JPH024994A - Manufacture of neodymium or neodynium alloy - Google Patents

Manufacture of neodymium or neodynium alloy

Info

Publication number
JPH024994A
JPH024994A JP15397288A JP15397288A JPH024994A JP H024994 A JPH024994 A JP H024994A JP 15397288 A JP15397288 A JP 15397288A JP 15397288 A JP15397288 A JP 15397288A JP H024994 A JPH024994 A JP H024994A
Authority
JP
Japan
Prior art keywords
neodymium
electrolytic bath
plate
cathode
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15397288A
Other languages
Japanese (ja)
Other versions
JP2596976B2 (en
Inventor
Hideo Tamamura
玉村 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15397288A priority Critical patent/JP2596976B2/en
Publication of JPH024994A publication Critical patent/JPH024994A/en
Application granted granted Critical
Publication of JP2596976B2 publication Critical patent/JP2596976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To manufacture high-purity Nd or Nd alloy reduced in carbon content and suitable for permanent magnet material by incorporating oxygen gas into the atmosphere above an electrolytic bath. CONSTITUTION:A plate-like carbon electrode as an anode and a plate-like metal or carbon electrode as a cathode are oppositely disposed in a molten-salt electrolytic bath. The part above the electrolytic bath is covered with an atmosphere containing oxygen gas in a concentration sufficient to consume, by oxidation, the powdery carbon generated from the carbon electrodes in the course of electrolysis and floating. Electrolysis is carried out in the above state to deposit Nd or Nd alloy on the cathode, which is dropped into the part below the cathode and collected in the bottom of the electrolytic bath. It is preferable that the atmosphere above the electrolytic bath contains 10-40vol.% oxygen gas. As the electrolytic bath, those of NdF3, LiF, Nd2O3, etc., are used. When Fe is used as the cathode, an Nd-Fe alloy can be prepared. By this method, Nd or Nd alloy for permanent magnet material can be obtained with high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はネオジム又はネオジム合金の製造方法に係り、
特に最近高性能磁石として注目されているNd−Fe−
B系磁石用原料として適した高純度のネオジム又はネオ
ジム−鉄合金を安価に製造する方法を提供するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing neodymium or neodymium alloy,
In particular, Nd-Fe-, which has recently attracted attention as a high-performance magnet,
The present invention provides a method for inexpensively producing high-purity neodymium or neodymium-iron alloy suitable as a raw material for B-series magnets.

〔従来の技術〕[Conventional technology]

最近、比較的安価な高性能永久磁石としてNd−Fe−
B系あるいはNd −Fe −Co −B系永久磁石が
提案された(日本特許出願公開昭和59−413008
号及び同昭和59−64739号公報)。これらの永久
磁石の製造に用いられるNdはカルシウム熱還元法又は
溶融塩電解法によって製造できることが知られている(
例えば、日本特許出願公開昭和82− [13B42号
公報)。カルシウム熱還元法は高純度のNdを得ること
ができるが製造コストが高いという問題がある。本発明
は溶融塩電解法によるNdの製造に向けられている。
Recently, Nd-Fe-
B-based or Nd-Fe-Co-B-based permanent magnets were proposed (Japanese Patent Application Publication No. 1983-413008).
No. and the same Publication No. 59-64739). It is known that Nd used in the production of these permanent magnets can be produced by a calcium thermal reduction method or a molten salt electrolysis method (
For example, Japanese Patent Application Publication No. 13B42 (1982). Although the calcium thermal reduction method can obtain highly pure Nd, it has the problem of high manufacturing cost. The present invention is directed to the production of Nd by molten salt electrolysis.

溶融塩電解法は塩化物電解浴を用いる方法とフッ化物電
解浴を用いる方法に大別される。フッ化物電解浴を用い
る溶融塩電解法は、例えば、Nd−Fe合金を得る方法
として、鉄を陰極、炭素を陽極とし、電極形状は丸棒状
又は同心円状とし、適当な溶融塩電解浴中でNd2O3
を電解還元して金属ネオジムを鉄陰極上に析出させて鉄
と合金化する方法が消耗電極法として知られており (
E、モーリス他著ru、 S、 Bur、 Min、、
 Rep。
Molten salt electrolysis methods are broadly divided into methods using a chloride electrolytic bath and methods using a fluoride electrolytic bath. The molten salt electrolysis method using a fluoride electrolytic bath is, for example, a method for obtaining a Nd-Fe alloy, in which iron is used as a cathode and carbon is used as an anode, the electrode shape is a round rod shape or a concentric circle, and the process is carried out in an appropriate molten salt electrolytic bath. Nd2O3
The method of electrolytically reducing neodymium to precipitate metal neodymium on an iron cathode and alloying it with iron is known as the consumable electrode method (
E. Maurice et al. Ru, S. Bur, Min.
Rep.

InvestJ No、714B、 19fi8年)、
また原料となるネオジム化合物として、そのフッ化物の
利用可能性も記述されている(E、モーリス他著rU、
 S、 Bur。
InvestJ No. 714B, 19fi8),
The possibility of using fluoride as a raw material neodymium compound is also described (E, Morris et al.
S, Bur.

Min、、 Rap、 Invest J No、89
57.1967年)。
Min, Rap, Invest J No. 89
57.1967).

その他、日本特許出願公開昭和61−159593号、
同昭和81−87888号、及び同昭和81−1278
84号公報等にもNdの溶融塩電解法が教示されている
In addition, Japanese Patent Application Publication No. 1983-159593,
Showa No. 81-87888 and Showa No. 81-1278
The molten salt electrolysis method of Nd is also taught in Japanese Patent No. 84 and the like.

] 0 しかしながら、概して言えば、Ndの溶融塩電解法はよ
うやく研究開発の端緒についたにすぎず、これまでの研
究は学術レベルでの検討にとどまって、工業的生産レベ
ルでのNdの電解法についての検討は未だ行なわれてい
ないようであり、本発明者はそのような報告を知らない
] 0 However, generally speaking, the molten salt electrolysis method of Nd has only just reached the beginning of research and development, and the research to date has been limited to studies at the academic level, and there is no research on the electrolysis method of Nd at the industrial production level. It seems that no study has been conducted yet, and the present inventor is not aware of any such reports.

そこで、本発明者は、Nd−Fe−B系あるいはNd 
−Fe −Co −B系永久磁石の原料として大量の需
要が予測されるNdを工業的に製造し、供給することを
目的として、Ndの工業的規模における溶融塩電解法に
よる製造について鋭意研究し、本発明を完成したもので
ある。
Therefore, the present inventor has developed an approach for Nd-Fe-B system or Nd
With the aim of industrially producing and supplying Nd, which is expected to be in large demand as a raw material for -Fe -Co -B permanent magnets, we are conducting intensive research on the production of Nd using molten salt electrolysis on an industrial scale. , has completed the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的は、Nd−Fe−B系あるいはN
d −Fc −Co −B系永久磁石の原料としてのN
dの需要に応えるべく、工業的規模で高純度のNd又は
Nd合金を安価に製造できるNd又はNd合金の溶融塩
電解法を提供することである。
Therefore, the object of the present invention is to
N as a raw material for d -Fc -Co -B permanent magnets
In order to meet the demand for d, it is an object of the present invention to provide a molten salt electrolysis method for Nd or Nd alloy, which can produce high-purity Nd or Nd alloy at low cost on an industrial scale.

上記目的は、本発明により、溶融塩電解浴で、陽極とし
て板状の炭素電極、陰極として板状の金属又は炭素電極
を用い、これらの板状電極を電解浴中に互に対向させて
配置し、かつ電解浴上を、電解中に炭素電極から発生し
て電解浴表面に浮遊するパウダー状炭素を酸化消耗する
のに十分な濃度の酸素ガスを含む雰囲気で覆い、そして
電解を行なって陰極上にネオジム又はネオジム合金を析
出させ、該ネオジム又はネオジム合金を陰極下に滴下さ
せて電解浴底に集版することからなるネオジム又はネオ
ジム合金の製造方法によって達成される。
The above object is achieved by the present invention, in which a plate-shaped carbon electrode is used as an anode and a plate-shaped metal or carbon electrode is used as a cathode in a molten salt electrolytic bath, and these plate-shaped electrodes are arranged facing each other in the electrolytic bath. Then, the electrolytic bath is covered with an atmosphere containing oxygen gas at a concentration sufficient to oxidize and consume the powdered carbon generated from the carbon electrode during electrolysis and floating on the electrolytic bath surface. This is achieved by a method for producing neodymium or neodymium alloy, which comprises depositing neodymium or neodymium alloy thereon, dropping the neodymium or neodymium alloy under the cathode, and collecting it at the bottom of the electrolytic bath.

本発明の方法の第1の特徴は電解浴上の雰囲気が酸素ガ
スを含有することである。前出のE、モーリス他に教示
された如き従来の消耗電極法によるNdの溶融塩電解法
では、ネオジムが活性なために大気中の酸素と反応し易
いのでネオジムの反応を防ぎ、かつ使用するC、Mo、
W等の電極の酸化を防止するために、不活性ガス等の保
護ガス雰囲気中で電解を行なう必要があるとの考えから
、保護ガス雰囲気中で電解が行われている。
The first feature of the method of the invention is that the atmosphere above the electrolytic bath contains oxygen gas. In the conventional Nd molten salt electrolysis method using the consumable electrode method as taught by E. Morris et al., neodymium is active and easily reacts with oxygen in the atmosphere, so the reaction of neodymium is prevented and used. C.Mo.
Electrolysis is performed in a protective gas atmosphere, based on the idea that it is necessary to perform electrolysis in a protective gas atmosphere such as an inert gas in order to prevent oxidation of electrodes such as W.

1 ] 従って、電解に当たっては保護ガスを密閉しておく必要
があり、そのために設備費か高くつき、また原料の供給
及び装置の修理等が難しく、製造コストが高くなるとい
う欠点があった。
1] Therefore, during electrolysis, it is necessary to seal the protective gas, which leads to high equipment costs, and it is difficult to supply raw materials and repair the equipment, leading to high manufacturing costs.

また、電極に炭素を用いるので、これが主にフッ素を主
体とした電解反応ガスと反応して炭素電極が消耗するが
、不活性ガス等の保護ガス雰囲気であるため、炭素電極
の一部がパウダー状に変化して電解浴表面を覆い、両極
間に電流短絡路を形成してパウダー状炭素を介する放電
か起こり、電流効率を低下させたり、陽極電流密度を変
化させるという不都合があった。さらに、電解浴表面の
パウダー状炭素の一部は電解浴中に混入して浮遊し、電
導度が変化して電解浴条件を不安定にし、電解操業の正
常な運転維持を困難にしたり、或いは混入した炭素が製
造された合金中に混入してその品位を低下させるという
欠点があった。
In addition, since carbon is used for the electrodes, this reacts with the electrolytic reaction gas, which is mainly composed of fluorine, and the carbon electrodes are consumed. However, because the atmosphere is a protective gas such as an inert gas, some of the carbon electrodes become powder. This has the disadvantage that the powdered carbon changes to cover the surface of the electrolytic bath, forms a current short circuit between the two electrodes, and discharge occurs through the powdered carbon, reducing current efficiency and changing the anode current density. Furthermore, some of the powdered carbon on the surface of the electrolytic bath may become mixed in and float in the electrolytic bath, changing the conductivity and making the electrolytic bath conditions unstable, making it difficult to maintain normal electrolytic operation, or There was a drawback that the mixed carbon was mixed into the manufactured alloy and degraded its quality.

特に、製造された合金中に炭素が混入することは、製品
の品質上非常に問題である。上記方法では数千ppmの
炭素濃度を有するため、磁石用原料、特に、最近注目さ
れるようになってきたNd磁石用Nd及びNd−Fe合
金はその許容炭素濃度が400ppm以下であることを
勘案すると、そのままでは磁石用原料として使用し得な
いことになる。
In particular, the incorporation of carbon into manufactured alloys is a serious problem in terms of product quality. Since the above method has a carbon concentration of several thousand ppm, it is necessary to take into account that the permissible carbon concentration of raw materials for magnets, especially Nd and Nd-Fe alloys for Nd magnets, which have recently been attracting attention, is 400 ppm or less. This means that it cannot be used as a raw material for magnets as it is.

〔課題を解決するための手段および作用〕そこで、本発
明では、電解浴に溶融温度が低く、かつ比重がNd又は
Nd合金の比重より小さいネオジム塩(例えば、フッ化
ネオジムにフッ化リチウムを加えた浴)を用いて、Nd
又はNd合金を電解浴の下方に集め、その上部を電解浴
で被うことによって、得られるNd又はNd合金を電解
浴上の雰囲気から遮断した。このようにした上で、電解
浴上の雰囲気に酸素ガスを含有させることによって、炭
素電極から発生するパウダー状炭素を雰囲気中の酸素ガ
スで積極的に酸化反応させて炭素化合物(C’O,Co
2’Iとして雰囲気中に除去し、かつ析出するNd又は
Nd合金を雰囲気中の酸素ガスで消耗することを、防止
することができた。パウダー状炭素は電解浴よりも軽い
ため電解浴表面に浮遊するので、電解浴上の雰囲気中の
酸素ガスで容易に酸化消耗され、また電解浴中に感温し
たパウダー状炭素は電解浴よりも軽いため電解浴の対流
により電解浴表面に浮上したときに酸素と接触して容易
に酸化消耗される。
[Means and effects for solving the problem] Therefore, in the present invention, a neodymium salt having a low melting temperature and a specific gravity lower than that of Nd or Nd alloy (for example, lithium fluoride is added to neodymium fluoride) is added to the electrolytic bath. Nd
Alternatively, the Nd or Nd alloy obtained was isolated from the atmosphere above the electrolytic bath by collecting the Nd alloy below the electrolytic bath and covering the upper part with the electrolytic bath. In this way, by containing oxygen gas in the atmosphere above the electrolytic bath, the powdered carbon generated from the carbon electrode is actively oxidized with the oxygen gas in the atmosphere to form carbon compounds (C'O, Co
It was possible to prevent the Nd or Nd alloy that was removed into the atmosphere as 2'I and precipitated from being consumed by oxygen gas in the atmosphere. Powdered carbon is lighter than the electrolytic bath and floats on the surface of the electrolytic bath, so it is easily oxidized and consumed by the oxygen gas in the atmosphere above the electrolytic bath. Because it is light, when it floats to the surface of the electrolytic bath due to the convection of the electrolytic bath, it comes into contact with oxygen and is easily oxidized and consumed.

こうして、本発明によれば、特に、電解浴上の雰囲気中
に酸素ガスを含有させることによって、著しく炭素含有
量の低減したNd又はNd合金(特にNd−Fe合金)
が得られ、これは永久磁石原料としてそのまま用いるこ
とができる高純度のNd又はNd−Fe合金である。
Thus, according to the present invention, in particular, Nd or Nd alloys (especially Nd-Fe alloys) with significantly reduced carbon content by containing oxygen gas in the atmosphere above the electrolytic bath.
is obtained, which is a high-purity Nd or Nd-Fe alloy that can be used as it is as a permanent magnet raw material.

電解浴上の雰囲気中の酸素ガス濃度は炭素電極から発生
して電解浴表面に浮遊するパウダー状炭素を酸化消耗す
るのに十分な濃度であればよいが、−船釣には、10〜
40体積%、好ましくは15〜30体積%の範囲内であ
る。酸素濃度が15体積%以下になるとパウダー状炭素
が増加したし、10体積%未満になると急激に増加し、
正常な運転が困難になると共に、析出金属中の炭素濃度
を急激に増加させることになるからである。また、酸素
濃度が30体積%以上になると、黒鉛電極の浴面より上
部に露出している部分の酸化消耗が増加し、40体積%
を超えると消耗が急激になり、トラブルを発生すること
になる。
The oxygen gas concentration in the atmosphere above the electrolytic bath may be sufficient to oxidize and consume the powdery carbon generated from the carbon electrodes and floating on the surface of the electrolytic bath.
40% by volume, preferably in the range of 15-30% by volume. Powdered carbon increased when the oxygen concentration decreased to 15% by volume or less, and rapidly increased when the concentration decreased to less than 10% by volume.
This is because normal operation becomes difficult and the carbon concentration in the deposited metal increases rapidly. Furthermore, when the oxygen concentration exceeds 30% by volume, the oxidative consumption of the exposed part of the graphite electrode above the bath surface increases, and 40% by volume increases.
Exceeding this will result in rapid wear and tear, leading to trouble.

このため、本発明での制御範囲内に大気中の酸素濃度が
含まれるため、最も簡単な方法として大気中での電解も
可能となる。更に空気に酸素を富化した雰囲気、不活性
ガスに必要量の酸素を添加した雰囲気が利用できる。
Therefore, since the oxygen concentration in the atmosphere is included within the control range of the present invention, electrolysis in the atmosphere is also possible as the simplest method. Furthermore, an atmosphere in which air is enriched with oxygen or an atmosphere in which the necessary amount of oxygen is added to an inert gas can be used.

Nd−Fc−B系又はNd −Fe −Co −B系の
永久磁石原料としては、炭素含有率が400ppm以下
であることが必要であるが、本発明の方法で得られるN
d又はNd−Fe合金はこの要件はもちろん、200p
pm以下、さらには1100pp以下の炭素含有率とす
ることも容易である。
As a permanent magnet raw material of Nd-Fc-B system or Nd-Fe-Co-B system, it is necessary that the carbon content is 400 ppm or less.
d or Nd-Fe alloy meets this requirement as well as 200p
It is also easy to set the carbon content to pm or less, or even 1100 pp or less.

本発明の方法の第2の特徴は、電極形状及び電極配置に
ある。前記の如く、公知のNd又はNd−Fe合金の溶
融塩電解法では丸棒状の消耗電極が用いられている。し
かし、丸棒状の消耗電極を用いると、電解反応は主とし
て陰極と陽極間の最短距離で進行するため、電解反応か
進行し、電極が消耗するに従い、下記のような問題が起
きることになる。
The second feature of the method of the present invention lies in the electrode shape and electrode arrangement. As mentioned above, a round rod-shaped consumable electrode is used in the known molten salt electrolysis method for Nd or Nd-Fe alloys. However, when a round bar-shaped consumable electrode is used, the electrolytic reaction mainly proceeds in the shortest distance between the cathode and the anode, so as the electrolytic reaction progresses and the electrode is consumed, the following problems occur.

1)電流密度が電極の消耗につれて変化するため、最適
電流密度に維持することが困難である。また電流密度が
変化するため、電解電流、電解電圧が変化し、電解電流
、電解電圧等を最適値に維持することが困難である。
1) It is difficult to maintain an optimal current density because the current density changes as the electrode wears out. Furthermore, since the current density changes, the electrolytic current and electrolytic voltage change, making it difficult to maintain the electrolytic current, electrolytic voltage, etc. at optimum values.

2)電流効率も極間の変化とともに変化するので、最適
電流効率を維持するのが困難である。
2) Current efficiency also changes with changes in pole spacing, making it difficult to maintain optimal current efficiency.

3)溶融塩電解に置ける析出金属量はファラデの法則に
より電流量で決まるのであるが、溶融塩電解の場合、あ
る陽極電流密度以上に電流を流すと、陽極効果が発生し
、正常な電気分解を維持できなくなる現象かあり、従っ
てこの陽極効果が発生ずる臨界電流密度以下で運転しな
ければならない。しかし、丸棒状電極では局部的に高電
流密度となり、また電流密度が電極の消耗につれて変化
するので、生産量に直接関係する電流量を低レベルで運
転せざるを得ない。
3) The amount of metal deposited in molten salt electrolysis is determined by the amount of current according to Faraday's law, but in molten salt electrolysis, if the current is passed above a certain anode current density, an anode effect will occur and normal electrolysis will not occur. Therefore, it is necessary to operate at a current density below the critical current density at which this anodic effect occurs. However, with round rod-shaped electrodes, the current density is locally high, and the current density changes as the electrode wears out, so it is necessary to operate at a low level of current, which is directly related to production volume.

以上のような問題があり、常に最適値での一定した運転
の継続が困難である問題があった。
Due to the above-mentioned problems, it is difficult to maintain constant operation at the optimal value.

本発明は、上記の問題を解決するために種々実験を行っ
た結果、電極の形状を従来の丸棒を基本とした形より、
電解反応面積が実質的に変化しない板状を基本とした形
に変更することで解決したものである。つまり、丸棒状
電極を使用すると電解反応が主に電極間の最短距離区間
で進行するため、最短区間のみ臨界陽極電流密度に達し
てしまうと、陽極効果が発生し、また臨界陽極密度以下
で運転しても電極の消耗につれて極間距離は拡大し、電
極表面積は刻々減少していく。しかし、電極の消耗は丸
棒電極表面で一様に進行するのではなく、両極間の距離
が短いほど消耗が早く、従って、単位時間に減少する電
極表面積の割合も電極の太さによって異なり、一定して
いないし、極間距離を正確に把握することも困難である
。このように電極消耗に従って電流密度が変化すること
が第1の問題であり、次の電極の消耗による単位時間当
りの極間距離の変化量が時間により変化することが第2
の問題である。
As a result of various experiments conducted to solve the above problems, the present invention has changed the shape of the electrode from the conventional round bar shape.
This problem was solved by changing the shape to a plate-like shape in which the electrolytic reaction area does not substantially change. In other words, when using round rod-shaped electrodes, the electrolytic reaction mainly proceeds in the shortest distance between the electrodes, so if the critical anode current density is reached only in the shortest distance, an anode effect occurs, and the operation is performed below the critical anode density. However, as the electrodes wear out, the distance between the electrodes increases and the electrode surface area decreases moment by moment. However, the wear of the electrode does not proceed uniformly on the surface of the round bar electrode, and the shorter the distance between the two electrodes, the faster the wear occurs. Therefore, the rate of electrode surface area that decreases per unit time also differs depending on the thickness of the electrode. It is not constant, and it is difficult to accurately determine the distance between poles. The first problem is that the current density changes as the electrode wears out, and the second problem is that the amount of change in the distance between the electrodes per unit time due to the next electrode wear changes over time.
This is a problem.

このように丸棒電極を用いた場合は電解の進行に伴い電
極の状態を正確に把握することが困難となり、運転条件
が複雑に変化するので、最適電解条件に維持することも
困難となる。
When a round bar electrode is used in this manner, it becomes difficult to accurately grasp the state of the electrode as electrolysis progresses, and the operating conditions change in a complicated manner, making it difficult to maintain optimal electrolysis conditions.

従って、電極が消耗しても電解反応面積が変化しない形
状にすると第1の問題は解決でき、次に電極の消耗によ
り極間距離が変化するのであるが、この極間距離の変化
量が単位時間当り一定である形状にすると、この変化量
に従い一定割合で電極を移動することにより、簡単に一
定の極間距離に維持できる。
Therefore, the first problem can be solved by creating a shape in which the electrolytic reaction area does not change even when the electrodes are worn out.Secondly, the distance between the electrodes changes as the electrodes wear out, and the amount of change in the distance between the electrodes is the unit. If the shape is constant over time, a constant inter-electrode distance can be easily maintained by moving the electrodes at a constant rate according to the amount of change.

以上のような考えに基づいて、前述した問題を解決する
電極形状としては、電解反応面積、つまり陰極陽極の互
に向い合った部分の面積が一定でかつ電解反応面積が大
きい板状を基本とした形状の電極を採用することにより
、問題を解決した。
Based on the above idea, the electrode shape that solves the above-mentioned problems is basically a plate shape that has a constant electrolytic reaction area, that is, the area of the opposing parts of the cathode and anode, and has a large electrolytic reaction area. The problem was solved by adopting a shaped electrode.

溶融塩電解の場合は、前述したように陽極効果の発生を
抑制して電解することが重要であるから、陽極表面の電
解反応面積を一定して陽極電流密度を適正に管理するこ
とが極めて重要である。従って、陽極のみを板状電極と
してもそれなりの効果が発揮され、本発明の目的を達成
することができる。この場合の電極配置例を第1A及び
18図に示す。
In the case of molten salt electrolysis, as mentioned above, it is important to suppress the occurrence of the anode effect during electrolysis, so it is extremely important to keep the electrolytic reaction area on the anode surface constant and properly manage the anode current density. It is. Therefore, even if only the anode is a plate-shaped electrode, a certain effect can be exerted, and the object of the present invention can be achieved. Examples of electrode arrangement in this case are shown in FIGS. 1A and 18.

なお、第1A、IB、2A、26、3A、3B。In addition, 1A, IB, 2A, 26, 3A, 3B.

4.5A及び5B図において、1は電解槽、2は電解浴
、3は陽極、4は陰極、5はNd又はNd合金の液滴、
6は析出したNd又はNd合金、7は電源を示す。
In figures 4.5A and 5B, 1 is an electrolytic cell, 2 is an electrolytic bath, 3 is an anode, 4 is a cathode, 5 is a droplet of Nd or Nd alloy,
6 indicates deposited Nd or Nd alloy, and 7 indicates a power source.

しかしながら、陰極に丸棒を使用し、陽極に板状電極を
使用すると極間距離が陽極表面各部で一定でないため、
陽極全面が最適電流密度になっていないと考えられる。
However, when a round rod is used as the cathode and a plate electrode is used as the anode, the distance between the electrodes is not constant at each part of the anode surface.
It is thought that the entire surface of the anode does not have the optimum current density.

従って、陰極、陽極の双方共に板状電極を使用するのが
最も効果的である。
Therefore, it is most effective to use plate-shaped electrodes for both the cathode and anode.

この場合の電極配置例を第2A及び26図に示す。Examples of electrode arrangement in this case are shown in FIGS. 2A and 26.

この場合は陽極全面にわたり同じ電流密度と考えて差支
えない。
In this case, it can be assumed that the current density is the same over the entire surface of the anode.

次に、本発明者は電解炉を大きくしないで、つまり陽極
の実質的反応面積を大きくすることにより多量の電流を
流し、安定して電気分解を続けることができる方法を種
々検討した。この結果、電極の浴中電極表面積を同じく
して丸棒状電極を配置した第5A及び5B図と板状電極
を用いた第2A及び26図の実線部分を比較すると、明
らかに第2A及び26図の方が電極を大ぎくする余地が
あることが判る。そこで第2A及び3B図の破線の大き
さまで電極を大きくすると浴中電極表面積を大幅に増加
でき、多量の電流を流すことかてぎた。従って、本発明
を採用すると従来法の第5A及び5B図の配置に比較し
て約5倍の生産量の増加を図ることができるのである。
Next, the present inventor investigated various methods that would allow a large amount of current to flow and continue electrolysis stably without increasing the size of the electrolytic furnace, that is, by increasing the substantial reaction area of the anode. As a result, when comparing the solid line portions of FIGS. 5A and 5B, in which round rod-shaped electrodes are arranged with the same electrode surface area in the bath, and in FIGS. 2A and 26, in which plate-shaped electrodes are used, it is clear that FIGS. It can be seen that there is more room to make the electrode larger. Therefore, by enlarging the electrodes to the size indicated by the broken lines in Figures 2A and 3B, the surface area of the electrodes in the bath could be greatly increased, making it possible to flow a large amount of current. Therefore, by adopting the present invention, it is possible to increase production by about five times compared to the conventional arrangement shown in FIGS. 5A and 5B.

次に、本発明者は、陽極の形状と大きさを改良し多量の
電流を流すことは、第2A及び26図の破線の位置まで
拡大することで限度であるので、他の方法により多量の
電流を流すことはできないが、種々検討した結果、板状
の陰陽極を一対にして電流を流すのではなく、電気分解
を行う電流量は陰極電流密度よりも陽極電流密度によっ
て決まるのであるから、陰極の両側に2個の板状陽極を
配置することにより、同じ大きさの電解炉で陽極反応面
積を2倍にし、生産量を約2倍にする方法を発明したも
のである。
Next, the inventor found that the ability to improve the shape and size of the anode to allow a large amount of current to flow is limited by expanding the anode to the position indicated by the broken line in FIGS. Although it is not possible to flow current, after various studies, we found that rather than passing current through a pair of plate-shaped cathodes and anodes, the amount of current for electrolysis is determined by the anode current density rather than the cathode current density. By arranging two plate-shaped anodes on both sides of a cathode, he invented a method that doubled the anode reaction area and approximately doubled the production volume in an electrolytic furnace of the same size.

この方法は、陰極電流密度の制限が少なく、陽極電流密
度の制限が大きいネオジム及びネオジム−鉄合金を含む
ネオジム合金の溶融塩電解において有効であり、同一面
積の陰極陽極を使用した場合、陰極の電流密度は陽極の
2倍となり、電流は整流器より出た電流を1/2ずつ2
個の陽極に分流し、中央の陰極で合流して整流器に入る
ように配線すればよい。配線の一例を示せば第4図のと
おりである。
This method is effective in molten salt electrolysis of neodymium and neodymium alloys, including neodymium-iron alloys, where the cathode current density is less limited and the anode current density is more limited. The current density is twice that of the anode, and the current is 1/2 the current output from the rectifier.
All you have to do is wire it so that it separates into two anodes, merges at the central cathode, and enters the rectifier. An example of wiring is shown in FIG. 4.

本発明は、前述のとおり、陰極を中央に配置し、これに
板状陽極を対向させて配置すればよく、陰極の形状は陰
極電流密度が大きくてよいので特に問題はないが、陰極
の形状も板状にすることにより一段の効果を得ることが
できる。電極配置例は第3A及び3B図のとおりである
In the present invention, as described above, the cathode can be placed in the center, and the plate-like anode can be placed opposite to it, and the shape of the cathode does not pose any particular problem since the cathode current density can be large. A further effect can be obtained by making it into a plate shape. Examples of electrode arrangement are shown in Figures 3A and 3B.

次に、溶融塩電解においては、これまで述べてきたごと
く極間距離を適正値に保つことは極めて重要である。し
かしながら、これまでの公知文献においても最適極間距
離について開示したものは見当らない。そこで、本発明
者は適正な極間距離を見出すべく実験を重ねた結果、極
間距離か電流効率に大きく寄与し、この距離を10〜1
5mmに維持することにより、高電流効率を維持できる
ことを見出したものである。
Next, in molten salt electrolysis, as described above, it is extremely important to maintain the distance between the electrodes at an appropriate value. However, even in the known literature to date, there is no disclosure of the optimum distance between poles. Therefore, as a result of repeated experiments to find the appropriate distance between the poles, the present inventor found that the distance between the poles greatly contributed to the current efficiency, and the distance was set to 10 to 1.
It has been discovered that high current efficiency can be maintained by maintaining the thickness at 5 mm.

電流効率に及ぼす極間距離の影響を調べるため、陽極に
黒鉛、陰極に鉄の板状電極を使用し、電解浴としてL 
iF −N d F 3浴を使用して電解実験を行った
結果を第6図に示す。
In order to investigate the effect of the distance between the electrodes on the current efficiency, we used graphite plate electrodes for the anode and iron plate electrodes for the cathode, and used L as the electrolytic bath.
FIG. 6 shows the results of an electrolytic experiment using the iF-N d F 3 bath.

第6図の結果より、この極間距離は10〜50mmとす
るのが望ましく、20〜40mmとするのがより好まし
いことが判明した。極間距離が10+++mよりも近づ
きすぎると陽極に発生するF−等の陰イオン(酸化物N
d  Oが分解される場合には02−)と陰極に生成す
るネオジム金属とが反応し、ネオジム化合物に戻ってし
まい、50mmより遠すぎると炉内の電解浴の拡散効果
等によりネオジム金属の析出が妨げられるからである。
From the results shown in FIG. 6, it was found that the distance between the poles is preferably 10 to 50 mm, and more preferably 20 to 40 mm. If the distance between the electrodes is closer than 10 + + + m, anions such as F- (oxide N
When dO is decomposed, 02-) and the neodymium metal generated on the cathode react and return to a neodymium compound.If it is too far away than 50 mm, neodymium metal will precipitate due to the diffusion effect of the electrolytic bath in the furnace, etc. This is because it is hindered.

極間距離の調節は電解の進行につれて電極の一方又は双
方を移動させることにより行うが、丸棒電極では極間距
離が正確に把握しに<<、極間距離の調節も正確にでき
ない難点がある。これに対して、陰極陽極共板状電極を
使用する場合は電極表面が平面的に変化するのみなので
、どちらか−方、或いは双方の電極を一定の速度で移動
させることにより、容易に最適極間距離を保つことが可
能である。
Adjustment of the distance between the electrodes is performed by moving one or both of the electrodes as electrolysis progresses, but with round bar electrodes, the distance between the electrodes cannot be accurately determined and the distance between the electrodes cannot be adjusted accurately. be. On the other hand, when using plate-shaped electrodes for both the anode and cathode, the electrode surface changes only in a plane, so by moving one or both electrodes at a constant speed, it is easy to find the optimal electrode. It is possible to maintain distance between people.

前述の如く、本発明の方法は酸素を含む雰囲気中で溶融
塩電解を行うことを最大の特徴とするものであり、その
ために用いる電解浴としては、LiF等の析出金属より
も比重の軽い溶融塩にネオジム金属源を加えたものを用
いることが好ましい。LiFを用いると、電解浴の融点
を下げることができ、また製造される析出金属より比重
が軽いので、電解浴より下方に目的とする金属を析出さ
せ、酸素を含む雰囲気から遮断することができる。また
電解浴は遊離したカーボンより比重が思いので遊離カー
ボンを積極的に電解浴上部に押し上げ、酸化消耗させる
ことができる。
As mentioned above, the main feature of the method of the present invention is that molten salt electrolysis is carried out in an oxygen-containing atmosphere, and the electrolytic bath used for this purpose is a molten salt having a specific gravity lighter than that of the precipitated metal, such as LiF. Preferably, a salt containing a neodymium metal source is used. By using LiF, the melting point of the electrolytic bath can be lowered, and the specific gravity is lighter than the precipitated metal produced, so the target metal can be deposited below the electrolytic bath and shielded from an atmosphere containing oxygen. . Furthermore, since the electrolytic bath has a higher specific gravity than the free carbon, the free carbon can be actively pushed up to the top of the electrolytic bath and oxidized and consumed.

溶融塩としては、LiFにネオジム金属源としてNdF
3.Nd2O3を加えたもの、すなわち、LiF−Nd
F  系、又はこれに安価なNd2O3を混合させたL
iF−NdF3−Nd203系を用いるが、これにB 
a F 、Ca F 2等を適宜加えてもよい。また、
NdF  に代えてNdCjl13を使用してもよい。
As a molten salt, LiF and NdF as a neodymium metal source are used.
3. with Nd2O3, i.e. LiF-Nd
F system or L mixed with inexpensive Nd2O3
iF-NdF3-Nd203 system is used, but B
a F , Ca F 2 , etc. may be added as appropriate. Also,
NdCjl13 may be used instead of NdF.

なお、LiFはNdF3浴の融点を低下させ(例えば、
80mo1%配合では、1420’C−720℃)、電
気伝導度を向上させるのにも有効である。
Note that LiF lowers the melting point of the NdF3 bath (for example,
When mixed at 80 mo1%, it is also effective in improving electrical conductivity (1420'C-720°C).

L iF −N d F a系の場合、96〜Eibり
好ましくは95〜75mo1%のLiFと4〜35mo
1%、より好ましくは5〜25mo1%のNdF3とか
らなる組成が好ましい。第7図から第1O図にL iF
 −N d F a系における組成と電解温度を変えた
場合の臨界陽極電流密度と電流効率の変化を示す。第7
図から第10図はネオジム−鉄合金の製造についてのデ
ータであるがネオジム金属の製造の場合についてもほぼ
同様のデータを得ている。
In the case of LiF-NdFa system, 96-Eib, preferably 95-75 mo1% LiF and 4-35 mo
A composition consisting of 1%, more preferably 5 to 25 mo1% of NdF3 is preferred. LiF from Figure 7 to Figure 1O
Figure 3 shows the changes in critical anode current density and current efficiency when the composition and electrolysis temperature are changed in the -N d Fa system. 7th
Figures 1 to 10 show data for the production of neodymium-iron alloy, but almost similar data are obtained for the production of neodymium metal.

これらの図より上記の範囲内の組成が臨界陽極電流密度
、電流効率ともに優れていることがわがる。
These figures show that the composition within the above range is excellent in both critical anode current density and current efficiency.

LiF−NdF  −Nd203系の場合、上記の好ま
しい組成のL z F −N d F a系にNd2O
3を数wt%添加混合した組成が好ましい。
In the case of LiF-NdF-Nd203 system, Nd2O is added to the LzF-NdFa system with the above preferred composition.
A composition in which several wt% of 3 is added and mixed is preferable.

電解浴供給原料としては、上記浴組成において消費され
る成分をその消費量に応じて供給又は補給すればよいが
、L iF −N d F a系、LiF−NdF  
−Nd203系ではNdF3が主原料であり、Nd2O
3やLiFは消耗量に応じて時々補給する程度でよい。
As the raw material for the electrolytic bath, the components consumed in the above bath composition may be supplied or replenished according to the consumption amount, but LiF-NdFa system, LiF-NdF
-In the Nd203 system, NdF3 is the main raw material, and Nd2O
3 and LiF only need to be replenished from time to time depending on the amount consumed.

Nd2O3を使用する場合は、LtF−Nd2F3浴中
の溶解度以内となるようにNd2O3を3wt%以下と
すべきである。
If Nd2O3 is used, the content of Nd2O3 should be 3 wt% or less so that it is within the solubility in the LtF-Nd2F3 bath.

析出金属を覆っている電解浴深さは、効率的に金属を電
解析出させるためには適正な深さに維持することが大切
である。また、本発明では、析出金属よりも軽いLiP
を主体にした電解浴により析出金属と雰囲気中の酸素と
を遮断する効果をもだせるものであるが、電解浴深さが
少ないとこの遮断効果が少なく、また電気分解を行うと
発生する陽極ガスにより浴面が上下運動を起こすので、
この浴面の上下運動をも考慮した充分な電解浴深さを維
持することが必要である。本発明者による実験では、こ
の適正な電解浴深さは最低限5cm必要であり、好まし
くは10cm以上に維持することが望ましいことが判明
した。これよりも電解浴深さが少ないと遮断効果も上が
らず、電解領域も狭くなるので、析出する金属の収率が
大幅に低下することになる。しかしながら、本発明の方
法では、前記の如く、板状電極を縦に並行配置するので
、電極の実効面積を確保するために、電解浴の深さは必
然的に10mmを超えるので、実際上、本発明では浴の
深さが問題となることはない。
It is important to maintain the depth of the electrolytic bath covering the deposited metal at an appropriate depth in order to efficiently electrolytically deposit the metal. In addition, in the present invention, LiP which is lighter than the precipitated metal
An electrolytic bath mainly composed of is effective in blocking the deposited metal from oxygen in the atmosphere, but if the depth of the electrolytic bath is small, this blocking effect is small, and the anode gas generated during electrolysis is This causes the bath surface to move up and down,
It is necessary to maintain a sufficient depth of the electrolytic bath in consideration of this vertical movement of the bath surface. Experiments conducted by the present inventors have revealed that the appropriate depth of the electrolytic bath must be at least 5 cm, and preferably maintained at 10 cm or more. If the depth of the electrolytic bath is smaller than this, the blocking effect will not improve and the electrolytic region will become narrower, resulting in a significant drop in the yield of deposited metal. However, in the method of the present invention, as the plate electrodes are arranged vertically in parallel as described above, the depth of the electrolytic bath inevitably exceeds 10 mm in order to ensure the effective area of the electrodes. Bath depth is not a problem with the present invention.

電極は、金属ネオジムを製造する場合は陰極、陽極とも
に炭素電極を使用し、ネオジム合金、例えばネオジム−
鉄合金を製造する場合は陽極に炭素電極を用い、陰極に
鉄を用いる。金属ネオジムを製造する場合は陽極のみが
消耗電極となり、ネオジム合金を製造する場合には両極
ともに消耗電極とする。またネオジムと他の金属の合金
を製造する場合は、その金属を陰極とすればよい。
When manufacturing neodymium metal, carbon electrodes are used for both the cathode and the anode, and neodymium alloys, such as neodymium-
When manufacturing iron alloys, a carbon electrode is used for the anode and iron is used for the cathode. When manufacturing neodymium metal, only the anode is a consumable electrode, and when manufacturing neodymium alloy, both electrodes are consumable electrodes. Furthermore, when producing an alloy of neodymium and other metals, that metal may be used as the cathode.

炭素電極としては黒鉛電極が一般的であり、耐酸化性の
点でも好ましいが、黒鉛化率の低いものでも使用できる
。鉄電極としては、電解鉄のように高純度のものが好ま
しいが、本発明の方法によれば炭素含有率の比較的低い
軟鋼を用いても高純度のNd−Fe合金が得られる利点
がある。
Graphite electrodes are commonly used as carbon electrodes and are preferred in terms of oxidation resistance, but those with a low graphitization rate can also be used. As the iron electrode, it is preferable to use one with high purity such as electrolytic iron, but the method of the present invention has the advantage that a high purity Nd-Fe alloy can be obtained even if mild steel with a relatively low carbon content is used. .

Nd−Fc合金を製造する場合を例にとると、次の反応
が陰極で生じてNd−Fe合金が製造される。
Taking the case of producing an Nd-Fc alloy as an example, the following reaction occurs at the cathode to produce a Nd-Fe alloy.

Fe 十Nd’+3e  −Nd −Fe合合金一方、
陽極では、酸化物電解の場合とフッ化物電解の場合では
異なるが、いずれにしても次の反応により炭素が消耗す
る。
Fe 10Nd'+3e -Nd-Fe alloy On the other hand,
At the anode, carbon is consumed by the following reaction, although this differs between oxide electrolysis and fluoride electrolysis.

酸化物電解の場合は C+02−C0+2e フッ化物電解の場合は nC十mF  −CnFm+me (式中、CnFmはCF4.C2F6.C3F8などで
ある。) 雰囲気ガス中に水分がある場合は上記フッ素が再度水分
と反応し、HFとなることもある。
In the case of oxide electrolysis, C+02-C0+2e In the case of fluoride electrolysis, nC0mF -CnFm+me (In the formula, CnFm is CF4.C2F6.C3F8, etc.) If there is moisture in the atmospheric gas, the above fluorine will be rehydrated. It may react with HF to form HF.

F  +HO→2 HF + L/202一方、Nd金
属の場合を例にとると、陰極では次の反応が生じてNd
金属が製造され、陽極では上記フッ化物電解のときの陽
極での反応と同じ反応が生じて炭素を消耗する。
F + HO → 2 HF + L/202 On the other hand, taking the case of Nd metal as an example, the following reaction occurs at the cathode and Nd
Metal is produced, and at the anode the same reactions occur at the anode as in the fluoride electrolysis described above, depleting the carbon.

Nd+3+3e−−Nd↓ なお、浴上の雰囲気中に露出した部分の電極の酸化消耗
を抑制するには、黒鉛化率の高い黒鉛電極を用いるほか
、電極表面に金属質或いはセラミック質の被覆材をコー
ティングしたり、スリブで被覆する等の公知の酸化防止
策が有効である。
Nd+3+3e--Nd↓ To suppress the oxidative wear and tear of the electrode exposed in the atmosphere above the bath, in addition to using a graphite electrode with a high graphitization rate, a metallic or ceramic coating material should be applied to the electrode surface. Known anti-oxidation measures such as coating or covering with a sleeve are effective.

また、ネオジム−鉄合金製造では、陽極の黒鉛は消耗電
極であるので、浴上部の酸化消耗速度よりも浴中の電解
反応による消耗速度が大きくなるような条件を選定する
ことにより、そのまま使用することもできる。Nd金属
製造の場合は陰極の黒鉛はNdが析出し、生成金属中の
炭素濃度が高くなるので、これを防止するためにネオジ
ムと合金をつくらない金属(Ta、Pt)で反応面をコ
ーティングして炭素濃度の増大を防止することができる
In addition, in the production of neodymium-iron alloys, since graphite in the anode is a consumable electrode, it is possible to use it as is by selecting conditions such that the rate of consumption due to electrolytic reactions in the bath is greater than the rate of oxidation consumption in the upper part of the bath. You can also do that. In the case of Nd metal production, Nd precipitates in the graphite of the cathode, increasing the carbon concentration in the produced metal. To prevent this, the reaction surface is coated with a metal (Ta, Pt) that does not form an alloy with neodymium. This can prevent an increase in carbon concentration.

本発明の方法の第3の特徴は、高い陽極電流密度及び電
流効率での電解操作が可能であることである。本発明の
方法によれば、少なくとも0.5A/cれ好ましくは0
.7A/cシ以上あるいは1.OA/c+ff以上の高
い陽極電流密度で安定的に電解操作を行なうことが可能
である。また、本発明の方法によれば、70%以上、よ
り好ましくは80%以上、さらには85%以上の高い電
流効率で電解操作を行なうことが可能である。このよう
な高い陽極電流密度及び電流効率で操作することができ
る理由は、主として、前記の電極の形状及び配置の改良
、酸素含有雰囲気による浮遊又は懸濁したパウダー状炭
素の除去にあるが、そのほか、浴組成、浴温の最適化な
ども関係している。なお、本明細書において、陽極電流
密度は陽極の平均電流を陽極面積で割った値であり、陽
極面積は陽極のうち陰極と対向している部分の面積であ
る。また、電流効率は生成した金属量を供給された電流
量がらファラデーの式で求められる理論電解量で割った
値である。
A third feature of the method of the invention is that it allows electrolytic operation at high anodic current densities and current efficiencies. According to the method of the invention, at least 0.5 A/c, preferably 0
.. 7A/c or more or 1. It is possible to stably perform electrolytic operation at a high anode current density of OA/c+ff or higher. Further, according to the method of the present invention, it is possible to carry out electrolytic operation with a high current efficiency of 70% or more, more preferably 80% or more, and furthermore 85% or more. The reason for being able to operate at such high anodic current densities and current efficiencies lies primarily in the improvements in the shape and arrangement of the electrodes, the removal of airborne or suspended powdery carbon by the oxygen-containing atmosphere, but also in , bath composition, and bath temperature optimization. In this specification, the anode current density is a value obtained by dividing the average current of the anode by the anode area, and the anode area is the area of the part of the anode that faces the cathode. Further, current efficiency is a value obtained by dividing the amount of metal produced by the amount of supplied current by the theoretical amount of electrolysis determined by Faraday's equation.

電解浴温度は、Nd金属を製造する場合には、Nd金属
の融点よりも低い温度でも高い温度でも、或いは溶融塩
の融点とNd金属の融点との間の温度でも可能である。
When producing Nd metal, the electrolytic bath temperature can be lower or higher than the melting point of the Nd metal, or a temperature between the melting point of the molten salt and the melting point of the Nd metal.

例えば、電解浴温度がNdの融点より低い温度にして電
解すると、Ndは黒鉛表面で針状に析出するが、溶融塩
よりも重いため、電極下方の溶融塩中に析出する。また
、針状に析出し、陽極まで結晶が伸びた場合、陽極とシ
ョートし、−船釣に大電流が流れるので、結晶が溶解し
て電極下方に析出することになるため、上記の如<Nd
の融点よりも高温でも、溶融塩の融点とNdの融点との
間の温度でも可能である。
For example, when electrolysis is performed at an electrolytic bath temperature lower than the melting point of Nd, Nd precipitates in the form of needles on the graphite surface, but since it is heavier than the molten salt, it precipitates in the molten salt below the electrode. In addition, if the crystals precipitate in a needle shape and extend to the anode, it will short-circuit with the anode, and a large current will flow in the boat, causing the crystals to dissolve and precipitate below the electrode. Nd
A temperature higher than the melting point of Nd or a temperature between the melting point of the molten salt and that of Nd is also possible.

Nd−Fe合金を製造する場合は、Nd−Fe合金の融
点はNd−Feの状態図より、Nd75mo1%で64
0℃と、L IF −N d F aの状態図の共晶点
720℃より低いので電解浴温度を電解浴の融点より高
くすることにより、析出したNdFe合金が陰極で析出
後液状となり、溶融塩よりも重いため電極下方の溶融塩
中に析出する。また電解温度を制御することにより、N
d−Feの組成比を制御することも可能である。
When manufacturing a Nd-Fe alloy, the melting point of the Nd-Fe alloy is 64 at 75 mo1% Nd, according to the phase diagram of Nd-Fe.
0°C, which is lower than the eutectic point of 720°C in the phase diagram of L IF -N d Fa, so by making the electrolytic bath temperature higher than the melting point of the electrolytic bath, the precipitated NdFe alloy becomes liquid at the cathode and melts. Since it is heavier than salt, it precipitates in the molten salt below the electrode. In addition, by controlling the electrolysis temperature, N
It is also possible to control the composition ratio of d-Fe.

従って電解浴温度は、電解浴の融点よりも高ければ可能
であり、720℃より若干高い750℃以上であれば良
く、750℃〜1100℃の範囲が適当である。しかし
、電解浴温度を高くすると、電極の酸化消耗が増加し、
浴槽材料の損傷も促進される。
Therefore, the electrolytic bath temperature may be higher than the melting point of the electrolytic bath, and may be 750°C or higher, which is slightly higher than 720°C, and a range of 750°C to 1100°C is suitable. However, increasing the electrolytic bath temperature increases oxidation consumption of the electrodes,
Damage to the bathtub material is also promoted.

また、第7図〜第10図に示した電解浴温度と臨界陽極
電流密度及び電流効率及び浴組成の関係より、浴温度が
低くなっても高くなりすぎても、電流効率が悪化すると
ともに陽極臨界電流密度が大きく変化するので、上記の
関係を総合的に判断した825℃〜1000℃位の温度
で保持することが経済的である。
Furthermore, from the relationship between electrolytic bath temperature, critical anode current density, current efficiency, and bath composition shown in Figures 7 to 10, it is clear that if the bath temperature becomes too low or too high, the current efficiency deteriorates and the anode Since the critical current density changes greatly, it is economical to maintain the temperature at about 825° C. to 1000° C., which is determined comprehensively based on the above relationship.

また、電解浴の温度は、電極間の電流による発熱だけに
よって制御することも可能であり、実際、従来の溶融塩
電解法では多くこの内熱法が採用されているが、本発明
の方法では電解浴の外部から加熱手段で加熱して浴温を
制御する外熱式によることが好ましい。本発明の方法で
は電流効率が高くかつ電気伝導度が高いので、浴温を一
定に保つために十分な発熱を電極間電流だけで供給しよ
うとすると電極間距離を大きくせざるを得ず、そのため
最適電解条件での運転ができなくなるおそれがあるから
である。また、電極の取換え、修理などのために電極を
浴から取り出す際にも、外熱式であれば浴は溶融状態に
保つことができ、運転再開が容易であり、生産調整も容
易になるので好ましい。
Furthermore, the temperature of the electrolytic bath can be controlled solely by the heat generated by the current between the electrodes.In fact, this internal heating method is often adopted in conventional molten salt electrolysis methods, but the method of the present invention It is preferable to use an external heating type in which the electrolytic bath is heated from outside with a heating means to control the bath temperature. Since the method of the present invention has high current efficiency and high electrical conductivity, in order to supply sufficient heat generation only with the interelectrode current to keep the bath temperature constant, the distance between the electrodes must be increased. This is because there is a possibility that operation under optimum electrolysis conditions may not be possible. In addition, even when the electrodes are taken out of the bath for replacement or repair, the bath can be kept in a molten state if the external heating type is used, making it easy to restart operations and make production adjustments easier. Therefore, it is preferable.

また、電解槽は、使用する浴組成及び浴条件で耐食性の
あるものであればよいが、オーステナイト系ステンレス
鋼(日本工業標準(JIS)規格(7) 5US−30
4、SO3−316、5US−310Sなど)からなる
ことが、安価でかつ溶融塩に耐久性が高い点で好ましい
The electrolytic cell may be made of austenitic stainless steel (Japanese Industrial Standard (JIS) standard (7) 5US-30) as long as it has corrosion resistance depending on the bath composition and bath conditions used.
4, SO3-316, 5US-310S, etc.) is preferable because it is inexpensive and has high durability against molten salt.

電解槽の耐食性に関連して、Nd金属あるいはNd−F
cなどのNd合金は鉄その他の金属と合金をつくりやす
いので、Nd又はNd合金を受ける容器(受器)は合金
をつくりにくいタンタル、タングステン、モリブデン等
で作製する必要があり、本発明者の研究によるとタンタ
ルが最もよい。
In relation to the corrosion resistance of electrolytic cells, Nd metal or Nd-F
Since Nd alloys such as C easily form alloys with iron and other metals, the container (receiver) for receiving Nd or Nd alloys must be made of tantalum, tungsten, molybdenum, etc., which are difficult to form alloys with. Research shows that tantalum is the best.

これらタンタル等の金属は高価であるので、受器のNd
又はNd合金と接触する部分だけをタンタル等で内張す
してもよい。しかし、受器の表面を内張すするだけにし
ても、電極の寸法、特に幅が大きくなると必要な受器の
寸法が大きくなり、タンタル等の使用量は多くならざる
を得ない。そこで、Nd−Fe等のNd合金を製造する
場合には、板状陰極の底辺に傾斜を設け、その先端を突
出させることによって、Nd合金の液滴を一旦その突出
端に集め、その1点から生成合金を滴下させるようにす
れば、必要な受器の寸法は小さくできる。陰極の下端の
形状は、液滴が下端で分散滴下したり或いは残存せずに
、1点に液滴が集まるテーパー形状であればよく、単純
な直線状のテーパー或いは僅かに膨らみを有するテーパ
ーとし、好ましくは10〜30°のテーパーを付けると
よい。
These metals such as tantalum are expensive, so Nd
Alternatively, only the portion that contacts the Nd alloy may be lined with tantalum or the like. However, even if the surface of the receiver is simply lined, as the dimensions of the electrode, particularly the width, increase, the required dimensions of the receiver will increase, and the amount of tantalum or the like used will inevitably increase. Therefore, when manufacturing Nd alloys such as Nd-Fe, the bottom of the plate-shaped cathode is sloped and the tip of the cathode is made to protrude, so that droplets of Nd alloy are collected at one point on the protruding end. If the produced alloy is dropped from the container, the size of the required receiver can be reduced. The shape of the lower end of the cathode may be a tapered shape in which droplets are dispersed at the lower end or droplets are collected at one point without remaining, and may be a simple linear taper or a taper with a slight bulge. , preferably with a taper of 10 to 30°.

またテーパーの先端、すなわち液滴が落下する点の位置
は電極の中心であっても、端であっても、或いはその中
間の位置であってもよく、要はメタル受は器の位置及び
その後の回収方法にとって望ましい位置であれば、それ
に合せて適宜変化させることができる。
In addition, the tip of the taper, that is, the position of the point where the droplet falls, may be at the center of the electrode, at the edge, or at a position in between. If the position is desirable for the recovery method, it can be changed as appropriate.

受器又は電解槽底部に集められたNd又はNd合金は、
受器又は電解槽から電解槽の壁を通して設けられたメタ
ル取出口から直接回収するようにしてもよいが、電解浴
上方から電解浴中又は受器内へパイプを導入して真空で
吸い上げる方か簡単でよい。
The Nd or Nd alloy collected at the receiver or bottom of the electrolyzer is
It is possible to collect the metal directly from the receiver or electrolytic cell through the metal outlet provided through the wall of the electrolytic cell, but it is also possible to introduce a pipe from above the electrolytic bath into the electrolytic bath or into the receiver and suck it up using a vacuum. It's easy and good.

好ましい態様について説明すれば以下のとおりである。Preferred embodiments will be described below.

第11A図、第11B図は本発明の方法を実施するため
の電解装置を示し、第11A図は縦断面模式図、第11
B図は平面模式図である。電解浴12に浸漬された陽極
13及び陰極14はそれぞれ板状電極であり、陰極14
を中央にして陽極13がその両側に対向して配置される
。陰極14が鉄製の場合、Nd−Fe合金の滴下を一箇
所にするために、陰極14の底辺15は例えばテーパー
状で中央に突出部を有する形状にされる。電解浴12の
上方は大気16に解放され、浴槽の内壁面17はオース
テナイト系ステンレス製である。浴槽の周囲は外熱炉1
8になっており、発熱体19を有する。20は絶縁板で
ある。そして、電解浴12の温度は熱電対21で検出さ
れ、外熱炉制御装置(図示なし)で発熱体19を制御し
て調整される。板状電極13.14は上方から懸吊され
、極間距離調整機22、電極昇降機23を介して電極取
付台24で支持されている。極間距離調整機22及び電
極昇降機23はウオームギア式になっており、その回転
によって電極13.14を左右、上下に移動することか
できるようになっている。また、電解槽内にはNd又は
Nd合金を回収するための受器25があり、内側表面は
タンタルで内張すされている。なお、この装置では、電
解浴上方を大気に解放したが、電解浴上方を囲繞し、特
定の酸素濃度の雰囲気を利用するようにしてもよい。
11A and 11B show an electrolysis apparatus for carrying out the method of the present invention, FIG. 11A is a schematic vertical cross-sectional view, and FIG.
Figure B is a schematic plan view. The anode 13 and cathode 14 immersed in the electrolytic bath 12 are plate-shaped electrodes, and the cathode 14
Anodes 13 are arranged facing each other on both sides of the center. When the cathode 14 is made of iron, the bottom side 15 of the cathode 14 is, for example, tapered and has a protrusion in the center in order to allow the Nd-Fe alloy to drip in one place. The upper part of the electrolytic bath 12 is open to the atmosphere 16, and the inner wall surface 17 of the bathtub is made of austenitic stainless steel. Around the bathtub is an external heat furnace 1
8 and has a heating element 19. 20 is an insulating plate. The temperature of the electrolytic bath 12 is detected by a thermocouple 21, and adjusted by controlling the heating element 19 by an external heating furnace control device (not shown). The plate electrodes 13 and 14 are suspended from above and supported by an electrode mounting base 24 via an inter-electrode distance adjuster 22 and an electrode elevator 23. The inter-electrode distance adjuster 22 and the electrode elevator 23 are of a worm gear type, and their rotation allows the electrodes 13 and 14 to be moved left and right and up and down. Further, within the electrolytic cell there is a receiver 25 for recovering Nd or Nd alloy, the inner surface of which is lined with tantalum. In this device, the upper part of the electrolytic bath is opened to the atmosphere, but the upper part of the electrolytic bath may be surrounded to utilize an atmosphere with a specific oxygen concentration.

このような電解装置で、NdF3を原料として使用し所
定の浴組成、浴温、電流電圧条件等で電解を行ない、N
d又はNd合金を陰極14から受器25中へ滴下させて
回収する。電解中、電極が消耗して電極間距離が変化す
るので、極間距離調整機22を用い、電解条件を考慮し
て電極を移動させ、極間距離を一定に保つことによって
、電解条件を一定に維持することができる。
In such an electrolyzer, NdF3 is used as a raw material and electrolyzed under predetermined bath composition, bath temperature, current and voltage conditions, etc., and NdF3 is used as a raw material.
d or Nd alloy is dropped from the cathode 14 into the receiver 25 and collected. During electrolysis, the electrodes are worn out and the distance between the electrodes changes. Therefore, by using the distance adjustment device 22 to move the electrodes and keeping the distance between the electrodes constant, the electrolytic conditions can be kept constant. can be maintained.

以下、例にもとづいて説明する。This will be explained below based on an example.

これらの例では、第12図に示したような電解槽で電解
実験を行なった。同図中、鉄製の下部槽32に溶融塩3
1が収容され、陽極33及び陰極34か対向して配置さ
れている。極間距離は30mmに保ち、電解浴深さは2
0cmにした。電解槽32上方は蓋体35で覆い、気体
入口36から雰囲気ガスを導入しく必要に応じて気体出
口37から排気して)、所定の雰囲気38を維持した。
In these examples, electrolytic experiments were conducted in an electrolytic cell as shown in FIG. In the figure, molten salt 3 is placed in a lower iron tank 32.
1 is accommodated, and an anode 33 and a cathode 34 are arranged facing each other. The distance between the electrodes was kept at 30 mm, and the depth of the electrolytic bath was 2.
It was set to 0cm. The upper part of the electrolytic cell 32 was covered with a lid 35, and a predetermined atmosphere 38 was maintained by introducing atmospheric gas from a gas inlet 36 and exhausting it from a gas outlet 37 as necessary.

但し、大気中での実験では、蓋体35を取り外して行な
った。図中、39は原料投入口、40は受器本体、41
は受器の内張り(タンタル製)である。これらの電解で
はNdは針状結晶となり、Nd合金は陰極と反応して液
滴となり、比重差や針状結晶に流れる電流により受器4
0内に堆積した(図中、42がNd又はNd合金の液滴
、43がNd又はNd合金である)。
However, in the experiment in the atmosphere, the lid 35 was removed. In the figure, 39 is the raw material input port, 40 is the receiver body, 41
is the inner lining of the receiver (made of tantalum). In these electrolysis, Nd becomes needle-shaped crystals, and the Nd alloy reacts with the cathode to form droplets, and due to the difference in specific gravity and the current flowing through the needle-shaped crystals, the Nd becomes acicular crystals.
(In the figure, 42 is a droplet of Nd or Nd alloy, and 43 is a droplet of Nd or Nd alloy).

例1(従来例) 比較のために、溶融塩としてL i F 80IIlo
1%(34,1wt%) −N d F320mo、1
%([i5.9wt%)を用い、かつ電解浴上方をアル
ゴンガスで充満し、陽極として丸棒状の黒鉛電極(黒鉛
化率98%)、陰極として丸棒状の電解鉄電極(炭素含
有率0,02%)を用いて電解を行ない、Nd−Fc合
金を製造した。その他の電解条件及びその変化ならびに
得られたNd−Fc合金生成物の分析結果を表1に示す
Example 1 (Conventional Example) For comparison, L i F 80IIlo was used as a molten salt.
1% (34,1wt%) -N d F320mo, 1
% ([i5.9 wt%), and the upper part of the electrolytic bath was filled with argon gas, and a round bar-shaped graphite electrode (graphitization rate 98%) was used as an anode, and a round bar-shaped electrolytic iron electrode (carbon content 0) was used as a cathode. , 02%) to produce a Nd-Fc alloy. Table 1 shows other electrolytic conditions and their changes as well as the analysis results of the obtained Nd-Fc alloy product.

例2(比較例) 従来例ではないが、比較のために、両極を板状電極とし
た以外は例1と全く同じ条件で電解を行なった。結果を
同じく表1に示す。
Example 2 (Comparative Example) Although not a conventional example, for comparison, electrolysis was carried out under exactly the same conditions as in Example 1 except that both electrodes were plate-shaped electrodes. The results are also shown in Table 1.

電極を板状としたことによって、臨界電流値が向上し、
またNd−Fc合金中の炭素含有量もわずかに低減して
いるのがみられる。しかしながら、電解浴の電流電圧の
推移はなお不安定であり、浴表面にはパウダー状炭素が
充満し、Nd−Fe合金中の炭素含有率(1500pp
m)はそのまま永久磁石用原料(400ppm以下)と
して用いるのに適当ではないことが認められる。
By making the electrode plate-shaped, the critical current value is improved,
It is also seen that the carbon content in the Nd-Fc alloy is slightly reduced. However, the current-voltage transition of the electrolytic bath is still unstable, and the bath surface is filled with powdered carbon, and the carbon content in the Nd-Fe alloy (1500pp
It is recognized that m) is not suitable for use as it is as a raw material for permanent magnets (400 ppm or less).

〔実 施 例〕〔Example〕

例3〜7(本発明例) 雰囲気中の酸素ガス濃度の効果を調べるために、例2と
同じ条件で、但し、雰囲気ガスを窒素と酸素との混合物
とし、酸素濃度をいろいろに変えて、電解を行なった。
Examples 3 to 7 (Examples of the present invention) In order to examine the effect of the oxygen gas concentration in the atmosphere, experiments were carried out under the same conditions as in Example 2, except that the atmosphere gas was a mixture of nitrogen and oxygen, and the oxygen concentration was varied. Electrolysis was performed.

結果を表1に示す。The results are shown in Table 1.

表1から明らかなように、雰囲気中の酸素ガス濃度が増
加すると共に浴表面のパウダー状炭素が顕著に減少し、
酸素濃度20%、40%、50%の場合には浴表面から
パウダー状炭素か完全に消失した。
As is clear from Table 1, as the oxygen gas concentration in the atmosphere increases, the powdery carbon on the bath surface decreases significantly.
At oxygen concentrations of 20%, 40%, and 50%, powdered carbon completely disappeared from the bath surface.

また、これと対応して、得られたNd−Fc合金中の炭
素含有量も雰囲気中の酸素ガス濃度の増加とともに減少
し、従来方法では2000ppmであったものが、雰囲
気中の酸素濃度が20%、40%、50%の場合には4
0ppmと著しく減少し、永久磁石用原料(400pp
m以下)としてそのまま使用できるものが得られている
Correspondingly, the carbon content in the obtained Nd-Fc alloy also decreases as the oxygen gas concentration in the atmosphere increases. 4 for %, 40%, 50%
The raw material for permanent magnets (400ppm) decreased significantly to 0ppm.
m or less), which can be used as is.

また、雰囲気中の酸素ガス濃度が20%の場合を例にと
ると、従来例と比べて、臨界電流値(7倍)、電流効率
(2,7倍)などが著しく増大するとともに、電解中の
電流電圧の推移、臨界電流値などが極めて安定化し、N
d−Fe合金の回収量は21倍にも増大していることが
認められる。
In addition, if we take the case where the oxygen gas concentration in the atmosphere is 20% as an example, compared to the conventional example, the critical current value (7 times) and current efficiency (2.7 times) increase significantly, and during electrolysis The current and voltage trends and critical current values of N
It is recognized that the amount of recovered d-Fe alloy has increased by as much as 21 times.

雰囲気中の酸素ガス濃度が低いと上記の如き効果は小さ
く、一方、酸素ガス濃度が30%を越えて高くなってゆ
くと、炭素電極の消耗が激しくなり、陽極の脱落が早く
なるのが認められる。
When the oxygen gas concentration in the atmosphere is low, the above effect is small, but on the other hand, as the oxygen gas concentration increases beyond 30%, it is observed that the carbon electrode wears out more rapidly and the anode falls off faster. It will be done.

例8〜10(本発明例) 雰囲気を酸素ガス濃度20%とし、電極の形状及び配置
を変えて電解実験を行なった。例8では両極を丸棒状と
し、例9では両極を1対の板状とし、例10では中央に
板状陰極を配置し、その両側に板状陽極を並行に配置し
た。
Examples 8 to 10 (Examples of the Present Invention) Electrolysis experiments were conducted with the atmosphere set to an oxygen gas concentration of 20% and the shape and arrangement of the electrodes changed. In Example 8, both electrodes were shaped like round rods, in Example 9, both electrodes were shaped like a pair of plates, and in Example 10, a plate-shaped cathode was arranged in the center, and plate-shaped anodes were arranged in parallel on both sides thereof.

結果を表1に示す。The results are shown in Table 1.

電解形状を丸棒状(例8)から板状(例9)に3つ することによって、臨界電流値(4,7倍)と電流効率
(1,3倍)が向上し、その結果Nd−Fe合金回収量
も相乗的に増大(7,2倍)していることが認められる
。さらに、板状陽極を板状陰極の両側に対向して配置す
ることによって、臨界電流値が倍増するとともに電流効
率も板状陽極1枚の場合と比べてわずかに向上しており
、その結果Nd−Fe合金の回収量が2倍以上も増大し
ているのが認められる。また、電極形状を板状にしたこ
とによってNd−Fe合金中の炭素含有率も減少してい
るのが認められる。さらに、例8〜10から、酸素ガス
濃度を適当にすれば電極形状にかかわらず、電解中の電
流電圧の推移が安定化することも認められる。
By changing the electrolytic shape from a round rod shape (Example 8) to a plate shape (Example 9), the critical current value (4.7 times) and current efficiency (1.3 times) are improved, and as a result, the Nd-Fe It is recognized that the amount of alloy recovery also increases synergistically (7.2 times). Furthermore, by arranging the plate anodes on both sides of the plate cathode, the critical current value is doubled and the current efficiency is slightly improved compared to the case of a single plate anode. It is observed that the amount of -Fe alloy recovered has increased by more than twice. It is also observed that the carbon content in the Nd-Fe alloy is reduced by making the electrode shape plate-like. Furthermore, from Examples 8 to 10, it is recognized that if the oxygen gas concentration is set appropriately, the current-voltage transition during electrolysis can be stabilized regardless of the electrode shape.

なお、例10を従来例(例1)と比べると、臨界電流値
14倍、電流効率2.8倍、Nd−Fe合全全回収量4
5倍Nd−Fe合金の炭素含有率50分の1にそれぞれ
改良されている。
In addition, when Example 10 is compared with the conventional example (Example 1), the critical current value is 14 times, the current efficiency is 2.8 times, and the total Nd-Fe recovery amount is 4 times.
The carbon content has been improved to 1/50th of that of the Nd-Fe alloy.

(以下余白) 例I↑及び12(本発明例) 電解浴組成をL i F 80mo1%(33,4wt
%)NdF320Ino1%([i4.8wt%) −
N d 20 a 2 vt%とした以外、例1及び例
10と同様の条件で電解を行なった。
(Left below) Examples I↑ and 12 (Example of the present invention) The electrolytic bath composition was L i F 80mo1% (33.4wt
%) NdF320Ino1% ([i4.8wt%) −
Electrolysis was carried out under the same conditions as in Example 1 and Example 10 except that N d 20 a 2 vt%.

結果を表2に示す。浴組成はL iF −N d F 
a系でもLiF−NdF −Nd203系でも、本発明
の効果に差がないことが示されている。
The results are shown in Table 2. The bath composition is LiF-NdF
It has been shown that there is no difference in the effect of the present invention between the a system and the LiF-NdF-Nd203 system.

例13及び14(本発明例) 陰極を黒鉛電極とした以外例1及び例10と同様の条件
で電解を行なった。
Examples 13 and 14 (Examples of the Present Invention) Electrolysis was carried out under the same conditions as in Examples 1 and 10, except that a graphite electrode was used as the cathode.

結果を表2に示す。Ndを製造する場合にも、Nd−F
e合金を製造する場合と同様の効果が認められる。
The results are shown in Table 2. Also when manufacturing Nd, Nd-F
The same effect as in the case of manufacturing e-alloy is observed.

例15及び1B (本発明例) 電解浴の上方を大気に解放して、陰極を黒鉛電極(例1
5)又は鉄電極(例1G)として例10と同様の条件で
電解を行なった。
Examples 15 and 1B (Example of the present invention) The upper part of the electrolytic bath was opened to the atmosphere, and the cathode was replaced with a graphite electrode (Example 1
5) or using an iron electrode (Example 1G), electrolysis was carried out under the same conditions as in Example 10.

結果を表2に示す。大気中でも本発明の効果が認められ
る。
The results are shown in Table 2. The effects of the present invention can be observed even in the atmosphere.

例17(本発明例) 陰極を丸棒状電極(5φXIO”)とした以外、例10
と同様の条件で電解を行なった。
Example 17 (Example of the present invention) Example 10 except that the cathode was a round rod-shaped electrode (5φXIO”)
Electrolysis was carried out under the same conditions.

結果を表2に示す。陽極のみを板状電極にした場合にも
一定の効果があることが認められる。
The results are shown in Table 2. It is recognized that a certain effect can be achieved even when only the anode is a plate-shaped electrode.

例18及び19(本発明例) 例10と同様の条件で、但し板状電極の横幅が70mn
+の場合(例18)と140mmの場合(例19)につ
いて、比較実験を行なった。
Examples 18 and 19 (Examples of the present invention) Same conditions as Example 10, except that the width of the plate electrode was 70 mm.
A comparative experiment was conducted for the case of + (Example 18) and the case of 140 mm (Example 19).

結果を表2に示す。表2より、電極の有効面積を大きく
することによって電流量及びNd−Fe合金の生産量が
比例して増大することが認められる。従って、本発明に
よれば、従来例の丸棒状の電極と比べて、同じ電解槽中
により大きい有効面積を有する電極を使用できる点ても
、改良が図られることが認められる。
The results are shown in Table 2. From Table 2, it is recognized that by increasing the effective area of the electrode, the amount of current and the production amount of Nd-Fe alloy increase proportionally. Therefore, according to the present invention, it is recognized that an improvement is achieved in that an electrode having a larger effective area can be used in the same electrolytic cell compared to the round rod-shaped electrode of the conventional example.

第13図は例181例19の電気分解時の電流−電圧曲
線であるが、この図から電流値か同じであれば例19の
方が例18よりも電圧が低いことが認められる。
FIG. 13 shows current-voltage curves during electrolysis for Examples 181 and 19, and it is recognized from this figure that the voltage in Example 19 is lower than that in Example 18 if the current values are the same.

例20(本発明例) 溶融塩を保持する浴槽材料を各種材料について腐蝕試験
を行った。
Example 20 (Example of the Present Invention) Corrosion tests were conducted on various bathtub materials for holding molten salt.

第14図は溶融塩での各種材料(普通鋼、JIS規格の
5O8−304,5O8−316,5O8−8108゜
SO8−430)の腐蝕試験を用いた装置を示し、第1
5図はその結果を図にしたものである。
Figure 14 shows an apparatus using molten salt for corrosion testing of various materials (common steel, JIS standard 5O8-304, 5O8-316, 5O8-8108°SO8-430).
Figure 5 shows the results.

第14図のように溶融塩52に各種材料53を入れて溶
融塩中と溶融塩と大気の界面と溶融塩上部にまたがる部
分の腐蝕量の合計を経日ごとに調査しその結果を第15
図に示した。
As shown in Fig. 14, various materials 53 are put into the molten salt 52, and the total amount of corrosion in the molten salt, the interface between the molten salt and the atmosphere, and the area spanning the upper part of the molten salt is investigated every day, and the results are reported in Fig. 15.
Shown in the figure.

実験条件は大気中でSUS −304で作成した浴槽5
4を用いて通電せずに浴温880 ’Cで保持したもの
である。
The experimental conditions were a bathtub 5 made of SUS-304 in the atmosphere.
4 was used to maintain the bath temperature at 880'C without applying electricity.

溶融塩52はL iF 80M %−N d F 32
0M%のL iF −N d F a系とL i F 
80M%−NdF32゜M%にNd2O3を2wt%添
加したLiF−NdF3−Nd203系の2種類を用い
たが同じ傾向の結末を示した。
Molten salt 52 is LiF 80M%-NdF 32
0M% LiF-NdFa system and LiF
Two types of LiF-NdF3-Nd203 systems in which 2 wt% of Nd2O3 was added to 80 M%-NdF32°M% were used, but the results showed the same tendency.

第15図において普通鋼とフェライト系ステンレス鋼(
SO3−430)はオーステナイト系ステンレス鋼(S
US−904,5O8−318,5US−310S)に
比較して腐蝕量が多く、オーステナイト系ステンレス鋼
がすぐれていることが判る。
Figure 15 shows ordinary steel and ferritic stainless steel (
SO3-430) is austenitic stainless steel (S
It can be seen that the austenitic stainless steel is superior as the amount of corrosion is greater than that of the steels (US-904, 5O8-318, 5US-310S).

またオーステナイト系ステンレス鋼の中ではSO!l(
−’310S (組成: Cr 25vt%、 Ni 
20vt%)が最もすぐれていることが判る。
Also, among the austenitic stainless steels, SO! l(
-'310S (Composition: Cr 25vt%, Ni
It can be seen that 20vt%) is the most excellent.

例21及び22(本発明例) 例18の結果をもとに第16図に示す電解槽をつくりN
d−Feを製造する連続運転実験を行った。
Examples 21 and 22 (Example of the present invention) Based on the results of Example 18, an electrolytic cell shown in Fig. 16 was made and N
A continuous operation experiment was conducted to produce d-Fe.

第16図において溶融塩62を入れる電解浴槽63を前
述した実験結果よりSO8−3103(例21)で作成
し、比較のため普通鋼(例22)でも作成した。第16
図においてメタル受は容器64はNdは他の金属と合金
をつくりやすいために5O8−31O8でつくったメタ
ル受は容器64の内側をTaB5で内張すした。
In FIG. 16, an electrolytic bath 63 containing molten salt 62 was made of SO8-3103 (Example 21) based on the above-mentioned experimental results, and also made of ordinary steel (Example 22) for comparison. 16th
In the figure, the metal container 64 is made of 5O8-31O8 because Nd easily forms an alloy with other metals, and the inside of the container 64 is lined with TaB5.

鉄製陰極6Bと黒鉛製陽極B7を配置し、通電すると、
電気分解されたNdは陰極6Gと反応しNdFe合金液
滴B8となってメタル受は容器64の中に収容されてN
d−Fe合金69となって析出する。
When iron cathode 6B and graphite anode B7 are arranged and energized,
The electrolyzed Nd reacts with the cathode 6G and becomes NdFe alloy droplets B8, and the metal receiver is accommodated in the container 64 and Nd
It precipitates as d-Fe alloy 69.

なお電気分解は大気中70で行った。Note that the electrolysis was performed in the atmosphere at 70°C.

2種類の電解浴、つまり、L i F 80mo1%N
 d F 320mo1%のL iF −N d F 
a系と、LiF80mo1 %−NdF320IIio
1%に2vt%のNd2O3を添加したLiF−NdF
3−Nd203系を、ともに880℃の電解温度で操作
した結果、電解浴組成による大きな変化はなかった。
Two types of electrolytic baths, namely L i F 80mo1%N
dF 320mo1% LiF-NdF
a system and LiF80mo1%-NdF320IIio
LiF-NdF with 2vt% Nd2O3 added to 1%
As a result of operating both 3-Nd203 systems at an electrolytic temperature of 880° C., there was no significant change due to the electrolytic bath composition.

この結果を表3に示した。連続使用日数とは、運転日数
が経過するに従い電解槽に使用した材料が薄くなるので
電解浴が流出する危険がある程度薄くなった日数をもっ
て表わした。なお、使用した材料の厚さは両方とも5 
III/I11とした。
The results are shown in Table 3. The number of days of continuous use was expressed as the number of days in which the risk of electrolytic bath leakage has diminished to some extent because the material used for the electrolytic bath becomes thinner as the number of operating days passes. The thickness of both materials used was 5.
It was set as III/I11.

(以下余白) 表    3 表3よりオーステナイト系ステンレス鋼である5US−
3108を使用することにより連続使用可能な口数が大
幅に増加したことが判る。
(Left below) Table 3 From Table 3, 5US- which is austenitic stainless steel
It can be seen that by using the 3108, the number of ports that can be used continuously has increased significantly.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、得られるネオジム又はネオジム
合金、特にネオジム−鉄合金の炭素含有率が低く、かつ
生産性が高いので、Nd−FeB系やNd −Fe −
Co −B系の永久磁石用原料の工業的な製造方法とし
て最適である。
According to the method of the present invention, the neodymium or neodymium alloy obtained, especially the neodymium-iron alloy, has a low carbon content and high productivity, so it is possible to
This method is most suitable as an industrial method for producing raw materials for Co-B permanent magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A及び18図、第2A及び第26図、及び第3A及
び3B図は本発明による電極配置を説明する図であり、
第1A、2A及び3A図は平面図、第1B、26及び3
B図は断面図であり、第4図は本発明の第3A及び3B
図に対応する実施態様における電力配線図であり、 第5A及び5B図は従来の電極配置を説明するためのそ
れぞれ平面図及び断面図であり、第6図は極間距離と電
流効率の関係を示す図であり、 第7図はL iF −N d F a浴における電解温
度と臨界陽極電流密度の関係を示す図、 第8図はL iF −N d F 3浴における電解温
度と電流効率の関係を示す図であり、 第9図はL iF −N d F s浴における浴組成
及び電解温度と臨界陽極電流密度の関係を示す図であり
、 第10図はL iF −N d F a浴における浴組
成と電流効率の関係を示す図であり、 第1LA図及び第11B図は本発明の方法を実施する電
解装置の模式縦断面図及び平面図であり、第12図は例
において実験に用いた電解装置の模式断面図であり、 第13図は実施例18と実施例19における電圧と電流
の関係を示す図であり、 第14図は例において種々の鉄合金の腐蝕性を試験する
方法を示す断面図、 第15図は第14図による腐蝕試験の結果を示すグラフ
であり、そして 第16図は電解槽の耐久試験に用いた電解装置の模式断
面図である。 1・・・電解槽        2・・・電解浴3・・
・陽 極       411.陰 極5・・・液滴(
Nd又はNd合金) 6・・・Nd又はNd合金   7・・・電 源12・
・・電解浴        13・・陽 極14・・・
陰 極 16・・・大 気 18・・・外熱炉 20・・・絶縁体 22・・・極間距離調整機 24・・・電極取付台 25・・・Nd又はNd合金受器 26・・・受器内張り 31・・・電解浴 33・・・陽 極 35・・・蓋 体 37・・・気体出口 39・・・原料供給器 41・・・受器内張り 42・・・Nd又はNd合金液滴 43・・・Nd又はNd合金 53・・・被試験体 62・・・電解浴 64・・・受器本体 66・・・陰 極 15・・・陰極の底辺 17・・・電解槽内壁 19・・・発熱体 21・・・熱電対 23・・・電極昇降機 27・・・液 滴 32・・・電解槽 34・・・陰 極 36・・・気体入口 38・・・雰囲気 40・・・受器本体 52・・・溶融塩 54・・・槽 63・・・電解槽 65・・・受器内張り 67・・・陽 極 68・・・Nd合金液滴 70・・・大 気 69・・・Nd合金
1A and 18, 2A and 26, and 3A and 3B are diagrams illustrating the electrode arrangement according to the present invention,
Figures 1A, 2A and 3A are plan views, Figures 1B, 26 and 3
Figure B is a sectional view, and Figure 4 is a cross-sectional view of Figures 3A and 3B of the present invention.
5A and 5B are a plan view and a cross-sectional view, respectively, for explaining the conventional electrode arrangement, and FIG. 6 shows the relationship between the distance between poles and current efficiency. Figure 7 is a diagram showing the relationship between electrolysis temperature and critical anode current density in LiF-NdF a bath, and Figure 8 is a diagram showing the relationship between electrolysis temperature and current efficiency in LiF-NdF 3 bath. FIG. 9 is a diagram showing the relationship between the bath composition, electrolysis temperature, and critical anode current density in the LiF-NdFs bath, and FIG. 10 is the diagram showing the relationship between the critical anode current density and the bath composition in the LiF-NdFs bath. Fig. 1LA and Fig. 11B are a schematic vertical cross-sectional view and a plan view of an electrolyzer for carrying out the method of the present invention, and Fig. 12 is a diagram showing the relationship between bath composition and current efficiency in an example. FIG. 13 is a diagram showing the relationship between voltage and current in Example 18 and Example 19, and FIG. 14 is a schematic cross-sectional view of the electrolyzer used. FIG. 14 is a diagram showing the relationship between voltage and current in Example 18 and Example 19. FIG. 15 is a graph showing the results of the corrosion test according to FIG. 14, and FIG. 16 is a schematic cross-sectional view of the electrolyzer used in the durability test of the electrolytic cell. 1... Electrolytic bath 2... Electrolytic bath 3...
・Anode 411. Cathode 5...droplet (
Nd or Nd alloy) 6...Nd or Nd alloy 7...Power source 12.
... Electrolytic bath 13 ... Anode 14 ...
Cathode 16... Atmosphere 18... External heat furnace 20... Insulator 22... Inter-electrode distance adjuster 24... Electrode mounting base 25... Nd or Nd alloy receiver 26... - Receiver lining 31... Electrolytic bath 33... Anode 35... Lid body 37... Gas outlet 39... Raw material supplier 41... Receiver lining 42... Nd or Nd alloy Droplet 43... Nd or Nd alloy 53... Test object 62... Electrolytic bath 64... Receiver body 66... Cathode 15... Bottom side of cathode 17... Inner wall of electrolytic tank 19... Heating element 21... Thermocouple 23... Electrode elevator 27... Liquid droplet 32... Electrolytic cell 34... Cathode 36... Gas inlet 38... Atmosphere 40...・Receiver body 52... Molten salt 54... Tank 63... Electrolytic tank 65... Receiver lining 67... Anode 68... Nd alloy droplet 70... Atmosphere 69.・・Nd alloy

Claims (1)

【特許請求の範囲】 1、溶融塩電解浴で、陽極として板状の炭素電極、陰極
として板状の金属又は炭素電極を用い、これらの板状電
極を電解浴中に互に対向させて配置し、かつ電解浴上を
電解中に炭素電極から発生して電解浴表面に浮遊するパ
ウダー状炭素を酸化消耗するのに十分な濃度の酸化ガス
を含む雰囲気で覆い、そして電解を行なって陰極上にネ
オジム又はネオジム合金を析出させ、該ネオジム又はネ
オジム合金を陰極下に滴下させて電解浴底に集収するこ
とからなるネオジム又はネオジム合金の製造方法。 2、電解浴上の雰囲気が10〜40体積%の範囲内の酸
素ガスを含有する請求の範囲第1項記載の方法。 3、電解浴上の雰囲気が15〜30体積%の範囲内の酸
素ガスを含有する請求の範囲第2項記載の方法。 4、電解浴上の雰囲気が大気である請求の範囲第3項記
載の方法。 5、板状陽極と板状陰極との極間距離が10〜50mm
の範囲内である請求の範囲第1項記載の方法。 6、板状陽極と板状陰極との極間距離が20〜40mm
の範囲内である請求の範囲第5項記載の方法。 7、板状陽極と板状陰極との極間距離を電極の消耗を考
慮して一定に制御する請求の範囲第5項記載の方法。 8、1枚の板状陰極を中央に配置し、その両側に一対の
板状陽極を板状陰極に対向して配置して電解を行なう請
求の範囲第1項記載の方法。 9、電解浴がフッ化ネオジムとフッ化リチウムからなる
請求の範囲第1項記載の方法。 10、電解浴がフッ化ネオジムとフッ化リチウムと酸化
ネオジムからなる請求の範囲第1項記載の方法。 11、電解浴補給原料がフッ化ネオジムである請求の範
囲第1項記載の方法。 12、陰極が鉄からなり、ネオジム−鉄合金を製造する
特許請求の範囲第1項記載の方法。 13、生成するネオジム又はネオジム合金の炭素含有率
が400ppm未満である請求の範囲第1項記載の方法
。 14、溶融塩電解浴で、陽極として板状の炭素電極、陰
極として板状の金属又は炭素電極を用い、これらの板状
電極を電解浴中に互に対向させて配置し、かつ電解浴上
を電解中に炭素電極から発生して電解浴表面に浮遊する
パウダー状炭素を酸化消耗するのに十分な濃度の酸化ガ
スを含む雰囲気で覆い、そして0.5A/cm^2以上
の陽極電流密度で電解を行なって陰極上にネオジム又は
ネオジム合金を析出させ、該ネオジム又はネオジム合金
を陰極下に滴下させて電解浴底に集収することからなる
ネオジム又はネオジム合金の製造方法。 15、陽極電流密度が0.7A/cm^2以上である請
求の範囲第14項記載の方法。 16、陽極電流密度が1.0A/cm^2以上である特
許請求の範囲第14項記載の方法。 17、電解浴上の雰囲気が10〜40体積%の範囲内の
酸素ガスを含有する請求の範囲第14項記載の方法。 18、電解浴上の雰囲気が15〜30体積%の範囲内の
酸素ガスを含有する請求の範囲第17項記載の方法。 19、電解浴上の雰囲気が大気である請求の範囲第11
項記載の方法。 20、板状陽極と板状陰極との極間距離が10〜50m
mの範囲内である請求の範囲第14項記載の方法。 21、板状陽極と板状陰極との極間距離が20〜40m
mの範囲内である請求の範囲第20項記載の方法。 22、板状陽極と板状陰極との極間距離を電極の消耗を
考慮して一定に制御する請求の範囲第14項記載の方法
。 23、1枚の板状陰極を中央に配置し、その両側に一対
の板状陽極を板状陰極に対向して配置して電解を行なう
請求の範囲第14項記載の方法。 24、電解浴温度を750〜1100℃の範囲内とする
請求の範囲第14項記載の方法。25、電解浴温度を8
25〜1000℃の範囲内とする請求の範囲第24項記
載の方法。26、電解浴が4〜35モル%のフッ化ネオ
ジムと96〜65モル%のフッ化リチウムの混合物から
なる請求の範囲第14項記載の方法。 27、電解浴が5〜25モル%のフッ化ネオジムと95
〜75モル%のフッ化リチウムの混合物からなる請求の
範囲第26項記載の方法。 28、電解浴が4〜35モル%のフッ化ネオジムと96
〜65モル%のフッ化リチウムの混合物100重量部に
3重量部以下の酸化ネオジムを加えた混合物からなる請
求の範囲第14項記載の方法。 29、陰極が鉄からなり、ネオジム−鉄合金を製造する
請求の範囲第14項記載の方法。30、溶融塩電解浴で
、陽極として板状の炭素電極、陰極として板状の金属又
は炭素電極を用い、これらの板状電極を電解浴中に互に
対向させて配置し、電解浴の浴温を電解浴外部に設けた
加熱手段で制御し、かつ電解浴上を電解中に炭素電極か
ら発生して電解浴表面に浮遊するパウダー状炭素を酸化
消耗するのに十分な濃度の酸化ガスを含む雰囲気で覆い
、そして0.5A/cm^2以上の陽極電流密度で電解
を行なって陰極上にネオジム又はネオジム合金を析出さ
せ、該ネオジム又はネオジム合金を陰極下に滴下させて
電解浴底に集収することからなるネオジム又はネオジム
合金の製造方法。 31、電解浴温度を750〜1100℃の範囲内とする
請求の範囲第30項記載の方法。32、電解浴温度を8
25〜1000℃の範囲内とする請求の範囲第31項記
載の方法。33、電解浴が4〜35モル%のフッ化ネオ
ジムと96〜65モル%のフッ化リチウムからなる請求
の範囲第30項記載の方法。 34、電解浴が5〜25モル%のフッ化ネオジムと95
〜75モル%のフッ化リチウムの混合物からなる請求の
範囲第33項記載の方法。 35、電解浴が4〜35モル%のフッ化ネオジムと96
〜65モル%のフッ化リチウムの混合物100重量部に
3重量部以下の酸化ネオジムを加えた混合物からなる請
求の範囲第30項記載の方法。 36、板状陽極と板状陰極との極間距離を電極の消耗を
考慮して一定に制御する請求の範囲第30項記載の方法
。 37、1枚の板状陰極を中央に配置し、その両側に一対
の板状陽極を板状陰極に対向して配置して電解を行なう
請求の範囲第30項記載の方法。 38、板状陰極を傾斜した底辺とその底辺の端部に形成
される下方に凸の頂点を有する形状とし、よって陰極で
析出し陰極を伝って滴下するネオジム又はネオジム合金
を該頂点の下方に集中的に集収する請求の範囲第30項
記載の方法。 39、上記板状陰極の上記頂点の下方にタンタルで内張
した受器を配置し、滴下するネオジム又はネオジム合金
を該受器中に集収する請求の範囲第38項記載の方法。 40、オーステナイト系ステンレス鋼製の電解浴槽を用
いる請求の範囲第30項記載の方法。 41、4〜35モル%のフッ化ネオジムと96〜65モ
ル%のフッ化リチウムとからなる深さ5mm以上の溶融
塩電解浴で、陽極として板状の炭素電極、陰極として板
状の鉄又は炭素電極を用い、これらの板状電極を電解浴
中に互に対向させて10〜50mmの範囲内の極間距離
で配置し、電解浴上を電解中に炭素電極から発生して電
解浴表面に浮遊するパウダー状炭素を酸化消耗するのに
十分な濃度の酸化ガスを含む雰囲気で覆い、電解浴の浴
温を電解浴の外部に設けた加熱手段を用いて750〜1
100℃の範囲内に制御し、0.5A/cm^2以上の
陽極電流密度で電解し、かつ極間距離を電極の消耗を考
慮して一定に制御して、陰極上にネオジム又はネオジム
−鉄合金を析出させ、該ネオジム又はネオジム−鉄合金
を陰極下に滴下させて電解浴底に集収することからなる
ネオジム又はネオジム−鉄合金の製造方法。 42、電解浴槽の内壁がオーステナイト系ステンレス鋼
製であり、前記受器の内壁がタンタル製である請求の範
囲第41項記載の方法。 43、生成するネオジム又はネオジム−鉄の炭素含有率
が100ppm未満である請求の範囲第41項記載の方
法。 44、電流効率が70%以上である請求の範囲第41項
記載の方法。 45、電流効率が80%以上である請求の範囲第44項
記載の方法。 46、陰極が板状以外の形状をしている請求の範囲第1
項記載の方法。 47、陰極が板状以外の形状をしている請求の範囲第1
4項記載の方法。 48、陰極が板状以外の形状をしている請求の範囲第4
1項記載の方法。
[Claims] 1. In a molten salt electrolytic bath, a plate-shaped carbon electrode is used as an anode, and a plate-shaped metal or carbon electrode is used as a cathode, and these plate-shaped electrodes are arranged to face each other in the electrolytic bath. Then, the electrolytic bath is covered with an atmosphere containing an oxidizing gas with a concentration sufficient to oxidize and consume the powdered carbon generated from the carbon electrode during electrolysis and floating on the electrolytic bath surface. 1. A method for producing neodymium or neodymium alloy, which comprises precipitating neodymium or neodymium alloy in water, dropping the neodymium or neodymium alloy under a cathode, and collecting the neodymium or neodymium alloy at the bottom of an electrolytic bath. 2. The method according to claim 1, wherein the atmosphere above the electrolytic bath contains oxygen gas in a range of 10 to 40% by volume. 3. The method according to claim 2, wherein the atmosphere above the electrolytic bath contains oxygen gas in a range of 15 to 30% by volume. 4. The method according to claim 3, wherein the atmosphere above the electrolytic bath is air. 5. The distance between the plate anode and plate cathode is 10 to 50 mm.
The method of claim 1 within the scope of. 6. The distance between the plate anode and plate cathode is 20 to 40 mm.
6. The method of claim 5 within the scope of. 7. The method according to claim 5, wherein the distance between the plate-shaped anode and the plate-shaped cathode is controlled to be constant in consideration of electrode wear. 8. The method according to claim 1, wherein one plate-shaped cathode is placed in the center, and a pair of plate-shaped anodes are placed on both sides of the plate-shaped cathode so as to face the plate-shaped cathode. 9. The method according to claim 1, wherein the electrolytic bath comprises neodymium fluoride and lithium fluoride. 10. The method according to claim 1, wherein the electrolytic bath comprises neodymium fluoride, lithium fluoride, and neodymium oxide. 11. The method according to claim 1, wherein the electrolytic bath replenishment raw material is neodymium fluoride. 12. The method according to claim 1, wherein the cathode is made of iron and a neodymium-iron alloy is produced. 13. The method according to claim 1, wherein the neodymium or neodymium alloy produced has a carbon content of less than 400 ppm. 14. In a molten salt electrolytic bath, a plate-shaped carbon electrode is used as an anode, and a plate-shaped metal or carbon electrode is used as a cathode, and these plate-shaped electrodes are arranged facing each other in the electrolytic bath, and above the electrolytic bath. is covered with an atmosphere containing an oxidizing gas with a concentration sufficient to oxidize and consume the powdered carbon generated from the carbon electrode during electrolysis and floating on the surface of the electrolytic bath, and the anode current density is 0.5 A/cm^2 or more. A method for producing neodymium or neodymium alloy, which comprises performing electrolysis to precipitate neodymium or neodymium alloy on a cathode, dropping the neodymium or neodymium alloy dropwise below the cathode, and collecting it at the bottom of an electrolytic bath. 15. The method according to claim 14, wherein the anode current density is 0.7 A/cm^2 or more. 16. The method according to claim 14, wherein the anode current density is 1.0 A/cm^2 or more. 17. The method according to claim 14, wherein the atmosphere above the electrolytic bath contains oxygen gas in a range of 10 to 40% by volume. 18. The method according to claim 17, wherein the atmosphere above the electrolytic bath contains oxygen gas in the range of 15 to 30% by volume. 19. Claim 11, wherein the atmosphere above the electrolytic bath is air.
The method described in section. 20. The distance between the plate anode and plate cathode is 10 to 50 m.
15. The method of claim 14, wherein m. 21. The distance between the plate anode and plate cathode is 20 to 40 m.
21. The method of claim 20, wherein m. 22. The method according to claim 14, wherein the distance between the plate-shaped anode and the plate-shaped cathode is controlled to be constant in consideration of electrode wear. 23. The method according to claim 14, wherein one plate-shaped cathode is placed in the center, and a pair of plate-shaped anodes are placed on both sides of the plate-shaped cathode to face the plate-shaped cathode. 24. The method according to claim 14, wherein the electrolytic bath temperature is within the range of 750 to 1100°C. 25, the electrolytic bath temperature is 8
25. The method according to claim 24, wherein the temperature is within the range of 25 to 1000C. 26. The method of claim 14, wherein the electrolytic bath comprises a mixture of 4 to 35 mole percent neodymium fluoride and 96 to 65 mole percent lithium fluoride. 27, the electrolytic bath contains 5 to 25 mol% neodymium fluoride and 95
27. The method of claim 26 comprising a mixture of ~75 mole % lithium fluoride. 28, the electrolytic bath contains 4 to 35 mol% neodymium fluoride and 96
15. The method of claim 14, comprising 100 parts by weight of a mixture of ~65 mole percent lithium fluoride to which up to 3 parts by weight neodymium oxide is added. 29. The method according to claim 14, wherein the cathode is made of iron and a neodymium-iron alloy is produced. 30. In a molten salt electrolytic bath, a plate-shaped carbon electrode is used as an anode, and a plate-shaped metal or carbon electrode is used as a cathode, and these plate-shaped electrodes are placed facing each other in the electrolytic bath. The temperature is controlled by a heating means provided outside the electrolytic bath, and an oxidizing gas with a concentration sufficient to oxidize and consume the powdery carbon generated from the carbon electrode and floating on the surface of the electrolytic bath during electrolysis is supplied to the electrolytic bath. Neodymium or neodymium alloy is deposited on the cathode by electrolyzing at an anode current density of 0.5 A/cm^2 or more, and the neodymium or neodymium alloy is dropped under the cathode to the bottom of the electrolytic bath. A method for producing neodymium or neodymium alloy, which comprises collecting neodymium or neodymium alloy. 31. The method according to claim 30, wherein the electrolytic bath temperature is within the range of 750 to 1100°C. 32, the electrolytic bath temperature is 8
32. The method according to claim 31, wherein the temperature is within the range of 25 to 1000C. 33. The method of claim 30, wherein the electrolytic bath comprises 4 to 35 mol% neodymium fluoride and 96 to 65 mol% lithium fluoride. 34, the electrolytic bath contains 5 to 25 mol% neodymium fluoride and 95
34. The method of claim 33 comprising a mixture of ~75 mole % lithium fluoride. 35, the electrolytic bath contains 4 to 35 mol% neodymium fluoride and 96
31. The method of claim 30, comprising 100 parts by weight of a mixture of ~65 mole percent lithium fluoride plus up to 3 parts by weight neodymium oxide. 36. The method according to claim 30, wherein the distance between the plate-shaped anode and the plate-shaped cathode is controlled to be constant in consideration of electrode wear. 37. The method according to claim 30, wherein one plate-shaped cathode is placed in the center, and a pair of plate-shaped anodes are placed on both sides of the plate-shaped cathode to face the plate-shaped cathode. 38. The plate-shaped cathode is shaped to have an inclined base and a downwardly convex apex formed at the end of the base, so that the neodymium or neodymium alloy that is precipitated at the cathode and drips down the cathode is placed below the apex. 31. The method of claim 30, wherein the collection is performed centrally. 39. The method according to claim 38, wherein a tantalum-lined receiver is disposed below the apex of the plate cathode, and the neodymium or neodymium alloy dripping is collected in the receiver. 40. The method according to claim 30, using an electrolytic bath made of austenitic stainless steel. 41. A molten salt electrolytic bath with a depth of 5 mm or more consisting of 4 to 35 mol% neodymium fluoride and 96 to 65 mol% lithium fluoride, with a plate-shaped carbon electrode as the anode and a plate-shaped iron or iron electrode as the cathode. Carbon electrodes are used, and these plate-shaped electrodes are placed facing each other in an electrolytic bath with a distance between the electrodes within a range of 10 to 50 mm. The electrolytic bath is covered with an atmosphere containing an oxidizing gas with a concentration sufficient to oxidize and consume the powdered carbon suspended in the electrolytic bath, and the bath temperature of the electrolytic bath is set to 750-1.
Neodymium or neodymium is deposited on the cathode by controlling the temperature within the range of 100°C, electrolyzing at an anode current density of 0.5 A/cm^2 or more, and controlling the distance between the electrodes to be constant in consideration of electrode wear. A method for producing neodymium or neodymium-iron alloy, which comprises precipitating an iron alloy, dropping the neodymium or neodymium-iron alloy under a cathode, and collecting it at the bottom of an electrolytic bath. 42. The method according to claim 41, wherein the inner wall of the electrolytic bath is made of austenitic stainless steel, and the inner wall of the receiver is made of tantalum. 43. The method according to claim 41, wherein the neodymium or neodymium-iron produced has a carbon content of less than 100 ppm. 44. The method according to claim 41, wherein the current efficiency is 70% or more. 45. The method according to claim 44, wherein the current efficiency is 80% or more. 46. Claim 1 in which the cathode has a shape other than a plate shape
The method described in section. 47. Claim 1 in which the cathode has a shape other than a plate shape
The method described in Section 4. 48. Claim 4 in which the cathode has a shape other than a plate shape
The method described in Section 1.
JP15397288A 1988-06-22 1988-06-22 Method for producing neodymium or neodymium alloy Expired - Lifetime JP2596976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15397288A JP2596976B2 (en) 1988-06-22 1988-06-22 Method for producing neodymium or neodymium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15397288A JP2596976B2 (en) 1988-06-22 1988-06-22 Method for producing neodymium or neodymium alloy

Publications (2)

Publication Number Publication Date
JPH024994A true JPH024994A (en) 1990-01-09
JP2596976B2 JP2596976B2 (en) 1997-04-02

Family

ID=15574103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15397288A Expired - Lifetime JP2596976B2 (en) 1988-06-22 1988-06-22 Method for producing neodymium or neodymium alloy

Country Status (1)

Country Link
JP (1) JP2596976B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188711A (en) * 1991-04-17 1993-02-23 Eveready Battery Company, Inc. Electrolytic process for making alloys of rare earth and other metals
US5346608A (en) * 1991-12-20 1994-09-13 Heraeus Elektrochemie Gmbh Method for obtaining neodymium or neodymium-iron alloy by electrolysis of melts containing neodymium compounds
US6602098B2 (en) 2000-07-17 2003-08-05 Yazaki Corporation Connector with retainer
JP2015516514A (en) * 2012-05-16 2015-06-11 ライナス サービシズ プロプライエトリィ リミテッド Electrolytic cell for the production of rare earth metals
KR102149210B1 (en) * 2020-06-02 2020-08-28 한국지질자원연구원 Recovery method of high purity neodymium using electrolytic refining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684266B1 (en) * 2015-03-30 2016-12-08 충남대학교산학협력단 Apparatus for recovering neodymium matal using electrowinning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188711A (en) * 1991-04-17 1993-02-23 Eveready Battery Company, Inc. Electrolytic process for making alloys of rare earth and other metals
US5346608A (en) * 1991-12-20 1994-09-13 Heraeus Elektrochemie Gmbh Method for obtaining neodymium or neodymium-iron alloy by electrolysis of melts containing neodymium compounds
US6602098B2 (en) 2000-07-17 2003-08-05 Yazaki Corporation Connector with retainer
JP2015516514A (en) * 2012-05-16 2015-06-11 ライナス サービシズ プロプライエトリィ リミテッド Electrolytic cell for the production of rare earth metals
KR102149210B1 (en) * 2020-06-02 2020-08-28 한국지질자원연구원 Recovery method of high purity neodymium using electrolytic refining

Also Published As

Publication number Publication date
JP2596976B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
KR100485233B1 (en) Process for the electrolytic production of metals
TWI479051B (en) Primary production of elements
WO2011071151A1 (en) Method for producing indium metal, molten salt electrolytic cell, and method for purifying low melting point metal
JPS63262493A (en) Electrolytic production metal
EP1689913A2 (en) Process for electrolytic production of aluminum
JPH024994A (en) Manufacture of neodymium or neodynium alloy
US5000829A (en) Process for preparing praseodymium metal or praseodymium-containing alloy
US20070209944A1 (en) Anode for electrolysis of aluminium
US5810993A (en) Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases
US4966661A (en) Process for preparation of neodymium or neodymium alloy
JP2761002B2 (en) Method for producing Nd-Fe alloy or Nd metal
US5091065A (en) Process for preparation of neodymium or neodymium-iron alloy
JPH0559199B2 (en)
JP4557565B2 (en) Electrolyzer
JPS63266086A (en) Production of rare earth metal or alloy thereof
JPS6312947B2 (en)
JPH03140490A (en) Rare earth metal and production of rare earth alloy
JPH0569918B2 (en)
JPH0660431B2 (en) Method for producing rare earth metal or rare earth alloy
RU1840840C (en) Method of producing iridium-platinum alloys
US1202535A (en) Production of metallic tungsten.
JPH0561357B2 (en)
JP2024024345A (en) Electrode exchange device, molten salt electrolysis device, and method for producing titanium-based electrodeposited material
Pavlovskii Electrolytes for tungsten refining
JPS61291988A (en) Method and apparatus for producing neodymium-iron alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12