WO2018134887A1 - Ultrafine bubble generation tool - Google Patents
Ultrafine bubble generation tool Download PDFInfo
- Publication number
- WO2018134887A1 WO2018134887A1 PCT/JP2017/001395 JP2017001395W WO2018134887A1 WO 2018134887 A1 WO2018134887 A1 WO 2018134887A1 JP 2017001395 W JP2017001395 W JP 2017001395W WO 2018134887 A1 WO2018134887 A1 WO 2018134887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- triangular
- columnar
- ultra
- bubble generating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/90—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms
Definitions
- the present invention relates to a member or instrument for generating ultra fine bubbles in a liquid.
- ultrafine bubbles also called nanobubbles
- ultrafine bubbles have a bubble diameter of 1 ⁇ m (1 ⁇ m (1 / 1000 mm) or less, or less than nanometer-scale extremely fine bubbles.
- ultrafine bubble nanobubble
- ultra fine bubbles in various fields have been studied and are currently being used. For example, it can be used for household and commercial showers to create a moisturizing effect on the skin and make it easier to remove dirt, or it can be used as a coolant for cutting parts of machine tools or as a coolant inside an engine radiator. For example, increasing the fuel efficiency of the engine by providing the same generator in the fuel injection portion of the engine and allowing liquid fuel to pass through the generator. In addition, applications in various fields such as washing vegetables, growing crops, and preparing paint are being sought.
- Proposals have also been made to generate and generate nanobubbles more easily.
- the invention of Patent Document 1 in order to “provide a nanobubble production apparatus that can easily produce nanobubbles without using a large-scale apparatus”, first, microbubbles having a diameter of 4 to 100 ⁇ m are provided under a predetermined pressure. Next, the nanobubbles in the range of 100 nm or less are generated in the liquid by the action of the slit plate and the collision plate provided at a predetermined distance L (paragraph [0027] of the specification) (same [0033] [0034] ]).
- Patent Document 1 first generates microbubbles and then generates nanobubbles from the generated microbubbles, so that nanobubbles are obtained in two stages. Therefore, the microbubble manufacturing unit and the nanobubble manufacturing unit A separate manufacturing department is required.
- Patent Document 2 As an apparatus attached to the faucet, for example, the invention of Patent Document 2 has been proposed. However, this also means that the ultrasonic element array substrate 20 is fixed to the inside of the liquid flow path pipe 2 by the fixing means 212 and the ultrasonic vibration from the ultrasonic elements 30b and 30c is continuously applied. It is still big.
- the ultra fine bubble is not generated in the flowing liquid as described above, but is generated in the stationary liquid and used.
- the use of ultra fine bubbles in daily life such as cosmetics and cooking dressings has been sought.
- it can be applied to gargle water.
- Non-patent Document 1 p59-p62.
- the latter is a gas that is saturated by pumping liquid from the water tank with a vortex pump, self-supplying room air, then dissolving the self-supply air with a pressurizing device inside the device, and reducing the pressure to atmospheric pressure with a pressure reducing nozzle. To form fine bubbles.
- the present invention has been made in view of the above problems, and can generate ultrafine bubbles in a liquid without using means for sucking and supplying a gas (air or the like) to the liquid and subdividing it. It is an object of the present invention to provide an ultra fine bubble generating tool that can be applied to both circulating liquid and stationary liquid.
- the present invention provides an ultra fine bubble generating device having a shaft and a columnar member attached to the shaft, and having a plurality of triangular columnar protrusions provided on the outer peripheral surface of the columnar member.
- the ultrafine bubble generating device is arranged inside a pipe for sending a liquid, the triangular columnar protrusion is arranged in a spiral shape on the columnar member, and the liquid surrounds the columnar member.
- Each of the triangular columnar protrusions is disposed so that an angle located at the tip of the triangular flow of the liquid is substantially perpendicular to the helical flow,
- the liquid flowing inside the pipe for sending the liquid is included in the liquid without supplying air from the outside of the pipe for sending the liquid by colliding with the plurality of triangular prismatic projections.
- An ultra fine bubble generating tool having a shaft and a columnar member attached to the shaft as a second side surface, wherein a plurality of triangular columnar protrusions are provided on an outer peripheral surface of the columnar member,
- the fine bubble generating device is disposed inside a tubular member that is disposed in the liquid in the container and is open at least on one end side, the triangular columnar protrusion is disposed in a spiral shape on the columnar member, and the liquid is disposed in the columnar shape.
- the shaft is rotated by driving a motor whose power source is a dry battery or a rechargeable battery, and the cylindrical member rotates to enter the inside of the tubular member.
- Ultra fine wherein the liquid collides with the plurality of triangular prismatic protrusions, and the air contained in the liquid is refined without generating air from outside the container to generate ultra fine bubbles.
- the present invention provides the above-described ultrafine bubble generating tool in which the columnar member is formed by laminating a plurality of disk-shaped members.
- the present invention provides the triangular columnar projection close to an inner wall of a pipe or a tubular member for feeding the liquid, and sends the liquid so that the collision of the liquid with the triangular columnar projection is promoted.
- the ultrafine bubble generating device described above is disposed inside the tube or tubular member.
- the present invention provides any one of the above ultrafine bubble generating devices, wherein an opening for circulating liquid inside and outside the tubular member is provided on a side surface of the tubular member.
- an ultra fine bubble can be generated in a liquid without separately sucking or supplying gas (air or the like), and the ultra fine bubble is generated in both a flowing liquid and a stationary liquid. It becomes possible.
- FIG. 1 It is a figure which shows one Embodiment of this invention. It is a figure for demonstrating the flow of the liquid in this invention. It is a figure which shows one Embodiment of this invention. It is a figure which shows one Embodiment of this invention. It is a figure which shows the use condition of one Embodiment (FIG. 1) of this invention. It is a figure which shows the modification of this invention. It is a figure which shows the disk shaped member of the modification of this invention. It is another figure which shows the disk shaped member of the modification of this invention. It is a figure which shows other embodiment of this invention. It is a figure which shows other embodiment of this invention. It is a figure which shows other embodiment of this invention. It is a figure which shows the use condition of other embodiment of this invention.
- the present embodiment relates to a case where ultrafine bubbles are generated in a liquid flowing inside a pipe (particularly a pipe for sending a liquid) such as a water supply, a shower, or a hose.
- an ultrafine bubble generating device 1 includes a shaft 2 and a columnar member 3 attached to the shaft 2.
- the surface (outer peripheral surface) 4 of the cylindrical member 3 is provided with a plurality of triangular projections (triangular prism-shaped projections 5) having a triangular shape when viewed from the top.
- ultrafine bubbles are generated by ultrafine air / oxygen contained in the liquid.
- a certain amount of air usually dissolves in the liquid.
- about 24 mg of air dissolves in about 2% of air with respect to the volume of water at 20 degrees C. and 1 L of water in terms of weight. In this way, a flow is created in the liquid in which air and oxygen are dissolved, and the air and oxygen in the liquid collide.
- the liquid collides with the plurality of triangular prism-shaped projections 5 and flows while being divided or sheared, and the generated liquid flow and turbulent flow repeatedly collide, and ultra fine bubbles are generated in this process.
- the molecular structure of the liquid becomes unstable, and the fine bubbles generated by further collision and fragmentation are negatively charged and rapidly shrink to change into ultrafine bubbles, that is, ultrafine bubbles. There is a possibility.
- the triangular prismatic projections 5 are used to generate ultrafine bubbles.
- the triangular columnar protrusions 5 can be arranged on the outer peripheral surface of the columnar member so as to be more aligned as shown in FIG. 3, but the triangular columnar protrusions 5 are arranged so that collision of liquid flow and turbulent flow is likely to occur. preferable.
- Various arrangements are conceivable. As an example, an arrangement slightly shifted as shown in FIG. 1 can be considered.
- a plurality of triangular columnar protrusions can be arranged in a spiral shape in the longitudinal direction of the columnar member 21 so that collision of liquid flow and turbulent flow is likely to occur.
- the liquid flow 7a along the triangular columnar protrusion 5a generates a turbulent flow 10a around the corner 9a. If the distance between the turbulent flow 10a and the triangular columnar protrusion 5b is too short, the liquid flow 7b may be weakened by the influence of the turbulent flow 10a, and the turbulent flow 10b generated around the corner 9b is small. There is a possibility. Therefore, it is preferable to arrange the plurality of triangular prismatic protrusions at a distance that does not weaken the occurrence of turbulent flow.
- the triangular columnar projections 5 are formed in the longitudinal direction of the columnar member by 1... Of perpendicular A from the corner 6 of the triangular columnar projection 5 to the side surface B facing in the flow direction.
- a distance of about 5 times (A + A / 2) and a distance (B / 2) of about 0.5 times the side B of the side surface facing the flow direction of the triangular columnar protrusion 5 are provided in the circumferential direction. Also good.
- the triangular columnar protrusions it is preferable to configure and arrange the triangular columnar protrusions so that the liquid passes while turning around the cylindrical member.
- the triangular prism-shaped triangle is a vertically long isosceles triangle, and the passage through which the liquid passes is arranged in a spiral shape.
- the blades 24 are provided on the cylindrical member.
- the blades By providing the blades in a spiral shape, it is possible to induce or promote a flow for the liquid to pass around the cylindrical member.
- the blades may be a series (see FIG. 14) or may not be a series (even if there is a break), and in any case, the blades can be composed of a plurality of parts.
- the liquid passes while swirling around the cylindrical member, and at that time, the liquid can collide almost perpendicularly with the corners of the respective triangular prism-shaped projections according to the flow. Become. Moreover, the generation of turbulent flow can be promoted by this swirl flow.
- a triangular prism shape can be cited as a suitable example that facilitates the generation of the ultrafine bubbles by facilitating the splitting and turbulent flow in the liquid flow.
- the shape (cross-sectional shape) is not necessarily a strict triangle. For example, the shape shown in FIG.
- the shaft 2 is preferably configured so that the tip 13 is rounded and flows directly toward the outer periphery of the triangular projection 5 so as to easily collide with the triangular columnar projection 5 when a liquid flow is applied to the tip.
- the conical portion 14 of the shaft 2 and the outer peripheral surface 4 of the cylindrical member 3 have no step (for example, the diameter of the conical portion 14 is smaller than the diameter of the cylindrical member 3). It is preferable that the configuration is continuous.
- FIG. 5 shows an example in which the ultra fine bubble generating tool according to the present embodiment is arranged inside the pipe 15 (longer than the longitudinal dimension of the cylindrical member) through which the liquid flows.
- the liquid 16 flows in the tube at a predetermined pressure
- the liquid collides with the triangular prism-shaped protrusion 5 when passing through the device of the present invention, and ultrafine bubbles are generated by the above action.
- the triangular columnar projection is surrounded by the tube 15, the liquid passes through the flow path formed by the triangular column projection in a limited space at high speed, and the generated liquid flow collides with the inner wall of the tube 15, It promotes the collision of flow and turbulent flow and promotes the generation of ultra fine bubbles. In order to promote such a collision, it is preferable that the triangular columnar protrusion and the inner wall of the tube are brought close to each other.
- the columnar member can be formed by connecting or laminating a plurality of disk-like members 17. An example is shown in FIG.
- the number of occurrences of ultrafine bubbles increases because the collision of liquid or air in the liquid increases, and if this length is decreased.
- the number of ultra fine bubbles is reduced.
- the cylindrical member is constituted by a plurality of disk-shaped members 17, the number of ultra fine bubbles generated can be adjusted by adjusting the number of disk-shaped members to be attached.
- FIG. 7 is a view showing the disk-like member 17 from three directions.
- the disk-shaped member is provided with a hole 18 through which the shaft passes in the center, and the disk-shaped member is fitted to another disk-shaped member in a portion adjacent to the outer periphery of the hole 18.
- a plurality of fitting holes 19 and fitting projections 20 are provided.
- a disk-shaped member is formed by providing a plurality of triangular prismatic protrusions outside the fitting hole.
- the center portions 22 and 23 of the bosses of the fitting hole 19 and the fitting convex portion 20 may be formed so as to be displaced by a certain angle.
- the center parts 22 and 23 of the fitting holes and the bosses of the fitting convex parts are disk-like so as to be displaced by 4.5 to 4.8 degrees.
- the member 17 is formed and a plurality of disk-shaped members are fitted, the protrusions on the outer peripheral portion of the adjacent disk-shaped members are shifted from each other by the angle.
- the arrangement of the triangular prismatic protrusions has a spiral shape.
- the cylindrical member can be manufactured by plastic molding or press molding. If the cylindrical member is constituted by a plurality of disk-like members, it is highly likely that production cost merit will be greatly increased due to mass production and high cost performance compared to the price of existing nanobubble generators.
- connection of the disk-shaped members can be appropriately performed.
- the disk-shaped members may be bonded with an adhesive or may be ultrasonically welded.
- Modification 2 It is also conceivable to generate ultrafine bubbles in a form different from the above using the principle of the present invention.
- a plurality of triangular prismatic projections can be directly attached to or arranged on the inner wall of a pipe through which liquid flows.
- the present embodiment relates to a case where ultra fine bubbles are generated in a stationary liquid such as cosmetics, dressings, and gargle water contained in a container.
- the points described in the first embodiment can be applied to the columnar member, the triangular columnar protrusion, and the shaft.
- the ultra fine bubble generating tool 101 is attached to a shaft 102 with a cylindrical member 103 (which can be configured by laminating disk-like members as described later) having a plurality of triangular columnar protrusions 105 provided on the outer peripheral surface 104.
- the configuration is as follows.
- the shaft 102 is rotated by the motor 100, and thereby the columnar member 103 attached to the shaft 102 is rotated.
- the triangular columnar protrusion 105 provided on the columnar member 103 is made to collide with the liquid.
- the ultra fine bubble generating tool of the present invention is composed of a shaft, a columnar member, and a disk-like member that can be reduced in weight, and does not require a large amount of power to drive the motor 100. Therefore, the power source of the motor of the present invention can be operated with a low power source / low power / low voltage of a dry battery or a rechargeable battery (but not limited to, for example, about 1.2V) (however, the power source is limited to the battery). However, it is also possible to use a household power source that is normally used in ordinary households because a low power source is sufficient.
- the weight of the entire device including the battery is about 300 g, and the size of the device is about 10 cm long ⁇ about 10 cm wide ⁇ height. It is possible to fit in a size of about 15 cm. As described above, according to the present invention, it is possible to reduce the size, weight, and portability of the entire ultrafine bubble generating tool that has not been seen in the past.
- the range in which the liquid can move when the liquid flows in the pipe is limited.
- the flow direction of the liquid is limited by the pipe (the liquid does not diffuse). Therefore, also in the present embodiment, by setting the compartments in this way, it is promoted that the liquid in the compartment collides with the plurality of triangular prismatic protrusions and repeats the division.
- the triangular columnar protrusion 105 is configured to be surrounded by a tubular member. According to this, it becomes possible to generate a liquid flow in a limited space, the liquid passes through the flow path formed by the triangular prism protrusion at high speed, and the generated liquid flow is efficient in the tubular part wall. In addition, the collision of liquid flow and turbulent flow can be promoted, and the generation of ultra fine bubbles can be enhanced. In order to promote this collision, it is preferable that the longitudinal dimension of the tubular member covers the triangular columnar protrusion of the cylindrical member. Moreover, you may comprise so that a triangular prism-shaped protrusion and the inner wall of an annular member may be adjoined.
- pipe includes a so-called pipe-like shape as in the first embodiment, and the tubular member in this embodiment includes a member that covers the tube.
- FIG. 9 shows an example of the ultra fine bubble generating tool 101 according to the present embodiment
- FIG. 10 shows an example of the case where the tubular member 107 is used.
- the tubular member 107 is configured such that one surface of the top surface or the bottom surface (the bottom surface side 108 positioned below in FIG. 10) is open, and the liquid flows into the inside.
- the tubular member is provided with an opening 109 for circulating the liquid into and out of the member.
- the liquid that has flowed in from one surface of the tubular member 107 ascends and passes around the cylindrical member, flows out of the opening 109, and again flows into the bottom surface. It flows from the side 108 into the inside of the tubular member (upflow pattern).
- the liquid flowing in from the opening 109 descends and passes around the cylindrical member, flows out from the bottom surface side 108, rises outside the tubular member, and flows in again from the opening 109 (downflow pattern). .
- the upward flow pattern and the downward flow pattern can be changed by the inclination of the triangular prismatic protrusion.
- the apex of each triangular prismatic projection (the angle that first collides with the flow) is below the horizontal line (the angle between the vertical line from this apex to the bottom and the horizontal line is about 15 degrees, for example. Tilt).
- a downward flow pattern can be obtained by inclining the apex of each triangular prism-shaped protrusion above the horizontal line.
- FIG. 11 shows an example of using the ultrafine bubble generating tool of the present invention using the tubular member 107.
- FIG. 11 shows a state in which a tubular member surrounding a cylindrical shape is submerged in the liquid 112 in the container 110.
- An arrow 115 indicates the direction of rotation of the motor, and an arrow 114 indicates the direction of liquid flow.
- FIG. 11 shows the case of the upward flow pattern. In the direction indicated by the arrow 114, the liquid flows in from the bottom surface side 108 of the tubular member 107 and flows out from the upper opening 109, and these are repeated.
- an ultra fine bubble When producing an ultra fine bubble according to the present embodiment, it can be used for liquid mixing and stirring.
- liquid dressing when liquid dressing is put in a container and the apparatus of the present invention is operated, vinegar and oil can be easily mixed.
- the cylindrical member can be formed by a plurality of disk-shaped members, and these can be manufactured by plastic molding or the like.
- the triangular prism-shaped protrusions only need to be configured so that the liquid collides with one corner and flows while being divided, and the generated liquid flow and turbulent flow repeat the collision. It is good also as a shape in which the triangular cut is provided in the base (bottom) side at the time of setting it as a vertex.
- a gas nitrogen, carbon dioxide, ozone, etc.
- a gas nitrogen, carbon dioxide, ozone, etc.
- Example 1 An experimental example using the first embodiment is as follows.
- 16 disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked and arranged in a pipe for sending a liquid constituting the ultra fine bubble generator of the present invention.
- industrial purified water sample name: D (Delta) 40
- circulation pump Tsurumi Manufacturing Co., Ltd.
- Surumi Pump Model NO FP-5S Performance Pumping height MAX 5.5m Discharge amount MAX 35L
- the measuring instrument used was as follows.
- Example 2 An experimental example using a modification of the second embodiment is as follows.
- Cylindrical member Four disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked, and each triangular prism protrusion is arranged as shown in FIG. 9 (however, FIG. 9 is disk-shaped) The number of members is different).
- Type and amount of liquid Industrial purified water 75 ml.
- Flow velocity The motor was rotated 20,000 per minute. After rotating for 1 minute, leaving for 30 seconds was repeated 10 times (the total motor rotation time was 10 minutes).
- Measurement object The number, the mode diameter, and the average diameter of the ultra fine bubbles in the liquid were measured.
- Measuring device A nanoparticle analyzer (LM10) manufactured by Malvern, UK was used.
- the experimental results are shown in Table 1 below. (Note)
- the number of the above ultra fine bubbles is a measured value of the number when the liquid after the generation of ultra fine bubbles is diluted 10 times.
- ultrafine bubbles (average diameter 122.6 nm, mode diameter 100.2 nm) were generated at least 7.39 mm ⁇ 10 8 / ML (dilution 10 times) according to the present invention. That is, about 7.4 billion ultra fine bubbles were generated in 1 milliliter of liquid (industrial purified water).
- the liquid flowing along the side surface of the triangular prism-shaped protrusion is likely to generate turbulent flow and the liquid flow / turbulent flow repeatedly collides.
- the liquid flows between the triangular columnar protrusions and between the inner wall of the tube and the tip side of the triangular columnar protrusion.
- the inner wall of the tube and the tip side of the triangular prismatic protrusion can be close to a certain extent, but in the present invention, since the shape of the protrusion is a triangular prism, liquid can flow sufficiently between the protrusions, pressure loss is unlikely to occur, and the flow rate is reduced. It is hard to be done. Therefore, a sufficient swirling flow of liquid can be obtained, liquid can be easily divided and turbulent flow can easily occur, and ultra fine bubbles can be easily generated.
- the protrusions are diamond-shaped, the flow path is limited, pressure loss occurs, and the flow velocity is reduced compared to the case of triangular prismatic protrusions.
- ultra fine bubbles can be generated not only in the circulating liquid but also in the stationary liquid stored in the container.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
[Problem] To provide an ultrafine bubble generation tool with which it is possible to generate ultrafine bubbles in a liquid without separately drawing or supplying a gas (air, etc.), and which can be applied to either of a flowing liquid and a stationary liquid. [Solution] An ultrafine bubble generation tool having a shaft and a circular-column-shaped member attached to the shaft, a plurality of triangular-prism-shaped protrusions being provided to the outer peripheral surface of the circular-column-shaped member. The ultrafine bubble generation tool is disposed inside pipework or inside a pipe-shaped member through which a liquid flows. Without air being drawn or supplied to the liquid, the liquid collides with the plurality of triangular-prism-shaped protrusions, and air included in the liquid micronized, whereby the ultrafine bubble generation tool generates ultrafine bubbles.
Description
本発明は液体中にウルトラファインバブルを発生させるための部材ないし器具に関する。
The present invention relates to a member or instrument for generating ultra fine bubbles in a liquid.
近年、液体中の微細な気泡を利用する技術が注目されている。これらの液体中の微細な気泡は、その大きさによりマイクロバブル、ウルトラファインバブル(ナノバブルとも呼ばれる)などに区別されており、ISO基準において、ウルトラファインバブルは、液体中における気泡径が1μm(1/1000mm)以下あるいは未満のナノメートル単位の極微細な気泡を指すとされている。本明細書においてウルトラファインバブル(ナノバブル)の語はこの意味合いで用いる。
In recent years, a technology that uses fine bubbles in a liquid has attracted attention. The fine bubbles in these liquids are classified into microbubbles, ultrafine bubbles (also called nanobubbles), etc., depending on their sizes. In the ISO standard, ultrafine bubbles have a bubble diameter of 1 μm (1 μm (1 / 1000 mm) or less, or less than nanometer-scale extremely fine bubbles. In this specification, the term ultrafine bubble (nanobubble) is used in this sense.
近時では特にウルトラファインバブルにつき種々の分野で利用するための技術が研究され、また現に利用されつつある。例えば、家庭用や業務用シャワーに用いることによって肌に保湿効果を生じさせたり汚れを落としやすくしたり、工作機械の切削部分の冷却液やエンジンのラジエター内部の冷却液として用いることによって冷却効果を高めたり、エンジンの燃料噴射部分に同発生体を設け、同発生体内部に液体燃料を通過させることによってエンジンの燃料効率を上昇させたりすること等が挙げられる。さらに、野菜の洗浄や、農作物の育成、ペンキの調合など、様々な分野への応用が模索されている。
Recently, techniques for using ultra fine bubbles in various fields have been studied and are currently being used. For example, it can be used for household and commercial showers to create a moisturizing effect on the skin and make it easier to remove dirt, or it can be used as a coolant for cutting parts of machine tools or as a coolant inside an engine radiator. For example, increasing the fuel efficiency of the engine by providing the same generator in the fuel injection portion of the engine and allowing liquid fuel to pass through the generator. In addition, applications in various fields such as washing vegetables, growing crops, and preparing paint are being sought.
ウルトラファインバブルを利用する前提として、これを発生させる技術(装置、方法)が必要となる。現在のところウルトラファインバブルの実態は完全には解明されておらず、これを発生させるための装置の構造はいまだ複雑で、製造コストも(従って販売コストも)高価である。そのため、工業用、研究用ウルトラファインバブル発生のための装置は実用化されているものの、それ以外の例えば家庭で簡便に使用できるようなものは未だ実用化されていないのが現状である。
As a premise to use the ultra fine bubble, a technology (apparatus and method) for generating this is required. At present, the reality of ultra fine bubbles has not been fully elucidated, and the structure of the apparatus for generating them is still complex, and the manufacturing cost (and hence the selling cost) is high. For this reason, industrial and research devices for generating ultra fine bubbles have been put into practical use, but other devices that can be easily used at home, for example, have not yet been put into practical use.
ナノバブルをより簡便に生成・発生させるための提案もなされている。例えば、特許文献1の発明では、「大がかりな装置を用いることなく、簡便にナノバブルを製造できるナノバブル製造装置を提供する」ために、まず所定の圧力下で直径4~100μmの範囲のマイクロバブルを生成し(明細書段落[0027])、次に所定の距離Lをもって設けられたスリット板と衝突板との作用により、液中に100nm以下の範囲のナノバブルを発生させる(同[0033][0034])。
Proposals have also been made to generate and generate nanobubbles more easily. For example, in the invention of Patent Document 1, in order to “provide a nanobubble production apparatus that can easily produce nanobubbles without using a large-scale apparatus”, first, microbubbles having a diameter of 4 to 100 μm are provided under a predetermined pressure. Next, the nanobubbles in the range of 100 nm or less are generated in the liquid by the action of the slit plate and the collision plate provided at a predetermined distance L (paragraph [0027] of the specification) (same [0033] [0034] ]).
しかし、特許文献1は、まずマイクロバブルを生成し、次にこの生成されたマイクロバブルからナノバブルを発生するというように、ナノバブルを二段階に分けて得るため、マイクロバブル製造部とナノバブル製造部の別々の製造部が必要となる。
However, Patent Document 1 first generates microbubbles and then generates nanobubbles from the generated microbubbles, so that nanobubbles are obtained in two stages. Therefore, the microbubble manufacturing unit and the nanobubble manufacturing unit A separate manufacturing department is required.
また、蛇口に取り付ける装置として、例えば特許文献2の発明が提案されている。しかし、これも、超音波素子アレイ基板20を液体流路配管2の内側に固定手段212で固定し、超音波素子30b、30cからの超音波振動を加え続けさせるというものであり、その構造はいまだ大がかりなものである。
Also, as an apparatus attached to the faucet, for example, the invention of Patent Document 2 has been proposed. However, this also means that the ultrasonic element array substrate 20 is fixed to the inside of the liquid flow path pipe 2 by the fixing means 212 and the ultrasonic vibration from the ultrasonic elements 30b and 30c is continuously applied. It is still big.
ところで、ウルトラファインバブルについては、上記のように流れる液体中に発生させるのではなく、静止した液体中にウルトラファインバブルを発生させ、これを利用することも考えられる。これは、例えばウルトラファインバブル自体の研究のために用いられることのほか、近年では化粧品や料理用ドレッシングなど、日常生活においてウルトラファインバブルを利用することなどが模索されている。その他、うがい用の水などにもこれを応用することも考えられる。
By the way, it is conceivable that the ultra fine bubble is not generated in the flowing liquid as described above, but is generated in the stationary liquid and used. In addition to being used, for example, for research on ultra fine bubbles themselves, in recent years, the use of ultra fine bubbles in daily life such as cosmetics and cooking dressings has been sought. In addition, it can be applied to gargle water.
静止する液体中にウルトラファインバブルを発生させる技術としては、気液混合高速剪断方式による微細気泡発生装置や加圧溶解式気泡発生装置などが知られている(非特許文献1、p59-p62)。
As a technique for generating ultra fine bubbles in a stationary liquid, a fine bubble generating device using a gas-liquid mixing high-speed shearing method, a pressure-dissolving bubble generating device, and the like are known (Non-patent Document 1, p59-p62). .
前者は、水槽内の液体と室内の空気を渦流ポンプにより吸引し、気液混合流体としてポンプ内で激しく破砕混合し、次に装置内部の旋回液流式気泡発生装置内を気液混相流が旋回しながら通過し、強い剪断力により気体が破砕され微細気泡を発生させ、さらに水槽内に分散器として設置された旋回液流式気泡発生装置内を通過する際の剪断により、より微細な気泡であるマイクロバブル・ナノバブルとして放出させるというものである。
In the former, liquid in the water tank and room air are sucked by a vortex pump and crushed and mixed vigorously in the pump as a gas-liquid mixed fluid, and then a gas-liquid mixed phase flow is generated in the swirling liquid flow bubble generator inside the apparatus. Passing while swirling, gas is crushed by a strong shearing force to generate fine bubbles, and finer bubbles by shearing when passing through a swirling liquid flow bubble generator installed as a disperser in the water tank It is to be released as microbubbles and nanobubbles.
後者は、水槽内から液体を渦流ポンプにより圧送するとともに、室内空気を自給し、次に装置内部の加圧装置で自給空気を溶解し、減圧ノズル部で大気圧まで減圧することで飽和した気体を析出し微細気泡とするものである。
The latter is a gas that is saturated by pumping liquid from the water tank with a vortex pump, self-supplying room air, then dissolving the self-supply air with a pressurizing device inside the device, and reducing the pressure to atmospheric pressure with a pressure reducing nozzle. To form fine bubbles.
しかしながら、これらは、もとより研究や工業に用いることが念頭に置かれ、構造が複雑でサイズも大きく、コストも高いものであり、上記のような化粧品や料理用ドレッシングなどにつき個人ないし家庭において日常用いられるような場合には適さない。
However, these are intended to be used for research and industry as a matter of course, and have a complicated structure, large size, and high cost, and are used daily in individuals and homes for cosmetics and cooking dressings as described above. It is not suitable for such cases.
その他、静止した液体中にウルトラファインバブルを発生させる装置として従来提案されているのは、例えば特許文献3のように、発生したマイクロバブルをナノバブル化させることを要し、そのために生成されたマイクロバブルをマイクロナノバブル生成器の外壁面に沿って移動させるなど、バブル発生のための構成を必ずしも簡易なものとできておらず、結果として、例えば上記のような化粧品や料理用ドレッシングのためのように、簡便に用いるのは困難であった。
In addition, what has been conventionally proposed as an apparatus for generating ultrafine bubbles in a stationary liquid requires that the generated microbubbles be made into nanobubbles, as in Patent Document 3, for example, and the generated microbubbles. The configuration for generating bubbles is not always simple, such as moving the bubbles along the outer wall of the micro / nano bubble generator. As a result, for example, for cosmetics and cooking dressings as described above In addition, it has been difficult to use easily.
本発明は上記問題に鑑みてなされたものであり、液体に気体(空気等)を吸引、供給させこれを細分化させるといった手段によらずに、液体中にウルトラファインバブルを発生させることができ、流通する液体及び静止する液体のいずれにも適用できるウルトラファインバブル発生用具を提供することを課題とする。
The present invention has been made in view of the above problems, and can generate ultrafine bubbles in a liquid without using means for sucking and supplying a gas (air or the like) to the liquid and subdividing it. It is an object of the present invention to provide an ultra fine bubble generating tool that can be applied to both circulating liquid and stationary liquid.
上記課題を解決するため、本発明においては、もともと液体中に含まれている空気・酸素を極微細化するものとする。
すなわち、第1の側面として、本発明は、シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、該ウルトラファインバブル発生用具は液体を送るための管の内側に配置されるものであり、前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、前記液体を送るための管の内側を流れる液体が前記複数の三角柱状突起に衝突することにより、前記液体を送るための管の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具を提供する。
第2の側面として、シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、該ウルトラファインバブル発生用具は容器内の液体中に配置される少なくとも一端側が開口した管状部材の内側に配置されるものであり、前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、前記シャフトが電源を乾電池又は充電池とするモータの駆動により回転され前記円柱形状部材が回転することによって前記管状部材の内側に入り込む液体が前記複数の三角柱状突起に衝突することにより、前記容器の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具を提供する。
第3の側面として、本発明は、前記円柱形状部材は複数の円盤状部材が積層されて形成された上述のウルトラファインバブル発生用具を提供する。
第4の側面として、本発明は、前記三角柱状突起を前記液体を送るための管又は管状部材の内壁に近接させ液体の前記三角柱状突起への衝突が促進されるように該液体を送るための管又は管状部材の内側に配置された上述のウルトラファインバブル発生用具を提供する。
第5の側面として、本発明は、前記管状部材の側面に、該管状部材の内外に液体が循環するための開口が設けられた上述いずれかのウルトラファインバブル発生用具を提供する。 In order to solve the above problems, in the present invention, air / oxygen originally contained in a liquid is extremely miniaturized.
That is, as a first aspect, the present invention provides an ultra fine bubble generating device having a shaft and a columnar member attached to the shaft, and having a plurality of triangular columnar protrusions provided on the outer peripheral surface of the columnar member. The ultrafine bubble generating device is arranged inside a pipe for sending a liquid, the triangular columnar protrusion is arranged in a spiral shape on the columnar member, and the liquid surrounds the columnar member. Each of the triangular columnar protrusions is disposed so that an angle located at the tip of the triangular flow of the liquid is substantially perpendicular to the helical flow, The liquid flowing inside the pipe for sending the liquid is included in the liquid without supplying air from the outside of the pipe for sending the liquid by colliding with the plurality of triangular prismatic projections. Air there are provided an ultra fine bubble generating devices, wherein the generating the miniaturized ultra-fine bubbles.
An ultra fine bubble generating tool having a shaft and a columnar member attached to the shaft as a second side surface, wherein a plurality of triangular columnar protrusions are provided on an outer peripheral surface of the columnar member, The fine bubble generating device is disposed inside a tubular member that is disposed in the liquid in the container and is open at least on one end side, the triangular columnar protrusion is disposed in a spiral shape on the columnar member, and the liquid is disposed in the columnar shape. It is configured so as to flow spirally around the shape member, and is arranged so that the corner located at the tip of the spiral flow of liquid in each triangular columnar protrusion is substantially perpendicular to the spiral flow The shaft is rotated by driving a motor whose power source is a dry battery or a rechargeable battery, and the cylindrical member rotates to enter the inside of the tubular member. Ultra fine, wherein the liquid collides with the plurality of triangular prismatic protrusions, and the air contained in the liquid is refined without generating air from outside the container to generate ultra fine bubbles. Provide bubble generating tools.
As a third aspect, the present invention provides the above-described ultrafine bubble generating tool in which the columnar member is formed by laminating a plurality of disk-shaped members.
As a fourth aspect, the present invention provides the triangular columnar projection close to an inner wall of a pipe or a tubular member for feeding the liquid, and sends the liquid so that the collision of the liquid with the triangular columnar projection is promoted. The ultrafine bubble generating device described above is disposed inside the tube or tubular member.
As a fifth aspect, the present invention provides any one of the above ultrafine bubble generating devices, wherein an opening for circulating liquid inside and outside the tubular member is provided on a side surface of the tubular member.
すなわち、第1の側面として、本発明は、シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、該ウルトラファインバブル発生用具は液体を送るための管の内側に配置されるものであり、前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、前記液体を送るための管の内側を流れる液体が前記複数の三角柱状突起に衝突することにより、前記液体を送るための管の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具を提供する。
第2の側面として、シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、該ウルトラファインバブル発生用具は容器内の液体中に配置される少なくとも一端側が開口した管状部材の内側に配置されるものであり、前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、前記シャフトが電源を乾電池又は充電池とするモータの駆動により回転され前記円柱形状部材が回転することによって前記管状部材の内側に入り込む液体が前記複数の三角柱状突起に衝突することにより、前記容器の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具を提供する。
第3の側面として、本発明は、前記円柱形状部材は複数の円盤状部材が積層されて形成された上述のウルトラファインバブル発生用具を提供する。
第4の側面として、本発明は、前記三角柱状突起を前記液体を送るための管又は管状部材の内壁に近接させ液体の前記三角柱状突起への衝突が促進されるように該液体を送るための管又は管状部材の内側に配置された上述のウルトラファインバブル発生用具を提供する。
第5の側面として、本発明は、前記管状部材の側面に、該管状部材の内外に液体が循環するための開口が設けられた上述いずれかのウルトラファインバブル発生用具を提供する。 In order to solve the above problems, in the present invention, air / oxygen originally contained in a liquid is extremely miniaturized.
That is, as a first aspect, the present invention provides an ultra fine bubble generating device having a shaft and a columnar member attached to the shaft, and having a plurality of triangular columnar protrusions provided on the outer peripheral surface of the columnar member. The ultrafine bubble generating device is arranged inside a pipe for sending a liquid, the triangular columnar protrusion is arranged in a spiral shape on the columnar member, and the liquid surrounds the columnar member. Each of the triangular columnar protrusions is disposed so that an angle located at the tip of the triangular flow of the liquid is substantially perpendicular to the helical flow, The liquid flowing inside the pipe for sending the liquid is included in the liquid without supplying air from the outside of the pipe for sending the liquid by colliding with the plurality of triangular prismatic projections. Air there are provided an ultra fine bubble generating devices, wherein the generating the miniaturized ultra-fine bubbles.
An ultra fine bubble generating tool having a shaft and a columnar member attached to the shaft as a second side surface, wherein a plurality of triangular columnar protrusions are provided on an outer peripheral surface of the columnar member, The fine bubble generating device is disposed inside a tubular member that is disposed in the liquid in the container and is open at least on one end side, the triangular columnar protrusion is disposed in a spiral shape on the columnar member, and the liquid is disposed in the columnar shape. It is configured so as to flow spirally around the shape member, and is arranged so that the corner located at the tip of the spiral flow of liquid in each triangular columnar protrusion is substantially perpendicular to the spiral flow The shaft is rotated by driving a motor whose power source is a dry battery or a rechargeable battery, and the cylindrical member rotates to enter the inside of the tubular member. Ultra fine, wherein the liquid collides with the plurality of triangular prismatic protrusions, and the air contained in the liquid is refined without generating air from outside the container to generate ultra fine bubbles. Provide bubble generating tools.
As a third aspect, the present invention provides the above-described ultrafine bubble generating tool in which the columnar member is formed by laminating a plurality of disk-shaped members.
As a fourth aspect, the present invention provides the triangular columnar projection close to an inner wall of a pipe or a tubular member for feeding the liquid, and sends the liquid so that the collision of the liquid with the triangular columnar projection is promoted. The ultrafine bubble generating device described above is disposed inside the tube or tubular member.
As a fifth aspect, the present invention provides any one of the above ultrafine bubble generating devices, wherein an opening for circulating liquid inside and outside the tubular member is provided on a side surface of the tubular member.
本発明によれば、気体(空気等)を別途吸引又は供給させることなく液体中にウルトラファインバブルを発生させることができるとともに、流通する液体及び静止する液体のいずれにおいてもウルトラファインバブルを発生させることが可能となる。
According to the present invention, an ultra fine bubble can be generated in a liquid without separately sucking or supplying gas (air or the like), and the ultra fine bubble is generated in both a flowing liquid and a stationary liquid. It becomes possible.
以下、本発明のウルトラファインバブル発生用具に係る実施形態を、図面を参照しながら具体的に説明する。
Hereinafter, embodiments according to the ultrafine bubble generating device of the present invention will be specifically described with reference to the drawings.
(実施形態1)
本実施形態は、水道、シャワー、ホースなど、管(特に液体を送るための管)の内側を流れる液体中にウルトラファインバブルを発生させる場合に関する。 (Embodiment 1)
The present embodiment relates to a case where ultrafine bubbles are generated in a liquid flowing inside a pipe (particularly a pipe for sending a liquid) such as a water supply, a shower, or a hose.
本実施形態は、水道、シャワー、ホースなど、管(特に液体を送るための管)の内側を流れる液体中にウルトラファインバブルを発生させる場合に関する。 (Embodiment 1)
The present embodiment relates to a case where ultrafine bubbles are generated in a liquid flowing inside a pipe (particularly a pipe for sending a liquid) such as a water supply, a shower, or a hose.
図1に示すように、本発明に係るウルトラファインバブル発生用具1は、シャフト2と、これに取付けられる円柱形状部材3とからなる。円柱形状部材3の表面(外周面)4には複数の三角形状(突起物を上面から見たときの形状が三角形)の突起物(三角柱状突起5)が設けられる。
As shown in FIG. 1, an ultrafine bubble generating device 1 according to the present invention includes a shaft 2 and a columnar member 3 attached to the shaft 2. The surface (outer peripheral surface) 4 of the cylindrical member 3 is provided with a plurality of triangular projections (triangular prism-shaped projections 5) having a triangular shape when viewed from the top.
従来のウルトラファインバブルの生成においては、上記のとおり、超音波振動を加え続けたり、吸引した気体を液体に混合し、強い剪断力により気体が破砕されることで形成したり、自給した空気を溶解して大気圧まで減圧し、飽和した気体が析出されることで形成するなど、気体の発生や気体の液体への混合などのための手段を必要としている。これに対し、本発明においては、液体中に含まれている空気・酸素を極微細化してウルトラファインバブルを発生させる。
In the generation of conventional ultra fine bubbles, as described above, ultrasonic vibration is continuously applied, the sucked gas is mixed with the liquid, the gas is crushed by a strong shear force, or the self-supplied air is generated. There is a need for means for generating gas or mixing gas into liquid, such as dissolution and decompression to atmospheric pressure, and formation by precipitation of saturated gas. On the other hand, in the present invention, ultrafine bubbles are generated by ultrafine air / oxygen contained in the liquid.
周知のとおり、液体には通常一定量の空気が溶け込む。例えば、20度1気圧で水の体積に対し約2%の体積の空気、重量換算で1Lの水に約24mgの空気が溶ける。このように空気や酸素が溶け込んでいる液体に流れを作り出し、液体中の空気や酸素を衝突させる。
As is well known, a certain amount of air usually dissolves in the liquid. For example, about 24 mg of air dissolves in about 2% of air with respect to the volume of water at 20 degrees C. and 1 L of water in terms of weight. In this way, a flow is created in the liquid in which air and oxygen are dissolved, and the air and oxygen in the liquid collide.
すなわち、図2に示すように、複数の三角柱状突起5につきそれぞれ一つの角(図2では符号6で示す角)を液体が流れる方向に対向するように配置すると、液体はこの角6の先端で(矢印7で示すように)分流する。分流した液体は、それぞれ三角柱状突起の側面8に沿って流れるが、次の角9で側面(流れ方向に沿った側面)8が途切れるため、これらの角(9)の周辺で、液流に他の方向に向けた流れ(乱流と称する)が生じる。三角柱形状の場合、両側面8と流れ方向に対向する側面12とを構成する角9の角度が例えば四角形等多角形に比べ狭いものとなり得ることから、かかる乱流10が生じやすいものとなり得る。
That is, as shown in FIG. 2, if one corner (the corner indicated by reference numeral 6 in FIG. 2) is arranged so as to face each other in the direction in which the liquid flows, for each of the plurality of triangular prism-like projections 5, (As shown by arrow 7). The separated liquid flows along the side surfaces 8 of the triangular prismatic protrusions, but the side surface (side surface along the flow direction) 8 is interrupted at the next corner 9, so that the liquid flows around these corners (9). A flow in another direction (referred to as turbulent flow) occurs. In the case of the triangular prism shape, the angle 9 constituting the side surfaces 8 and the side surface 12 facing in the flow direction can be narrower than that of a polygon such as a quadrangle, so that the turbulent flow 10 can easily occur.
隣接した三角柱状突起においても同様に分流した液流、乱流が発生する。
In the adjacent triangular prism-shaped projections, a diverted liquid flow and turbulent flow are generated in the same manner.
液体は管内(配管内部)を流れるため、移動できる範囲が制限される。すなわち、流れる方向が管により制限される(液体は拡散しない)。
Since liquid flows in the pipe (inside the pipe), the movable range is limited. That is, the flow direction is limited by the pipe (the liquid does not diffuse).
よって、液体は、複数の三角柱状突起5に衝突し、分断又は剪断されながら流れ、生じる液流及び乱流は衝突を繰り返し、かかる過程でウルトラファインバブルが生成されると考えられる。なお、この過程で液体の分子構造が不安定になり、更なる衝突と分断で発生した微細な泡がマイナスの電荷を帯び、急激に縮小し、超微細気泡、すなわちウルトラファインバブルに変化している可能性がある。
Therefore, it is considered that the liquid collides with the plurality of triangular prism-shaped projections 5 and flows while being divided or sheared, and the generated liquid flow and turbulent flow repeatedly collide, and ultra fine bubbles are generated in this process. In this process, the molecular structure of the liquid becomes unstable, and the fine bubbles generated by further collision and fragmentation are negatively charged and rapidly shrink to change into ultrafine bubbles, that is, ultrafine bubbles. There is a possibility.
上記のとおり、三角柱状突起を用いると液流に分流を生じさせるとともに乱流を生じやすくすると考えられるため、本発明においてはウルトラファインバブルの生成に三角柱状突起5を用いる。三角柱状突起5は、例えば円柱形状部材の外周面に図3に示すようにより整列するように配置して設けることもできるが、液流及び乱流の衝突が生じやすくなるように配置するのが好ましい。そのような配置は種々のものが考えられるが、一例としては、図1に示されるように若干ずらした配列が考えられる。
As described above, it is considered that when triangular prismatic projections are used, it is considered that a split flow is generated in the liquid flow and a turbulent flow is likely to occur. Therefore, in the present invention, the triangular prismatic projections 5 are used to generate ultrafine bubbles. For example, the triangular columnar protrusions 5 can be arranged on the outer peripheral surface of the columnar member so as to be more aligned as shown in FIG. 3, but the triangular columnar protrusions 5 are arranged so that collision of liquid flow and turbulent flow is likely to occur. preferable. Various arrangements are conceivable. As an example, an arrangement slightly shifted as shown in FIG. 1 can be considered.
また、図4に示すように、液流及び乱流の衝突が生じやすくなるように複数の三角柱状突起が円柱形状部材21の長手方向に向け螺旋状となるように配置することもできる。
Further, as shown in FIG. 4, a plurality of triangular columnar protrusions can be arranged in a spiral shape in the longitudinal direction of the columnar member 21 so that collision of liquid flow and turbulent flow is likely to occur.
隣接する三角柱状突起どうしの距離を短くし過ぎると、乱流の発生ないし衝突の促進が妨げられ、ウルトラファインバブルの発生が促進されない可能性がある。図13(a)を参照して説明すると、三角柱状突起5aに沿った液体の流れ7aは角9aの周辺で乱流10aを生じる。この乱流10aと三角柱状突起5bの距離が近過ぎると、液体の流れ7bが乱流10aの影響を受けて弱くなる可能性があり、角9bの周辺で発生する乱流10bが小さいものとなる可能性がある。そのため、複数の三角柱状突起は、乱流の発生が弱まらない程度の距離で配置するのが好ましい。
If the distance between adjacent triangular projections is too short, the generation of turbulent flow or the promotion of collision may be hindered, and the generation of ultra fine bubbles may not be promoted. Referring to FIG. 13A, the liquid flow 7a along the triangular columnar protrusion 5a generates a turbulent flow 10a around the corner 9a. If the distance between the turbulent flow 10a and the triangular columnar protrusion 5b is too short, the liquid flow 7b may be weakened by the influence of the turbulent flow 10a, and the turbulent flow 10b generated around the corner 9b is small. There is a possibility. Therefore, it is preferable to arrange the plurality of triangular prismatic protrusions at a distance that does not weaken the occurrence of turbulent flow.
一例として、図13(b)に示すように、三角柱状突起5どうしは、円柱形状部材の長手方向においては三角柱状突起5の角6から流れ方向に対向する側面Bへの垂線Aの1.5倍程度の距離(A+A/2)、円周方向においては三角柱状突起5の流れ方向に対向する側面の一辺Bの0.5倍程度の距離(B/2)の間隔を設けるようにしてもよい。
As an example, as shown in FIG. 13 (b), the triangular columnar projections 5 are formed in the longitudinal direction of the columnar member by 1... Of perpendicular A from the corner 6 of the triangular columnar projection 5 to the side surface B facing in the flow direction. A distance of about 5 times (A + A / 2) and a distance (B / 2) of about 0.5 times the side B of the side surface facing the flow direction of the triangular columnar protrusion 5 are provided in the circumferential direction. Also good.
あるいは、乱流の発生を強めるため、液体が円柱形状部材の周りを旋回しながら通過するように三角柱状突起を構成、配置するのが好適である。例えば、図14に示されるように、三角柱形状の三角形を縦長二等辺三角形状とし、液体が通る通路が螺旋状となるように配置する。
Alternatively, in order to increase the generation of turbulent flow, it is preferable to configure and arrange the triangular columnar protrusions so that the liquid passes while turning around the cylindrical member. For example, as shown in FIG. 14, the triangular prism-shaped triangle is a vertically long isosceles triangle, and the passage through which the liquid passes is arranged in a spiral shape.
この場合、円柱形状部材に羽根24を設けるのが好ましい。羽根を螺旋状に設けることにより、液体が円柱形状部材の周りをまわりながら通過するための流れを誘導又は促進することができる。
In this case, it is preferable to provide the blades 24 on the cylindrical member. By providing the blades in a spiral shape, it is possible to induce or promote a flow for the liquid to pass around the cylindrical member.
羽根は、図14に示されるように円柱形状部材の先端側(シャフトの先端方向=符号13で示す側)に設けると上記流れを誘導するものとなる。ただし、配置はそのような箇所に限られず、例えば円柱形状部材の中央などに設け、発生した流れを更に誘導し促進させるようにしてもよい。
As shown in FIG. 14, when the blades are provided on the tip side of the cylindrical member (the tip direction of the shaft = the side indicated by reference numeral 13), the flow is guided. However, arrangement | positioning is not restricted to such a location, For example, it may provide in the center of a cylindrical member, etc., and may make it generate | occur | produce and promote the generated flow further.
羽根は一連(図14参照)であっても一連でなくても(切れ目があっても)よく、またいずれの場合も複数の部分から構成することができる。
The blades may be a series (see FIG. 14) or may not be a series (even if there is a break), and in any case, the blades can be composed of a plurality of parts.
このように三角柱形状を配置、構成すると、液体が円柱形状部材の周りを旋回しながら通過するが、その際、液体はその流れに従いそれぞれの三角柱状突起の角にほぼ垂直に衝突し得るものとなる。またこの旋回流により、乱流の発生が促進され得る。
When the triangular prism shape is arranged and configured in this way, the liquid passes while swirling around the cylindrical member, and at that time, the liquid can collide almost perpendicularly with the corners of the respective triangular prism-shaped projections according to the flow. Become. Moreover, the generation of turbulent flow can be promoted by this swirl flow.
液体の粘性、流量、流速、液圧などに応じ、三角柱状突起の角度や三角柱状突起の個数、大きさなどを変えることで、所望(に近い)の量のウルトラファインバブルを得ることも可能となる。
By changing the angle of the triangular prismatic projection, the number of triangular prismatic projections, the size, etc. according to the viscosity, flow rate, flow rate, hydraulic pressure, etc. of the liquid, it is possible to obtain the desired (close) amount of ultra fine bubbles. It becomes.
突起の形状については、上記のとおり、液流に分流と乱流を生じやすくしウルトラファインバブルの発生を促進させる好適な一例として三角柱形状が挙げられるが、この目的に合致するものであれば突起の形状(断面形状)は必ずしも厳密な三角形でなくてもよく、例えば図15に示されるような形状とすることもできる。
As for the shape of the protrusion, as described above, a triangular prism shape can be cited as a suitable example that facilitates the generation of the ultrafine bubbles by facilitating the splitting and turbulent flow in the liquid flow. The shape (cross-sectional shape) is not necessarily a strict triangle. For example, the shape shown in FIG.
本発明のシャフトの一例を図12に示す。シャフト2は、先端13にRをつけ、その先端に液流があたると直接三角形状突起5の外周に向かって流れ込んで三角柱状突起5に衝突し易くするように構成するのが好ましい。例えば図1に示すように、シャフト2の円錐形状部分14と円柱形状部材3の外周面4とが段差なく(例えば円錐形状部分14の直径が円柱形状部材3の直径よりも小さいものとなるようなことなく)連続するように構成するのが好ましい。
An example of the shaft of the present invention is shown in FIG. The shaft 2 is preferably configured so that the tip 13 is rounded and flows directly toward the outer periphery of the triangular projection 5 so as to easily collide with the triangular columnar projection 5 when a liquid flow is applied to the tip. For example, as shown in FIG. 1, the conical portion 14 of the shaft 2 and the outer peripheral surface 4 of the cylindrical member 3 have no step (for example, the diameter of the conical portion 14 is smaller than the diameter of the cylindrical member 3). It is preferable that the configuration is continuous.
本実施形態におけるウルトラファインバブル発生用具を、液体が流れる管15(円柱形状部材の長手方向の寸法よりも長い)の内側に配置した例を図5に示す。管内に所定の圧力で液体16が流れると、液体が本発明の用具を通過する際に三角柱状突起5に衝突し、上記作用によりウルトラファインバブルが生成される。また、三角柱状突起が管15によって囲われることにより、限定された空間内で液体が三角柱突起で形成される流路を高速で通過し、発生した液流が管15の内壁に衝突し、液流、乱流の衝突を促進させ、ウルトラファインバブルの発生を促進させる。かかる衝突を促進させるため、三角柱状突起と管の内壁を近接させるように構成するのが好ましい。
FIG. 5 shows an example in which the ultra fine bubble generating tool according to the present embodiment is arranged inside the pipe 15 (longer than the longitudinal dimension of the cylindrical member) through which the liquid flows. When the liquid 16 flows in the tube at a predetermined pressure, the liquid collides with the triangular prism-shaped protrusion 5 when passing through the device of the present invention, and ultrafine bubbles are generated by the above action. Further, since the triangular columnar projection is surrounded by the tube 15, the liquid passes through the flow path formed by the triangular column projection in a limited space at high speed, and the generated liquid flow collides with the inner wall of the tube 15, It promotes the collision of flow and turbulent flow and promotes the generation of ultra fine bubbles. In order to promote such a collision, it is preferable that the triangular columnar protrusion and the inner wall of the tube are brought close to each other.
(変形例1)
円柱形状部材は、複数の円盤状部材17を連接ないし積層させることにより形成することができる。図6にその例を示す。 (Modification 1)
The columnar member can be formed by connecting or laminating a plurality of disk-like members 17. An example is shown in FIG.
円柱形状部材は、複数の円盤状部材17を連接ないし積層させることにより形成することができる。図6にその例を示す。 (Modification 1)
The columnar member can be formed by connecting or laminating a plurality of disk-
通常、三角柱状突起5が設けられた円柱形状部材の長さが長くなれば、液体や液体中の空気等の衝突が増えるためウルトラファインバブルの発生数も多くなり、この長さが短くなれば、ウルトラファインバブルの発生数は少なくなる。円柱形状部材を複数の円盤状部材17により構成すると、取り付ける円盤状部材の数を調節することにより、ウルトラファインバブルの発生数を調整することができる。
Usually, if the length of the columnar member provided with the triangular columnar protrusion 5 is increased, the number of occurrences of ultrafine bubbles increases because the collision of liquid or air in the liquid increases, and if this length is decreased. The number of ultra fine bubbles is reduced. When the cylindrical member is constituted by a plurality of disk-shaped members 17, the number of ultra fine bubbles generated can be adjusted by adjusting the number of disk-shaped members to be attached.
図7は、円盤状部材17を3つの方向から示した図である。図7に示すように、円盤状部材には、中央部にシャフトを貫通させる孔18を設け、この孔18の外周部に隣接した部分に、当該円盤状部材を他の円盤状部材と嵌合させるための嵌合孔19及び嵌合凸部20が複数設けられる。嵌合孔の外部に三角柱状突起を複数設けて円盤状部材を形成する。
FIG. 7 is a view showing the disk-like member 17 from three directions. As shown in FIG. 7, the disk-shaped member is provided with a hole 18 through which the shaft passes in the center, and the disk-shaped member is fitted to another disk-shaped member in a portion adjacent to the outer periphery of the hole 18. A plurality of fitting holes 19 and fitting projections 20 are provided. A disk-shaped member is formed by providing a plurality of triangular prismatic protrusions outside the fitting hole.
図8に示すように、嵌合孔19と嵌合凸部20のボスの各中心部22、23が一定角度ずれるよう形成してもよい。円盤状部材17を、例えば10~20枚程度順次連接する場合、嵌合孔と嵌合凸部のボスの各中心部22、23を、4.5~4.8度程度ずれるように円盤状部材17を形成し、円盤状部材を複数嵌合すると、隣接する円盤状部材同士で外周部の突起が当該角度ずれていくため、円盤状部材を複数隣接してなる円柱形状部材の外周部の三角柱状突起の配列が螺旋状の形状を有することになる。
As shown in FIG. 8, the center portions 22 and 23 of the bosses of the fitting hole 19 and the fitting convex portion 20 may be formed so as to be displaced by a certain angle. When 10 to 20 disk-like members 17 are successively connected, for example, the center parts 22 and 23 of the fitting holes and the bosses of the fitting convex parts are disk-like so as to be displaced by 4.5 to 4.8 degrees. When the member 17 is formed and a plurality of disk-shaped members are fitted, the protrusions on the outer peripheral portion of the adjacent disk-shaped members are shifted from each other by the angle. The arrangement of the triangular prismatic protrusions has a spiral shape.
円柱形状部材はプラスチック成型やプレス成形などにより製造することができる。円柱形状部材を複数の円盤状部材により構成するようにすると、量産化と高コストパフォーマンスにより、既存のナノバブル発生器の価格と比較して、大幅に生産コストメリットを作り出す可能性が高い。
The cylindrical member can be manufactured by plastic molding or press molding. If the cylindrical member is constituted by a plurality of disk-like members, it is highly likely that production cost merit will be greatly increased due to mass production and high cost performance compared to the price of existing nanobubble generators.
円盤状部材の連接は適宜行うことができ、例えば円盤状部材どうしを接着剤で接着してもよく、また超音波溶着してもよい。
The connection of the disk-shaped members can be appropriately performed. For example, the disk-shaped members may be bonded with an adhesive or may be ultrasonically welded.
(変形例2)
本発明の原理を利用し上述とは別の形態でウルトラファインバブルを生成することも考えられる。例えば液体の流れる管の内壁に直接複数の三角柱状突起を取り付けたり配置したりすることができる。 (Modification 2)
It is also conceivable to generate ultrafine bubbles in a form different from the above using the principle of the present invention. For example, a plurality of triangular prismatic projections can be directly attached to or arranged on the inner wall of a pipe through which liquid flows.
本発明の原理を利用し上述とは別の形態でウルトラファインバブルを生成することも考えられる。例えば液体の流れる管の内壁に直接複数の三角柱状突起を取り付けたり配置したりすることができる。 (Modification 2)
It is also conceivable to generate ultrafine bubbles in a form different from the above using the principle of the present invention. For example, a plurality of triangular prismatic projections can be directly attached to or arranged on the inner wall of a pipe through which liquid flows.
(実施形態2)
本実施形態は、容器に収められた化粧品、ドレッシング、うがい用の水など、静止した液体中にウルトラファインバブルを発生させる場合に関する。 (Embodiment 2)
The present embodiment relates to a case where ultra fine bubbles are generated in a stationary liquid such as cosmetics, dressings, and gargle water contained in a container.
本実施形態は、容器に収められた化粧品、ドレッシング、うがい用の水など、静止した液体中にウルトラファインバブルを発生させる場合に関する。 (Embodiment 2)
The present embodiment relates to a case where ultra fine bubbles are generated in a stationary liquid such as cosmetics, dressings, and gargle water contained in a container.
本実施形態においても、円柱形状部材、三角柱状突起、シャフトにつき、実施形態1で述べた点を適用することができる。ウルトラファインバブル発生用具101は、外周面104に複数の三角柱状突起105が設けられた円柱形状部材103(なお後述のとおり、円盤状部材を積層させて構成することもできる)をシャフト102に取り付けた構成とする。
Also in the present embodiment, the points described in the first embodiment can be applied to the columnar member, the triangular columnar protrusion, and the shaft. The ultra fine bubble generating tool 101 is attached to a shaft 102 with a cylindrical member 103 (which can be configured by laminating disk-like members as described later) having a plurality of triangular columnar protrusions 105 provided on the outer peripheral surface 104. The configuration is as follows.
ここでは、三角柱状突起105に液体を衝突させるため、シャフト102をモータ100により回転させ、それによりシャフト102に取付けられた円柱形状部材103が回転するように構成する。かかる回転により、円柱形状部材103に設けられた三角柱状突起105を液体に衝突させる。
Here, in order to cause the liquid to collide with the triangular columnar protrusion 105, the shaft 102 is rotated by the motor 100, and thereby the columnar member 103 attached to the shaft 102 is rotated. By such rotation, the triangular columnar protrusion 105 provided on the columnar member 103 is made to collide with the liquid.
本発明のウルトラファインバブル発生用具は軽量化が図れるシャフトや円柱形状部材、円盤状部材から構成されるものであり、モータ100の駆動に大きな電力を必要としない。そのため、本発明のモータの電源は、乾電池や充電池の低電源・低電力・低電圧(限定する趣旨でないが、例えば1.2V程度)で稼働することができる(ただし、電源が電池に限られるわけではなく、電源等が低いもので足りるため一般家庭で通常用いられる家庭用電源を電源とすることも可能である)。一例として、1.2Vの電池を用い、うがい用ウルトラファインバブル水の発生器を作る場合、電池を含む装置全体の重量は約300g程度、装置のサイズを縦約10cm×横約10cm×高さ約15cmのサイズに収めることが可能である。このように、本発明によれば、従来みられないウルトラファインバブル発生用具全体の小型化、軽量化、携帯化が実現される。
The ultra fine bubble generating tool of the present invention is composed of a shaft, a columnar member, and a disk-like member that can be reduced in weight, and does not require a large amount of power to drive the motor 100. Therefore, the power source of the motor of the present invention can be operated with a low power source / low power / low voltage of a dry battery or a rechargeable battery (but not limited to, for example, about 1.2V) (however, the power source is limited to the battery). However, it is also possible to use a household power source that is normally used in ordinary households because a low power source is sufficient. As an example, when a 1.2V battery is used to make a generator of ultrafine bubble water for gargle, the weight of the entire device including the battery is about 300 g, and the size of the device is about 10 cm long × about 10 cm wide × height. It is possible to fit in a size of about 15 cm. As described above, according to the present invention, it is possible to reduce the size, weight, and portability of the entire ultrafine bubble generating tool that has not been seen in the past.
前述のとおり、液体が管内を流れると移動できる範囲が制限される。換言すれば、液体の流れる方向が管により制限される(液体は拡散しない)。そこで、本実施形態においても、このように区画を設定することで、区画内の液体が複数の三角柱状突起に衝突、分断を繰り返すのを促進する。
As described above, the range in which the liquid can move when the liquid flows in the pipe is limited. In other words, the flow direction of the liquid is limited by the pipe (the liquid does not diffuse). Therefore, also in the present embodiment, by setting the compartments in this way, it is promoted that the liquid in the compartment collides with the plurality of triangular prismatic protrusions and repeats the division.
かかる観点から、前記三角柱状突起105の周りを、管状部材によって囲うように構成する。これによれば、限定された空間内で液体の流れを発生させることが可能となり、液体が三角柱突起により形成される流路を高速で通過し、発生した液流が管状部壁内で効率的に液流、乱流の衝突を促進させ、ウルトラファインバブルの発生を増進させることができる。この衝突を促進させるため、管状部材の長手方向の寸法は、円柱形状部材の三角柱状突起がカバーされるものとするのが好適である。また、三角柱状突起と環状部材の内壁を近接させるように構成してもよい。
From this point of view, the triangular columnar protrusion 105 is configured to be surrounded by a tubular member. According to this, it becomes possible to generate a liquid flow in a limited space, the liquid passes through the flow path formed by the triangular prism protrusion at high speed, and the generated liquid flow is efficient in the tubular part wall. In addition, the collision of liquid flow and turbulent flow can be promoted, and the generation of ultra fine bubbles can be enhanced. In order to promote this collision, it is preferable that the longitudinal dimension of the tubular member covers the triangular columnar protrusion of the cylindrical member. Moreover, you may comprise so that a triangular prism-shaped protrusion and the inner wall of an annular member may be adjoined.
なお、本明細書において「管」の語は、実施形態1の場合のようないわゆる配管のような形状のものを含み、本実施形態における管状部材は管状にカバーする部材を含む。
In addition, in this specification, the term “pipe” includes a so-called pipe-like shape as in the first embodiment, and the tubular member in this embodiment includes a member that covers the tube.
本実施形態にかかるウルトラファインバブル発生用具101の一例を図9に示し、これに管状部材107を用いた場合の一例を図10に示す。管状部材107は上面又は底面の一方の面(図10では下に位置する底面側108)が開口しており、内部に液体が流入するように構成される。
FIG. 9 shows an example of the ultra fine bubble generating tool 101 according to the present embodiment, and FIG. 10 shows an example of the case where the tubular member 107 is used. The tubular member 107 is configured such that one surface of the top surface or the bottom surface (the bottom surface side 108 positioned below in FIG. 10) is open, and the liquid flows into the inside.
図10に示されるように、管状部材には、液体が当該部材の内外に循環するための開口109を設けると好適である。これにより、管状部材107の一方の面(図10では下に位置する底面側108)から流入した液体が円柱形状部材の周りを旋回しながら上昇して通過し、開口109から流出し、再び底面側108から管状部材の内側に流れ込む(上昇流パターン)。あるいは、開口109から流入した液体が円柱形状部材の周りを旋回しながら下降して通過し、底面側108から流出し、管状部材の外側を上昇して再び開口109から流入する(下降流パターン)。
As shown in FIG. 10, it is preferable that the tubular member is provided with an opening 109 for circulating the liquid into and out of the member. As a result, the liquid that has flowed in from one surface of the tubular member 107 (the bottom surface side 108 positioned below in FIG. 10) ascends and passes around the cylindrical member, flows out of the opening 109, and again flows into the bottom surface. It flows from the side 108 into the inside of the tubular member (upflow pattern). Alternatively, the liquid flowing in from the opening 109 descends and passes around the cylindrical member, flows out from the bottom surface side 108, rises outside the tubular member, and flows in again from the opening 109 (downflow pattern). .
このように液体の流れが循環を繰り返すことで、更にウルトラファインバブルの発生数が飛躍的に向上する。
</ RTI> By repeating the circulation of the liquid flow in this way, the number of ultra fine bubbles generated is further improved dramatically.
なお、上昇流パターンと下降流パターンは、三角柱状突起の傾きにより変更することが可能である。上昇流パターンとする場合は、各三角柱状突起の頂点(流れに初めに衝突する角)を、水平線よりも下に(この頂点から底面への垂線と水平線との角度が例えば15度程度となるように)傾ける。反対に、各三角柱状突起の前記頂点を水平線よりも上に傾ければ、下降流パターンとすることができる。
In addition, the upward flow pattern and the downward flow pattern can be changed by the inclination of the triangular prismatic protrusion. In the case of the upward flow pattern, the apex of each triangular prismatic projection (the angle that first collides with the flow) is below the horizontal line (the angle between the vertical line from this apex to the bottom and the horizontal line is about 15 degrees, for example. Tilt). On the contrary, a downward flow pattern can be obtained by inclining the apex of each triangular prism-shaped protrusion above the horizontal line.
図11に、管状部材107を用いた本発明のウルトラファインバブル発生用具を使用する場合の一例を示す。図11は、円柱形状を囲う管状部材を、容器110内の液体112に沈めた状態を示している。矢印115はモータの回転方向を示し、矢印114は液体の流れの方向を示す。図11は上昇流パターンの場合を示しており、矢印114が示す方向で液体が管状部材107の底面側108から流入し、上部の開口109から流出し、これらが繰り返される。
FIG. 11 shows an example of using the ultrafine bubble generating tool of the present invention using the tubular member 107. FIG. 11 shows a state in which a tubular member surrounding a cylindrical shape is submerged in the liquid 112 in the container 110. An arrow 115 indicates the direction of rotation of the motor, and an arrow 114 indicates the direction of liquid flow. FIG. 11 shows the case of the upward flow pattern. In the direction indicated by the arrow 114, the liquid flows in from the bottom surface side 108 of the tubular member 107 and flows out from the upper opening 109, and these are repeated.
実施形態1の場合、液体の流量(少ない場合)、流速(遅い場合)などによっては、ウルトラファインバブルが発生されにくい場合も考えられるが、本実施形態の場合は、モータの回転速度を調整することにより、この問題に対応することができる。
In the case of the first embodiment, depending on the liquid flow rate (when it is small), the flow velocity (when it is slow), it may be difficult to generate ultra fine bubbles, but in this embodiment, the rotational speed of the motor is adjusted. Therefore, this problem can be dealt with.
本実施形態によってウルトラファインバブルを生成する場合、これを液体の混合や攪拌に用いることができる。例えば液状ドレシッングを容器に入れ本発明の装置を稼働すると、酢とオイルを容易に混合させることができる。
When producing an ultra fine bubble according to the present embodiment, it can be used for liquid mixing and stirring. For example, when liquid dressing is put in a container and the apparatus of the present invention is operated, vinegar and oil can be easily mixed.
(変形例)
本実施形態においても、円柱形状部材を複数の円盤状部材により形成するものとすることができ、これらはプラスチック成型などにより製造することができる。 (Modification)
Also in the present embodiment, the cylindrical member can be formed by a plurality of disk-shaped members, and these can be manufactured by plastic molding or the like.
本実施形態においても、円柱形状部材を複数の円盤状部材により形成するものとすることができ、これらはプラスチック成型などにより製造することができる。 (Modification)
Also in the present embodiment, the cylindrical member can be formed by a plurality of disk-shaped members, and these can be manufactured by plastic molding or the like.
また、三角柱状突起は、液体が一つの角に衝突して分断されながら流れ、生じる液流及び乱流が衝突を繰り返すように構成できればよく、図示のもののほか、例えば、液体に衝突する角を頂点とした場合の底辺(底面)側において、三角形状の切りかけが設けられるような形状としてもよい。
Further, the triangular prism-shaped protrusions only need to be configured so that the liquid collides with one corner and flows while being divided, and the generated liquid flow and turbulent flow repeat the collision. It is good also as a shape in which the triangular cut is provided in the base (bottom) side at the time of setting it as a vertex.
なお、本発明は液体に気体を注入等することなくウルトラファインバブルを生成することが可能であるが、気体の注入等を併用することも可能である。すなわち、本発明の装置・方法において、併せて気体(窒素、二酸化炭素やオゾン等)を液内に注入することもできる。
In the present invention, it is possible to generate ultra fine bubbles without injecting gas into the liquid, but it is also possible to use injecting gas together. That is, in the apparatus and method of the present invention, a gas (nitrogen, carbon dioxide, ozone, etc.) can also be injected into the liquid.
以下、本発明によるウルトラファインバブルの生成の実験例を示す。
Hereinafter, experimental examples of generation of ultrafine bubbles according to the present invention will be shown.
(実験例1)
実施形態1を用いた実験例は以下のとおりである。
(1)円盤状部材(1つの円盤状部材に三角柱突起が8個形成)を図16に示すように16個積層し本発明のウルトラファインバブル発生体を構成して液体を送る管内に配置し、この管内に、水槽に貯水した工業用精製水(試液名:D(デルタ)40)を下記循環ポンプで40回循環送水させ、ウルトラファインバブル発生体に工業用精製水を送水した。
循環ポンプ: 株式会社鶴見製作所(ツルミポンプ)製
モデルNO FP-5S
性能 揚水高さ MAX 5.5m
吐出し量 MAX 35L
(2)測定器は以下を用いた。
英国NanoSight社 LM システム LM10-HSBT14
EMCCDカメラ、青色レーザー
(3)測定結果は以下のとおりであり、充分な数のウルトラファインバブルの発生が認められた。
ウルトラファインバブルの総粒子濃度: 1.36億個/mL
平均径: 217nm +/-13.7nm
モード径: 152nm +/-17.8nm (Experimental example 1)
An experimental example using the first embodiment is as follows.
(1) As shown in FIG. 16, 16 disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked and arranged in a pipe for sending a liquid constituting the ultra fine bubble generator of the present invention. In this tube, industrial purified water (sample name: D (Delta) 40) stored in the water tank was circulated 40 times with the following circulation pump, and industrial purified water was fed to the ultrafine bubble generator.
Circulation pump: Tsurumi Manufacturing Co., Ltd. (Tsurumi Pump)
Model NO FP-5S
Performance Pumping height MAX 5.5m
Discharge amount MAX 35L
(2) The measuring instrument used was as follows.
UK NanoSight LM System LM10-HSBT14
The EMCCD camera and blue laser (3) measurement results are as follows, and a sufficient number of ultrafine bubbles were observed.
Ultrafine bubble total particle concentration: 136 billion particles / mL
Average diameter: 217 nm +/- 13.7 nm
Mode diameter: 152nm +/- 17.8nm
実施形態1を用いた実験例は以下のとおりである。
(1)円盤状部材(1つの円盤状部材に三角柱突起が8個形成)を図16に示すように16個積層し本発明のウルトラファインバブル発生体を構成して液体を送る管内に配置し、この管内に、水槽に貯水した工業用精製水(試液名:D(デルタ)40)を下記循環ポンプで40回循環送水させ、ウルトラファインバブル発生体に工業用精製水を送水した。
循環ポンプ: 株式会社鶴見製作所(ツルミポンプ)製
モデルNO FP-5S
性能 揚水高さ MAX 5.5m
吐出し量 MAX 35L
(2)測定器は以下を用いた。
英国NanoSight社 LM システム LM10-HSBT14
EMCCDカメラ、青色レーザー
(3)測定結果は以下のとおりであり、充分な数のウルトラファインバブルの発生が認められた。
ウルトラファインバブルの総粒子濃度: 1.36億個/mL
平均径: 217nm +/-13.7nm
モード径: 152nm +/-17.8nm (Experimental example 1)
An experimental example using the first embodiment is as follows.
(1) As shown in FIG. 16, 16 disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked and arranged in a pipe for sending a liquid constituting the ultra fine bubble generator of the present invention. In this tube, industrial purified water (sample name: D (Delta) 40) stored in the water tank was circulated 40 times with the following circulation pump, and industrial purified water was fed to the ultrafine bubble generator.
Circulation pump: Tsurumi Manufacturing Co., Ltd. (Tsurumi Pump)
Model NO FP-5S
Performance Pumping height MAX 5.5m
Discharge amount MAX 35L
(2) The measuring instrument used was as follows.
UK NanoSight LM System LM10-HSBT14
The EMCCD camera and blue laser (3) measurement results are as follows, and a sufficient number of ultrafine bubbles were observed.
Ultrafine bubble total particle concentration: 136 billion particles / mL
Average diameter: 217 nm +/- 13.7 nm
Mode diameter: 152nm +/- 17.8nm
(実験例2)
実施形態2の変形例を用いた実験例は以下のとおりである。
(1)円柱形状部材について
円盤状部材(1つの円盤状部材に三角柱突起が8個形成)を4つ積層し、各三角柱突起を図9のように配置して(ただし、図9は円盤状部材の積層数が異なる)構成した。
(2)液体の種類、量
工業精製水、75mlとした。
(3)流速
モータを1分間当たり20,000回転させた。1分間回転後30秒放置を10回繰り返した(モータ回転時間は合計10分間)。
(4)測定対象
液体中のウルトラファインバブルの個数、最頻径及び平均径を測定した。
(5)測定機器
英国マルバーン(Malvern)社製・ナノ粒子解析装置(LM10)を用いた。 (Experimental example 2)
An experimental example using a modification of the second embodiment is as follows.
(1) Cylindrical member Four disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked, and each triangular prism protrusion is arranged as shown in FIG. 9 (however, FIG. 9 is disk-shaped) The number of members is different).
(2) Type and amount of liquid Industrial purified water, 75 ml.
(3) Flow velocity The motor was rotated 20,000 per minute. After rotating for 1 minute, leaving for 30 seconds was repeated 10 times (the total motor rotation time was 10 minutes).
(4) Measurement object The number, the mode diameter, and the average diameter of the ultra fine bubbles in the liquid were measured.
(5) Measuring device A nanoparticle analyzer (LM10) manufactured by Malvern, UK was used.
実施形態2の変形例を用いた実験例は以下のとおりである。
(1)円柱形状部材について
円盤状部材(1つの円盤状部材に三角柱突起が8個形成)を4つ積層し、各三角柱突起を図9のように配置して(ただし、図9は円盤状部材の積層数が異なる)構成した。
(2)液体の種類、量
工業精製水、75mlとした。
(3)流速
モータを1分間当たり20,000回転させた。1分間回転後30秒放置を10回繰り返した(モータ回転時間は合計10分間)。
(4)測定対象
液体中のウルトラファインバブルの個数、最頻径及び平均径を測定した。
(5)測定機器
英国マルバーン(Malvern)社製・ナノ粒子解析装置(LM10)を用いた。 (Experimental example 2)
An experimental example using a modification of the second embodiment is as follows.
(1) Cylindrical member Four disk-shaped members (8 triangular prism protrusions are formed on one disk-shaped member) are stacked, and each triangular prism protrusion is arranged as shown in FIG. 9 (however, FIG. 9 is disk-shaped) The number of members is different).
(2) Type and amount of liquid Industrial purified water, 75 ml.
(3) Flow velocity The motor was rotated 20,000 per minute. After rotating for 1 minute, leaving for 30 seconds was repeated 10 times (the total motor rotation time was 10 minutes).
(4) Measurement object The number, the mode diameter, and the average diameter of the ultra fine bubbles in the liquid were measured.
(5) Measuring device A nanoparticle analyzer (LM10) manufactured by Malvern, UK was used.
実験結果を下記表1に示す。
(注)上記ウルトラファインバブルの数は、ウルトラファインバブル発生後の液体を10倍に希釈した際の個数の測定値を表記。 The experimental results are shown in Table 1 below.
(Note) The number of the above ultra fine bubbles is a measured value of the number when the liquid after the generation of ultra fine bubbles is diluted 10 times.
(注)上記ウルトラファインバブルの数は、ウルトラファインバブル発生後の液体を10倍に希釈した際の個数の測定値を表記。 The experimental results are shown in Table 1 below.
(Note) The number of the above ultra fine bubbles is a measured value of the number when the liquid after the generation of ultra fine bubbles is diluted 10 times.
上記表1のとおり、本発明によりウルトラファインバブル(平均径122.6nm、最頻径100.2nm)が少なくとも7.39 ×108個/ML(希釈10倍値)生成されたことが確認された。すなわち、液体(工業精製水)1ミリリッター中に約74億個のウルトラファインバブルが発生した。
As shown in Table 1 above, it was confirmed that ultrafine bubbles (average diameter 122.6 nm, mode diameter 100.2 nm) were generated at least 7.39 mm × 10 8 / ML (dilution 10 times) according to the present invention. That is, about 7.4 billion ultra fine bubbles were generated in 1 milliliter of liquid (industrial purified water).
本発明においては、三角柱状突起の側面に沿って流れる液体に乱流を生じやすくして液流・乱流が衝突を繰り返すことが重要と考えられる。そして、乱流を生じやすくするには、各側面と流れ方向に対向する側面を形成する両角(液体の流れを分流する先端の角以外の角)の角度が小さいことが望ましいと考えられる。これは先端の角の角度との関係にもよるが、両角の一方が直角(90度)未満であることが好ましいと考えられる。例えば三角柱状突起を菱形状にした場合、前記乱流が生じにくくなる。
In the present invention, it is considered important that the liquid flowing along the side surface of the triangular prism-shaped protrusion is likely to generate turbulent flow and the liquid flow / turbulent flow repeatedly collides. In order to easily generate turbulent flow, it is considered that it is desirable that the angle between the two sides forming the side surfaces facing the respective side surfaces in the flow direction (the corners other than the corners at the front end of the liquid flow) is small. Although this depends on the relationship with the angle of the tip corner, it is considered preferable that one of the two angles is less than a right angle (90 degrees). For example, when the triangular prismatic protrusion is formed in a rhombus shape, the turbulent flow is less likely to occur.
本発明において液体は、三角柱状突起どうしの間、及び、管の内壁と三角柱状突起の先端側の間を流通する。管の内壁と三角柱状突起の先端側はある程度近接したものとなり得るが、本発明では突起の形状が三角柱状であるため突起間を液体が十分に流通でき、圧力損失が生じにくく、流速が減速されにくい。そのため、液体の旋回流が十分に得られ、液体の分断、乱流が発生し易く、ウルトラファインバブルが生成され易いものとなる。これに対し、例えば突起を菱形とした場合、三角柱状突起の場合と比べ、流路が限定されてしまい、圧力損失が生じ、流速が減速される。
In the present invention, the liquid flows between the triangular columnar protrusions and between the inner wall of the tube and the tip side of the triangular columnar protrusion. The inner wall of the tube and the tip side of the triangular prismatic protrusion can be close to a certain extent, but in the present invention, since the shape of the protrusion is a triangular prism, liquid can flow sufficiently between the protrusions, pressure loss is unlikely to occur, and the flow rate is reduced. It is hard to be done. Therefore, a sufficient swirling flow of liquid can be obtained, liquid can be easily divided and turbulent flow can easily occur, and ultra fine bubbles can be easily generated. On the other hand, for example, when the protrusions are diamond-shaped, the flow path is limited, pressure loss occurs, and the flow velocity is reduced compared to the case of triangular prismatic protrusions.
本発明によれば、従来大がかりな装置により生成するものとされてきたウルトラファインバブルを飛躍的に簡便に発生させることが可能となるため、工業用や研究用のみならず、家庭用・民生用として多くの場面でウルトラファインバブルを利用した技術を適用することが可能となる。
According to the present invention, it becomes possible to dramatically and easily generate ultra fine bubbles that have been conventionally generated by large-scale devices, so that they are not only for industrial and research purposes, but also for home and consumer use. As a result, it is possible to apply technology using ultra fine bubbles in many situations.
また、本発明では流通する液体だけでなく、容器中に収められた静止した液体においてもウルトラファインバブルを発生させることができる。
Further, in the present invention, ultra fine bubbles can be generated not only in the circulating liquid but also in the stationary liquid stored in the container.
このように、本発明の産業上の利用可能性は極めて高い。
Thus, the industrial applicability of the present invention is extremely high.
1、11、21、101 ウルトラファインバブル発生用具
2、102 シャフト
3、103 円柱形状部材
4、104 円柱形状部材3又は103の表面(外周面)
5、105 三角柱状突起
6、9 三角柱状突起5の角
7 液体の分流、液体の流れ
8 三角柱状突起5の流れ方向に沿った側面
10 乱流
12 三角柱状突起の流れ方向に対向する側面
13 シャフトの先端
14 シャフトの円錐形状部分
15 管
16 液体の流れ
17 円盤状部材
18 シャフトを貫通させる孔
19 嵌合孔
20 嵌合凸部
22、23 中心部
24 羽根
107 管状部材
108 管状部材の底面側
109 開口
110 容器
112 液体
113 ウルトラファインバブル
114 液体の流れの方向
115 モータの回転方向 1, 11, 21, 101 Ultra fine bubble generating tool 2, 102 Shaft 3, 103 Cylindrical member 4, 104 Surface (outer peripheral surface) of cylindrical member 3 or 103
5, 105 Triangular prism-shaped protrusions 6, 9 Corners of triangular prism-shaped protrusion 5 Liquid diversion, liquid flow 8 Side surface 10 along the flow direction of triangular columnar protrusion 5 Turbulence 12 Side surface 13 facing the flow direction of triangular columnar protrusion Shaft tip 14 Conical portion 15 of the shaft 15 Pipe 16 Liquid flow 17 Disk-like member 18 Hole through which the shaft passes 19 Fitting hole 20 Fitting convex portions 22 and 23 Center portion 24 Blade 107 Tubular member 108 Bottom side of the tubular member 109 Opening 110 Container 112 Liquid 113 Ultra Fine Bubble 114 Liquid Flow Direction 115 Motor Rotation Direction
2、102 シャフト
3、103 円柱形状部材
4、104 円柱形状部材3又は103の表面(外周面)
5、105 三角柱状突起
6、9 三角柱状突起5の角
7 液体の分流、液体の流れ
8 三角柱状突起5の流れ方向に沿った側面
10 乱流
12 三角柱状突起の流れ方向に対向する側面
13 シャフトの先端
14 シャフトの円錐形状部分
15 管
16 液体の流れ
17 円盤状部材
18 シャフトを貫通させる孔
19 嵌合孔
20 嵌合凸部
22、23 中心部
24 羽根
107 管状部材
108 管状部材の底面側
109 開口
110 容器
112 液体
113 ウルトラファインバブル
114 液体の流れの方向
115 モータの回転方向 1, 11, 21, 101 Ultra fine
5, 105 Triangular prism-shaped
Claims (5)
- シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、
該ウルトラファインバブル発生用具は液体を送るための管の内側に配置されるものであり、
前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、
前記液体を送るための管の内側を流れる液体が前記複数の三角柱状突起に衝突することにより、前記液体を送るための管の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具。
An ultra-fine bubble generating tool having a shaft and a columnar member attached to the shaft, and having a plurality of triangular columnar protrusions provided on the outer peripheral surface of the columnar member,
The ultra fine bubble generating tool is arranged inside a pipe for sending a liquid,
The triangular prismatic protrusions are arranged spirally on the cylindrical member so that the liquid flows spirally around the cylindrical member, and each triangular prismatic protrusion has a tip with respect to the spiral flow of liquid. Is placed so that the corner located at is substantially perpendicular to this spiral flow,
The liquid flowing inside the pipe for sending the liquid collides with the plurality of triangular prismatic protrusions, so that the air contained in the liquid is supplied without supplying air from the outside of the pipe for sending the liquid. Ultra fine bubble generating tool characterized by generating ultra fine bubbles.
- シャフトと該シャフトに取付けられた円柱形状部材とを有し、前記円柱形状部材の外周面に複数の三角柱状突起が設けられたウルトラファインバブル発生用具であって、
該ウルトラファインバブル発生用具は容器内の液体中に配置される少なくとも一端側が開口した管状部材の内側に配置されるものであり、
前記三角柱状突起が前記円柱形状部材に螺旋状に配置され液体が前記円柱形状部材の周りを螺旋状に流れるように構成されると共に、前記各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置され、
前記シャフトが電源を乾電池又は充電池とするモータの駆動により回転され前記円柱形状部材が回転することによって前記管状部材の内側に入り込む液体が前記複数の三角柱状突起に衝突することにより、前記容器の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることを特徴とするウルトラファインバブル発生用具。
An ultra-fine bubble generating tool having a shaft and a columnar member attached to the shaft, and having a plurality of triangular columnar protrusions provided on the outer peripheral surface of the columnar member,
The ultra fine bubble generating tool is disposed inside a tubular member that is opened in at least one end side that is disposed in the liquid in the container,
The triangular prismatic protrusions are arranged spirally on the cylindrical member so that the liquid flows spirally around the cylindrical member, and each triangular prismatic protrusion has a tip with respect to the spiral flow of liquid. Is placed so that the corner located at is substantially perpendicular to this spiral flow,
When the shaft is rotated by driving a motor whose power source is a dry battery or a rechargeable battery and the columnar member rotates, liquid entering the inside of the tubular member collides with the plurality of triangular columnar protrusions. An ultra-fine bubble generating tool characterized in that air contained in a liquid is refined to generate ultra-fine bubbles without supplying air from the outside.
- 前記円柱形状部材は複数の円盤状部材が積層されて形成された請求項1又は2に記載のウルトラファインバブル発生用具。
The ultra-fine bubble generating tool according to claim 1 or 2, wherein the columnar member is formed by laminating a plurality of disk-shaped members.
- 前記三角柱状突起を前記液体を送るための管又は管状部材の内壁に近接させ液体の前記三角柱状突起への衝突が促進されるように該液体を送るための管又は管状部材の内側に配置された請求項1乃至3のいずれか一項に記載のウルトラファインバブル発生用具。
The triangular columnar protrusion is disposed inside the tube or tubular member for sending the liquid so that the collision of the liquid with the triangular columnar protrusion is promoted by bringing the triangular columnar protrusion close to the inner wall of the tube or tubular member for sending the liquid. The ultra fine bubble generating tool according to any one of claims 1 to 3.
- 前記管状部材の側面に、該管状部材の内外に液体が循環するための開口が設けられた請求項2に記載のウルトラファインバブル発生用具。
The ultra fine bubble generating tool according to claim 2, wherein an opening for circulating a liquid inside and outside the tubular member is provided on a side surface of the tubular member.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201906099RA SG11201906099RA (en) | 2017-01-17 | 2017-01-17 | Ultrafine bubble generator |
PCT/JP2017/001395 WO2018134887A1 (en) | 2017-01-17 | 2017-01-17 | Ultrafine bubble generation tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001395 WO2018134887A1 (en) | 2017-01-17 | 2017-01-17 | Ultrafine bubble generation tool |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018134887A1 true WO2018134887A1 (en) | 2018-07-26 |
Family
ID=62907849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001395 WO2018134887A1 (en) | 2017-01-17 | 2017-01-17 | Ultrafine bubble generation tool |
Country Status (2)
Country | Link |
---|---|
SG (1) | SG11201906099RA (en) |
WO (1) | WO2018134887A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021000599A (en) * | 2019-06-20 | 2021-01-07 | 株式会社塩 | Fluid system and inspection device of the same, inspection method, control method of fluid system and control program |
JP7144053B2 (en) | 2019-01-17 | 2022-09-29 | 株式会社白謙蒲鉾店 | Hydrogen nanobubble water for manufacturing fish paste products |
JP7338926B1 (en) * | 2023-03-24 | 2023-09-05 | 株式会社アルベール・インターナショナル | microbubble generator |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5831026U (en) * | 1981-08-25 | 1983-03-01 | 株式会社島崎製作所 | Stirring blade structure of stirrer |
JPH0668440U (en) * | 1993-03-08 | 1994-09-27 | 恒 森田 | Aquarium air supply |
JP2001104764A (en) * | 1999-07-30 | 2001-04-17 | Nomura Denshi Kogyo Kk | Gas-liquid mixing apparatus |
JP2001113150A (en) * | 1999-10-19 | 2001-04-24 | Onward Giken:Kk | Pressurized gas-liquid mixing device and waste liquid treating device using the same |
JP2001353433A (en) * | 2000-06-12 | 2001-12-25 | Gunze Sangyo Inc | Stirring device for coating material or the like in container |
JP2002263678A (en) * | 2001-03-05 | 2002-09-17 | Az Shoji Kk | Device for producing water which contains fine air bubble |
JP2013063378A (en) * | 2011-09-16 | 2013-04-11 | Oji Holdings Corp | Preparation device and preparation method for aqueous foam liquid |
JP2014057926A (en) * | 2012-09-19 | 2014-04-03 | Takagi Co Ltd | Water purifier and production method of purified water |
JP2016215092A (en) * | 2015-05-15 | 2016-12-22 | 三菱日立パワーシステムズ株式会社 | Water quality-improving apparatus for seawater desulfurization waste water, and seawater flue gas desulfurization system |
JP6077627B1 (en) * | 2015-10-30 | 2017-02-08 | 昭義 毛利 | Ultra fine bubble generation tool |
-
2017
- 2017-01-17 WO PCT/JP2017/001395 patent/WO2018134887A1/en active Application Filing
- 2017-01-17 SG SG11201906099RA patent/SG11201906099RA/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5831026U (en) * | 1981-08-25 | 1983-03-01 | 株式会社島崎製作所 | Stirring blade structure of stirrer |
JPH0668440U (en) * | 1993-03-08 | 1994-09-27 | 恒 森田 | Aquarium air supply |
JP2001104764A (en) * | 1999-07-30 | 2001-04-17 | Nomura Denshi Kogyo Kk | Gas-liquid mixing apparatus |
JP2001113150A (en) * | 1999-10-19 | 2001-04-24 | Onward Giken:Kk | Pressurized gas-liquid mixing device and waste liquid treating device using the same |
JP2001353433A (en) * | 2000-06-12 | 2001-12-25 | Gunze Sangyo Inc | Stirring device for coating material or the like in container |
JP2002263678A (en) * | 2001-03-05 | 2002-09-17 | Az Shoji Kk | Device for producing water which contains fine air bubble |
JP2013063378A (en) * | 2011-09-16 | 2013-04-11 | Oji Holdings Corp | Preparation device and preparation method for aqueous foam liquid |
JP2014057926A (en) * | 2012-09-19 | 2014-04-03 | Takagi Co Ltd | Water purifier and production method of purified water |
JP2016215092A (en) * | 2015-05-15 | 2016-12-22 | 三菱日立パワーシステムズ株式会社 | Water quality-improving apparatus for seawater desulfurization waste water, and seawater flue gas desulfurization system |
JP6077627B1 (en) * | 2015-10-30 | 2017-02-08 | 昭義 毛利 | Ultra fine bubble generation tool |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7144053B2 (en) | 2019-01-17 | 2022-09-29 | 株式会社白謙蒲鉾店 | Hydrogen nanobubble water for manufacturing fish paste products |
JP2021000599A (en) * | 2019-06-20 | 2021-01-07 | 株式会社塩 | Fluid system and inspection device of the same, inspection method, control method of fluid system and control program |
JP7115753B2 (en) | 2019-06-20 | 2022-08-09 | 株式会社塩 | FLUID SYSTEM, INSPECTION DEVICE, INSPECTION METHOD, FLUID SYSTEM CONTROL METHOD AND CONTROL PROGRAM |
JP7338926B1 (en) * | 2023-03-24 | 2023-09-05 | 株式会社アルベール・インターナショナル | microbubble generator |
JP7378752B1 (en) * | 2023-03-24 | 2023-11-14 | 株式会社アルベール・インターナショナル | Micro bubble generator |
Also Published As
Publication number | Publication date |
---|---|
SG11201906099RA (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6077627B1 (en) | Ultra fine bubble generation tool | |
US10596528B2 (en) | Nanobubble-producing apparatus | |
Xu et al. | Formation of monodisperse microbubbles in a microfluidic device | |
JP6123013B1 (en) | Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method | |
WO2018134887A1 (en) | Ultrafine bubble generation tool | |
CN102387853B (en) | Stirring rotating body and stir device | |
JP5000583B2 (en) | Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus | |
JP2012139646A (en) | Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus | |
KR101869487B1 (en) | Nano bubble generator for bathtub or sink with cleaning and sterilizing function | |
KR101829732B1 (en) | Nano micro bubble generator | |
JP2009039600A (en) | Ultra-fine bubble production device | |
JP6780179B1 (en) | Fluid supply device and internal structure | |
US9278322B2 (en) | Mixer of a rotor-stator type, performance estimation method thereof, and scale up method thereof | |
JP2009274045A5 (en) | ||
JPWO2019116642A1 (en) | Ultra fine bubble generator | |
US20170239629A1 (en) | Multifunctional hydrodynamic vortex reactor | |
EP1813653B1 (en) | Paint producing method and system | |
KR20230005761A (en) | Internal structure, fluid characteristic changing apparatus, and utilization apparatus thereof | |
JP2022023974A (en) | Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method | |
JPH1066850A (en) | Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof | |
CN112337327B (en) | Nanometer bubble generating device | |
JP2001321651A (en) | Agitating device | |
US6830370B1 (en) | Cavitation generating device and fluid mixing device using the device | |
JP2009101263A (en) | Ultra-fine bubble generator and apparatus for purification of aqueous solution | |
CN103657497B (en) | For three grades of hybrid systems of liquid mixing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS RIGHTS PURSUANT TO RULE 112(1) EPC |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892393 Country of ref document: EP Kind code of ref document: A1 |