。この盛り上がり量とし
ては、陰極の上面から、陽極に最も近い複極の上面まで
の範囲内に抑えることが望ましい。
More specifically, the bath level in the sub-chamber is lowered when the amount of electricity for electrolysis increases, and the bath level in the sub-chamber is raised when the amount of current is reduced. As a result, the amount of the molten salt swelling on the double pole during energization can be maintained substantially constant. It is desirable that the amount of protrusion be kept within a range from the upper surface of the cathode to the upper surface of the double pole closest to the anode.

【0018】[0018]

【発明が解決しようとする課題】以下に本発明の実施形
態を図面に基づいて説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0019】本実施形態の溶融塩電解方法では、図1〜
図3に示したマルチポーラ型電解槽を用いて金属Mgが
製造される。電解室4に連通する副室としてのMg回収
室5には、前述したとおり、浴面レベル調節装置12、
浴面レベル測定器15などが設けられている。浴面レベ
ル調整装置12は、底面が開放した容器内の不活性ガス
量を調節することにより、Mg回収室5の浴面レベルを
調節し、その結果として電解室4の浴面レベルを調節す
る。
In the molten salt electrolysis method of the present embodiment, FIGS.
Metal Mg is produced using the multi-polar electrolytic cell shown in FIG. As described above, in the Mg recovery chamber 5 as a sub-chamber communicating with the electrolysis chamber 4, the bath surface level adjusting device 12,
A bath level measuring device 15 and the like are provided. The bath level controller 12 adjusts the bath level of the Mg recovery chamber 5 by adjusting the amount of inert gas in the container whose bottom is open, and consequently the bath level of the electrolysis chamber 4. .

【0020】なお、Mg回収室5は金属Mgを取り出す
ために大気圧であるが、電解室4は発生する塩素ガスの
漏出を防止するために負圧に維持されている。このた
め、Mg回収室5の浴面に比べて電解室4の浴面は若干
高くなるが、Mg回収室5に設けられた浴面レベル調節
装置12の操作ににより、電解室4の浴面レベルを調節
することが可能である。
The Mg recovery chamber 5 is at atmospheric pressure in order to extract metallic Mg, but the electrolysis chamber 4 is maintained at a negative pressure in order to prevent leakage of generated chlorine gas. Therefore, the bath surface of the electrolysis chamber 4 is slightly higher than the bath surface of the Mg recovery chamber 5, but the bath surface of the electrolysis chamber 4 is operated by the operation of the bath surface level adjusting device 12 provided in the Mg recovery chamber 5. It is possible to adjust the level.

【0021】浴面レベル測定器15はバブラーであり、
その圧力よりMg回収室5の浴面レベルを測定する。そ
して、測定された浴面レベルが目標値になるように、浴
面レベル調整装置12が操作されることにより、Mg回
収室5の浴面レベルが目標値に管理され、その結果とし
て、電解室4の浴面レベルも目標値に管理される。
The bath level measuring device 15 is a bubbler,
The bath level of the Mg recovery chamber 5 is measured from the pressure. Then, by operating the bath surface level adjusting device 12 so that the measured bath surface level becomes the target value, the bath surface level of the Mg recovery chamber 5 is managed to the target value, and as a result, the electrolytic chamber The bath level of 4 is also managed to the target value.

【0022】本実施形態の溶融塩電解方法では、深夜を
除く通常時間帯は90kAの通電量で電解操業が行なわ
れ、深夜は150kAの通電量で電解操業が行なわれ
る。通常時間帯は、電流効率を考慮して、無通電時に電
解室4の浴面レベルが陰極7の上面レベルに対して一致
する、即ち+0mmになるように、レベル調節を行な
う。これにより、通常時間帯の通電時においては、陰極
7上、複極8上に適正な溶融塩2の盛り上がりが生じ
る。
In the molten salt electrolysis method of the present embodiment, the electrolysis operation is performed at a current of 90 kA during a normal time period except for midnight, and the electrolysis operation is performed at 150 kA at midnight. In the normal time zone, the level is adjusted in consideration of the current efficiency so that the bath surface level of the electrolytic chamber 4 matches the upper surface level of the cathode 7 when no power is supplied, that is, +0 mm. As a result, when the power is supplied during the normal time period, an appropriate swelling of the molten salt 2 occurs on the cathode 7 and the double pole 8.

【0023】一方、通電量を150kAに増大する深夜
は、通常時間帯より浴面レベルを40mm下げた。即
ち、通電時における陰極7上、複極8上の溶融塩2の盛
り上がりが、通常時間帯のときと同じ理想値に維持され
るように、無通電時における電解室4の浴面ベルを陰極
7の上面レベルに対して−40mmとした。
On the other hand, at midnight when the amount of electricity was increased to 150 kA, the bath level was lowered by 40 mm from the normal time zone. That is, the bath surface bell of the electrolytic chamber 4 when the power is not supplied is set to the cathode so that the swelling of the molten salt 2 on the cathode 7 and the double pole 8 during the power supply is maintained at the same ideal value as in the normal time zone. 7 was set to −40 mm with respect to the upper surface level.

【0024】このような電流量に応じた浴面レベル調節
により、通電量の変動に関係なく溶融塩2の盛り上がり
が適正値に維持され、電解槽1の電流効率が約2.2%
向上した。その内容を以下に説明する。
By adjusting the bath surface level in accordance with the amount of current, the swelling of the molten salt 2 is maintained at an appropriate value irrespective of the variation in the amount of electricity, and the current efficiency of the electrolytic cell 1 is reduced to about 2.2%
Improved. The contents will be described below.

【0025】図4は、電流量を90kAから150kA
へ増大させたときの電流効率の変化を、浴面レベル制御
ありとなしの場合について示したグラフである。浴面レ
ベル制御なしとは、通電量に関係なく、無通電時の電解
室4の浴面レベルが陰極7の上面レベルに一致するケー
スである。また、レベル制御ありとは、通電量の増加に
応じて上記浴面レベルを+0mmから−40mmへ段階
的に変化させたケースである。
FIG. 4 shows that the current amount is from 90 kA to 150 kA.
6 is a graph showing a change in current efficiency when the current level is increased with and without bath level control. “No bath level control” means a case where the bath level of the electrolytic chamber 4 at the time of no power supply matches the upper surface level of the cathode 7 irrespective of the amount of power supply. In addition, "with level control" means a case where the bath surface level is changed stepwise from +0 mm to -40 mm in accordance with an increase in the amount of electricity.

【0026】レベル制御なしの場合も、通電量を90k
Aから150kAへ増大させることにより電流効率は上
昇する。この理由は、電流量の増加によって極間の液面
部でのMgの固化が抑制され、極間のカレントリークが
減少するためと考えられる。電流量の増加に伴ってMg
の固化が抑制される理由は詳細には不明であるが、電流
量が大きい場合は極間の溶融塩温度が低電流時よりも僅
かに高くなること、或いは電流量が大きいために極間で
の塩素ガスの発生量も増加し、攪拌効果が強まることな
どが考えられる。
Even without level control, the amount of power
The current efficiency is increased by increasing from A to 150 kA. It is considered that the reason for this is that the solidification of Mg at the liquid level between the electrodes is suppressed by the increase in the amount of current, and the current leak between the electrodes decreases. As the amount of current increases, Mg
The reason why the solidification is suppressed is unknown in detail, but when the amount of current is large, the molten salt temperature between the electrodes is slightly higher than that at the time of low current, or between the electrodes because the amount of current is large. It is conceivable that the amount of chlorine gas generated also increases and the stirring effect is enhanced.

【0027】そして、通電量の増大による電流効率の上
昇量は5%程度であるが、通電量の増大に応じて浴面レ
ベル制御を行なうと、電流効率は約12%上昇する。即
ち、浴面レベル制御の採用により、電流効率が7%(1
2%−5%)向上する。ただ、150kAの通電を行な
う期間の時間的割合は全体の10%程度であり、月当た
りの平均通電量は110kA程度となるので、実際の電
流効率の向上は2.2%程度となる。2.2%とは言
え、当該分野ではその経済的効果の大きいことは言うま
でもない。
The increase in the current efficiency due to the increase in the amount of current is about 5%. However, if the bath surface level control is performed according to the increase in the amount of current, the current efficiency increases by about 12%. In other words, the current efficiency is 7% (1
2% -5%). However, the temporal ratio of the period during which the energization of 150 kA is performed is about 10% of the whole, and the average amount of energization per month is about 110 kA, so that the actual improvement in current efficiency is about 2.2%. Although it is 2.2%, it goes without saying that the economic effect is large in this field.

【0028】[0028]

【発明の効果】以上に説明したとおり、本発明の溶融塩
電解方法は、電解室に連通し、且つ浴面レベル調整手段
を備えた副室を有するマルチポーラ型電解槽を用いた溶
融塩電解方法において、電解のための通電量の変動に合
わせて前記副室内の浴面レベルを調節することにより、
通電量に影響されることなく、通電時の複極上における
溶融塩の盛り上がり量をほぼ一定に維持できる。これに
より、マルチポーラ型電解槽を用いた高効率電解操業で
問題となる大電流通電時のカレントリークを低減でき、
大電流通電による電流効率アップと相まって、電流効率
の大幅向上を可能にする。
As described above, the molten salt electrolysis method of the present invention provides a molten salt electrolysis using a multipolar electrolytic cell having a sub-chamber communicating with the electrolysis chamber and having a bath surface level adjusting means. In the method, by adjusting the bath level in the sub-chamber according to the variation of the amount of electricity for electrolysis,
The swelling amount of the molten salt on the double pole during energization can be maintained substantially constant without being affected by the amount of energization. As a result, it is possible to reduce the current leak when a large current is applied, which is a problem in a high-efficiency electrolysis operation using a multipolar electrolytic cell,
Coupled with the increase in current efficiency due to the large current flow, the current efficiency can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はマルチポーラ型電解槽の縦断側面図であ
る。
FIG. 1 is a vertical sectional side view of a multipolar electrolytic cell.

【図2】図1のA−A線矢示図で、電解室の正面図であ
る。
FIG. 2 is a front view of the electrolysis chamber, which is taken along line AA of FIG. 1;

【図3】複極上での溶融塩の盛り上がりに起因するカレ
ントリークの説明図である。
FIG. 3 is an explanatory diagram of a current leak caused by swelling of a molten salt on a double pole.

【図4】通電量を増大させたときの電流効率の変化を、
浴面レベル制御ありとなしの場合について示したグラフ
である。
FIG. 4 shows a change in current efficiency when the amount of current is increased,
It is the graph shown about the case with and without bath level control.

【符号の説明】[Explanation of symbols]

1 電解槽 2 溶融塩 3 隔壁 4 電解室 5 Mg回収室(副室) 6 陽極 7 陰極 8 複極 12 浴面レベル調節装置 13 温度調節器 14 温度計 15 浴面レベル測定器 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Molten salt 3 Partition wall 4 Electrolysis chamber 5 Mg recovery chamber (subchamber) 6 Anode 7 Cathode 8 Double pole 12 Bath level controller 13 Temperature controller 14 Thermometer 15 Bath level meter

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年2月7日(2002.2.7)[Submission date] February 7, 2002 (2002.2.7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】そこで本発明者は、通電量の変動に応じて
溶融塩の浴面レベルを変化させることを企画し、種々調
査検討を行なった。その結果、このレベル調整により、
通電量の増減に関係なく、溶融塩の盛り上がりを適正値
に維持でき、大電流通電時に問題となるカレントリーク
の増大を回避できることを知見し、本発明を完成させる
に至った。
Therefore, the present inventors have planned to change the bath surface level of the molten salt in accordance with the fluctuation of the amount of electricity, and have made various investigations. As a result, this level adjustment
The inventors have found that the rise of the molten salt can be maintained at an appropriate value irrespective of the increase or decrease in the amount of current, and that an increase in current leak, which is a problem when a large current is applied, can be avoided, and the present invention has been completed.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】具体的には、電解のための通電量が増大す
るときに副室内の浴面レベルを下げ、その通電量が低減
するときに副室内の浴面レベルを上げる。これにより、
通電時の複極上における溶融塩の盛り上がり量をほぼ一
定に維持することができる。この盛り上がり量として
は、陰極の上面から、陽極に最も近い複極の上面までの
範囲内に抑えることが望ましい。
Specifically, when the amount of electricity for electrolysis increases, the bath level in the sub-chamber is lowered, and the amount of electricity is reduced.
When raising the bath level in the sub-room. This allows
The amount of swelling of the molten salt on the double pole during energization can be maintained substantially constant. It is desirable that the amount of protrusion be kept within a range from the upper surface of the cathode to the upper surface of the double pole closest to the anode.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】なお、Mg回収室5は金属Mgを取り出す
ために大気圧であるが、電解室4は発生する塩素ガスの
漏出を防止するために負圧に維持されている。このた
め、Mg回収室5の浴面に比べて電解室4の浴面は若干
高くなるが、Mg回収室5に設けられた浴面レベル調節
装置12の操作により、電解室4の浴面レベルを調節す
ることが可能である。
The Mg recovery chamber 5 is at atmospheric pressure in order to extract metallic Mg, but the electrolysis chamber 4 is maintained at a negative pressure in order to prevent leakage of generated chlorine gas. For this reason, the bath surface of the electrolysis chamber 4 is slightly higher than the bath surface of the Mg recovery chamber 5, but the bath level of the electrolysis chamber 4 is controlled by the operation of the bath level adjustment device 12 provided in the Mg recovery chamber 5. Can be adjusted.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解室に連通し、且つ浴面レベル調整手
段を備えた副室を有するマルチポーラ型電解槽を用いた
溶融塩電解方法において、電解のための通電量の変動に
合わせて前記副室内の浴面レベルを調節することを特徴
とする溶融塩電解方法。
In a molten salt electrolysis method using a multi-polar electrolytic cell having a sub-chamber communicating with an electrolysis chamber and having a bath surface level adjusting means, the molten salt electrolysis method is adapted to a variation in the amount of electricity supplied for electrolysis. A molten salt electrolysis method comprising adjusting a bath surface level in a sub-chamber.
【請求項2】 電解のための通電量が増大するときに副
室内の浴面レベルを下げ、その通電量が低減するたとき
に副室内の浴面レベルを上げることを特徴とする請求項
1に記載の溶融塩電解方法。
2. The bath surface level in the sub-chamber is reduced when the amount of electricity for electrolysis increases, and the bath surface level in the sub-chamber is increased when the amount of electricity decreases. 3. The molten salt electrolysis method according to item 1.
【請求項3】 通電時の複極上における溶融塩の盛り上
がり量をほぼ一定に維持することを特徴とする請求項2
に記載の溶融塩電解方法。
3. The method according to claim 2, wherein the amount of swelling of the molten salt on the double pole during energization is kept substantially constant.
3. The molten salt electrolysis method according to item 1.
JP2001119445A 2001-04-18 2001-04-18 Molten salt electrolysis method Expired - Lifetime JP3865044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119445A JP3865044B2 (en) 2001-04-18 2001-04-18 Molten salt electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119445A JP3865044B2 (en) 2001-04-18 2001-04-18 Molten salt electrolysis method

Publications (2)

Publication Number Publication Date
JP2002317293A true JP2002317293A (en) 2002-10-31
JP3865044B2 JP3865044B2 (en) 2007-01-10

Family

ID=18969663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119445A Expired - Lifetime JP3865044B2 (en) 2001-04-18 2001-04-18 Molten salt electrolysis method

Country Status (1)

Country Link
JP (1) JP3865044B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149301A (en) * 2011-01-19 2012-08-09 Osaka Titanium Technologies Co Ltd Molten salt electrolytic cell
JP2015140459A (en) * 2014-01-29 2015-08-03 株式会社大阪チタニウムテクノロジーズ molten salt electrolysis tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149301A (en) * 2011-01-19 2012-08-09 Osaka Titanium Technologies Co Ltd Molten salt electrolytic cell
JP2015140459A (en) * 2014-01-29 2015-08-03 株式会社大阪チタニウムテクノロジーズ molten salt electrolysis tank

Also Published As

Publication number Publication date
JP3865044B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
WO2016082726A1 (en) Electrolysis furnace
CN104818499B (en) A kind of electrolysis is bench of burners
CN105088284B (en) A kind of electrolytic furnace
CN205062204U (en) Electrolytic furnace
US5725744A (en) Cell for the electrolysis of alumina at low temperatures
EA030419B1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
ES2238319T3 (en) CATHODE COLLECTOR BAR WITH SEPARATOR TO IMPROVE THE THERMAL BALANCE.
CN102234819A (en) Preheating starting method for aluminium electrolysis cell
CN204661841U (en) A kind of electrolytic furnace group
JP2002317293A (en) Method of electrolyzing fused salt
US4257855A (en) Apparatus and methods for the electrolytic production of aluminum metal
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP2008115455A (en) Single/double pole type electrolyzer
JP5511083B2 (en) Molten salt electrolytic cell
JPH024994A (en) Manufacture of neodymium or neodynium alloy
RU2696124C1 (en) Electrolytic cell for aluminum production
KR20170024012A (en) Method for producing metal and method for producing refractory metal
WO2003027360A3 (en) Temperature control for low temperature reduction cell
KR101734119B1 (en) The way of predetermining the conditions for electrolytic reduction of metal and the way of electrolytic reduction of rare-earth metal applied thereby
JP2019116671A (en) Fused salt electrolysis method, manufacturing method of fused metal, and fused salt electrolytic cell
JP4557565B2 (en) Electrolyzer
RU2282680C1 (en) Electrolyzer for production of aluminum
JP2020193378A (en) Method of molten salt electrolysis and production method of magnesium metal
CN109440133A (en) Produce the high purity titanium preparation method of smart magnesium
CN114164462B (en) Aluminum electrolysis process adjusting method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3865044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term