JP2012142626A - Light-emitting element and light-emitting element manufacturing method - Google Patents

Light-emitting element and light-emitting element manufacturing method Download PDF

Info

Publication number
JP2012142626A
JP2012142626A JP2012100218A JP2012100218A JP2012142626A JP 2012142626 A JP2012142626 A JP 2012142626A JP 2012100218 A JP2012100218 A JP 2012100218A JP 2012100218 A JP2012100218 A JP 2012100218A JP 2012142626 A JP2012142626 A JP 2012142626A
Authority
JP
Japan
Prior art keywords
substrate
layer
light emitting
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100218A
Other languages
Japanese (ja)
Inventor
Akira Saeki
亮 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012100218A priority Critical patent/JP2012142626A/en
Publication of JP2012142626A publication Critical patent/JP2012142626A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element having a light-emitting layer of improved crystallinity and easy for mass production and a manufacturing method of the light-emitting element.SOLUTION: A light-emitting element manufacturing method comprises: a step of crystal growing a laminate including an etching easy layer adjacent to a first substrate composed of a III-V compound semiconductor and a light-emitting layer composed of a nitride-based semiconductor on the first substrate; a step of forming a transparent electrode and a first metal layer on the laminate in this order; a step of bonding a surface of a second metal layer provided on a second substrate with a surface of the first metal layer by heating the first and second metal layers in a stuck state; and a step of separating the first substrate and the second substrate on which the light-emitting layer is provided by removing the etching easy layer by use of solution etching or removing the etching easy layer by use of mechanical polishing.

Description

本発明は、発光素子及び発光素子の製造方法に関する。   The present invention relates to a light emitting element and a method for manufacturing the light emitting element.

窒化物系発光素子の特性改善により半導体発光素子を用いた照明器具が可能になった。照明用途をさらに広げるために、発光素子の光出力及び発光効率の改善が要求されている。また、照明用途では高い量産性が要求される。   Improvements in the characteristics of nitride-based light emitting devices have enabled lighting fixtures using semiconductor light emitting devices. In order to further expand the lighting application, it is required to improve the light output and light emission efficiency of the light emitting element. In addition, high mass productivity is required for lighting applications.

窒化物系発光素子の結晶成長を行う基板としては、絶縁材料であるサファイヤなどが用いられることが多い。しかしながら、絶縁基板を用いると基板の縦方向を電流経路とすることが困難であり、基板に対して平行な面に沿った高い直列抵抗を介した電流経路となる。このために、発光効率が低下する。他方、導電性を有する窒化物系半導体基板を用いると、低抵抗とすることが可能であるが基板の大型化が困難であり量産性が不十分である。   In many cases, sapphire, which is an insulating material, is used as a substrate for crystal growth of a nitride-based light emitting device. However, when an insulating substrate is used, it is difficult to use the vertical direction of the substrate as a current path, and a current path is formed through a high series resistance along a plane parallel to the substrate. For this reason, luminous efficiency falls. On the other hand, when a nitride-based semiconductor substrate having conductivity is used, the resistance can be reduced, but it is difficult to increase the size of the substrate and the mass productivity is insufficient.

発光効率が高いIII−V族化合物半導体素子及びその製造方法に関する技術開示例がある(特許文献1)。この技術開示例では、III−V族化合物半導体積層体が形成された下地基板と、金属層をふくむ積層体が形成された半導体基板と、を接合した後に下地基板を除去する発光素子の製造方法が提供されている。
しかしながら、この技術開示例を用いても照明用途の要求を満たす特性及び量産性を有する発光素子及び製造方法として十分ではない。
There is a technical disclosure example relating to a group III-V compound semiconductor device having high luminous efficiency and a method for manufacturing the same (Patent Document 1). In this technology disclosure example, a method for manufacturing a light-emitting element in which a base substrate on which a III-V group compound semiconductor multilayer body is formed and a semiconductor substrate on which a multilayer body including a metal layer is formed is bonded and then the base substrate is removed. Is provided.
However, even if this example of technical disclosure is used, it is not sufficient as a light emitting element and a manufacturing method having characteristics and mass productivity that satisfy the requirements for lighting applications.

特開2006−135026号公報JP 2006-135026 A

結晶性が改善された発光層を有し量産化が容易な発光素子及び発光素子の製造方法を提供する。   Provided are a light-emitting element having a light-emitting layer with improved crystallinity and easily mass-produced, and a method for manufacturing the light-emitting element.

本発明の一態様によれば、III−V族化合物半導体からなる第1の基板上に、前記第1の基板に隣接したエッチング容易層と、窒化物系半導体からなる発光層と、を含む積層体を結晶成長する工程と、前記積層体の上に透明電極と第1の金属層とをこの順に形成する工程と、第2の基板の上に設けられた第2の金属層の表面と前記第1の金属層の表面とを貼り合わせた状態で加熱して接合する工程と、溶液エッチング法を用いて前記エッチング容易層を除去するか、または機械的研磨法を用いて前記第1の基板及び前記エッチング容易層を除去することにより、前記発光層が設けられた前記第2の基板と前記第1の基板とを分離する工程と、を備えた発光素子の製造方法が提供される。   According to one aspect of the present invention, a stacked layer including an easy-to-etch layer adjacent to the first substrate and a light emitting layer made of a nitride-based semiconductor on a first substrate made of a III-V group compound semiconductor. A step of crystal-growing a body, a step of forming a transparent electrode and a first metal layer in this order on the laminate, a surface of a second metal layer provided on a second substrate, and the Heating and bonding in a state where the surface of the first metal layer is bonded, and removing the easy-etching layer using a solution etching method, or using the mechanical polishing method, the first substrate And a step of separating the second substrate provided with the light-emitting layer and the first substrate by removing the easy-to-etch layer.

また、本発明の他の一態様によれば、発光層を含みIII−V族化合物半導体からなる積層体と、前記積層体の上に設けられた導電性の透明電極と、前記透明電極の上に設けられAuGeおよび前記透明電極の上にAu、AuGeの順序で設けられた積層のうちのいずれかを含む第1の金属層と、半導体基板と、前記半導体基板上に設けられ、Auを有する第2の金属層と、を備え、前記第1の金属層と、前記第2の金属層と、が接合されてなり、前記発光層からの放射光が前記透明電極を通過し、前記第1の金属層により反射され外部に取り出される発光素子が提供される。   According to another aspect of the present invention, a laminate including a light emitting layer and made of a group III-V compound semiconductor, a conductive transparent electrode provided on the laminate, and an upper surface of the transparent electrode. A first metal layer including any one of Au, AuGe and a stacked layer provided in the order of AuGe on the transparent electrode, a semiconductor substrate, and Au provided on the semiconductor substrate. A second metal layer, wherein the first metal layer and the second metal layer are joined together, and the emitted light from the light emitting layer passes through the transparent electrode, A light emitting element that is reflected by the metal layer and taken out to the outside is provided.

結晶性が改善された発光層を有し量産化が容易な発光素子、及び発光素子の製造方法が提供される。   Provided are a light-emitting element that has a light-emitting layer with improved crystallinity and can be easily mass-produced, and a method for manufacturing the light-emitting element.

本発明にかかる発光素子の製造方法のフローチャートThe flowchart of the manufacturing method of the light emitting element concerning this invention 第1の実施形態にかかる発光素子製造方法の工程断面図Process sectional drawing of the light emitting element manufacturing method concerning 1st Embodiment 第1の実施形態を用いた発光素子の模式断面図Schematic cross-sectional view of a light emitting device using the first embodiment 第2の実施形態にかかる発光素子製造方法を表す工程断面図Process sectional drawing showing the light emitting element manufacturing method concerning 2nd Embodiment 第2の実施形態を用いた発光素子の模式断面図Schematic cross-sectional view of a light emitting device using the second embodiment 第3の実施形態にかかる発光素子製造方法の工程断面図Process sectional drawing of the light emitting element manufacturing method concerning 3rd Embodiment

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明にかかる発光素子の製造方法のフローチャートである。GaP、GaAs、GaAlAsなどからなる第1の基板の上に、エッチング容易層と、窒化物系半導体からなる発光層と、を含む積層体を結晶成長する(S100)。積層体は、発光層とは屈折率が異なる層により発光層を挟み、基板垂直方向への光の広がりを制御する構造であり、そのような積層構造が結晶成長される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart of a method for manufacturing a light emitting device according to the present invention. On the first substrate made of GaP, GaAs, GaAlAs, etc., a stacked body including an easy-to-etch layer and a light emitting layer made of a nitride semiconductor is crystal-grown (S100). The laminate has a structure in which a light emitting layer is sandwiched between layers having a refractive index different from that of the light emitting layer, and the spread of light in the direction perpendicular to the substrate is controlled, and such a laminated structure is crystal-grown.

積層体の表面と第2の基板とを対向させて貼り合わせ、第1の基板と第2の基板とを接合する(S102)。接合工程としては熱処理や接着シートを用いる方法などがある。また、第2の基板としては、Si、ZnO(酸化亜鉛)、サファイヤなどの材料、またはその上に金属層を設けたものとすることができる。   The surface of the laminate and the second substrate are bonded to face each other, and the first substrate and the second substrate are bonded (S102). Examples of the joining process include heat treatment and a method using an adhesive sheet. The second substrate may be a material such as Si, ZnO (zinc oxide), sapphire, or a metal layer provided thereon.

続いて、化学的エッチング法や機械的研磨法を用いてエッチング容易層を除去し第1の基板と第2の基板とを分離する(S104)。積層体に一方の電極を、第2の基板の裏面には他方の電極を形成する(S106)。   Subsequently, the easy etching layer is removed using a chemical etching method or a mechanical polishing method to separate the first substrate and the second substrate (S104). One electrode is formed on the laminate, and the other electrode is formed on the back surface of the second substrate (S106).

続いて、ダイシング及びチップ分離を行い(S108)、パッケージにチップをマウントし、ワイヤボンディングにより電気的に接続し、樹脂などを用いて封止を行い工程を終了する(S110)。   Subsequently, dicing and chip separation are performed (S108), the chip is mounted on a package, electrically connected by wire bonding, sealing is performed using resin or the like, and the process is terminated (S110).

このように本実施形態にかかる発光素子製造方法では、熱膨張係数がGaNに近いGaP、GaAs、GaAlAsのような基板の上に窒化物系半導体を結晶成長する。熱膨張係数は、GaPにおいて5.9×10−6/K、GaAsにおいて6.0×10−6/Kであり、GaNの5.6×10−6/Kと近く、良好な窒化物系半導体の結晶成長が可能である。すなわち、結晶成長の後に結晶成長層にクラックが生じることを抑制でき、またウェーハの反りを低減できる。これに対して熱膨張係数がSiにおいて2.5×10−6/K、6H−SiCにおいて4.2×10−6/K、ZnOにおいて4.8×10−6/Kであり、GaNと離れており、これら基板では良好な結晶性を保つことが困難である。 Thus, in the light emitting element manufacturing method according to the present embodiment, a nitride-based semiconductor is crystal-grown on a substrate such as GaP, GaAs, or GaAlAs having a thermal expansion coefficient close to that of GaN. The coefficient of thermal expansion is 5.9 × 10 −6 / K for GaP and 6.0 × 10 −6 / K for GaAs, which is close to 5.6 × 10 −6 / K for GaN, which is a good nitride system. Semiconductor crystal growth is possible. That is, the generation of cracks in the crystal growth layer after crystal growth can be suppressed, and the warpage of the wafer can be reduced. On the other hand, the thermal expansion coefficients are 2.5 × 10 −6 / K for Si, 4.2 × 10 −6 / K for 6H—SiC, and 4.8 × 10 −6 / K for ZnO. It is difficult to maintain good crystallinity with these substrates.

また、GaNとGaPとは共にIII−V族化合物化合物半導体であり、面方位に依存した結晶極性を有する。このためにGaN系半導体の結晶成長においては、N面またはGa面のような結晶極性を成長方向に向かって制御することが重要である。サファイヤのように結晶極性のない半導体を基板に用いると結晶成長膜の結晶極性を制御することが困難となり、結晶欠陥密度が高くなる。これに対してGaP用いると面方位を適切に選択することにより、結晶極性の制御が容易となり欠陥密度を低減し、より良好な結晶性を有する発光層を形成できるのでより好ましい。   Both GaN and GaP are III-V group compound semiconductors and have crystal polarities depending on the plane orientation. For this reason, in crystal growth of a GaN-based semiconductor, it is important to control the crystal polarity such as the N plane or the Ga plane in the growth direction. When a semiconductor having no crystal polarity such as sapphire is used for the substrate, it becomes difficult to control the crystal polarity of the crystal growth film, and the crystal defect density increases. On the other hand, it is more preferable to use GaP because it is easy to control the crystal polarity, reduce the defect density, and form a light-emitting layer having better crystallinity by appropriately selecting the plane orientation.

さらに、サファイヤ基板の上に結晶成長された積層体をサファイヤ基板から分離するには、GaNなどのバッファ層にレーザ光を照射して溶融させるなどの複雑な工程が必要となる。これに対してGaP基板、GaAs基板、GaAlAs基板などIII-V族化合物半導体を用いると溶液エッチングなど化学的エッチング法により除去容易な結晶成長層を挟み、分離工程が簡素にできる。また、この除去容易な結晶成長層は、窒化物系半導体よりも柔らかいために機械的研磨法により発光層が設けられた第2の基板から第1の基板を分離することも容易である。   Furthermore, in order to separate the laminated body crystal-grown on the sapphire substrate from the sapphire substrate, a complicated process such as melting a buffer layer such as GaN by irradiating it with a laser beam is required. On the other hand, when a III-V compound semiconductor such as a GaP substrate, a GaAs substrate, or a GaAlAs substrate is used, a crystal growth layer that can be easily removed by a chemical etching method such as solution etching is sandwiched, and the separation process can be simplified. Further, since this easily removable crystal growth layer is softer than the nitride-based semiconductor, it is easy to separate the first substrate from the second substrate provided with the light emitting layer by a mechanical polishing method.

他方、窒化物系半導体からなる基板は融点が極めて高く、窒素の平衡蒸気圧も極めて高いため、融液からのバルク結晶成長が困難であり、大口径化が困難である。   On the other hand, a substrate made of a nitride-based semiconductor has a very high melting point and an extremely high equilibrium vapor pressure of nitrogen, so that it is difficult to grow a bulk crystal from the melt, and it is difficult to increase the diameter.

これに対して、本実施形態の発光素子製造方法によれば、GaPやAlGaAsからなる大口径基板の上に結晶性のよい発光層を形成し、他の導電性基板上と接合し、結晶成長に用いた基板を分離する。すなわち量産性に富んでいる。   On the other hand, according to the light emitting element manufacturing method of the present embodiment, a light emitting layer with good crystallinity is formed on a large-diameter substrate made of GaP or AlGaAs, and bonded to another conductive substrate to grow crystals. The substrate used for the separation is separated. That is, it is rich in mass productivity.

図2は、第1の実施形態にかかる発光素子製造方法の工程断面図である。図2(a)の模式断面図において、GaP基板(第1の基板)20の上に、AlGa1−xP(0<x<1)からなるエッチング容易層22(厚さ:0.5〜数μm)、GaPバッファ層24、GaN低温成長バッファ層26、n型GaNバッファ層28、n型InGaAlNクラッド層30(厚さ:0.5〜1.0μm)、InGaAlN系MQW(Multi Quantum Well)層からなる発光層32(厚さ:0.05〜0.2μm)、p型InGaAlNクラッド層34(厚さ:0.5〜1.0μm)、p型GaN層36(厚さ:0.1〜0.4μm)、並びにp型GaNからなるコンタクト層38がこの順序に結晶成長された積層体39を形成している。 FIG. 2 is a process cross-sectional view of the light emitting element manufacturing method according to the first embodiment. In the schematic cross-sectional view of FIG. 2A, an easy-to-etch layer 22 (thickness: 0. 0) made of Al x Ga 1-x P (0 <x <1) is formed on a GaP substrate (first substrate) 20. 5 to several μm), GaP buffer layer 24, GaN low temperature growth buffer layer 26, n-type GaN buffer layer 28, n-type InGaAlN cladding layer 30 (thickness: 0.5 to 1.0 μm), InGaAlN-based MQW (Multi Quantum) Light emitting layer 32 (thickness: 0.05 to 0.2 μm), p-type InGaAlN cladding layer 34 (thickness: 0.5 to 1.0 μm), p-type GaN layer 36 (thickness: 0) 0.1 to 0.4 μm), and a contact layer 38 made of p + -type GaN forms a laminate 39 in which crystals are grown in this order.

結晶成長法としては、MOCVD(Metal-Organic Chemical Vapor Deposition:有機金属気相成長)法、MBE(Molecular Beam Epitaxy)法、気相成長法、並びに液相成長法などを用いることができる。   As the crystal growth method, MOCVD (Metal-Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Epitaxy) method, vapor phase growth method, liquid phase growth method and the like can be used.

なお、GaP基板20の上にAlGaPエッチング容易層22、GaPバッファ層24を液相成長法などを用いて形成すると、窒化物系半導体を結晶成長するMOCVD装置において、GaP系のガス制御系が不要となる。またMOCVD法においてGaP成長温度は1000℃よりも低く、窒化物系半導体成長成長温度は1000℃よりも高い。このため、AlGaPエッチング容易層22及びGaPバッファ層24を液相成長法により形成しておくと、MOCVD結晶成長温度を窒化物系半導体に合わせることができ、生産性を高めることができる。もちろん、積層体39を、MOCVD法またはMBE法で形成してもよい。   If the AlGaP easy etching layer 22 and the GaP buffer layer 24 are formed on the GaP substrate 20 by using a liquid phase growth method or the like, a GaP-based gas control system is not required in the MOCVD apparatus for crystal growth of a nitride-based semiconductor. It becomes. In the MOCVD method, the GaP growth temperature is lower than 1000 ° C., and the nitride-based semiconductor growth growth temperature is higher than 1000 ° C. For this reason, when the AlGaP easy etching layer 22 and the GaP buffer layer 24 are formed by the liquid phase growth method, the MOCVD crystal growth temperature can be matched with the nitride-based semiconductor, and the productivity can be improved. Of course, the laminate 39 may be formed by MOCVD or MBE.

また、図2(b)のように、コンタクト層38の上には、n型ZnOまたはITO(Indium Tin Oxide)などからなる透明電極40及びAuGe金属層(第1の金属層)42をさらに形成する。なお、透明電極40に隣接してAu金属層を設け、その上にAuGe金属層を積層した第1の金属層42としても良い。   Further, as shown in FIG. 2B, a transparent electrode 40 made of n-type ZnO or ITO (Indium Tin Oxide) and an AuGe metal layer (first metal layer) 42 are further formed on the contact layer 38. To do. Alternatively, an Au metal layer may be provided adjacent to the transparent electrode 40, and an AuGe metal layer may be stacked on the Au metal layer.

他方、図2(c)のように、第1の基板20と略同一サイズのn型Siからなる第2の基板50にはAu金属層(第2の金属層)52が設けられ、第2の積層体53を構成している。Au金属層52とAuGe金属層42とを対向させて貼り合わせ接合を行う。接合の熱処理条件は、例えば500℃、約1時間とする。さらに圧力を加えるとより確実に接合ができる。AuGe共晶半田の融点は360℃近傍であり、上記熱処理条件で適正時間保持することにより良好な接合を得ることができる。また、真空雰囲気において接合するとボイドが抑制された接合とできるのでより好ましい。なお、AuGe金属層は第2の金属層52の表面であってもよい。   On the other hand, as shown in FIG. 2C, an Au metal layer (second metal layer) 52 is provided on the second substrate 50 made of n-type Si having approximately the same size as the first substrate 20, and the second substrate The laminated body 53 of this is comprised. The Au metal layer 52 and the AuGe metal layer 42 are opposed to each other and bonded together. The heat treatment conditions for bonding are, for example, 500 ° C. and about 1 hour. If more pressure is applied, bonding can be performed more reliably. The melting point of AuGe eutectic solder is around 360 ° C., and good bonding can be obtained by maintaining the heat treatment conditions for an appropriate time. Further, it is more preferable to perform bonding in a vacuum atmosphere because it is possible to achieve bonding with suppressed voids. Note that the AuGe metal layer may be the surface of the second metal layer 52.

続いて、図2(d)のように、溶液エッチング法または機械的研磨法を用いてGaP基板20を分離する。例えば塩酸、硝酸、これらの混合溶液を用いるとAlGaPなどAlを含むエッチング容易層22(厚さ:例えば0.5〜数μm)は、GaP基板20、GaPバッファ層24、並びに窒化物半導体よりもエッチングレートが高いので除去が容易である。   Subsequently, as shown in FIG. 2D, the GaP substrate 20 is separated using a solution etching method or a mechanical polishing method. For example, when hydrochloric acid, nitric acid, and a mixed solution thereof are used, the etching easy layer 22 (thickness: for example, 0.5 to several μm) containing Al such as AlGaP is larger than the GaP substrate 20, the GaP buffer layer 24, and the nitride semiconductor. Since the etching rate is high, removal is easy.

他方、窒化物系半導体は硬い。すなわち、GaNにおいてヤング率は、略2.9×1011N/mであり、GaAs、GaAlAsなど窒素を含まないIII-V族化合物半導体よりも高い。このために機械的研磨法を用いて、第1の基板20及びエッチング容易層22を除去し、発光層32を含む積層体が接合された第2の基板50を分離することも容易である。 On the other hand, nitride-based semiconductors are hard. That is, the Young's modulus of GaN is approximately 2.9 × 1011 N / m 2 , which is higher than that of III-V group compound semiconductors such as GaAs and GaAlAs that do not contain nitrogen. Therefore, it is easy to remove the first substrate 20 and the easy-to-etch layer 22 and separate the second substrate 50 to which the stacked body including the light-emitting layer 32 is bonded using a mechanical polishing method.

続いて 機械的研磨法または溶液エッチング法などを用いて、GaPバッファ層24、GaN低温成長バッファ層26を除去する。GaPバッファ層24及びGaN低温成長バッファ層26は、Alを含まないので酸化を抑制でき良好な結晶性の窒化物系積層体とできる。Alを含まないことにより溶液エッチングレートはAlGaPよりもが低いが、通常、エッチング容易層22よりも薄いので溶液エッチングまたは機械的研磨法により除去することは容易である。   Subsequently, the GaP buffer layer 24 and the GaN low-temperature growth buffer layer 26 are removed by using a mechanical polishing method or a solution etching method. Since the GaP buffer layer 24 and the GaN low-temperature growth buffer layer 26 do not contain Al, the GaP buffer layer 24 and the GaN low-temperature growth buffer layer 26 can suppress oxidation and can be a good crystalline nitride laminate. By not containing Al, the solution etching rate is lower than that of AlGaP. However, since it is usually thinner than the easy-to-etch layer 22, it can be easily removed by solution etching or mechanical polishing.

第1の基板20がGaAsからなる場合、例えばAlGa1−yAs(0<y<1)からなるエッチング容易層22とし、例えば酸を含むエッチング溶液を用いエッチング容易層22を除去できる。 When the first substrate 20 is made of GaAs, the easy etching layer 22 made of, for example, Al y Ga 1-y As (0 <y <1) is used, and the easy etching layer 22 can be removed using, for example, an etching solution containing an acid.

図2(d)において、一方の側には、積層体39からエッチング容易層22、GaPバッファ層24、GaN低温成長バッファ層24が除去された積層体44、透明電極40、並びにAuGe金属層42、がこの順に積層された第1の積層体45がある。他方の側には、第2の積層体53があり、第1の積層体45のAuGe金属層42と、第2の積層体53のAu金属層52とが接合された状態となっている。   In FIG. 2D, on one side, the easy-to-etch layer 22, the GaP buffer layer 24, the stacked body 44 from which the GaN low-temperature growth buffer layer 24 is removed, the transparent electrode 40, and the AuGe metal layer 42 are disposed on one side. There is a first stacked body 45 in which are stacked in this order. On the other side, there is a second laminated body 53, and the AuGe metal layer 42 of the first laminated body 45 and the Au metal layer 52 of the second laminated body 53 are joined.

図3は、本実施形態にかかる発光素子製造方法による発光素子の模式断面図である。第1の積層体45と第2の積層体53とを接合し、光取り出し面に第1の電極60、第2の基板50の裏面に第2の電極62を形成し、チップに分割すれば図3の発光素子となる。発光層32からの放射光(楕円形の破線)のうち透明電極40を通った光は、AuGe金属層42により反射され外部に取り出される。   FIG. 3 is a schematic cross-sectional view of a light emitting device manufactured by the method for manufacturing a light emitting device according to the present embodiment. If the 1st laminated body 45 and the 2nd laminated body 53 are joined, the 1st electrode 60 is formed in the light extraction surface, the 2nd electrode 62 is formed in the back surface of the 2nd board | substrate 50, and it will divide | segment into a chip | tip. The light emitting element of FIG. 3 is obtained. Of the radiated light (elliptical broken line) from the light emitting layer 32, the light passing through the transparent electrode 40 is reflected by the AuGe metal layer 42 and extracted to the outside.

窒化物系半導体から放射される紫外〜緑色光は、Siに吸収されるので、少なくともAuGe金属層などからなる第1の金属層42を設けてSiからなる第2の基板50における吸収を抑制して高い発光効率とすることが好ましい。   Since ultraviolet to green light emitted from the nitride-based semiconductor is absorbed by Si, at least a first metal layer 42 made of an AuGe metal layer or the like is provided to suppress absorption in the second substrate 50 made of Si. Therefore, high luminous efficiency is preferable.

なお、本実施形態の製造方法では、ZnOやITOからなる透明電極40を設けなくともよい。しかし、積層体39を形成する化合物半導体とAuまたはAuGeなどの合金は発光層32からの放射光を吸収し反射率を低下させるので、透明電極40により合金化を抑制し、反射率を高く保つ方が発光効率をより高くできる。   In the manufacturing method of the present embodiment, it is not necessary to provide the transparent electrode 40 made of ZnO or ITO. However, the compound semiconductor forming the stacked body 39 and an alloy such as Au or AuGe absorb the radiated light from the light emitting layer 32 and reduce the reflectance. Therefore, the transparent electrode 40 suppresses alloying and keeps the reflectance high. Therefore, the luminous efficiency can be further increased.

また、透明電極40としてn型ZnOを用いると、コンタクト層38とのpn接合において、低抵抗オーミックコンタクトが形成されるので、動作電流は導電性を有するn型Si基板50を縦方向に流れ電力損失を低減した発光素子とできる。   When n-type ZnO is used as the transparent electrode 40, a low-resistance ohmic contact is formed at the pn junction with the contact layer 38, so that the operating current flows in the vertical direction through the n-type Si substrate 50 having conductivity. A light-emitting element with reduced loss can be obtained.

図4は、第2の実施形態にかかる発光素子製造方法を表す工程断面図である。また、図5は、この製造方法を用いた発光素子の模式断面図である。図4(a)において、GaP基板20上に形成された積層体39は、第1の実施形態を表す図2(a)と同一の構造である。積層体39の表面を構成するコンタクト層38と、GaP基板20と略同一サイズのn型ZnO層からなる第2の基板51の表面と、を向かい合わせに直接貼り合わせ加熱し接合する。熱処理条件としては、例えば600〜800℃で約1時間とする。また、圧力を加えるとより確実に接合できる。この場合、積層体39の表面、及び第2の基板51の表面に接合用の金属層を設ける必要はない。   FIG. 4 is a process cross-sectional view illustrating a light emitting element manufacturing method according to the second embodiment. FIG. 5 is a schematic cross-sectional view of a light emitting device using this manufacturing method. In FIG. 4A, the stacked body 39 formed on the GaP substrate 20 has the same structure as that of FIG. 2A representing the first embodiment. The contact layer 38 constituting the surface of the stacked body 39 and the surface of the second substrate 51 made of an n-type ZnO layer having substantially the same size as the GaP substrate 20 are directly bonded face-to-face and heated to join. The heat treatment condition is, for example, 600 to 800 ° C. for about 1 hour. Moreover, it can join more reliably when a pressure is applied. In this case, it is not necessary to provide a bonding metal layer on the surface of the stacked body 39 and the surface of the second substrate 51.

この熱処理工程において、コンタクト層38を構成するGaがn型ZnO層へ拡散され、n型ZnO層を構成するZnがコンタクト層38へ拡散される。このために、n型ZnO層のドナー濃度を5×1018cm−3以上とするとpn接合の空乏層幅が狭くなりトンネル電流が大きくなるので好ましく、5×1019cm−3とするとより好ましい。同様に、コンタクト層38のアクセプタ濃度を5×1018cm−3以上とすることが好ましく、5×1019cm−3とするとより好ましい。このようにして、この界面はオーミックコンタクトとして動作する。 In this heat treatment step, Ga constituting the contact layer 38 is diffused into the n-type ZnO layer, and Zn constituting the n-type ZnO layer is diffused into the contact layer 38. For this reason, if the donor concentration of the n-type ZnO layer is 5 × 10 18 cm −3 or more, the depletion layer width of the pn junction is narrowed and the tunnel current is increased, and it is more preferable to set it to 5 × 10 19 cm −3. . Similarly, the acceptor concentration of the contact layer 38 is preferably 5 × 10 18 cm −3 or more, and more preferably 5 × 10 19 cm −3 . In this way, this interface operates as an ohmic contact.

図4(b)はGaP基板20を分離する工程を表す。この工程は第1の実施形態を表す図2(d)と同様にして、エッチング容易層22、GaPバッファ層24、GaN低温成長バッファ層26をこの順序で除去する。n型ZnO基板51の上には表面がn型GaNバッファ層28となる積層体44が残った状態となる。   FIG. 4B shows a process of separating the GaP substrate 20. In this step, the easy-to-etch layer 22, the GaP buffer layer 24, and the GaN low-temperature growth buffer layer 26 are removed in this order in the same manner as in FIG. 2D representing the first embodiment. The stacked body 44 whose surface becomes the n-type GaN buffer layer 28 remains on the n-type ZnO substrate 51.

n型GaNバッファ層28には第1の電極60、n型ZnOからなる第2の基板51の裏面には第2の電極62がそれぞれ形成され、図5に表す発光素子が完成する。ZnOのバンドギャップ波長は約368nmであるので発光層32からの放射光を吸収せず透過する。第2の基板51において、窒化物系半導体からなる発光層32からの放射光(楕円形の破線)のうち下方に向かう光が透過し、第2の電極62により損失が低減されつつ反射され上方へ向かって透過する。このために高い発光効率を有する発光素子が得られる。なお、GaPのバンドギャップ波長は約550nmであるので、発光層32からの紫外〜緑色の波長範囲の放射光を吸収する。   A first electrode 60 is formed on the n-type GaN buffer layer 28, and a second electrode 62 is formed on the back surface of the second substrate 51 made of n-type ZnO, thereby completing the light emitting device shown in FIG. Since the band gap wavelength of ZnO is about 368 nm, the radiated light from the light emitting layer 32 is not absorbed and transmitted. In the second substrate 51, the downward light of the emitted light (elliptical broken line) from the light emitting layer 32 made of a nitride-based semiconductor is transmitted and reflected by the second electrode 62 while being reduced in loss. Permeates toward. For this reason, a light emitting element having high luminous efficiency can be obtained. Since the band gap wavelength of GaP is about 550 nm, the radiated light in the ultraviolet to green wavelength range from the light emitting layer 32 is absorbed.

図6は、第3の実施形態にかかる発光素子製造方法の工程断面図である。図6(a)に表すGaP基板20上の積層体39は、図2(a)と同様である。例えばGaP基板20よりもサイズの大きいサファイヤからなる第2の基板54の表面には樹脂などからなる接着シート82が貼り付けられている。積層体39の表面を構成するコンタクト層38の表面と、接着シート82の表面と、を向かい合わせに貼り合わせる。   FIG. 6 is a process cross-sectional view of the light emitting element manufacturing method according to the third embodiment. The stacked body 39 on the GaP substrate 20 shown in FIG. 6A is the same as that shown in FIG. For example, an adhesive sheet 82 made of resin or the like is attached to the surface of the second substrate 54 made of sapphire having a size larger than that of the GaP substrate 20. The surface of the contact layer 38 constituting the surface of the multilayer body 39 and the surface of the adhesive sheet 82 are bonded face to face.

図6(b)はGaP基板20を分離する工程を表す。図2(d)と同様にして、エッチング容易層22、GaPバッファ層24、GaN低温成長バッファ層26をこの順序で除去する。第2の基板54の上には一方の面44aがn型GaNバッファ層28である積層体44が残った状態となる。   FIG. 6B shows a process of separating the GaP substrate 20. Similarly to FIG. 2D, the easy etching layer 22, the GaP buffer layer 24, and the GaN low temperature growth buffer layer 26 are removed in this order. On the second substrate 54, the stacked body 44 whose one surface 44a is the n-type GaN buffer layer 28 remains.

図6(c)はGaP基板20を分離した側に、積層体44よりもサイズの大きいサファイヤからなる第3の基板55を接着する工程を表す。すなわち、第3の基板55の接着シート83の表面と、積層体44の一方の面44aと、を向かい合わせに貼り合わせる。   FIG. 6C shows a process of bonding a third substrate 55 made of sapphire having a size larger than that of the stacked body 44 to the side where the GaP substrate 20 is separated. That is, the surface of the adhesive sheet 83 of the third substrate 55 and the one surface 44a of the stacked body 44 are bonded to face to face.

こののち、図6(d)のように積層体44の他方の面44bと、接着シート82が接着された第2の基板54と、を分離する。   After that, as shown in FIG. 6D, the other surface 44b of the laminate 44 is separated from the second substrate 54 to which the adhesive sheet 82 is bonded.

図6(e)では、積層体44の他方の面44bと、積層体44と略同一サイズのn型ZnOからなる第4の基板56と、を向かい合わせ貼り合わせ熱処理を行う。さらに図6(f)のように、第4の基板56に接合された積層体44の一方の面44aと、接着シートが接着された第3の基板55と、を分離する。   In FIG. 6E, the other surface 44b of the stacked body 44 and the fourth substrate 56 made of n-type ZnO having substantially the same size as the stacked body 44 are face-to-face bonded and heat-treated. Further, as shown in FIG. 6F, the one surface 44a of the laminate 44 bonded to the fourth substrate 56 and the third substrate 55 to which the adhesive sheet is bonded are separated.

なお、窒化物系半導体を1000℃以上で結晶成長する場合、腐食性の高いアンモニアガスを用いる。ZnO基板はサファイヤと比較して堅牢とは言えず、成長条件によっては劣化することがある。本実施形態では、結晶成長用基板としてZnOを用いず、GaP基板20を用いており基板の劣化を抑制することが容易である。   Note that, when a nitride-based semiconductor is crystal-grown at 1000 ° C. or higher, highly corrosive ammonia gas is used. A ZnO substrate is not as robust as sapphire and may deteriorate depending on growth conditions. In this embodiment, ZnO is not used as the crystal growth substrate, but the GaP substrate 20 is used, and it is easy to suppress deterioration of the substrate.

また、第2の基板53としてサファイヤ基板を用いることにより、GaP基板20の分離工程をより確実に行うことができる。すなわち、AlGaPのようなエッチング容易層22を溶液エッチングする場合、酸溶液によってはn型ZnOがエッチングされることがある。これに対してサファイヤを用いると溶液による基板エッチングを抑制できる。また、GaPバッファ層24やGaN低温成長バッファ層26などを機械的研磨する場合、サファイヤは堅牢である。サファイヤ基板53、54と積層体44とは接着シート82、83で接合されているので除去は容易である。   Also, by using a sapphire substrate as the second substrate 53, the GaP substrate 20 separation process can be performed more reliably. That is, when solution-etching the easy-to-etch layer 22 such as AlGaP, n-type ZnO may be etched depending on the acid solution. On the other hand, when sapphire is used, substrate etching by a solution can be suppressed. Further, when the GaP buffer layer 24, the GaN low-temperature growth buffer layer 26, etc. are mechanically polished, the sapphire is robust. Since the sapphire substrates 53 and 54 and the laminate 44 are joined by the adhesive sheets 82 and 83, the removal is easy.

図6(d)において、第2の基板54を分離する場合、もし積層体44の厚さが十分であれば第3の基板55が不要であるが、通常積層体44は薄く機械的強度が不十分であるので第3の基板55を補強基板として用いている。最終的に図6(f)を得るために、例えばサファイヤからなる第2の基板54及び第3の基板55を用いており工程が増えるものの、より確実に発光素子が形成できる。なお、第2及び第3の基板54、55は再使用できるので材料効率が改善できる。   In FIG. 6D, when the second substrate 54 is separated, the third substrate 55 is unnecessary if the thickness of the laminate 44 is sufficient, but the laminate 44 is usually thin and has a mechanical strength. Since it is insufficient, the third substrate 55 is used as a reinforcing substrate. In order to finally obtain FIG. 6F, for example, the second substrate 54 and the third substrate 55 made of sapphire are used, and the number of processes is increased, but the light emitting element can be formed more reliably. Since the second and third substrates 54 and 55 can be reused, the material efficiency can be improved.

接着シート82、83とサファイヤ基板54、55とは、接着剤または加熱により容易に接合でき、接合工程が簡素である。第3の実施形態にかかる発光素子製造方法により形成できる発光素子は、図5に表す模式断面図と略同一となる。   The adhesive sheets 82 and 83 and the sapphire substrates 54 and 55 can be easily joined by an adhesive or heating, and the joining process is simple. The light-emitting element that can be formed by the light-emitting element manufacturing method according to the third embodiment is substantially the same as the schematic cross-sectional view shown in FIG.

次に、本実施形態にかかる発光素子製造方法を用いた発光素子の特性について説明する。
サファイヤ基板上に成長された積層体では、例えば数μmと薄い発光層内を基板に沿って電流が流れる。薄い発光層のシート抵抗値は高くなり、100mA以上の動作電流では発熱が大きくなり発光効率が低下する。また、電流が大きいほど電流が発光層内で不均一となりやすく、サファイヤの低い熱伝導率とともに、発光効率の低下を一層助長する。
Next, characteristics of the light emitting device using the light emitting device manufacturing method according to the present embodiment will be described.
In the laminated body grown on the sapphire substrate, current flows along the substrate in a light emitting layer as thin as several μm, for example. The sheet resistance value of the thin light emitting layer becomes high, and heat generation becomes large at an operating current of 100 mA or more, resulting in a decrease in light emission efficiency. Further, the larger the current, the more likely the current becomes non-uniform in the light emitting layer, which further promotes a decrease in light emission efficiency as well as the low thermal conductivity of sapphire.

これに対して 第1〜第3の実施形態にかかる発光素子製造方法により得られた発光素子は基板の縦方向に電流を流すので直列抵抗を低減し電力損失を低減できる。このため100mA以上の動作電流、高い光出力、並びに高い発光効率が可能である。また、第1の電極60及び第2の電極62を上下に配置し、電流を縦方向に流すことができるのでチップの小型化が容易となり、価格の低減が可能となる。   On the other hand, since the light emitting element obtained by the light emitting element manufacturing method according to the first to third embodiments allows current to flow in the vertical direction of the substrate, the series resistance can be reduced and the power loss can be reduced. Therefore, an operating current of 100 mA or more, a high light output, and a high luminous efficiency are possible. Further, since the first electrode 60 and the second electrode 62 are arranged one above the other and current can flow in the vertical direction, the chip can be easily downsized and the price can be reduced.

図3のように積層体44、透明電極40、金属層42、第2の基板50の順に積層すると、積層体44とAuGe金属層(第1の金属層)40との合金化を抑制し、第1の金属層40における反射率を高めることができ、発光効率が改善できる。図3において第2の基板50はSiに限定されず、化合物半導体であってもよい。   When the laminate 44, the transparent electrode 40, the metal layer 42, and the second substrate 50 are laminated in this order as shown in FIG. 3, the alloying of the laminate 44 and the AuGe metal layer (first metal layer) 40 is suppressed, The reflectance in the first metal layer 40 can be increased, and the light emission efficiency can be improved. In FIG. 3, the second substrate 50 is not limited to Si but may be a compound semiconductor.

さらに、図5のように積層体44をn型ZnOからなる第2の基板51に接合すると第2の電極62と積層体44との合金化を抑制でき、第2の電極62による反射率を高く保ち、発光効率を改善することができる。   Further, when the stacked body 44 is bonded to the second substrate 51 made of n-type ZnO as shown in FIG. 5, alloying of the second electrode 62 and the stacked body 44 can be suppressed, and the reflectance by the second electrode 62 can be increased. It can be kept high and the luminous efficiency can be improved.

発光効率が改善され小型化された発光素子を多数配列すると、高い光強度を有する照明装置の実現が容易になる。例えば、蛍光体に代わる白色光源や演色性に富む電球色光源、高輝度ランプ、大型フルカラー表示装置などが可能となる。   When a large number of light-emitting elements with improved light emission efficiency are arranged, it is easy to realize a lighting device having high light intensity. For example, a white light source instead of a phosphor, a light bulb color light source rich in color rendering, a high-intensity lamp, a large full-color display device, and the like are possible.

なお、本明細書において、「窒化物系半導体」とは、BInGaAl1−x−y−zN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z≦1)なる組成式で表される半導体を表し、これに導電型を制御するために不純物を添加したものも含む。 In the present specification, the “nitride-based semiconductor” means B x In y Ga z Al 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) represents a semiconductor represented by a composition formula, and includes a semiconductor added with impurities to control the conductivity type.

以上、図面を参照しつつ、本発明の実施の形態について説明した。しかしながら本発明はこれら実施形態に限定されない。本発明を構成する第1の基板、第2の基板、第3の基板、第4の基板、半導体からなる積層体、第1の積層体、第2の積層体、接着シート、金属層、透明電極の材質、サイズ、形状、配置、工程条件などに関して当業者が設計変更を行ったものであっても、本発明の主旨を逸脱しない限り本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments. 1st board | substrate which comprises this invention, 2nd board | substrate, 3rd board | substrate, 4th board | substrate, the laminated body which consists of semiconductors, 1st laminated body, 2nd laminated body, adhesive sheet, metal layer, transparent Even those whose design has been changed by those skilled in the art regarding the material, size, shape, arrangement, process conditions, etc. of the electrodes are included in the scope of the present invention without departing from the gist of the present invention.

20 GaP基板(第1の基板)、22 エッチング容易層、32 発光層、39 積層体、40 透明電極、42 第1の金属層、45 第1の積層体、50、51、54 第2の基板、52 第2の金属層、53 第2の積層体、55 第3の基板、56 第4の基板 20 GaP substrate (first substrate), 22 easy etching layer, 32 light emitting layer, 39 laminate, 40 transparent electrode, 42 first metal layer, 45 first laminate, 50, 51, 54 second substrate , 52 second metal layer, 53 second laminate, 55 third substrate, 56 fourth substrate

Claims (14)

III−V族化合物半導体からなる第1の基板上に、前記第1の基板に隣接したエッチン
グ容易層と、窒化物系半導体からなる発光層と、を含む積層体を結晶成長する工程と、
前記積層体の上に透明電極と第1の金属層とをこの順に形成する工程と、
第2の基板の上に設けられた第2の金属層の表面と前記第1の金属層の表面とを貼り合わせた状態で加熱して接合する工程と、
溶液エッチング法を用いて前記エッチング容易層を除去するか、または機械的研磨法を
用いて前記第1の基板及び前記エッチング容易層を除去することにより、前記発光層が設
けられた前記第2の基板と前記第1の基板とを分離する工程と、
を備えた発光素子の製造方法。
Crystal growth of a laminate including an easy etching layer adjacent to the first substrate and a light emitting layer made of a nitride-based semiconductor on a first substrate made of a III-V compound semiconductor;
Forming a transparent electrode and a first metal layer in this order on the laminate;
Heating and bonding in a state where the surface of the second metal layer provided on the second substrate and the surface of the first metal layer are bonded together;
The second layer provided with the light emitting layer is removed by removing the first layer and the first layer using a mechanical polishing method by removing the first layer using a solution etching method. Separating the substrate and the first substrate;
A method for manufacturing a light emitting device comprising:
前記透明電極は、ZnOおよびITOの少なくともいずれかを有する請求項1に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 1, wherein the transparent electrode has at least one of ZnO and ITO. 前記第1の金属層は、AuGeおよびAuの少なくともいずれかを有し、
前記第2の金属層は、AuおよびAuGeの少なくともいずれかを有する請求項1または2に記載の発光素子の製造方法。
The first metal layer has at least one of AuGe and Au,
The method for manufacturing a light emitting element according to claim 1, wherein the second metal layer includes at least one of Au and AuGe.
前記第1の金属層は、前記透明電極の側にAuを有する請求項3記載の発光素子の製造方法。   The light emitting element manufacturing method according to claim 3, wherein the first metal layer has Au on the transparent electrode side. 前記第2の基板は、Siからなり、
前記第1の基板はGaPからなり前記エッチング容易層はAlGaPからなる請求項1〜4のいずれかに1つに記載の発光素子の製造方法・
The second substrate is made of Si,
The method for manufacturing a light-emitting element according to claim 1, wherein the first substrate is made of GaP and the easy-etching layer is made of AlGaP.
前記第2の基板は、Siからなり、
前記第1の基板はGaAsからなり前記エッチング容易層はAlGaAsからなる請求項1〜4のいずれか1つに記載の発光素子の製造方法。
The second substrate is made of Si,
5. The method of manufacturing a light emitting element according to claim 1, wherein the first substrate is made of GaAs and the easy etching layer is made of AlGaAs. 6.
前記第2の基板は、ZnOからなり、
前記第1の基板はGaPからなり前記エッチング容易層はAlGaPからなる請求項1〜4のいずれか1つに記載の発光素子の製造方法。
The second substrate is made of ZnO,
5. The method of manufacturing a light emitting element according to claim 1, wherein the first substrate is made of GaP and the easy-etching layer is made of AlGaP. 6.
前記第2の基板は、ZnOからなり、
前記第1の基板はGaAsからなり前記エッチング容易層はAlGaAsからなる請求項1〜4のいずれか1つに記載の発光素子の製造方法。
The second substrate is made of ZnO,
5. The method of manufacturing a light emitting element according to claim 1, wherein the first substrate is made of GaAs and the easy etching layer is made of AlGaAs. 6.
前記第2の基板は、n型ZnOからなる請求項7または8に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 7, wherein the second substrate is made of n-type ZnO. 前記エッチング容易層が除去された側の前記積層体の一方の面と、第3の基板と、を接
合する工程と、
前記第3の基板に接合された前記積層体の他方の面を、前記第2の基板から分離し導電性を有する第4の基板と接合する工程と、
前記第4の基板と接合された前記積層体の前記一方の面を、前記第3の基板から分離す
る工程と、
をさらに備えたことを特徴とする請求項1記載の発光素子の製造方法。
Bonding one surface of the laminate on the side from which the easy-etching layer has been removed and a third substrate;
Separating the other surface of the laminate bonded to the third substrate from the second substrate and bonding to a conductive fourth substrate;
Separating the one surface of the laminate bonded to the fourth substrate from the third substrate;
The method of manufacturing a light emitting device according to claim 1, further comprising:
前記第2および第3の基板は、それぞれサファイヤからなる請求項10記載の発光素子の製造方法。   The method of manufacturing a light emitting element according to claim 10, wherein each of the second and third substrates is made of sapphire. 前記第1の金属層の前記表面と前記第2の金属の前記表面とを接合する工程と、前記積層体の前記一方の面と前記第3の基板とを接合する工程と、において接着シートがそれぞれ用いられる請求項10または11に記載の発光素子の製造方法。   In the step of bonding the surface of the first metal layer and the surface of the second metal, and the step of bonding the one surface of the laminate and the third substrate, an adhesive sheet is provided. The manufacturing method of the light emitting element of Claim 10 or 11 used respectively. 発光層を含みIII−V族化合物半導体からなる積層体と、
前記積層体の上に設けられた導電性の透明電極と、
前記透明電極の上に設けられたAuGeおよび前記透明電極の上にAu、AuGeの順序に設けられた積層のうちいずれか含む第1の金属層と、
半導体基板と、
前記半導体基板上に設けられ、Auを有する第2の金属層と、
を備え、
前記第1の金属層と、前記第2の金属層と、が接合されてなり、
前記発光層からの放射光が前記透明電極を通過し、前記第1の金属層により反射され外
部に取り出される発光素子。
A laminate comprising a light-emitting layer and comprising a III-V compound semiconductor;
A conductive transparent electrode provided on the laminate;
A first metal layer including any one of AuGe provided on the transparent electrode and a laminate provided in the order of Au and AuGe on the transparent electrode;
A semiconductor substrate;
A second metal layer provided on the semiconductor substrate and having Au;
With
The first metal layer and the second metal layer are joined,
The light emitting element in which the radiated light from the said light emitting layer passes the said transparent electrode, is reflected by the said 1st metal layer, and is taken out outside.
前記透明電極は、ZnOおよびITOの少なくともいずれかを有する請求項13に記載の発光素子。   The light emitting device according to claim 13, wherein the transparent electrode has at least one of ZnO and ITO.
JP2012100218A 2012-04-25 2012-04-25 Light-emitting element and light-emitting element manufacturing method Pending JP2012142626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100218A JP2012142626A (en) 2012-04-25 2012-04-25 Light-emitting element and light-emitting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100218A JP2012142626A (en) 2012-04-25 2012-04-25 Light-emitting element and light-emitting element manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007315436A Division JP2009141093A (en) 2007-12-06 2007-12-06 Light emitting element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012142626A true JP2012142626A (en) 2012-07-26

Family

ID=46678508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100218A Pending JP2012142626A (en) 2012-04-25 2012-04-25 Light-emitting element and light-emitting element manufacturing method

Country Status (1)

Country Link
JP (1) JP2012142626A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260760A (en) * 1999-03-11 2000-09-22 Toshiba Corp Manufacture of wafer and semiconductor device
JP2005175462A (en) * 2003-11-21 2005-06-30 Sanken Electric Co Ltd Semiconductor luminous element and manufacturing method of the same
JP2005217112A (en) * 2004-01-29 2005-08-11 Sumitomo Chemical Co Ltd Nitride semiconductor light emitting element
JP2005259912A (en) * 2004-03-10 2005-09-22 Shin Etsu Handotai Co Ltd Manufacturing method of light emitting element
JP2007180142A (en) * 2005-12-27 2007-07-12 Toshiba Corp Nitride-based semiconductor element and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260760A (en) * 1999-03-11 2000-09-22 Toshiba Corp Manufacture of wafer and semiconductor device
JP2005175462A (en) * 2003-11-21 2005-06-30 Sanken Electric Co Ltd Semiconductor luminous element and manufacturing method of the same
JP2005217112A (en) * 2004-01-29 2005-08-11 Sumitomo Chemical Co Ltd Nitride semiconductor light emitting element
JP2005259912A (en) * 2004-03-10 2005-09-22 Shin Etsu Handotai Co Ltd Manufacturing method of light emitting element
JP2007180142A (en) * 2005-12-27 2007-07-12 Toshiba Corp Nitride-based semiconductor element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2009141093A (en) Light emitting element and method of manufacturing the same
JP6934812B2 (en) Light emitting element and light emitting element array including it
US8022436B2 (en) Light emitting diode, production method thereof and lamp
TW541732B (en) Manufacturing method of LED having transparent substrate
JP2010186829A (en) Method for manufacturing light emitting element
JP2006313884A (en) Flip chip light emitting diode and its manufacturing method
JP5363973B2 (en) Light emitting device including Zener diode and method for manufacturing the same
WO2011034080A1 (en) Light emitting diode, light emitting diode lamp and lighting device
KR101479914B1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
TWI466324B (en) Light-emitting diode, light-emitting diode lamp and lighting apparatus
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2007273590A (en) Nitride semiconductor element and its manufacturing method
JP2006261266A (en) Semiconductor light emitting device and its manufacturing method, and electronic equipment
JP4451683B2 (en) Semiconductor light emitting device, manufacturing method thereof, and light emitting diode
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
WO2012005185A1 (en) Method of producing light-emitting diodes, cutting method, and light-emitting diode
JP4594708B2 (en) LIGHT EMITTING DIODE AND ITS MANUFACTURING METHOD, LIGHT EMITTING DIODE LAMP
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp
JP2012142626A (en) Light-emitting element and light-emitting element manufacturing method
JP2007042985A (en) Gallium-nitride-based compound semiconductor light-emitting device and packaging body thereof
KR20090103343A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2007149984A (en) Manufacture of nitride semiconductor light-emitting element
KR20090032212A (en) Nitride semiconductor light emitting device for flip-chip
JP2008159980A (en) Light-emitting element and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130815