JP5000583B2 - Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus - Google Patents

Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus Download PDF

Info

Publication number
JP5000583B2
JP5000583B2 JP2008130205A JP2008130205A JP5000583B2 JP 5000583 B2 JP5000583 B2 JP 5000583B2 JP 2008130205 A JP2008130205 A JP 2008130205A JP 2008130205 A JP2008130205 A JP 2008130205A JP 5000583 B2 JP5000583 B2 JP 5000583B2
Authority
JP
Japan
Prior art keywords
micro
spiral
bubbles
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008130205A
Other languages
Japanese (ja)
Other versions
JP2009274045A (en
JP2009274045A5 (en
Inventor
英樹 伊原
広次 平良
Original Assignee
株式会社バイコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイコム filed Critical 株式会社バイコム
Priority to JP2008130205A priority Critical patent/JP5000583B2/en
Publication of JP2009274045A publication Critical patent/JP2009274045A/en
Publication of JP2009274045A5 publication Critical patent/JP2009274045A5/ja
Application granted granted Critical
Publication of JP5000583B2 publication Critical patent/JP5000583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マイクロ・ナノバブル水を生成する装置に使用するマイクロ・ナノバブル生成方法及び装置、並びにマイクロ・ナノバブル水の生成装置の構造に係り、詳細には淡水中でもマイクロバブル発生時の気泡分布のピークが10μm程度に集中している高濃度でありながら、装置を簡素化することが可能となる構造に関する。 The present invention relates to a micro / nano bubble generation method and apparatus used in an apparatus for generating micro / nano bubble water, and a structure of a micro / nano bubble water generation apparatus , and more particularly, a peak of bubble distribution when micro bubbles are generated even in fresh water. The present invention relates to a structure capable of simplifying the apparatus while having a high concentration of about 10 μm.

気泡の微細化については剪断方法、加圧方法などがあるが微細化した気泡を安定して送り出すためには気泡同士が再度融合することなく、気泡各自の消滅時間を緩慢化する必要がある。海水など電解質イオンを含む水中ではイオン電荷を気泡表面に取り込むことで気泡各自が帯電し各気泡間が反発しあうことで再度融合を防ぎ、かつ気泡収縮時の電荷濃縮によりイオン殻を形成して微細安定化が比較的容易となるが、イオン類の少ない淡水中ではこのような現象が少ないためマイクロバブルの安定発生が難くなる。従って淡水中にマイクロバブルを発生させるためには、従来の方法は加圧ポンプを使用し物理的障害物を設定した配管内に水流と気体を送り、強制的に加圧混入を行うことでマイクロバブルを発生させることが主流となっている。参照される主な先行技術を次に記載する。
特許第3043315号公報 特開2001−300522号公報 特開2004−073953号公報 特開2005−245817号公報
There are a shearing method, a pressurizing method, and the like for the refinement of bubbles, but in order to stably send out the refined bubbles, it is necessary to slow down the disappearance time of each of the bubbles without fusing them again. In water containing electrolyte ions such as sea water, the ionic charge is taken into the surface of the bubble and the bubbles themselves are charged and the bubbles repel each other to prevent fusion and to form an ion shell by charge concentration when the bubbles contract. Although fine stabilization becomes relatively easy, since such a phenomenon is small in fresh water with few ions, stable generation of microbubbles becomes difficult. Therefore, in order to generate microbubbles in fresh water, the conventional method uses a pressurization pump to send water and gas into a pipe set with physical obstacles, and forcibly injects the microbubbles. The generation of bubbles has become the mainstream. The main prior art referred to is described below.
Japanese Patent No. 3043315 Japanese Patent Laid-Open No. 2001-300522 JP 2004-073953 A JP 2005-245817 A

上記方法では発生配管内に過度の圧力を発生させる必要があり、ポンプの高出力化や配管内への物理的障害物の設定により複雑な構造となるため簡素な装置とならず、実用化レベルに至っていない。本発明ではより簡素にマイクロ・ナノバブルの生成が可能となるような装置及び方法を提供する。   In the above method, it is necessary to generate excessive pressure in the generated piping, and since it becomes a complicated structure due to high output of the pump and setting of physical obstacles in the piping, it is not a simple device, but a practical level It has not reached. The present invention provides an apparatus and a method that enable the generation of micro / nano bubbles more simply.

淡水中ではイオン類が少なく気泡表面が帯電することが少ないため気泡の微細安定化が難しいことは前述した通りである。本発明では気泡同士を高速摩擦することにより気泡表面に静電気を帯電させることで、イオン電荷に帯電した状態と同様の効果をもたらすマイクロバブルが生成されることに着目し、同一管内に外管・内管を設定した二重管構造の配管を作製し、各管内に螺旋溝を設定して外管・内管の旋回方向をそれぞれ逆方向とし、流出する水流を衝突させることで気泡同士を高速摩擦する。これにより気泡表面に静電気を帯電させマイクロバブルを生成する。 As described above, it is difficult to stabilize the bubbles finely in fresh water because there are few ions and the surface of the bubbles is less charged. In the present invention, focusing on the fact that microbubbles that produce the same effect as the state of being charged to ionic charges are generated by charging static electricity on the surface of the bubbles by high-speed friction between the bubbles. to produce a pipe of the double pipe structure the inner pipe was set boss, set the helical grooves in each tube and the opposite direction respectively turning direction of the outer tube within tube, bubbles together by impinging water flowing Friction at high speed. Thereby, static electricity is charged on the bubble surface to generate microbubbles.

すなわち、本発明は、開口径の異なる所定の長さを有する2種類の管を内外に配置して外管及び内管の二重構造の配管を備え、前記各管の内面に密接して線状部材をそれぞれ異なる方向に螺旋状に配置して螺旋部材となし、前記内管の内面に密接した前記螺旋部材の内側に前記内管の軸方向に連通する空洞を有し、前記各管の内面と前記各螺旋部材からなる螺旋溝を形成してマイクロバブル発生部を形成し、該螺旋溝に沿って流れる方向の異なる気泡を含む螺旋水流を同時に放出する際に衝突させて、前記気泡に摩擦と剪断を行いマイクロ・ナノバブルを生成する方法である。
また、本発明は、開口径の異なる所定の長さを有する2種類の管を内外に配置して外管及び内管の二重構造の配管を備え、前記各管の内面に密接して線状部材がそれぞれ異なる方向に螺旋状に配置されて螺旋部材とされ、前記内管の内面に密接した前記螺旋部材の内側に前記内管の軸方向に連通する空洞を有し、前記内外各管の内面と前記各螺旋部材からなる螺旋溝が形成されたマイクロバブル発生部を有し、前記螺旋溝に沿って流れる方向の異なる気泡を含む螺旋水流が同時に放出される際に衝突するようになされたことを特徴とするマイクロ・ナノバブル生成装置である。
また、本発明のマイクロ・ナノバブル水の生成装置は、上記着想に基づき、外管・内管の二重管構造の配管(口径比2:1)を作製、各管内に螺旋溝を設定し外管・内管の旋回方向をそれぞれ逆方向としたマイクロバブル発生部を備える前記のマイクロ・ナノバブル生成装置を準備する。そして、気体吸引エジェクターと循環ポンプと前記マイクロ・ナノバブル生成装置の2基のマイクロバブル発生部とを記載順に配管で接続する。マイクロバブルの発生は、循環ポンプの作動により、ポンプ吸入側の吸水管に設けた気体吸引エジェクターにより、水流の通過による負圧発生により気体を吸入させるとポンプ吐出側からはミリレベルの気泡を含んだ水流が吐出される。気泡を含んだ水流は配管を通り上記のマイクロバブル発生部(二重管構造部)に送られ、ここで水流は外管側螺旋溝と内管側螺旋溝に分かれ各溝に沿って流れることになる。各水流は螺旋溝を高速旋回しながら流れることになり、含まれる気泡には強い遠心力がかかるので急激に加圧圧縮され微細化される。各管溝から吐出された水流に含まれる気泡は旋回径に比例した遠心力(遠心力F=質量m×速度v2/旋回半径r)により加圧縮小されており、外管径:内管径=2:1の設定により気泡径も外管内気泡径:内管内気泡径=2:1となる。開放部において旋回方向の違いから激しく混流する際に各管の気泡が衝突することで内管の小さい気泡が外管の大きい気泡を剪断することになる。またこの時に摩擦が生じ、気泡が静電気を帯電することになる。
That is, the present invention includes two types of pipes having predetermined lengths with different opening diameters arranged inside and outside, and has a double structure pipe of an outer pipe and an inner pipe, and is in close contact with the inner surface of each pipe. A spiral member is arranged in a different direction to form a spiral member, and has a cavity communicating in the axial direction of the inner tube inside the spiral member in close contact with the inner surface of the inner tube. A micro-bubble generating part is formed by forming a spiral groove composed of an inner surface and each of the spiral members, and when the spiral water flow including bubbles of different directions flowing along the spiral groove is discharged at the same time, This is a method of generating micro / nano bubbles by friction and shearing.
Further, the present invention comprises a pipe of double structure of the outer tube and the inner tube by placing the two types of tubes with different predetermined lengths opening diameters inside and outside, in close contact with the inner surface of the front Stories each tube The linear members are spirally arranged in different directions to form a spiral member, and the inside of the spiral member in close contact with the inner surface of the inner tube has a cavity communicating in the axial direction of the inner tube. A microbubble generator having a spiral groove formed of an inner surface of the tube and each of the spiral members is formed, and collides when a spiral water flow including bubbles of different directions flowing along the spiral groove is simultaneously released. It is a micro / nano bubble generating device characterized by being made.
In addition, the micro / nano bubble water generator of the present invention is based on the above idea, and creates a double tube structure pipe (diameter ratio 2: 1) of an outer tube and an inner tube, and sets a spiral groove in each tube to form an outer tube. The above-mentioned micro / nano bubble generating device including a micro bubble generating unit in which the swirling directions of the tube and the inner tube are reversed is prepared. Then, the gas suction ejector, the circulation pump, and the two microbubble generating units of the micro / nano bubble generating device are connected by piping in the order of description. Microbubbles are generated by the operation of the circulation pump, and when the gas suction ejector provided in the water suction pipe on the pump suction side sucks in the gas due to the generation of negative pressure due to the passage of the water flow, millimeters of bubbles are generated from the pump discharge side. A water stream is discharged. The water stream containing bubbles is sent to the micro-bubble generation part (double pipe structure part) through the pipe, where the water stream is divided into an outer pipe side spiral groove and an inner pipe side spiral groove and flows along each groove. become. Each water flow flows while rotating at a high speed in the spiral groove, and since a strong centrifugal force is applied to the contained bubbles, they are rapidly compressed and miniaturized. The bubbles contained in the water flow discharged from each tube groove are reduced in pressure by centrifugal force (centrifugal force F = mass m × velocity v2 / swivel radius r) proportional to the swirl diameter, and the outer tube diameter: inner tube diameter. By setting = 2: 1, the bubble diameter also becomes the bubble diameter in the outer tube: the bubble diameter in the inner tube = 2: 1. When air bubbles are mixed violently due to the difference in swirl direction in the opening portion, the bubbles in each tube collide so that the small bubbles in the inner tube shear the large bubbles in the outer tube. At this time, friction occurs, and the bubbles are charged with static electricity.

各気泡が静電気によるマイナス電荷を帯電した後は同電荷反発により各気泡がマイクロバブルとして存在することが可能になる。発生したマイクロバブルは気液境界面での表面張力による自己加圧効果により圧壊していくことになるが、同時に気泡表面に帯電したマイナス電荷の電荷密度も増大するため、電解質イオンが濃縮された場合に生じる「イオン殻」と同様の作用が発生することになりイオン類の少ない淡水中でもマイクロ・ナノバブルとして安定することができる。   After each bubble is charged with a negative charge due to static electricity, each bubble can exist as a microbubble due to the repulsion of the same charge. The generated microbubbles are crushed by the self-pressurization effect due to the surface tension at the gas-liquid interface, but at the same time the charge density of negative charges charged on the bubble surface also increases, so the electrolyte ions are concentrated The same action as the “ion shell” that occurs in some cases occurs and can be stabilized as micro / nano bubbles even in fresh water with few ions.

水槽を循環するようポンプ配管を行い吐出水流側にマイクロバブル発生部を2基設置した。吸入側から気体吸引エジェクターを通して気体が吸引され、ポンプより気泡を含んだ水流が吐出される。水流が第一のマイクロバブル発生部を通過した段階で気泡は分散と微細化された状態になり、続いて第二のマイクロバブル発生部を通過することでさらに微細化されマイクロ・ナノバブルの発生を確実にしている。   Pump piping was circulated through the water tank and two microbubble generators were installed on the discharge water flow side. Gas is sucked from the suction side through the gas suction ejector, and a water flow containing bubbles is discharged from the pump. When the water flow passes through the first microbubble generator, the bubbles are dispersed and refined, and then pass through the second microbubble generator to further refine the micro-nano bubbles. Sure.

本発明は、従来の構造がスクリュー形状等からの渦流の発生に物理的障害物を用いることで加圧混入する気泡発生を行うため、渦流の発生から整流または分散を同管内で行うための連続構造から成る配管一体型であるのに対して、螺旋旋回部分から開放される2系統の水流の高速混流により気泡が微細化されるため、マイクロバブル発生部のみを局部的に配管内へ設置することで気泡発生が可能となる。これにより吐出水流のある配管内であれば局部設置できるので配管設計の簡素化が可能となること、更に、障害物面積が従来構造より少ないため圧力発生要件となる管内障害物が本構造では螺旋溝だけとなることで管内圧力が低くなることから低圧のポンプでも稼動でき、装置全体の簡素化及び省電力化も可能となる。また排圧の低下により気体吸引量が多い上に安定していることも特徴である。 This onset Ming, since the conventional structure makes the bubble generation to be mixed under pressure by using a physical obstacle to the generation of vortices from the screw shape, for performing the same tube a rectifier or dispersion from the occurrence of vortex In contrast to the pipe-integrated type consisting of a continuous structure, bubbles are refined by high-speed mixed flow of two water streams released from the spiral swivel part, so only the microbubble generating part is installed locally in the pipe This makes it possible to generate bubbles. This makes it possible to simplify the piping design because it can be installed locally in a pipe with a discharge water flow. In addition, the obstacle in the pipe, which is a requirement for pressure generation, is spiraled in this structure because the obstacle area is smaller than in the conventional structure. Since only the groove reduces the pressure in the pipe, it can be operated even with a low-pressure pump, and the entire apparatus can be simplified and power can be saved. In addition, the amount of gas suction is large and stable due to a decrease in exhaust pressure.

本発明のマイクロ・ナノバブル水生成装置はつのポンプによる水流を利用して気体を吸引し、配管内加工により2つの高速旋回流を作り混流させることでマイクロバブルを発生させ、ナノバブル生成までを吐水側水流の配管内で行うものである。 Generator of micro-nano bubble water of the present invention the gas is sucked by utilizing the water flow by one pump, to generate microbubbles thereby mixed flow produces two high-speed swirling flow by the working pipe, until Na Nobaburu product In the pipe of the water discharge side water flow.

(実施例1)
本発明の特徴である同一管内に口径比2:1に設定した外管と内管の二重管構造の配管を作製すると共に、各管内に螺旋溝を設定し外管側及び内管側の旋回方向をそれぞれ逆方向とした部分について図1を用いて説明する。図1はマイクロバブル発生部1を備えるマイクロ・ナノバブル生成装置の一実施例を示す分解斜視図であり、(a)図は内管螺旋部を示し、(d)図は外管螺旋部を示す。内管2は外径18mm内径13mmの金属製若しくは樹脂製パイプであり、螺旋部材3は金属製若しくは樹脂製で3.5mm×3.5mmの角状線材を右回りにピッチ15mmで旋回させ長さ110mmに形成し、外径を13mmに制御して前記内管に嵌入する。内管の長さを110mmに設定した。内管の端部に於ける螺旋部材3の端部形状は(a)図に示すように内管の軸心に平行に角状線材を切断する場合と、(b)図に示すように内管の端部面に平行に剪断する場合がある。これらの形状は特に限定されるものではないが製造手段に起因するものであり、螺旋部材3を内管2に嵌入後内管の長さを所定の長さに切断するときは前記(b)図の形状になる。また螺旋部材3を内管2の内部に固定する手段としては溶接、超音波溶着及び光造形法による内管の外周面及び内周面に螺旋溝を一体成形する方法などが利用できる。
Example 1
In the same pipe, which is a feature of the present invention, a pipe having a double pipe structure of an outer pipe and an inner pipe set at a caliber ratio of 2: 1 is prepared, and a spiral groove is set in each pipe to set the outer pipe side and the inner pipe side. The parts where the turning directions are opposite to each other will be described with reference to FIG. FIG. 1 is an exploded perspective view showing an embodiment of a micro / nano bubble generating apparatus including a micro bubble generating unit 1, (a) FIG. 1 shows an inner tube spiral portion, and (d) FIG. 1 shows an outer tube spiral portion. . The inner pipe 2 is a metal or resin pipe having an outer diameter of 18 mm and an inner diameter of 13 mm, and the spiral member 3 is made of metal or resin, and a 3.5 mm × 3.5 mm square wire is swung clockwise with a pitch P of 15 mm. The length is 110 mm, the outer diameter is controlled to 13 mm, and the inner tube is fitted. The length of the inner tube was set to 110 mm. The shape of the end of the spiral member 3 at the end of the inner tube is as follows: when the rectangular wire is cut parallel to the axis of the inner tube as shown in FIG. Sometimes shearing parallel to the end face of the tube. These shapes are not particularly limited, but are caused by the manufacturing means. When the length of the inner tube is cut to a predetermined length after the helical member 3 is fitted into the inner tube 2, the above-mentioned (b) It becomes the shape of the figure. As a means for fixing the spiral member 3 to the inside of the inner tube 2, a method of integrally forming a spiral groove on the outer peripheral surface and the inner peripheral surface of the inner tube by welding, ultrasonic welding, and stereolithography can be used.

内管2の外周面には図1(d)図に示すように前記角状線材を用いて螺旋部材4を形成する。螺旋の旋回方向は左回りでありピッチは同じく15mmに設定する。螺旋部材の端部形状は上述した場合と同様に内管端部面に平行な(e)図に示す場合と内管の軸心に平行に切断した(d)図の場合がある。内管2の周面に螺旋部材4を固定した後外管5に嵌入される。外管5の内径は25mmであり前記螺旋部材4の外径が嵌入されるような公差に仕上げられる。外管5の外径は後述する本発明のマイクロ・ナノバブル水生成装置の配管に用いられるパイプ仕様に準じて定められるが、外管5の全長は内管の全長即ち螺旋部材3及び4の長さより更に40mm長くして後述する気泡の衝突区間を設定しても良い。なお前記角状線材は断面形状が正方形であるがこれに限定されるものではなく他の多角形若しくは円形からなる線材が使用できる。 A spiral member 4 is formed on the outer peripheral surface of the inner tube 2 using the rectangular wire as shown in FIG. The spiral turning direction is counterclockwise, and the pitch P is also set to 15 mm. As in the case described above, the end shape of the spiral member may be parallel to the end surface of the inner tube (e) or may be cut parallel to the inner tube axis (d). After fixing the spiral member 4 to the peripheral surface of the inner tube 2, the inner tube 2 is fitted into the outer tube 5. The inner diameter of the outer tube 5 is 25 mm, and the outer tube 5 is finished with a tolerance such that the outer diameter of the spiral member 4 is inserted. Although the outer diameter of the outer tube 5 are determined in accordance with the pipe specifications for use in piping generator of micro-nano bubble water of the present invention described below, the outer tube 5 full length of the inner tube the full length i.e. the helical member 3 and 4 A bubble collision section, which will be described later, may be set by making it 40 mm longer than the length. The rectangular wire has a square cross-sectional shape, but is not limited thereto, and other polygonal or circular wires can be used.

図1において、内管2及び内管側螺旋部材3と外管側螺旋部材4が外管5の内部に挿着されると、各螺旋部材と管の側面で囲まれた螺旋溝6が形成され循環水流方向に水流を通じると水流は2流に分断され内管側には図1(c)図に示す螺旋水流7が右回りに、外管側には(f)図に示す左回りの螺旋水流8が生じることになる。水流の旋回方向は外管側と内管側が逆方向であれば良く上述した方向に限定されない。螺旋溝を通過した内管側及び外管側の螺旋水流は螺旋溝から放出された後、図2に示すように互いに衝突し混流して外管内から混流吐出水流として放出される。本実施例では外管5は長さL1の間が螺旋水流区間で長さ110mmであり、L2の区間が螺旋流の衝突区間である。L2は40mm程度設定するのが好ましい。 In FIG. 1, when the inner tube 2, the inner tube side spiral member 3 and the outer tube side spiral member 4 are inserted into the outer tube 5, a spiral groove 6 surrounded by each spiral member and the side surface of the tube is formed. When the water flow is passed in the direction of the circulating water flow, the water flow is divided into two flows, and the spiral water flow 7 shown in FIG. 1 (c) is turned clockwise on the inner tube side, and the left turn shown in FIG. The spiral water flow 8 is generated. The swirl direction of the water flow is not limited to the above-described direction as long as the outer tube side and the inner tube side are opposite directions. The spiral water flows on the inner tube side and the outer tube side that have passed through the spiral groove are discharged from the spiral groove, collide with each other as shown in FIG. 2, and are mixed and discharged from the outer tube as a mixed flow discharge water flow. In this embodiment, the outer pipe 5 is a spiral water flow section having a length of 110 mm between the lengths L1 , and the section L2 is a spiral flow collision section. L2 is preferably set to about 40 mm.

外管螺旋部では内径25mm、螺旋溝3.5mm×11.5mmをピッチ15mmにて管長110mmに設定しており、外管水流はこれに沿って高速旋回しながら流れることになる。内管螺旋部では内径13mm・螺旋溝3.5mm×11.5mmをピッチ15mmにて管長110mmに設定しており、内管水流はこれに沿って高速旋回しながら流れることになる。内管中心部は直径6mmの空洞部が生じているが、管内圧力を弱めるためと異物のつまりを防ぐ作用を有している。後述するが各水流に含まれる気泡は各旋回流による遠心力から溝内で加圧され急激に縮小するが、外管と内管の内径の比が2:1であり遠心力が異なるため圧縮時の気泡径は外管:内管=2:1の比となる。旋回前の気泡は後述するオリフィスにより均一分散を図っており、気泡径は外・内ともにほぼ同一であるが、前述の圧縮により外管・内管内の気泡は径が異なるため外管内気泡と内管内の気泡は内部圧力が異なり気泡表面の表面張力も異なることになる。同一径・同圧の気泡同士が衝突した場合は融合するか帯電しておれば反発することになるが、径が大きく内部圧が低圧な気泡に、径が小さく内部圧が高圧な気泡が衝突した場合には大きい気泡が剪断される。また剪断される時、気泡間に摩擦が生じ各気泡に静電気が発生し帯電する。この場合、気泡はマイナス電荷を帯びるため各気泡間は反発し合いマイクロバブルが形成される。 In the outer tube spiral portion, an inner diameter of 25 mm, a spiral groove of 3.5 mm × 11.5 mm is set to a tube length of 110 mm with a pitch of 15 mm , and the outer tube water flow flows along this while rotating at high speed. In the inner pipe spiral portion, an inner diameter of 13 mm and a spiral groove of 3.5 mm × 11.5 mm are set to a pipe length of 110 mm at a pitch of 15 mm, and the inner pipe water flow flows while swirling at a high speed. A hollow portion having a diameter of 6 mm is generated in the inner tube central portion, and has an effect of reducing the pressure in the tube and preventing clogging of foreign matters. As will be described later, the bubbles contained in each water flow are compressed in the groove due to the centrifugal force due to each swirl flow, but rapidly shrink, but the ratio of the inner diameter of the outer tube and the inner tube is 2: 1 and the centrifugal force is different, so the compression is The bubble diameter at that time is a ratio of outer tube: inner tube = 2: 1. The bubbles before swirling are uniformly dispersed by the orifices described later, and the bubble diameters are almost the same both inside and outside. However, due to the compression described above, the bubbles in the outer tube and the inner tube are different in diameter. The bubbles in the tube have different internal pressures and different surface tensions on the bubble surface. If bubbles of the same diameter and pressure collide, they will repel if they are fused or charged, but bubbles that have a large diameter and low internal pressure will collide with bubbles that have a small diameter and high internal pressure. If so, large bubbles are sheared. Further, when sheared, friction occurs between the bubbles, and static electricity is generated in each bubble to be charged. In this case, since the bubbles are negatively charged, the bubbles repel each other to form microbubbles.

(実施例2)
本発明に用いたマイクロ・ナノバブル水生成装置10の全体の構成について図3を用いて説明する。前記装置は水槽11と水を循環させる循環部12からなり、該循環部12は水流内に気体を吸引するエジェクター13、水流を発生させる循環ポンプ14、2つのマイクロ・ナノバブル生成装置を構成する第1のマイクロバブル発生部1a及び第2のマイクロバブル発生部1bを備え、これらを連結する配管部15で構成される。水流は図中の矢示方向に発生させる。水槽11を循環するようポンプ配管(25A・内径25mm)を行い、吸引側に気体を吸入するエジェクター13を設置する。その詳細は省略するがポンプ吸引による水流の中に空気導入管を配置し同管内に負圧が生じて気体が吸引され水中に混合される。ポンプ吐出側から気体を混合した水が第1のマイクロバブル発生部1aへ圧送されることになるが管内で気体は水中に混合した状態であり、均一な気泡分布とはなっていない。前記マイクロバブル発生部1a及び1bでは上述したように外管・内管に均一に気泡を含んだ水流が通ることが望ましいため、マイクロバブル発生部1a前方の管内に口径8.7mmのオリフィス16を設け水流を集約した直後に配管にエルボ17aを用いて水流を90度曲げることで整流効果を引き出し気泡の分散を均一化した。気泡を含んだ水流がマイクロバブル発生部1aを通過することにより、水流は上述した外管螺旋部と内管螺旋部の2流に分断されこれらの水流が衝突してマイクロバブルが生成される。気泡の衝突区間として各管の螺旋溝終点から外管内径25mmのまま長さ40mmを必要とする。
(Example 2)
It will be described with reference to FIG. 3 for the entire configuration of the generation device 10 of the micro-nano bubble water used in the present invention. The apparatus comprises a water tank 11 and a circulation part 12 for circulating water, and the circulation part 12 constitutes an ejector 13 for sucking gas into the water flow, a circulation pump 14 for generating the water flow, and two micro / nano bubble generation devices. 1 microbubble generating part 1a and 2nd microbubble generating part 1b are provided, and it comprises pipe part 15 which connects these. The water flow is generated in the direction of the arrow in the figure. Pump piping ( 25 A, inner diameter 25 mm ) is circulated through the water tank 11, and an ejector 13 for sucking gas is installed on the suction side. Although the details are omitted, an air introduction pipe is arranged in the water flow by pump suction, a negative pressure is generated in the pipe, and the gas is sucked and mixed in water. Water mixed with gas from the pump discharge side is pumped to the first microbubble generator 1a. However , the gas is mixed in water in the pipe, and the bubbles are not uniformly distributed. As described above, since it is desirable for the microbubble generators 1a and 1b to pass a water flow containing bubbles uniformly through the outer tube and the inner tube, an orifice 16 having a diameter of 8.7 mm is provided in the tube in front of the microbubble generator 1a. Immediately after the water flow was collected, the water flow was bent by 90 degrees using an elbow 17a in the pipe, thereby drawing out the rectification effect and making the dispersion of bubbles uniform. When the water flow containing bubbles passes through the microbubble generator 1a, the water flow is divided into two flows, the outer tube spiral portion and the inner tube spiral portion described above, and these water flows collide to generate microbubbles. As a bubble collision section, a length of 40 mm is required with the inner diameter of the outer tube being 25 mm from the end of the spiral groove of each tube.

以上がマイクロバブル発生部1aの工程となり、発生したマイクロバブルをマイクロ・ナノバブルとするため同様構造のマイクロバブル発生部1bを配管後方に設定している。ただし、マイクロバブル発生部1aを通過した水流は混流状態となっておりマイクロバブル発生部1bに気泡を均一に導入するため整流する必要からマイクロバブル発生部1aの後方の配管にエルボ17bを用いて水流を90度曲げ水流を整流している。整流されたマイクロバブルを含む水流はマイクロバブル発生部1bを上記同様行程にて通過することで、さらに圧縮・剪断・摩擦による帯電を繰り返すことになりマイクロバブルはより微細化されマイクロ・ナノバブルとして水中に放出される。発生したマイクロバブルは気液境界面での表面張力による自己加圧効果により圧壊していくことになるが、同時に気泡表面に帯電したマイナス電荷の電荷密度も増大するため、電解質イオンが濃縮された場合に生じる「イオン殻」と同様の作用が発生することになりイオン類の少ない淡水中でもマイクロ・ナノバブルとして安定に存続させることができる。 Above is set becomes the process of microbubble generating section 1a, a microbubble generation section 1b of similar structure to the generated microbubbles and Ma Micro-nano bubble in the pipe behind. However, since the water flow that has passed through the microbubble generator 1a is in a mixed state, it is necessary to rectify in order to uniformly introduce bubbles into the microbubble generator 1b, so that an elbow 17b is used in the piping behind the microbubble generator 1a. The water flow is bent 90 degrees to rectify the water flow. The flow of water containing the rectified microbubbles passes through the microbubble generator 1b in the same process as described above, and further repeats charging by compression, shearing, and friction, and the microbubbles are further refined to form micro / nano bubbles in the water. To be released. The generated microbubbles are crushed by the self-pressurization effect due to the surface tension at the gas-liquid interface, but at the same time the charge density of negative charges charged on the bubble surface also increases, so the electrolyte ions are concentrated The same action as the “ion shell” that occurs in some cases occurs and can be stably maintained as micro / nano bubbles even in fresh water with few ions.

(マイクロ・ナノバブルの発生の検証)
(1) 水流の差異による気泡の微細化について、他社技術では配管内の物理的障害物により気泡の微細化を行うため障害物面積が大きく配管内の圧力上昇により、配管内は0.4MP程度の圧力が発生しているが、本構造は障害物としてではなく水流誘導のための配管構造となることから障害面積は小さくなり、配管内の圧力は0.2MP程度と抑えられるが、目視上で従来製品と同様な水中が白濁化するマイクロバブルの発生が確認できることから物理的障害物による発生ではなく、構造上の水流効果によるマイクロバブルの発生と想定される。障害物面積を減らし0.2MP程度の圧力とした場合、従来の構造ではマイクロバブルは発生しない。これは従来構造では気泡の微細化を物理的障害物による効果に依存しているためであり、障害面積を減らせば微細化効率が減少することを証明している。
(Verification of micro / nano bubble generation)
(1) Regarding bubble miniaturization due to differences in water flow, the technology of other companies performs bubble miniaturization due to physical obstacles in the pipe, so the area of the obstacle is large and the pressure in the pipe rises, so the inside of the pipe is about 0.4MP However, this structure is not an obstacle but a pipe structure for water flow guidance, so the obstacle area is reduced and the pressure in the pipe is suppressed to about 0.2MP. Therefore, it can be confirmed that microbubbles are generated not by physical obstacles but by structural water flow effects. When the obstacle area is reduced to a pressure of about 0.2 MP, microbubbles are not generated in the conventional structure. This is because in the conventional structure, the refinement of bubbles depends on the effect of physical obstacles, and it has been proved that the refinement efficiency decreases if the obstacle area is reduced.

(2)気泡間の摩擦による帯電について、気泡同士が衝突することで摩擦が生じ静電気を帯電するから、静電気によるマイナス電荷の存在により水中の電位もマイナス値となる。本発明による処理水のph測定では試薬の反応条件として電位差があるためアルカリ反応を示しておりマイナス電荷の存在が確認された。   (2) Regarding charging due to friction between bubbles, friction occurs when bubbles collide with each other to charge static electricity. Therefore, the potential in water becomes negative due to the presence of negative charges due to static electricity. In the ph measurement of the treated water according to the present invention, since there was a potential difference as a reaction condition of the reagent, an alkaline reaction was shown, and the presence of a negative charge was confirmed.

(3) マイクロ・ナノバブルの発生について、本構造の装置により処理水を生成し
たところ目視ではあるが白濁化している。装置停止後数分経過で白濁化した処理水は透明状態に戻るが再度処理を行った場合、最初の処理時間より短い時間で白濁化することが確認できた。この現象は処理済後の経過時間を48時間程度経過した場合まで確認できたことから、処理水中に目視できないレベルのマイクロ・ナノバブルの存在が明らかである。
(3) About generation | occurrence | production of micro / nano bubble, when the treated water was produced | generated with the apparatus of this structure, although it is visual, it has become cloudy. The treated water that became clouded after a few minutes after the stop of the device returned to a transparent state, but when treated again, it was confirmed that it became clouded in a shorter time than the first treatment time. This phenomenon can be confirmed until about 48 hours have elapsed after the treatment, so that the presence of micro / nano bubbles at a level that cannot be visually observed in the treated water is clear.

液中に微細気泡を高濃度で供給できることから、酸素の供給による水質改善に多大な貢献ができる。上述した実施例では主に空気を含む気泡について述べているが、空気の代わりに酸素、オゾンなどの気体を用いた気泡の供給も可能であり、近年では水、汚泥、スラリーに含まれるダイオキシン類、農薬等の難分解性有機物を分解する手段として微細な気泡を用いる研究が進められている。簡素な構造により微細気泡が得られる手段として多方面の利用が期待できる。   Since fine bubbles can be supplied in a high concentration in the liquid, it can greatly contribute to water quality improvement by supplying oxygen. Although the embodiment described above mainly describes bubbles containing air, it is possible to supply bubbles using a gas such as oxygen or ozone instead of air, and in recent years dioxins contained in water, sludge, and slurry. In addition, research using fine bubbles as a means for decomposing persistent organic substances such as agricultural chemicals is underway. Many uses can be expected as means for obtaining fine bubbles with a simple structure.

本発明のマイクロバブル発生部の分解斜視図である(実施例1)。It is a disassembled perspective view of the microbubble generation | occurrence | production part of this invention (Example 1). 2系統の螺旋水流が衝突する様子を示す斜視図である(実施例1)。It is a perspective view which shows a mode that two systems of spiral water flow collide (Example 1). 本発明のマイクロ・ナノバブル水生成装置の構成説明図である(実施例2)。(Example 2) which is a structure explanatory drawing of the micro nano bubble water production | generation apparatus of this invention.

1 マイクロバブル発生部
2 内管
3 螺旋部材
4 螺旋部材
5 外管
6 螺旋溝
7 螺旋水流
8 螺旋水流
10 マイクロ・ナノバブル水の生成装置
11 水槽
13 気体吸引エジェクター
14 循環ポンプ
15 配管
16 オリフィス
DESCRIPTION OF SYMBOLS 1 Micro bubble generation | occurrence | production part 2 Inner pipe | tube 3 Spiral member 4 Spiral member 5 Outer pipe 6 Spiral groove 7 Spiral water flow 8 Spiral water flow 10 Micro / nano bubble water generator 11 Water tank 13 Gas suction ejector 14 Circulation pump 15 Piping part 16 Orifice

Claims (6)

開口径の異なる所定の長さを有する2種類の管を内外に配置して外管及び内管の二重構造の配管を備え、前記各管の内面に密接して線状部材をそれぞれ異なる方向に螺旋状に配置して螺旋部材となし、前記内管の内面に密接した前記螺旋部材の内側に前記内管の軸方向に連通する空洞を有し、前記各管の内面と前記各螺旋部材からなる螺旋溝を形成してマイクロバブル発生部を形成し、該螺旋溝に沿って流れる方向の異なる気泡を含む螺旋水流を同時に放出する際に衝突させて、前記気泡に摩擦と剪断を行いマイクロ・ナノバブルを生成する方法。 Two types of pipes having predetermined lengths with different opening diameters are arranged inside and outside to provide a double-structured pipe of an outer pipe and an inner pipe, and the linear members are in close contact with the inner surfaces of the pipes in different directions. A spiral member arranged in a spiral form, having a cavity communicating in the axial direction of the inner tube inside the spiral member in close contact with the inner surface of the inner tube, and the inner surface of each tube and each of the spiral members A micro-bubble generating part is formed by forming a spiral groove made of and colliding when a spiral water flow including bubbles of different directions flowing along the spiral groove is discharged at the same time, and friction and shearing are performed on the bubbles. -A method of generating nanobubbles. 前記外管及び内管に配置される螺旋部材の卷回するピッチを同じ長さにしたことを特徴とする請求項1に記載のマイクロ・ナノバブルを生成する方法。   2. The method of generating micro / nano bubbles according to claim 1, wherein the winding pitches of the spiral members arranged in the outer tube and the inner tube are set to the same length. 開口径の異なる所定の長さを有する2種類の管を内外に配置して外管及び内管の二重構造の配管を備え、前記各管の内面に密接して線状部材がそれぞれ異なる方向に螺旋状に配置されて螺旋部材とされ、前記内管の内面に密接した前記螺旋部材の内側に前記内管の軸方向に連通する空洞を有し、前記内外各管の内面と前記各螺旋部材からなる螺旋溝が形成されたマイクロバブル発生部を有し、前記螺旋溝に沿って流れる方向の異なる気泡を含む螺旋水流が同時に放出される際に衝突するようになされたことを特徴とするマイクロ・ナノバブル生成装置。 Comprising a pipe having a double structure of the outer tube and the inner tube two kinds of tubes having different predetermined lengths opening diameters arranged inside and outside, before Symbol closely to the inner surface of each tube is a linear member different from each other A spiral member arranged in a spiral direction, and having a cavity communicating with the inner tube in the axial direction inside the spiral member in close contact with the inner surface of the inner tube; A microbubble generator having a spiral groove formed of a spiral member is formed, and the spiral water flow including bubbles having different directions flowing along the spiral groove is collided when discharged simultaneously. Micro / nano bubble generator. 気体吸引エジェクターと、循環ポンプと、請求項3に記載のマイクロ・ナノバブル生成装置の2基のマイクロバブル発生部とを記載順に配管で接続し、循環ポンプの作動により前記気体吸引エジェクターに水を吸引させ、該吸引した水に気泡を生成した後、前記循環ポンプの吐出側配管内で吸引した気泡を分散させて前記マイクロバブル発生部を少なくとも2基通過させるように成したマイクロ・ナノバブル水の生成装置。   A gas suction ejector, a circulation pump, and the two microbubble generators of the micro / nanobubble generation device according to claim 3 are connected by piping in the order of description, and water is sucked into the gas suction ejector by the operation of the circulation pump. And generating bubbles in the sucked water, and then dispersing the sucked bubbles in the discharge-side piping of the circulation pump so that at least two microbubble generators pass through the micro / nano bubble water. apparatus. 循環ポンプの吐出側配管内にオリフィスを備え、該オリフィスを通過させることにより吸引した気泡を分散させるようにした請求項4に記載のマイクロ・ナノバブル水の生成装置。   The apparatus for generating micro / nano bubble water according to claim 4, wherein an orifice is provided in a discharge-side pipe of the circulation pump, and bubbles sucked by passing through the orifice are dispersed. 2基の前記マイクロ・ナノバブル生成装置の流入側の配管をエルボとし、水流を屈曲させて整流し、前記マイクロバブル発生部を通過させるようにした請求項4または5に記載のマイクロ・ナノバブル水の生成装置。   6. The micro / nano bubble water according to claim 4 or 5, wherein pipes on the inflow side of the two micro / nano bubble generation devices are elbows, the water flow is bent and rectified, and the micro bubble generation unit is allowed to pass through. Generator.
JP2008130205A 2008-05-16 2008-05-16 Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus Active JP5000583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130205A JP5000583B2 (en) 2008-05-16 2008-05-16 Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130205A JP5000583B2 (en) 2008-05-16 2008-05-16 Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus

Publications (3)

Publication Number Publication Date
JP2009274045A JP2009274045A (en) 2009-11-26
JP2009274045A5 JP2009274045A5 (en) 2011-03-03
JP5000583B2 true JP5000583B2 (en) 2012-08-15

Family

ID=41439958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130205A Active JP5000583B2 (en) 2008-05-16 2008-05-16 Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus

Country Status (1)

Country Link
JP (1) JP5000583B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834286B2 (en) * 2010-03-02 2015-12-16 国立大学法人秋田大学 Rice washing equipment using microbubbles
CA2833930C (en) * 2011-05-02 2017-03-07 Clearedge Power Corporation Energy dissipation device for controlling flow of a fuel cell fluid
KR101370229B1 (en) * 2012-09-10 2014-03-05 이승아 Micro-bubble generator
KR101410756B1 (en) * 2013-08-22 2014-06-24 주식회사 칼라카나 bubble generating apparatus
WO2014077561A1 (en) * 2012-11-15 2014-05-22 Lee Chun-Woo Bubble generator
KR101376974B1 (en) * 2012-11-20 2014-03-25 주식회사 칼라카나 Bubble feeding tube and bubble cutting tube of ballast water treatment apparatus
KR20160005070A (en) 2013-06-13 2016-01-13 시그마 테크놀로지 유겐가이샤 Micro and nano bubble generating method, generating nozzle, and generating device
JP5614696B1 (en) * 2013-08-12 2014-10-29 株式会社ヒサミ Microbubble generator
US10363526B2 (en) * 2015-08-07 2019-07-30 Nordson Corporation Entry mixing elements and related static mixers and methods of mixing
JP6999135B2 (en) * 2018-07-23 2022-01-18 株式会社Pmt Mixer, fine bubble-containing fluid generator, gas-liquid multiphase fluid flow formation method and fine bubble-containing fluid generation method
JP6832589B2 (en) * 2018-10-04 2021-02-24 株式会社大日工業 Ultra fine bubble generator
CN109260973B (en) * 2018-10-16 2024-04-09 江苏大学 Microbubble generating device based on sphere shearing effect
JP6971487B2 (en) * 2019-10-09 2021-11-24 株式会社サイエンス Bubble generator
JP7142386B1 (en) * 2021-06-15 2022-09-27 荒川工業株式会社 fine bubble generator
JP2023008752A (en) * 2021-07-01 2023-01-19 株式会社塩 Internal structure, fluid property changing device and utilization device thereof
CN117046335B (en) * 2023-10-11 2024-01-12 青岛朗兹环保科技有限公司 Opposite-impact micro-nano bubble generation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038026A (en) * 1984-01-30 1985-02-27 Yks Co Ltd Air-liquid mixing and dissolving apparatus
JPH1094723A (en) * 1996-09-20 1998-04-14 Eiichi Sugiura Fine bubbling device for gas in gas-mixed liquid
JP4558868B2 (en) * 1999-11-05 2010-10-06 株式会社ニクニ Gas-liquid mixing and dissolving device
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus

Also Published As

Publication number Publication date
JP2009274045A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5000583B2 (en) Micro / nano bubble generation method and apparatus, and micro / nano bubble water generation apparatus
JP2009274045A5 (en)
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
US10596528B2 (en) Nanobubble-producing apparatus
CN107744732B (en) Tubular micro-bubble generator
JP4893365B2 (en) Microbubble generator and microbubble generator system
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
JP2007021343A (en) Microbubble generator
GB2514202A (en) Micro-nanobubble generation systems
WO2014192896A1 (en) Micronanobubble generation method, micronanobubble generator, and micronanobubble generation device
JP2008086868A (en) Microbubble generator
CN111617656B (en) Micro-bubble generator serving as atomizer and using method thereof
KR101379239B1 (en) Nano bubble generating system
JP2016036775A (en) Fine bubble generator and method for generation of the same
KR102132815B1 (en) Micro bubble generating device
KR101980480B1 (en) Apparatus for generating nano bubble
US20230020501A1 (en) Internal structure, fluid characteristic changing apparatus, and utilization apparatus thereof
US20090309244A1 (en) Procedure and device of high efficiency for the generation of drops and bubbles
KR101947084B1 (en) Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
KR102118842B1 (en) apparatus for generating micro bubbles
JP2014217803A (en) Device for and method of generating fine bubble
CN112337327B (en) Nanometer bubble generating device
JP2010115586A (en) Microbubble generator
HK1025063A1 (en) Process for producing emulsions, particularly emulsions of liquid fuels and water, and apparatus used in the process
KR101524403B1 (en) Apparatus for generating micro bubbles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Ref document number: 5000583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250