JP2012139646A - Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus - Google Patents

Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus Download PDF

Info

Publication number
JP2012139646A
JP2012139646A JP2010294543A JP2010294543A JP2012139646A JP 2012139646 A JP2012139646 A JP 2012139646A JP 2010294543 A JP2010294543 A JP 2010294543A JP 2010294543 A JP2010294543 A JP 2010294543A JP 2012139646 A JP2012139646 A JP 2012139646A
Authority
JP
Japan
Prior art keywords
micro
bubbles
spiral
nano bubble
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010294543A
Other languages
Japanese (ja)
Inventor
Hideki Ihara
英樹 伊原
Koji Taira
広次 平良
Masamitsu Takahashi
正光 高▲橋▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BICOM KK
Original Assignee
BICOM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BICOM KK filed Critical BICOM KK
Priority to JP2010294543A priority Critical patent/JP2012139646A/en
Publication of JP2012139646A publication Critical patent/JP2012139646A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a micro nano-bubble generating apparatus for generating micro nano-bubbles by causing helical water streams each having different direction to collide with each other, which highly efficiently generates the micro nano-bubbles by mixing bubbles with water well in the helical water stream thereby accelerating subdivision of bubbles and generation of fine bubbles.SOLUTION: The apparatus for generating micro nano-bubbles includes inside inner and outer pipes 1, 2 of a multitubular structure, helical grooves 3, 4 for water streams each having different direction and formed by helical members 5, 6, respectively and generates the micro nano-bubbles by causing the helical water streams 7, 8 containing the bubbles to collide with each other when discharging the helical water streams 7, 8. In the apparatus for generating micro nano-bubbles, the axial centers C1, C2 of the inner and outer pipes 1, 2 respectively are shifted from each other to arrange the pipes in an eccentric position, the groove depth D1, D2 of the helical grooves 3, 4 formed by the helical members 5, 6 in contact with the inner surfaces of the inner and outer pipes 1, 2 are continuously and repeatedly changed in the peripheral direction, thereby the helical water streams 7, 8 flowing along the helical grooves 3, 4 are repeatedly pressurized and depressurized.

Description

本発明は、主にマイクロ・ナノバブル水の生成装置に使用するマイクロ・ナノバブル生成装置、及びこれを用いたマイクロ・ナノバブル水の生成装置の構造に関するものである。   The present invention relates to a micro / nano bubble generating apparatus used mainly for a micro / nano bubble water generating apparatus, and a structure of a micro / nano bubble water generating apparatus using the same.

ナノバブル水の生成は非常に難しく、従来は、加圧ポンプからマイクロバブル発生ノズルに水流と気体を送り、加圧混入されて生成されたマイクロバブルをさらにせん断してマイクロ・ナノバブル水を生成している。バブルの径は通常目視される程度のものはミリ単位であるが、ミクロン単位のバブルをマイクロバブル、ナノ単位のバブルをナノバブルと称している。近年では水、汚泥、スラリーに含まれたダイオキシン類、農薬等の難分解性有機物を分解する手段として微細な気泡を用いる研究が進められている。微細な気泡が崩壊するとき水素、酸素、ヒドロキシ、窒素などのラジカルが生成され、これらの化学反応を有効に利用する分野が広がっている。   It is very difficult to generate nanobubble water. Conventionally, water and gas are sent from a pressure pump to a microbubble generating nozzle, and microbubbles generated by pressurization are further sheared to generate micro / nano bubble water. Yes. The diameter of the bubble, which is usually visible, is in millimeters. Micron-sized bubbles are called microbubbles, and nano-sized bubbles are called nanobubbles. In recent years, research using fine bubbles as a means for decomposing hardly decomposable organic substances such as dioxins and agricultural chemicals contained in water, sludge, and slurry has been advanced. When fine bubbles collapse, radicals such as hydrogen, oxygen, hydroxy, and nitrogen are generated, and fields in which these chemical reactions are used effectively are expanding.

気泡の微細化についてはせん断方法、加圧方法などがあるが、微細化した気泡を安定して送り出すためには、気泡同士が再度融合することなく、気泡各自の消滅時間を緩慢化する必要がある。イオン類の少ない淡水中では微細気泡の発生が海水中に比較して難しくなり、又、マイクロ・ナノバブルの安定発生が難しくなる。従って淡水中にマイクロ・ナノバブルを発生させるためには、従来の方法は加圧ポンプを使用し物理的障害物を設定した配管内に水流と気体を送り、強制的に加圧混入を行うことでマイクロ・ナノバブルを発生させることが主流となっている。   There are shearing method and pressurizing method for micronization of bubbles, but in order to send out micronized bubbles stably, it is necessary to slow down the extinction time of each bubble without fusing the bubbles again. is there. In fresh water with few ions, generation of fine bubbles is more difficult than in seawater, and stable generation of micro / nano bubbles is difficult. Therefore, in order to generate micro / nano bubbles in fresh water, the conventional method uses a pressure pump to send water flow and gas into the pipe where physical obstacles are set, and forcibly mixes with pressure. Generation of micro / nano bubbles has become the mainstream.

しかし、前記の方法では発生配管内に過度の圧力を発生させる必要があり、ポンプの高出力化や配管内への物理的障害物の設定により複雑な構造となるため簡素な装置とならず、実用化レベルに至っていない。   However, in the above method, it is necessary to generate an excessive pressure in the generating pipe, and since it becomes a complicated structure due to the high output of the pump and the setting of physical obstacles in the pipe, it does not become a simple device, The practical level has not been reached.

そこで、前記のような問題を解決し、マイクロ・ナノバブルの生成を効率化するために、下記の特許文献1に開示のマイクロ・ナノバルブ生成方法及び装置が提案されている。   Therefore, in order to solve the above-described problems and to make the generation of micro / nano bubbles more efficient, a micro / nano valve generation method and apparatus disclosed in the following Patent Document 1 have been proposed.

かかる提案の方法及び装置は、開口径の異なる2種類の管を内外に配置した二重管構造とし、その内管と外管の内面に密接して螺旋部材をそれぞれ異なる方向の螺旋状に配置し、内外各管の内面と各螺旋部材により2つの螺旋溝を形成し、気泡を含みかつ螺旋溝に沿って流れる方向の異なる螺旋水流を同時に放出する際に衝突させるようにしてマイクロ・ナノバブルを生成するものである。このとき、方向の異なる螺旋水流を衝突させることで気泡同士が高速摩擦を生起し、小さい気泡が外管の大きい気泡をせん断する。これにより気泡表面に静電気を帯電させマイクロバブルを生成する。各気泡が静電気によるマイナス電荷を帯電した後は同電荷反発により各気泡がマイクロ・ナノバブルとして存在することが可能になる。発生したマイクロ・ナノバブルは気液境界面での表面張力による自己加圧効果により圧壊していくことになるが、同時に気泡表面に帯電したマイナス電荷の電荷密度も増大するため、電解質イオンが濃縮された場合に生じる「イオン殻」と同様の作用が発生することになり、イオン類の少ない淡水中でもマイクロ・ナノバブルとして安定して存在することができる。   The proposed method and apparatus have a double pipe structure in which two types of pipes having different opening diameters are arranged inside and outside, and the spiral members are arranged in a spiral shape in different directions in close contact with the inner surfaces of the inner and outer pipes. In addition, two spiral grooves are formed by the inner surface of each of the inner and outer tubes and each spiral member, and micro-nano bubbles are caused to collide when simultaneously discharging spiral water streams containing bubbles and having different directions of flowing along the spiral grooves. Is to be generated. At this time, the bubbles generate high-speed friction by colliding spiral water flows in different directions, and the small bubbles shear the large bubbles in the outer tube. Thereby, static electricity is charged on the bubble surface to generate microbubbles. After each bubble is charged with a negative charge due to static electricity, each bubble can exist as a micro / nano bubble due to the repulsion of the same charge. The generated micro / nano bubbles will be crushed by the self-pressurization effect due to the surface tension at the gas-liquid interface, but at the same time the charge density of negative charges charged on the bubble surface will increase, so the electrolyte ions will be concentrated. The same action as that of the “ion shell” generated in the case of the ionic shell occurs, and it can stably exist as micro / nano bubbles even in fresh water with few ions.

しかしながら、前記提案の方法及び装置の場合は、二重管構造のマイクロ・ナノバブル発生部における螺旋溝が一定の幅、深さのものであって、螺旋水流中での圧力に変化を生じさせるものではなく、螺旋溝から放出された時の衝突によるせん断を利用して細分化しているだけであり、マイクロ・ナノバブル生成効率の点でさらなる改良が望まれている。   However, in the case of the proposed method and apparatus, the spiral groove in the micro / nano bubble generating part having a double tube structure has a constant width and depth, and causes a change in pressure in the spiral water flow. Rather, it is only subdivided using shear due to collision when released from the spiral groove, and further improvement is desired in terms of micro / nano bubble generation efficiency.

特開2009−274045号公報JP 2009-274045 A

本発明は、上記に鑑みてなしたものであり、複数の管を内外に配置した多重管構造の内管と外管の内面に沿って形成した方向の異なる螺旋溝による螺旋水流を放出の際に衝突させてマイクロ・ナノバブルを生成するマイクロ・ナノバブル生成装置において、螺旋水流中において加圧と減圧を繰り返すことで、気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、これが螺旋水流放出時の衝突作用と相俟って、マイクロ・ナノバブルの生成を高効率化できるようにしたものである。   The present invention has been made in view of the above, and in discharging a spiral water flow by spiral grooves having different directions formed along the inner and outer surfaces of a multi-tube structure in which a plurality of tubes are arranged inside and outside. In the micro / nano bubble generation device that generates micro / nano bubbles by colliding with the water, the pressure and pressure reduction are repeated in the spiral water flow to improve the mixing of bubbles and water, and to subdivide the bubbles, The generation is promoted, and this, combined with the collision action at the time of spiral water discharge, enables the generation of micro / nano bubbles to be highly efficient.

本発明は、上記の課題を解決するものであり、内管と外管との多重管構造をなし、内外各管の内側に螺旋部材による螺旋方向の異なる各管の内面と前記各螺旋部材とにより流水用の螺旋溝が形成され、該螺旋溝に沿って流れる気泡を含む螺旋水流が同時に放出される際に衝突するようになされたマイクロ・ナノバルブ生成装置において、内外各管の軸心をずらせて偏心位置に配置して、内外各管の内面に接する螺旋部材による螺旋溝の溝深さを周方向で連続的に繰り返し変化させ、螺旋溝に沿って流れる螺旋水流が加圧と減圧を繰り返すようにしたことを特徴とするものである。   The present invention solves the above-described problem, and forms a multiple tube structure of an inner tube and an outer tube, and the inner surface of each tube having different spiral directions by the spiral member inside each inner and outer tube, and each spiral member In the micro / nanovalve generating apparatus, a spiral groove for flowing water is formed and collides when a spiral water flow including bubbles flowing along the spiral groove is discharged at the same time. The groove depth of the spiral groove by the spiral member in contact with the inner surface of each inner and outer tube is continuously and repeatedly changed in the circumferential direction, and the spiral water flow flowing along the spiral groove repeats pressurization and decompression. It is characterized by doing so.

このマイクロ・ナノバルブ生成装置によれば、内外各管の内面に接する螺旋部材により形成された螺旋溝に沿って流れる気泡を含む螺旋水流が、該螺旋溝の溝深さの変化に伴って加圧圧縮と減圧開放を連続的に繰り返すことで、該流水中の気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、しかも、螺旋溝から放出される際に、方向を異にする螺旋水流が衝突することによるせん断作用により気泡をさらに細分化できる。   According to this micro / nanovalve generating device, a spiral water flow including bubbles flowing along a spiral groove formed by a spiral member in contact with the inner surface of each of the inner and outer tubes is pressurized as the groove depth of the spiral groove changes. By repeating the compression and decompression release continuously, the mixing of bubbles and water in the flowing water is improved, the bubbles are subdivided, the formation of fine bubbles is promoted, and when released from the spiral groove The bubbles can be further subdivided by the shearing action caused by the collision of spiral water flows in different directions.

前記のマイクロ・ナノバルブ生成装置において、外管の内面に接する螺旋部材がその内側の管に付設され、外管とその内側の管との間が螺旋部材による螺旋溝として形成されているものとすることができる。   In the micro / nanovalve generating apparatus, the spiral member that contacts the inner surface of the outer tube is attached to the inner tube, and the space between the outer tube and the inner tube is formed as a spiral groove by the spiral member. be able to.

前記のマイクロ・ナノバルブ生成装置において、内管の内部に偏心して芯部材が配置され、内管の内面に接する螺旋部材が芯部材に付設され、内管と芯部材の間が螺旋部材による螺旋溝として形成されているものとすることができる。   In the micro / nanovalve generating apparatus, a core member is arranged eccentrically inside the inner tube, a spiral member contacting the inner surface of the inner tube is attached to the core member, and a spiral groove formed by the spiral member is provided between the inner tube and the core member. It can be formed as.

前記のマイクロ・ナノバルブ生成装置において、螺旋溝の深さの最浅部と最深部との比が1/2〜1/8であるものとするのが、加圧と減圧の繰り返しによる気泡と水の混合の効果、気泡細分化の効果の点から好ましい。   In the micro / nanovalve generating apparatus, the ratio of the shallowest part to the deepest part of the depth of the spiral groove is 1/2 to 1/8. From the viewpoint of the effect of mixing and the effect of cell fragmentation.

また本発明は、前記発明のいずれかのマイクロ・ナノバブル生成装置を備えるマイクロ・ナノバブル水の生成装置であって、流水中に気体を吸引する気体吸引エジェクターを備え、該気体吸引エジェクターの後続の流水路の一部に前記マイクロ・ナノバブル生成装置を備え、気体吸引エジェクターにより吸引した気体による気泡を流水中に生成した後、前記マイクロ・ナノバブル生成装置を通過させることにより、気泡を細分化するようにしたことを特徴とする。これにより、マイクロ・ナノバブル水を効率よく生成することができる。   Further, the present invention is a micro / nano bubble water generating device comprising the micro / nano bubble generating device according to any one of the above-mentioned inventions, comprising a gas suction ejector for sucking a gas into the running water, and the running water following the gas suction ejector. The micro / nano bubble generating device is provided in a part of the path, and bubbles are generated by flowing the gas sucked by the gas suction ejector into the running water, and then the bubbles are subdivided by passing the micro / nano bubble generating device. It is characterized by that. Thereby, micro / nano bubble water can be generated efficiently.

前記のマイクロ・ナノバブル水の生成装置において、気体吸引エジェクターとマイクロ・ナノバブル生成装置との間に循環ポンプを備え、該循環ポンプの作動により、該ポンプ吸引側の流水路中において気体吸引エジェクターで気体を吸引して気泡を分散させた後、ポンプ吐出側の流水路に備えるマイクロ・ナノバブル生成装置を通過させるようにしたものとすることができる。これにより、マイクロ・ナノバブル水の生成を効率よく行うことができる。   In the micro / nano bubble water generation device, a circulation pump is provided between the gas suction ejector and the micro / nano bubble generation device, and gas is ejected by the gas suction ejector in the flow channel on the pump suction side by the operation of the circulation pump. , The bubbles are dispersed, and then passed through a micro / nano bubble generating device provided in the flow channel on the pump discharge side. Thereby, the production | generation of micro / nano bubble water can be performed efficiently.

前記のマイクロ・ナノバブル水の生成装置において、循環ポンプの吐出側配管内にオリフィスを備え、該オリフィスを通過させることにより吸引した気泡を分散させるようにしたものとすることができる。   In the micro / nano bubble water generating apparatus, an orifice is provided in the discharge side piping of the circulation pump, and the sucked bubbles can be dispersed by passing through the orifice.

前記のマイクロ・ナノバブル水の生成装置において、前記マイクロ・ナノバブル生成装置の流入側の配管をエルボ管とし、水流を屈曲させて整流し、前記多重管構造の流水用配管によるマイクロ・ナノバブル生成装置を通過させるようにしたものとすることができる。   In the micro / nano bubble water generating device, the inflow side piping of the micro / nano bubble generating device is an elbow tube, the water flow is bent and rectified, and the micro / nano bubble generating device is configured by the multi-tube structure flowing water piping. It can be made to pass.

本発明のマイクロ・ナノバブルの生成装置、及びマイクロ・ナノバブル水の生成装置によれば、多重管構造の内外各管の偏心配置を利用して各管の内面に沿って形成される螺旋溝の溝深さを連続して繰り返し変化させたことにより、螺旋水流において加圧と減圧を繰り返し、気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、これと螺旋水流放出時の衝突によるせん断作用との相乗効果で、マイクロ・ナノバブルの生成を高効率化でき、マイクロ・ナノバブル水を従来装置よりも効率よく生成することができる。   According to the micro / nano bubble generating device and the micro / nano bubble water generating device of the present invention, the groove of the spiral groove formed along the inner surface of each tube using the eccentric arrangement of the inner and outer tubes of the multiple tube structure. By changing the depth continuously and repeatedly, pressurization and depressurization are repeated in the spiral water flow to improve the mixing of bubbles and water, and to promote the fragmentation of bubbles and the generation of fine bubbles. Due to the synergistic effect with the shearing action caused by the collision when the water flow is released, the generation of micro / nano bubbles can be made highly efficient, and the micro / nano bubble water can be generated more efficiently than the conventional apparatus.

本発明のマイクロ・ナノバブル生成装置の一部を切欠した分解斜視図である。It is the disassembled perspective view which notched a part of micro / nano bubble production | generation apparatus of this invention. 同上のマイクロ・ナノバブル生成装置の平面図である。It is a top view of a micro nano bubble production apparatus same as the above. 同上のマイクロ・ナノバブル生成装置の縦断面図である。It is a longitudinal cross-sectional view of a micro nano bubble production apparatus same as the above. 本発明のマイクロ・ナノバブル水の生成装置の概略構成の説明図である。It is explanatory drawing of schematic structure of the production | generation apparatus of the micro nano bubble water of this invention.

次に、本発明のマイクロ・ナノバブル生成装置A1及びこれを用いたマイク・ナノバブル水の生成装置A10を図面に示す実施例に基づいて説明する。   Next, the micro / nano bubble generation device A1 of the present invention and the microphone / nano bubble water generation device A10 using the micro / nano bubble generation device A1 will be described based on an embodiment shown in the drawings.

本発明のマイクロ・ナノバブル生成装置A1は、通常、ポンプによる水流を利用して吸引した気泡を含む水を流送するための流水路の一部をなす配管として、口径の異なる複数の管、例えば図示するように2種類の管を、内管1とこれを囲む外管2として間隔をおいて配置して多重構造の流水用配管とし、該配管の内管1と少なくとも1つの外管2の内面に沿って内外で交互に方向を異にする螺旋水流を作り、さらにこれを衝突させて混流させることでマイクロ・ナノバブルを生成させるものであり、特に本発明においては、前記の構造を基本にして、前記螺旋水流において加圧と減圧を繰り返すことで、微細気泡のマイクロ・ナノバブルの発生効率を高めるようにしたものである。   The micro / nano bubble generating device A1 of the present invention is usually a plurality of pipes having different diameters, for example, pipes forming part of a water flow path for feeding water containing bubbles sucked using a water flow by a pump, for example, As shown in the figure, two types of pipes are arranged as an inner pipe 1 and an outer pipe 2 surrounding the inner pipe 1 at intervals to form a multi-structure running water pipe, and the inner pipe 1 of the pipe and at least one outer pipe 2 Spiral water flows that are alternately different in the inner and outer directions along the inner surface, and are further collided to generate micro / nano bubbles. In the present invention, in particular, the above structure is used as a basis. Thus, by repeating the pressurization and decompression in the spiral water flow, the generation efficiency of micro-bubbles of micro bubbles is increased.

本発明のマイクロ・ナノバブル生成装置の特徴となる多重管構造の配管として、口径比を例えば1:2に設定した内管1と外管2との二重管構造の場合を例にして、図1〜図3に基づき具体的に説明する。   As a pipe having a multi-pipe structure, which is a feature of the micro / nano bubble generating apparatus of the present invention, a case of a double pipe structure of an inner pipe 1 and an outer pipe 2 with an aperture ratio set to 1: 2, for example, It demonstrates concretely based on 1-3.

前記内管1と外管2とは、それぞれ金属製もしくは合成樹脂製のパイプからなり、両管の管径によっても異なるが、例えば径差が10mm前後の場合、相互に軸心C1,C2を数mmずらせて偏心位置に配置されている。すなわち、前記内管1はその軸心C1を外管2の軸心C2に対して偏心位置に配置して、内管1の外面と外管2の内面との間の間隔が180°相対向位置の一方側で狭く他方側で広くなっている。図の場合、外管2の内面は、流水方向の流入側から流出側に向かって僅かにテーパ状に拡径されており、その内側に配置される内管1の外面は、前記外管2の内面に応じたテーパ状をなしている。   The inner pipe 1 and the outer pipe 2 are made of metal or synthetic resin pipes, and differ depending on the pipe diameters of both pipes. For example, when the diameter difference is around 10 mm, the axes C1 and C2 are mutually connected. It is shifted by several mm and is arranged at an eccentric position. That is, the inner tube 1 has its axial center C1 arranged in an eccentric position with respect to the axial center C2 of the outer tube 2, and the interval between the outer surface of the inner tube 1 and the inner surface of the outer tube 2 is 180 ° opposite. It is narrow on one side of the position and wide on the other side. In the case of the figure, the inner surface of the outer tube 2 is slightly tapered in diameter from the inflow side to the outflow side in the direction of running water, and the outer surface of the inner tube 1 disposed on the inner side is the outer tube 2. It has a taper shape corresponding to the inner surface.

前記内管1の内側及び外管2の内側には、それぞれの内面に接して互いに異なる方向の螺旋状に旋回して延びる螺旋部材5、6が配置され、内管1の内面と螺旋部材5とにより流水用の螺旋溝3が、また外管2の内面と螺旋部材6とにより前記螺旋溝3とは螺旋方向を異にする流水用の螺旋溝4がそれぞれ形成されており、該螺旋溝3,4に沿って流れる気泡を含む螺旋水流7、8が同時に放出される際に衝突するように構成されている。   Inside the inner tube 1 and the inner side of the outer tube 2 are arranged spiral members 5 and 6 that extend in a spiral manner in contact with the respective inner surfaces in different directions, and the inner surface of the inner tube 1 and the spiral member 5. The spiral groove 3 for running water is formed, and the spiral groove 4 for running water having a spiral direction different from that of the spiral groove 3 is formed by the inner surface of the outer tube 2 and the spiral member 6, respectively. The spiral water streams 7 and 8 including bubbles flowing along the lines 3 and 4 are configured to collide when they are discharged at the same time.

前記内管1の内側に接する螺旋部材5は、内管1とは別に同素材により螺旋状に形成された後、内管1の内周に嵌設される。螺旋部材5を内管1の内部に固定する手段としては溶接、超音波溶着及び光造形法による内管1の内周面に螺旋溝を一体成形する方法などを利用できる。また、前記外管2の内面に接する螺旋部材6は、内管2の外周に一体的に形成されており、内管1が外管2内に挿入配置されることにより、前記螺旋部材6が外管2の内周に嵌設され、該外管2と内管1の間が螺旋部材6による螺旋溝4として形成されている。この螺旋部材6についても、内管1に一体形成するものには限らず、溶接、超音波溶着等の手段により内管1又は外管2に固定して設けることもできる。   The spiral member 5 in contact with the inner side of the inner tube 1 is formed in a spiral shape from the same material separately from the inner tube 1 and is then fitted on the inner periphery of the inner tube 1. As a means for fixing the spiral member 5 to the inside of the inner tube 1, a method of integrally forming a spiral groove on the inner peripheral surface of the inner tube 1 by welding, ultrasonic welding, or stereolithography can be used. In addition, the spiral member 6 in contact with the inner surface of the outer tube 2 is integrally formed on the outer periphery of the inner tube 2. When the inner tube 1 is inserted into the outer tube 2, the spiral member 6 is The outer tube 2 is fitted on the inner periphery, and a space between the outer tube 2 and the inner tube 1 is formed as a spiral groove 4 formed by a spiral member 6. The spiral member 6 is not limited to being integrally formed with the inner tube 1 but can be fixed to the inner tube 1 or the outer tube 2 by means such as welding or ultrasonic welding.

前記内管1の内側の螺旋溝3、及び外管2の内側すなわち内外両管1,2間の螺旋溝4は、それぞれ前記螺旋部材5,6の径方向高さが前記内管1と外管2の偏心配置によるずれ量に応じて連続して繰り返し変化することにより、溝深さD1及びD2がそれぞれ連続して繰り返し変化している。   The spiral groove 3 on the inner side of the inner tube 1 and the inner side of the outer tube 2, that is, the spiral groove 4 between the inner and outer tubes 1 and 2, are such that the radial heights of the spiral members 5 and 6 are By continuously and repeatedly changing according to the amount of deviation due to the eccentric arrangement of the tube 2, the groove depths D1 and D2 are continuously and repeatedly changed.

すなわち、内管1の内側の螺旋溝3は、螺旋部材5の内周面が外管2とほぼ同じ軸心をなすように形成されることにより、内管1と外管2との偏心によるずれ量に応じて溝深さD1が繰り返し変化しており、また、外管2の内側の螺旋溝4は、内管1に付設された螺旋部材6が内管1と外管2との偏心による両管の間の間隔の変化に応じて溝深さD2が繰り返し変化している。   That is, the spiral groove 3 inside the inner tube 1 is formed so that the inner peripheral surface of the spiral member 5 has substantially the same axis as that of the outer tube 2, so that the inner tube 1 and the outer tube 2 are eccentric. The groove depth D1 is repeatedly changed according to the amount of deviation, and the spiral groove 4 on the inner side of the outer tube 2 has an eccentricity between the inner tube 1 and the outer tube 2 by the spiral member 6 attached to the inner tube 1. The groove depth D2 is repeatedly changed according to the change in the distance between the two pipes.

例えば、内管1は流水方向の流出側(テーパの径大側)で外径18mm、内径13mmのパイプ、前記外管1は外径が30mmで、流水方向の流出側(テーパの径大側)で内径が25mmのパイプからなり、内外両管1,2の軸心C1,C2を2mm偏心させて配置する場合において、前記螺旋部材5を、3.5mmの幅で径方向の厚み(径方向高さ)を漸次変化させて右回りにピッチPを10〜15mmにして螺旋状に形成し、その流出側の外径を13mmにして外接円を内管1の内周面に対応したテーパ状とし、かつ内径を6mmに形成しておいて、内管1に嵌設する。また、前記螺旋部材6を、3.5mmの幅で径方向の厚み(径方向高さ)を漸次変化させながらピッチPを10〜15mmにして左回りの螺旋状をなすように前記内管1の外周面に一体に形成して外管2に嵌設する。これにより、前記外側の螺旋溝4の溝深さD2は、内外両管1.2の偏心による間隔の狭い側で1.5mm、間隔の広い側で5.5mmになり、また内側の螺旋溝3は、内周面の軸心を外管2の軸心C2と一致させることにより、その溝深さD1が前記螺旋溝4の溝深さD2の浅い側で深く5.5mm、また溝深さD2の深い側で浅く1.5mmになる。前記溝深さの変化が螺旋ピッチ毎に繰り返す。この溝深さD1及びD2の最浅部と最深部との比が1/2〜1/8、好ましく1/4〜1/6の範囲に設定される。   For example, the inner pipe 1 is a pipe having an outer diameter of 18 mm and an inner diameter of 13 mm on the outflow side (taper diameter side) in the flowing water direction, and the outer pipe 1 has an outer diameter of 30 mm and the outflow side (taper diameter side on the taper diameter side). ) In which the inner and outer pipes 1 and 2 are arranged with their axes C1 and C2 being eccentric by 2 mm, the spiral member 5 is 3.5 mm wide and has a radial thickness (diameter). (Direction height) is gradually changed to form a spiral with a pitch P of 10 to 15 mm in the clockwise direction, an outer diameter on the outflow side of 13 mm, and a circumscribed circle corresponding to the inner peripheral surface of the inner tube 1 The inner diameter is 6 mm and the inner tube 1 is fitted. Further, the inner pipe 1 is formed so that the spiral member 6 has a counterclockwise spiral shape with a pitch P of 10 to 15 mm while gradually changing the radial thickness (radial height) with a width of 3.5 mm. Are integrally formed on the outer peripheral surface of the outer tube 2 and fitted into the outer tube 2. As a result, the groove depth D2 of the outer spiral groove 4 is 1.5 mm on the narrower side due to the eccentricity of the inner and outer pipes 1.2, and 5.5 mm on the wider side, and the inner spiral groove. 3 is such that the axial center of the inner peripheral surface coincides with the axial center C2 of the outer tube 2, so that the groove depth D1 is 5.5 mm deep on the shallow side of the groove depth D2 of the spiral groove 4, and the groove depth. It becomes 1.5 mm shallow on the deep side of the depth D2. The change in the groove depth repeats every spiral pitch. The ratio of the shallowest part to the deepest part of the groove depths D1 and D2 is set to a range of 1/2 to 1/8, preferably 1/4 to 1/6.

前記外管2の外径は本発明のマイクロ・ナノバブル水の生成装置において用いられる配管の使用に準じて定められるが、外管2の全長は内管1の全長すなわち螺旋部材5及び4が存する部分の長さ(例えば100mm)よりさらに40mm程度長くして、後述する気泡の衝突区間を設定してもよい。いずれにしても、外管2の両端部の外周には他の配管との接続用のネジ部9a,9bが形成される。   The outer diameter of the outer tube 2 is determined in accordance with the use of piping used in the micro / nano bubble water generator of the present invention. The entire length of the outer tube 2 is the entire length of the inner tube 1, that is, the spiral members 5 and 4. The length of the portion (for example, 100 mm) may be made about 40 mm longer to set a bubble collision section, which will be described later. In any case, screw portions 9a and 9b for connection to other pipes are formed on the outer periphery of both end portions of the outer tube 2.

なお、前記螺旋部材5,4の断面形状は図のような長方形等の四角形をなすものには限らず、他の多角形もしくは円形等により凸条となる断面形状のものとすることができる。   The cross-sectional shape of the spiral members 5 and 4 is not limited to a quadrangle such as a rectangle as shown in the figure, but may be a cross-sectional shape that forms a ridge by another polygon or a circle.

上記の実施例の二重管構造を利用したマイクロ・ナノバブル生成装置によれば、配管を通じて外管2の流入側から流入する気泡を含む水流は、内外各管1,2の内面に接する螺旋部材5,6による螺旋溝3,4に分かれてかつ該螺旋溝3,4に沿って、例えば内側は右回りに、外側は左回りに高速旋回しながら流れる。   According to the micro / nano bubble generating apparatus using the double tube structure of the above embodiment, the water flow including bubbles flowing from the inflow side of the outer tube 2 through the pipe is a spiral member in contact with the inner surfaces of the inner and outer tubes 1 and 2. 5 and 6 divides into spiral grooves 3 and 4 and flows along the spiral grooves 3 and 4 while rotating at high speed, for example, clockwise on the inside and counterclockwise on the outside.

この際、外管2に流入する流水中の気泡は、後述するようにオリフィス等により分散されているため、気泡径は内外共にほぼ同一であるが、内管1及び外管2の口径の際によりそれぞれの内部での遠心力が異なっていることで、内外両管1,2内の気泡径が異なるため、外管内の気泡と内管内の気泡は内部圧力が異なり、気泡表面の表面張力も異なることになる。同一径・同圧の気泡同士が衝突した場合は融合するか帯電しておれば反発することになるが、径が大きく内部圧が低圧な気泡に、径が小さく内部圧が高圧な気泡が衝突した場合には大きい気泡がせん断される。またせん断される時、気泡間に摩擦が生じ各気泡に静電気が発生し帯電する。この場合、気泡はマイナス電荷を帯びるため各気泡間は反発し合いマイクロバブルが形成される。   At this time, since the bubbles in the flowing water flowing into the outer pipe 2 are dispersed by orifices or the like as will be described later, the bubble diameters are almost the same both inside and outside, but the diameters of the inner pipe 1 and the outer pipe 2 are the same. Because of the different centrifugal force inside each, the bubble diameters in both the inner and outer tubes 1 and 2 are different, so the bubbles in the outer tube and the bubbles in the inner tube have different internal pressures, and the surface tension on the bubble surface is also different. Will be different. If bubbles of the same diameter and pressure collide, they will repel if they are fused or charged, but bubbles that have a large diameter and low internal pressure will collide with bubbles that have a small diameter and high internal pressure. If so, large bubbles are sheared. Further, when sheared, friction occurs between the bubbles, and static electricity is generated in each bubble to be charged. In this case, since the bubbles are negatively charged, the bubbles repel each other to form microbubbles.

その上、前記の気泡を含む螺旋水流7,8は、該螺旋溝3,4の溝深さD1,D2の変化、特に螺旋ピッチ毎の変化に伴って加圧と減圧を繰り返すことにより、該流水中の気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、しかも、螺旋溝3,4から放出される際に、方向を異にする螺旋水流7,8が図2のように衝突することにより、前記のせん断作用で気泡をさらに細分化することができ、マイクロ・ナノバブルを発生できる。こうして生成されたマイクロ・ナノバブルを含む流水は外管から混流吐出水流として放出される。   In addition, the spiral water streams 7 and 8 containing the bubbles are subjected to the pressurization and depressurization by repeating the change in the groove depths D1 and D2 of the spiral grooves 3 and 4, particularly the change for each spiral pitch. The spiral water flow 7, which improves the mixing of the bubbles and water in the flowing water, promotes the fragmentation of the bubbles and the generation of fine bubbles, and has different directions when discharged from the spiral grooves 3, 4. When 8 collides as shown in FIG. 2, the bubbles can be further subdivided by the shearing action, and micro / nano bubbles can be generated. The flowing water containing the micro / nano bubbles thus generated is discharged from the outer tube as a mixed discharge water flow.

なお、前記内管1内の螺旋部材6の内側中心部に例えば直径6mmの空洞部10が生じているが、この空洞部10は管内圧力を弱めるためと異物のつまりを防ぐ作用を有している。この空洞部10には、必要に応じて直管状あるいは中実棒状の芯部材(図示せず)を配置しておくことができる。   Note that a hollow portion 10 having a diameter of, for example, 6 mm is formed in the inner central portion of the spiral member 6 in the inner tube 1, and this hollow portion 10 has an action to weaken the pressure in the tube and prevent clogging of foreign matters. Yes. In the hollow portion 10, a straight tubular or solid rod-shaped core member (not shown) can be arranged as necessary.

次に、上記のマイクロ・ナノバブル生成装置A1を使用したマイクロ・ナノバブル水の生成装置A10の実施例について、図4に基づいて説明する。   Next, an embodiment of a micro / nano bubble water generator A10 using the micro / nano bubble generator A1 will be described with reference to FIG.

このマイクロ・ナノバブル水の生成装置A10は、水槽11と水を循環させる循環部12からなり、該循環部12は水流内に気体を吸引する気体吸引エジェクター13、水流を発生させる循環ポンプ14、二重管構造の2基のマイクロ・ナノバブル生成装置A1を配管部15を介して直列に連結して配設構成されており、水流は図中の矢示方向に発生させるように設けられる。マイクロ・ナノバブル生成装置A1は1基だけでの場合もあるが、マイクロ・ナノバブル水の生成をより高効率化する上では、複数の装置を連結構成して使用するのが好ましい。   This micro / nano bubble water generator A10 includes a water tank 11 and a circulation part 12 for circulating water. The circulation part 12 includes a gas suction ejector 13 for sucking a gas into a water flow, a circulation pump 14 for generating a water flow, two Two micro / nano bubble generating devices A1 having a heavy tube structure are connected and configured in series via a pipe section 15, and a water flow is provided to be generated in the direction indicated by an arrow in the figure. Although there may be only one micro / nano bubble generating apparatus A1, it is preferable to connect and use a plurality of apparatuses in order to make the generation of micro / nano bubble water more efficient.

水槽11を循環するようポンプ配管を行い、吸引側に気体を吸入する気体吸引エジェクター13を設置する。その詳細は省略するが、循環ポンプ14の吸引による流水中に空気導入管を配置し同管内に負圧が生じて気体が吸引され流水中に混合される。ポンプ吐出側から気体を混合した水がマイクロ・ナノバブル生成装置A1へ圧送されることになる。このとき気体は水中に混合した状態であり、均一な気泡分布とはなっていない。このため、マイクロ・ナノバブル生成装置A1の前方の管内にオリフィス16を設け、水流を集約した直後に配管中の主として直角に屈曲したエルボ管17を用いて水流を略直角に曲げることで整流効果を引き出し、気泡の分散を均一化するのが望ましい。前記オリフィス及びエルボは必ずしも必要ではなく、例えば他の手段により水流中の気泡を均一分散化することができる場合、オリフィス及びエルボの一方又は双方を省略することができる。   Pump piping is circulated through the water tank 11, and a gas suction ejector 13 for sucking gas is installed on the suction side. Although the details are omitted, an air introduction pipe is arranged in the flowing water by suction of the circulation pump 14, a negative pressure is generated in the pipe, and the gas is sucked and mixed in the flowing water. Water mixed with gas is pumped from the pump discharge side to the micro / nano bubble generating device A1. At this time, the gas is in a mixed state in water and does not have a uniform bubble distribution. For this reason, an orifice 16 is provided in the tube in front of the micro / nano bubble generating device A1, and immediately after the water flow is concentrated, the water flow is bent at a substantially right angle by using an elbow pipe 17 bent mainly at a right angle in the pipe, thereby achieving a rectifying effect. It is desirable to draw out and make the dispersion of bubbles uniform. The orifice and elbow are not always necessary. For example, when bubbles in the water stream can be uniformly dispersed by other means, one or both of the orifice and elbow can be omitted.

なお、第1のマイクロ・ナノバブル生成装置A1を通過した水流は混流状態となっており第2のマイクロ・ナノバブル生成装置A1に気泡を均一に導入するために整流する必要から、第1のマイクロ・ナノバブル生成装置A1の後方の配管にエルボ管17を用いて水流を90度曲げ整流している。   Note that the water flow that has passed through the first micro / nano bubble generating device A1 is in a mixed state and needs to be rectified in order to uniformly introduce bubbles into the second micro / nano bubble generating device A1, so the first micro / nano bubble generating device A1 The elbow pipe 17 is used for piping behind the nanobubble generator A1, and the water flow is bent and rectified by 90 degrees.

このため、第1のマイクロ・ナノバブル生成装置A1において、上述したように、内外の螺旋溝3,4の溝深さD1,D2の変化に伴って加圧と減圧を繰り返すことにより、該流水中の気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、しかも、螺旋溝3,4から放出される際に、方向を異にする螺旋水流7,8が衝突することにより、せん断作用で気泡をさらに細分化することができ、ナノバブルを発生できる。こうして生成されたマイクロ・ナノバブルを含む流水は外管から混流吐出水流として放出される。第2のマイクロ・ナノバブル生成装置A1においても、同様に、螺旋水流中で加圧と減圧を繰り返すことにより、該流水中の気泡と水との混合を良好にして、かつ気泡の細分化、微細気泡の生成を促し、さらに、螺旋溝3,4から放出される際に、方向を異にする螺旋水流7,8が衝突することによるせん断作用で気泡をさらに細分化することができ、以て、マイクロ・ナノバブルを高効率に生成できる。   For this reason, in the first micro / nano bubble generating apparatus A1, as described above, by repeating pressurization and decompression in accordance with changes in the groove depths D1 and D2 of the inner and outer spiral grooves 3 and 4, the flowing water The spiral water streams 7 and 8 that make the mixing of the bubbles and water good, promote the fragmentation of the bubbles and the generation of fine bubbles, and have different directions when discharged from the spiral grooves 3 and 4. By colliding, bubbles can be further subdivided by a shearing action, and nanobubbles can be generated. The flowing water containing the micro / nano bubbles thus generated is discharged from the outer tube as a mixed discharge water flow. Similarly, in the second micro / nano bubble generating apparatus A1, by repeating the pressurization and the decompression in the spiral water flow, the mixing of the bubbles and water in the flowing water is improved, and the bubbles are finely divided and finely divided. The generation of bubbles can be promoted, and further, the bubbles can be further subdivided by the shearing action caused by the collision of the spiral water streams 7 and 8 having different directions when discharged from the spiral grooves 3 and 4. Micro-nano bubbles can be generated with high efficiency.

特に、螺旋水流中での加圧と減圧の繰り返しによりマイクロ・ナノバブルの発生効率を向上できるため、1基のマイクロ・ナノバブル生成装置A1を使用して、マイクロ・ナノバブル水の生成装置A10を構成して実施することが可能になり、この種装置の小型化を図ることができる。   In particular, since the generation efficiency of micro / nano bubbles can be improved by repeating pressurization and decompression in a spiral water flow, the micro / nano bubble water generation device A10 is configured by using one micro / nano bubble generation device A1. This type of device can be miniaturized.

なお、マイクロ・ナノバブルの発生については、本構造の装置により処理水を生成したところ目視ではあるが白濁化している。装置停止後数分経過で白濁化した処理水は透明状態に戻るが再度処理を行った場合、最初の処理時間より短い時間で白濁化することが確認できた。この現象が、処理済後の経過時間を48時間程度経過した場合まで確認できたことから、処理水中に目視できないレベルのマイクロ・ナノバブルが存在していることが明らかである。   In addition, about generation | occurrence | production of a micro / nano bubble, when treated water was produced | generated with the apparatus of this structure, although it is visually, it has become cloudy. The treated water that became clouded after a few minutes after the stop of the device returned to a transparent state, but when treated again, it was confirmed that it became clouded in a shorter time than the first treatment time. This phenomenon can be confirmed up to about 48 hours after the treatment, and thus it is clear that there are micro / nano bubbles in the treatment water that cannot be visually observed.

なお、上記した実施例のマイクロ・ナノバブル生成装置は、多重管構造として内管1と1つの外管2との二重管構造の場合を示したが、このほか、図示していないが、前記外管として、複数例えば第1と第2の2つの外管を間隔を存して内外に軸心をずらせて偏心位置に配置し、該両外管の間にも、上記した実施例と同様にして内側とは螺旋方向を異にした螺旋部材を配置し、内側の螺旋溝とは方向を異にする螺旋溝を形成して実施することができる。   In addition, although the micro / nano bubble generating device of the above-described embodiment has shown the case of the double tube structure of the inner tube 1 and one outer tube 2 as the multi-tube structure, As an outer tube, a plurality of, for example, first and second outer tubes are arranged in an eccentric position with the inner and outer axes shifted from each other with a space therebetween, and between the outer tubes, the same as in the above-described embodiment. Thus, a spiral member having a spiral direction different from that of the inner spiral groove may be disposed, and a spiral groove having a direction different from that of the inner spiral groove may be formed.

本発明のマイクロ・ナノバブル生成装置、及びこれを用いたマイクロ・ナノバブル水の生成装置は、液中に微細気泡を高濃度で供給できることから、酸素の供給による水質改善に利用でき、また空気の代わりに酸素、オゾンなどの気体を用いた気泡の供給も可能であり、水、汚泥、スラリーに含まれるダイオキシン類、農薬等の難分解性有機物を分解する手段として微細気泡を用いる場合など、多方面で利用が可能である。   The micro / nano bubble generating device of the present invention and the micro / nano bubble water generating device using the same can supply fine bubbles in the liquid at a high concentration. It is also possible to supply bubbles using gases such as oxygen and ozone, and when using fine bubbles as a means of decomposing persistent organic substances such as dioxins and agricultural chemicals contained in water, sludge, and slurry. It is possible to use.

A1…マイクロ・ナノバブル生成装置、A10…マイクロ・ナノバブル水の生成装置、C1,C2…軸心、D1,D2…溝深さ、1…内管、2…外管、3…内管内側の螺旋溝、4…外管内側の螺旋溝、5…内管に接する螺旋部材、6…外管に接する螺旋部材、7,8…螺旋水流、9a,9b…ネジ部、10…空洞部、11…水槽、12…循環部、13…気体吸引エジェクター、14…循環ポンプ、15…配管部、16…オリフィス、17…エルボ管。   A1 ... micro / nano bubble generating device, A10 ... micro / nano bubble water generating device, C1, C2 ... axis, D1, D2 ... groove depth, 1 ... inner tube, 2 ... outer tube, 3 ... helix inside the inner tube Groove, 4 ... spiral groove inside the outer tube, 5 ... spiral member in contact with the inner tube, 6 ... spiral member in contact with the outer tube, 7, 8 ... spiral water flow, 9a, 9b ... screw part, 10 ... cavity part, 11 ... Water tank, 12 ... circulation part, 13 ... gas suction ejector, 14 ... circulation pump, 15 ... piping part, 16 ... orifice, 17 ... elbow pipe.

Claims (8)

内管と外管との多重管構造をなし、内外各管の内側に螺旋部材による螺旋方向の異なる各管の内面と前記各螺旋部材とにより流水用の螺旋溝が形成され、該螺旋溝に沿って流れる気泡を含む螺旋水流が同時に放出される際に衝突するようになされたマイクロ・ナノバルブ生成装置において、
内外各管の軸心をずらせて偏心位置に配置して、内外各管の内面に接する螺旋部材による螺旋溝の溝深さを連続的に繰り返し変化させ、螺旋溝に沿って流れる螺旋水流が加圧と減圧を繰り返すようにしたことを特徴とするマイクロ・ナノバルブ生成装置。
A multi-pipe structure of an inner pipe and an outer pipe is formed, and a spiral groove for running water is formed inside the inner and outer pipes by an inner surface of each pipe having a different spiral direction by the spiral member and each spiral member. In a micro-nanovalve generator adapted to collide when a spiral water stream containing bubbles flowing along it is simultaneously released,
The axial centers of the inner and outer pipes are shifted and arranged in an eccentric position, and the groove depth of the spiral groove by the spiral member in contact with the inner surface of each of the inner and outer pipes is continuously changed repeatedly, and the spiral water flow flowing along the spiral groove is added. A micro / nanovalve generator characterized by repeating pressure and pressure reduction.
外管の内面に接する螺旋部材がその内側の管に付設され、外管とその内側の管との間が螺旋部材による螺旋溝として形成されている請求項1に記載のマイクロ・ナノバブル生成装置。   2. The micro / nano bubble generating device according to claim 1, wherein a spiral member in contact with an inner surface of the outer tube is attached to the inner tube, and a space between the outer tube and the inner tube is formed as a spiral groove by the spiral member. 内管の内部に偏心して芯部材が配置され、内管の内面に接する螺旋部材が芯部材に付設され、内管と芯部材の間が螺旋部材による螺旋溝として形成されている請求項1又は2に記載のマイクロ・ナノバブル生成装置。   The core member is arranged eccentrically inside the inner tube, a spiral member in contact with the inner surface of the inner tube is attached to the core member, and a space between the inner tube and the core member is formed as a spiral groove by the spiral member. 2. The micro / nano bubble generating apparatus according to 2. 螺旋溝の深さの最浅部と最深部との比が1/2〜1/8である請求項1〜3のいずれか1項に記載のマイクロ・ナノバブル生成装置。   The micro-nano bubble generating apparatus according to any one of claims 1 to 3, wherein a ratio of a shallowest part and a deepest part of the depth of the spiral groove is 1/2 to 1/8. 請求項1〜4のいずれか1項に記載のマイクロ・ナノバブル生成装置を備えるマイクロ・ナノバブル水の生成装置であって、
流水中に気体を吸引する気体吸引エジェクターを備え、該気体吸引エジェクターの後続の流水路の一部に前記マイクロ・ナノバブル生成装置を備え、気体吸引エジェクターにより吸引した気体による気泡を流水中に生成した後、前記マイクロ・ナノバブル生成装置を通過させることにより、気泡を細分化するようにしたことを特徴とするマイクロ・ナノバブル水の生成装置。
A micro / nano bubble water generator comprising the micro / nano bubble generator according to any one of claims 1 to 4,
A gas suction ejector for sucking a gas into running water is provided, and the micro / nano bubble generating device is provided in a part of a flow channel following the gas suction ejector to generate bubbles in the running water from the gas sucked by the gas suction ejector. Thereafter, the micro / nano bubble water generating apparatus is characterized in that the bubbles are subdivided by passing through the micro / nano bubble generating apparatus.
気体吸引エジェクターとマイクロ・ナノバブル生成装置との間に循環ポンプを備え、該循環ポンプの作動により、該ポンプ吸引側の流水路中において気体吸引エジェクターで気体を吸引して気泡を分散させた後、ポンプ吐出側の流水路に備えるマイクロ・ナノバブル生成装置を通過させるようにした請求項5に記載のマイクロ・ナノバブル水の生成装置。   A circulation pump is provided between the gas suction ejector and the micro / nano bubble generation device, and after the operation of the circulation pump, the gas is sucked by the gas suction ejector in the flow channel on the pump suction side, and the bubbles are dispersed. 6. The micro / nano bubble water generating device according to claim 5, wherein the micro / nano bubble generating device provided in the water flow path on the pump discharge side is passed. 循環ポンプの吐出側配管内にオリフィスを備え、該オリフィスを通過させることにより吸引した気泡を分散させるようにした請求項6に記載のマイクロ・ナノバブル水の生成装置。   The apparatus for generating micro / nano bubble water according to claim 6, wherein an orifice is provided in a discharge side pipe of the circulation pump, and bubbles sucked by passing through the orifice are dispersed. 前記マイクロ・ナノバブル生成装置の流入側の配管をエルボ管とし、水流を屈曲させて整流し、前記多重管構造の流水用配管によるマイクロ・ナノバブル生成装置を通過させるようにした請求項5〜7のいずれか1項に記載のマイクロ・ナノバブル水の生成装置。   The pipe on the inflow side of the micro / nano bubble generating device is an elbow tube, the water flow is bent and rectified, and the micro / nano bubble generating device using the pipe for flowing water having the multi-tube structure is allowed to pass through. The micro-nano bubble water generator according to any one of the above.
JP2010294543A 2010-12-29 2010-12-29 Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus Pending JP2012139646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294543A JP2012139646A (en) 2010-12-29 2010-12-29 Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294543A JP2012139646A (en) 2010-12-29 2010-12-29 Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus

Publications (1)

Publication Number Publication Date
JP2012139646A true JP2012139646A (en) 2012-07-26

Family

ID=46676495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294543A Pending JP2012139646A (en) 2010-12-29 2010-12-29 Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus

Country Status (1)

Country Link
JP (1) JP2012139646A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370229B1 (en) 2012-09-10 2014-03-05 이승아 Micro-bubble generator
KR101379239B1 (en) * 2013-09-23 2014-03-28 주식회사 에스엠티솔루션 Nano bubble generating system
JP2014147870A (en) * 2013-01-31 2014-08-21 Shinwa Co Ltd Nano-bubble forming device of microbubble
JP5614696B1 (en) * 2013-08-12 2014-10-29 株式会社ヒサミ Microbubble generator
GB2514202A (en) * 2013-05-16 2014-11-19 Nano Tech Inc Ltd Micro-nanobubble generation systems
JP2015020084A (en) * 2013-07-16 2015-02-02 独立行政法人国立高等専門学校機構 Fine bubble generator
KR101530609B1 (en) * 2014-08-29 2015-06-22 주식회사 그린이엔지 Nano bubble device
CN104756970A (en) * 2015-02-13 2015-07-08 南京林业大学 Moveable chemical mixer
GB2523412A (en) * 2014-02-25 2015-08-26 Nano Tech Inc Ltd Device to generate a liquid containing gases
JP2018015895A (en) * 2016-07-25 2018-02-01 株式会社塩 Fluid supply pipe
CN108905663A (en) * 2018-09-19 2018-11-30 佛山市通海卫浴设备有限公司 It can automatic pollution discharge anticlogging efficiently micro-nano bubble generator and method for generation
JP2021511963A (en) * 2018-01-22 2021-05-13 ジュン, インハJUNG, Inha Bubble water production equipment that can adjust the size of fine bubbles and a method for generating fine bubbles in bubble water using this
CN113912242A (en) * 2021-09-26 2022-01-11 宁波新芝生物科技股份有限公司 Nano-scale fluid magnetization mixing bubble generator
JP6990471B1 (en) * 2021-01-12 2022-01-12 泰平 山田 Ultra fine bubble generator
CN114797521A (en) * 2022-03-29 2022-07-29 江苏海狮机械股份有限公司 Micro-nano hydrogen bubble water generation system and operation control method thereof
JP7142386B1 (en) 2021-06-15 2022-09-27 荒川工業株式会社 fine bubble generator
KR102595801B1 (en) * 2022-07-04 2023-10-27 김기주 Polygonal micro-nano bubble generating means in which protrusions are formed

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370229B1 (en) 2012-09-10 2014-03-05 이승아 Micro-bubble generator
JP2014147870A (en) * 2013-01-31 2014-08-21 Shinwa Co Ltd Nano-bubble forming device of microbubble
GB2514202A (en) * 2013-05-16 2014-11-19 Nano Tech Inc Ltd Micro-nanobubble generation systems
JP2015020084A (en) * 2013-07-16 2015-02-02 独立行政法人国立高等専門学校機構 Fine bubble generator
JP5614696B1 (en) * 2013-08-12 2014-10-29 株式会社ヒサミ Microbubble generator
JP2015057271A (en) * 2013-08-12 2015-03-26 株式会社ヒサミ Microbubble generation device
KR101379239B1 (en) * 2013-09-23 2014-03-28 주식회사 에스엠티솔루션 Nano bubble generating system
GB2523412A (en) * 2014-02-25 2015-08-26 Nano Tech Inc Ltd Device to generate a liquid containing gases
KR101530609B1 (en) * 2014-08-29 2015-06-22 주식회사 그린이엔지 Nano bubble device
CN104756970A (en) * 2015-02-13 2015-07-08 南京林业大学 Moveable chemical mixer
CN104756970B (en) * 2015-02-13 2017-03-08 南京林业大学 A kind of movable medicine mixer
JP2018183865A (en) * 2016-07-25 2018-11-22 株式会社塩 Fluid supply device
JP2018015895A (en) * 2016-07-25 2018-02-01 株式会社塩 Fluid supply pipe
JP2021511963A (en) * 2018-01-22 2021-05-13 ジュン, インハJUNG, Inha Bubble water production equipment that can adjust the size of fine bubbles and a method for generating fine bubbles in bubble water using this
CN108905663A (en) * 2018-09-19 2018-11-30 佛山市通海卫浴设备有限公司 It can automatic pollution discharge anticlogging efficiently micro-nano bubble generator and method for generation
JP6990471B1 (en) * 2021-01-12 2022-01-12 泰平 山田 Ultra fine bubble generator
WO2022153813A1 (en) * 2021-01-12 2022-07-21 泰平 山田 Fluid activating device
WO2022264568A1 (en) * 2021-06-15 2022-12-22 荒川工業株式会社 Microbubble generator
JP2022190862A (en) * 2021-06-15 2022-12-27 荒川工業株式会社 fine bubble generator
JP7142386B1 (en) 2021-06-15 2022-09-27 荒川工業株式会社 fine bubble generator
CN113912242A (en) * 2021-09-26 2022-01-11 宁波新芝生物科技股份有限公司 Nano-scale fluid magnetization mixing bubble generator
CN113912242B (en) * 2021-09-26 2023-10-24 宁波新芝生物科技股份有限公司 Nanometer fluid magnetization mixing bubble generator
CN114797521A (en) * 2022-03-29 2022-07-29 江苏海狮机械股份有限公司 Micro-nano hydrogen bubble water generation system and operation control method thereof
CN114797521B (en) * 2022-03-29 2024-02-06 江苏海狮机械股份有限公司 Micro-nano hydrogen bubble generation system and operation control method thereof
KR102595801B1 (en) * 2022-07-04 2023-10-27 김기주 Polygonal micro-nano bubble generating means in which protrusions are formed

Similar Documents

Publication Publication Date Title
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
JP5000583B2 (en) Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus
US10596528B2 (en) Nanobubble-producing apparatus
WO2014192896A1 (en) Micronanobubble generation method, micronanobubble generator, and micronanobubble generation device
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
JP2009274045A5 (en)
KR101483412B1 (en) Micro bubble nozzle
JP2007021343A (en) Microbubble generator
WO2017179222A1 (en) Microbubble-generating device
WO2015056547A1 (en) Gas-containing liquid production device and gas-containing liquid injection mechanism
JP4142728B1 (en) Bubble refiner
JP2008086868A (en) Microbubble generator
JP2008207099A (en) Apparatus for generating micro bubble and micro bubble development system
KR101869487B1 (en) Nano bubble generator for bathtub or sink with cleaning and sterilizing function
WO2018123789A1 (en) Functional water production apparatus and production method
JP6449531B2 (en) Microbubble generator
JP2007111616A (en) Fine air-bubble generating device
JP5269493B2 (en) Micro bubble generator
CN112337327B (en) Nanometer bubble generating device
JP2019166493A (en) Fine bubble generation nozzle
KR101524403B1 (en) Apparatus for generating micro bubbles
WO2018134887A1 (en) Ultrafine bubble generation tool
KR101864497B1 (en) Nano-bubble generator
KR20190074707A (en) Nano-bubble generator
KR20160028170A (en) Micro-bubble generator