JP2012139181A - Thermoplastic starch hybrid feed molding and method of manufacturing the same - Google Patents

Thermoplastic starch hybrid feed molding and method of manufacturing the same Download PDF

Info

Publication number
JP2012139181A
JP2012139181A JP2010294522A JP2010294522A JP2012139181A JP 2012139181 A JP2012139181 A JP 2012139181A JP 2010294522 A JP2010294522 A JP 2010294522A JP 2010294522 A JP2010294522 A JP 2010294522A JP 2012139181 A JP2012139181 A JP 2012139181A
Authority
JP
Japan
Prior art keywords
weight
feed
food
thermoplastic
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010294522A
Other languages
Japanese (ja)
Other versions
JP5598795B2 (en
Inventor
Satoru Matsuda
哲 松田
Go Aradono
剛 荒殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yasui Corp
Original Assignee
Yasui Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasui Corp filed Critical Yasui Corp
Priority to JP2010294522A priority Critical patent/JP5598795B2/en
Publication of JP2012139181A publication Critical patent/JP2012139181A/en
Application granted granted Critical
Publication of JP5598795B2 publication Critical patent/JP5598795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic starch hybrid feed molding at a low price in which marine algae, fish and shellfish or food processing residue is made a main raw material, only edible auxiliary feedstock is used, and which is excellent in shape retention, ingestion, and forming processability, and is easy to store.SOLUTION: An inorganic salt is added to a composition including: 0-60% by weight of marine algae; 0-60% by weight of fish and shellfish including a fish meal or the like, 0-60% by weight of a food processing residue; 10-80% by weight of polysaccharides of starch or the like: and 1-50% by weight of an edible plasticizer, the composition is sterilized under carbon dioxide of a supercritical state or subcritical state of at least 100°C in an extrusion reaction machine, then heat plasticized, and compression formed to have a moderate moisture content as a feed of abalone which has decreased bubbles.

Description

本発明は、熱可塑性有機物に関し、特に栄養素材、デンプンなどの多糖類又は脂肪酸のエステルなどの可塑剤、塩化マグネシウムなどの無機塩類を含有する原料を使用した熱可塑性有機物とその製造方法に関するものである。また、本発明は、この熱可塑性有機物からなる餌料に関するものである。   The present invention relates to a thermoplastic organic material, and more particularly to a thermoplastic organic material using a raw material containing a nutrient material, a plasticizer such as a polysaccharide such as starch or a fatty acid ester, or an inorganic salt such as magnesium chloride, and a method for producing the same. is there. Moreover, this invention relates to the feed which consists of this thermoplastic organic substance.

家畜や魚介類の飼育には各種餌料が用いられるが、給餌対象生物の飼育特性に的確に応じた飼料を与えることで給餌効率を高め、いかに低い生産コストで飼育できるかが重要な課題となっている。例えば、アワビ養殖において、餌は海藻類が用いられるが、季節的に海藻が枯渇するなど周年に渡り餌の安定的確保が困難であり、アワビ養殖業の普及拡大の支障となっている。海藻類を繁茂期に採取し、乾燥保管して枯渇期に用いても時間の経過により海水中で変質・腐敗するのでアワビは摂食できない。   Various feeds are used for raising livestock and seafood, but raising feed efficiency by providing feed that accurately matches the breeding characteristics of the organism to be fed is an important issue. ing. For example, in abalone farming, seaweed is used as a bait, but it is difficult to stably secure the bait over the year, such as seasonal seaweed depletion, which has hindered the spread of abalone aquaculture industry. Even if seaweeds are collected during the growing season, stored dry, and used during the depletion period, abalone cannot be eaten because it deteriorates and decays in seawater over time.

現在、陸上施設養殖用に市販されているアワビ用人工飼料は、高価であり、海水中で容易に崩壊・溶出しやすく、給餌効率が悪い欠点を有している。また、海水中に長時間放置すると変質・腐敗し、捕食したアワビは生理障害・斃死に至るという課題がある。一部で、海藻の枯渇期にサツマイモ等を餌として使用している養殖漁業者もいるが、その場合、基礎代謝分しか食さずに成長は望めない。   Currently, the artificial feed for abalone that is marketed for aquaculture on land is expensive, easily disintegrates and dissolves in seawater, and has the disadvantage of poor feeding efficiency. In addition, when left in seawater for a long time, the abalone is altered and rotted, and the predatory abalone has the problem of causing physiological disorders and drowning. In some cases, there are aquaculture fishers who use sweet potatoes as food during the seaweed depletion period, but in this case, they can eat only the basal metabolism and grow.

アワビの行動研究報告(非特許文献1)からアワビは餌の匂いに誘引されないことが知られており、動き回って餌に触れて確認してから摂食すると考えられている。
飼料の含水量は、生海藻の含水量が80〜90%であることから、なるべくそれに近い湿潤状態にした方が嗜好性に優れている。しかし、含水量を増やせば保形性が低下し、取り扱いが不便となり、また、黴が発生しやすいなど保存性の問題が生ずる。したがって、アワビを含む巻貝類の餌料では嗜好性は劣るものの保存性の面からみてその含水量を10%程度に抑えざるを得ないのが現状である。そこで、一定の含水量を有しながら腐敗し難い水分活性に調整されたものにする必要がある。
Abalone behavior research report (Non-patent Document 1) knows that abalone is not attracted by the smell of food, and is thought to eat after moving around and touching food.
Since the water content of the feed is 80 to 90% of the water content of raw seaweed, it is more preferable to make it wet as close as possible. However, if the water content is increased, the shape retention property is lowered, the handling becomes inconvenient, and the problem of storage stability such as wrinkles easily occurs. Therefore, although the palatability including the abalone is inferior in palatability, its water content has to be suppressed to about 10% from the viewpoint of storage stability. Therefore, it is necessary to adjust the water activity so that it does not easily rot while having a certain water content.

アワビ養殖用餌料において、配合飼料はコンブに比べ給餌作業の負担が少なく、確保が容易であり、成長が良いという利点があるので、現在普及が進んでいる。しかし、実用の配合飼料は、海水中での保形性が悪く1〜2日で崩壊してしまう。また、陸上水槽で養殖する場合は、崩壊した餌料により水質悪化を招くことから回収する作業を繰り返さなければならない。したがって、給餌作業に大きな労力を要するという欠点があり、水中での保形性に優れ、餌料成分が水に溶出しないものにする必要がある。   In abalone farming feed, compound feed is currently in widespread use because it has the advantage of being easy to secure and easy to grow, compared to kombu. However, practical blended feeds have poor shape retention in seawater and disintegrate in 1-2 days. Moreover, when cultivating in an onshore water tank, the work to collect must be repeated because water quality deteriorates due to broken food. Therefore, there is a drawback that a large amount of labor is required for the feeding operation, and it is necessary to have excellent shape retention in water so that the feed components do not elute into water.

そこで、例えば、特許文献1では、原料中の残存水分を固定化し、さらに水中での再分散性を改善する目的で、吸水性の物質、例えば、澱粉、吸水性パルプ、ポリビニルアルコールなどを混練時に混入し、型に充填し、加熱成形固形化する方法で提案されている。しかし、この方法では製品魚餌中の水分比率が大きく、腐敗、黴発生が起こりやすい欠点がある。また、型に充填した後、加熱するため、生産効率が低く経済的に不利である。   Therefore, for example, in Patent Document 1, water-absorbing substances such as starch, water-absorbing pulp, and polyvinyl alcohol are kneaded for the purpose of fixing residual moisture in the raw material and improving redispersibility in water. A method of mixing, filling in a mold, and solidifying by thermoforming has been proposed. However, this method has a drawback that the ratio of water in the product fish feed is large, and spoilage and sputum are likely to occur. Further, since the mold is heated after being filled, the production efficiency is low and it is economically disadvantageous.

特許文献2には、本発明者らの先の発明である水産廃棄物を魚餌に加工する方法が記載されている。この方法は主原料の水産廃棄物と副原料の多糖類などからなる熱可塑性を有するハイブリッド組成物を炭酸ガスの超臨界又は亜臨界条件下で滅菌し、水分率が30重量%未満の固形状の魚餌にするものである。しかし、魚餌中の水分量が多いため魚餌自体の強度が低く、水にも膨潤し易いという問題があった。   Patent Document 2 describes a method for processing fishery waste, which is the inventors' previous invention, into fish food. In this method, a hybrid composition having thermoplasticity composed of a marine waste as a main raw material and a polysaccharide as a secondary raw material is sterilized under supercritical or subcritical conditions of carbon dioxide gas, and a moisture content of less than 30% by weight is obtained. It's what makes fish feed. However, since the amount of water in the fish food is large, there is a problem that the strength of the fish food itself is low and the water easily swells in water.

例えば、特許文献3には、糊状とした飼料を、アワビ類の網地等の付着板に塗布又は接着して固着させたものが記載されているが、水中保形性の問題を解決でできるものではない。また、アルギン酸ナトリウムは高価で調製が煩雑になるばかりでなく、含水率の高いゲルは保存性に問題がある。また、特許文献3〜7に開示されたものは、栄養価は高いがエクストルーダ等で製造される餌料では水中保形性に問題がある。   For example, Patent Document 3 describes a paste-form feed that is applied or adhered to an abalone netting or other attachment plate to fix the problem of underwater shape retention. It is not possible. In addition, sodium alginate is not only expensive and complicated to prepare, but a gel with a high water content has a problem in storage stability. Moreover, although what was disclosed by patent documents 3-7 has a high nutritional value, there exists a problem in an underwater shape retention in the feed manufactured with an extruder etc.

なお、巻貝類の餌料組成物は予備的試験を行ったところ、コンブ含量5重量%で日間摂食率は5.9%(15℃)しかなかった。酒井らの報告(非特許文献2及び3)によるとワカメでは17.6%、アナアオサで12.4%(20.3℃)であることから海藻含有割合を増やすことが必要である。   In addition, when the feed composition of the snail was subjected to a preliminary test, the content of the kombu was 5% by weight and the daily feeding rate was only 5.9% (15 ° C.). According to reports by Sakai et al. (Non-Patent Documents 2 and 3), it is 17.6% for wakame and 12.4% (20.3 ° C.) for Anaaaosa, so it is necessary to increase the seaweed content.

川村軍蔵・加世堂照男・尾上敏幸(2009,7,28):アワビの人工餌食効果試験▲6▼ エゾアワビの化学感覚器と摂食行動 報告書.Kawamura Gunzo, Kasedo Teruo, Onoe Toshiyuki (2009, 7, 28): Abalone artificial prey effect test (6) Report of chemosensory organs and feeding behavior of abalone. 猪野 峻・酒井誠一(1971):アワビの生物学的研究.浅海完全養殖(今井丈夫監修),恒星社厚生閣,東京,pp.265−274.Sugano, S. and SAKAI, Seiichi (1971): Biological study of abalone. Shallow sea complete aquaculture (supervised by Takeo Imai), Hoshiseisha Koseikaku, Tokyo, pp. 265-274. 酒井誠一(1962):エゾアワビの生態学的研究−▲1▼,食性に関する実験的研究.日本水産学会誌,28(8),766−779.Seiichi Sakai (1962): Ecological study of Ezo abalone-(1), experimental research on food habits. Journal of Japanese Fisheries Society, 28 (8), 766-779.

特開平11−103789号公報JP-A-11-103789 特願2003−373214号公報Japanese Patent Application No. 2003-373214 特開平11−046696号公報JP-A-11-046696 実開2005−006525号公報Japanese Utility Model Publication No. 2005-006525 特開2008−306970公報JP 2008-306970 A 特開2006−223217号公報JP 2006-223217 A 特開平10−248497号公報Japanese Patent Laid-Open No. 10-248497

一般的に樹脂成形する場合、接着性のない材料を大量に混合すると満足な強度の成形体を作ることは困難である。本ハイブリッド餌料もアワビ養殖用餌料については、今後摂食率、成長率向上のために海藻含有量を大幅に増加する必要があるが、海藻を大量配合しても、海水中で崩壊しない成形体を如何にして成形するかが押出成形上の重要な課題である。   In general, when resin molding is performed, it is difficult to produce a molded article having satisfactory strength when a large amount of non-adhesive materials are mixed. As for this hybrid feed and abalone farming feed, it is necessary to greatly increase the seaweed content in order to improve the feeding rate and growth rate in the future. How to form is an important issue in extrusion molding.

炭酸ガスの超臨界又は亜臨界条件でのデンプン樹脂化とは、本出願人がかねてより研究開発を行ってきた炭酸ガスを水に溶解させ、特殊押出機内で超臨界又は亜臨界状態とし、デンプンの加水分解、脱水縮合、架橋反応を経て、デンプンを熱可塑性樹脂化する技術である。さらに「樹脂成形加工に用いる樹脂材料、成形条件の選定技術」によって、各種デンプン、可塑剤、添加剤の選定やデンプン樹脂化の押出成形条件の選定を行い、熱可塑化デンプン樹脂をマトリックス材料(つなぎ剤)とする海藻とのハイブリッド成形加工することによって、餌料として要求される十分な性能を持つ成形体を実現する。そして、アワビの摂食と成長に適し、常温で長期保存でき、海水中で崩壊・変質しない新規ハイブリッド餌料成形体の製造技術は、「デンプンの炭酸ガス超臨界又は亜臨界条件での押出成形加工技術」と「樹脂成形加工に用いる樹脂材料、成形条件の選定技術」によって達成されるものであるが、以下の技術的課題が残っている。   The conversion of carbon dioxide into starch resin under supercritical or subcritical conditions means that carbon dioxide gas, which has been researched and developed by the applicant for some time, is dissolved in water and made into a supercritical or subcritical state in a special extruder. This is a technology for converting starch into a thermoplastic resin through hydrolysis, dehydration condensation, and crosslinking reaction. Furthermore, by selecting “resin materials used for resin molding and molding conditions”, various starches, plasticizers, additives and extrusion molding conditions for starch resination are selected, and thermoplastic starch resin is used as a matrix material ( By forming a hybrid with seaweed used as a binder, a molded product having sufficient performance required as a feed is realized. And it is suitable for abalone feeding and growth, can be stored at room temperature for a long time, and the new hybrid feed molding technology that does not disintegrate or alter in seawater is “extrusion processing of starch in carbon dioxide supercritical or subcritical conditions. Although it is achieved by “technology” and “selection technology of resin material and molding conditions used for resin molding”, the following technical problems remain.

すなわち、アワビ養殖用餌料については、アワビの摂食率、成長率向上のために海藻含有量を大幅に増加する必要があるが、海藻を大量配合しても、海水中で崩壊せず、また、アワビの摂食行動から餌として認識させるために海藻同等の物性にする必要がある。しかし、現状は海藻のような柔軟性を持たせるために含水率を高くしており、成形加工性、常温保存性の獲得に課題がある。   That is, for abalone aquaculture feed, it is necessary to significantly increase the seaweed content in order to improve the feeding rate and growth rate of abalone, but even if a large amount of seaweed is blended, it does not collapse in seawater, In order to be recognized as food from abalone feeding behavior, it is necessary to make it equivalent to seaweed. However, at present, the water content is increased in order to provide flexibility like seaweed, and there are problems in obtaining moldability and storage at room temperature.

本発明は、以上のような従来技術の課題に鑑み、種々の餌料の嗜好性や保存性などを調整し、アワビ養殖用では餌である海藻類の枯渇期の餌不足を補うべく、繁茂期の海藻類をマトリックス材料でつなぎ、アワビが摂食しやすい形状及び柔軟性などの物性を持ち、水中での保形性、非腐敗性、保存性、成長性に優れた餌料を作出することなど、各種用途に対応した熱可塑性デンプンハイブリッド餌料成形体及びその製造方法を提供することを目的とするものである。   In view of the above-mentioned problems of the prior art, the present invention adjusts the palatability and preservation of various feeds, and in order to make up for the shortage of food in the depletion period of seaweed that is used for abalone culture, Of seaweeds with a matrix material, abalone is easy to eat and has physical properties such as flexibility, creating a food with excellent shape retention, non-rotability, storage stability, growth in water, etc. It is an object of the present invention to provide a thermoplastic starch hybrid feed molded article corresponding to various uses and a method for producing the same.

このため本発明の熱可塑性デンプンハイブリッド餌料成形体は、海藻0〜60重量%、魚介類0〜60重量%、食品加工残滓0〜60重量%、デンプンなどの多糖類10〜80重量%、可食性の可塑剤1〜50重量%からなる組成物に無機塩類を添加し、熱可塑樹脂化することを第1の特徴とする。そして、その製造方法を、海藻0〜60重量%、魚介類0〜60重量%、食品加工残滓0〜60重量%、デンプンなどの多糖類10〜80重量%、可食性の可塑剤1〜50重量%からなる組成物に無機塩類を添加し、100℃以上の炭酸ガスの超臨界又は亜臨界条件の殺菌又は滅菌工程、脱水縮合工程、押出し熱可塑工程により熱可塑樹脂化することを第2の特徴とする。さらに、熱可塑化した樹脂をブロック状、平板状、塊状、ペレット状、粒状の型枠で圧縮成形し、加熱工程時に発生する餌料内の気泡を減少させたことを第3の特徴とする。また、シェルター機能を有する形状に成形加工したことを第4の特徴とする。   For this reason, the thermoplastic starch hybrid feed molded product of the present invention comprises 0-60% by weight of seaweed, 0-60% by weight of seafood, 0-60% by weight of food processing residue, 10-80% by weight of polysaccharides such as starch, A first feature is that an inorganic salt is added to a composition comprising 1 to 50% by weight of an edible plasticizer to form a thermoplastic resin. And the manufacturing method consists of seaweed 0-60% by weight, seafood 0-60% by weight, food processing residue 0-60% by weight, polysaccharides such as starch 10-80% by weight, edible plasticizer 1-50 The second step is to add inorganic salts to a composition consisting of% by weight, and to make a thermoplastic resin by a supercritical or subcritical sterilization or sterilization step of carbon dioxide at 100 ° C. or higher, a dehydration condensation step, and an extrusion thermoplastic step. It is characterized by. Furthermore, the third feature is that the thermoplastic resin is compression-molded in block, flat, block, lump, pellet, and granular molds to reduce bubbles in the feed generated during the heating process. Further, the fourth feature is that the material is molded into a shape having a shelter function.

例えば、アワビ餌料成形体の好適な要件については、以下の通り列挙する。
(1)アワビの摂食・成長を促進させる組成であること。
(2)アワビが餌として認識できるような海藻同等の物性を有すること。
(3)海水中で崩壊せずに形状を保持できる強度を有すること。
(4)海水中で変質・腐敗せず、常温で長期間保存できること。
For example, suitable requirements for the abalone feed molding are listed as follows.
(1) A composition that promotes feeding and growth of abalone.
(2) It has the same physical properties as seaweed that abalone can recognize as food.
(3) It has the strength that can maintain its shape without collapsing in seawater.
(4) It can be stored for a long time at room temperature without being altered or spoiled in seawater.

すなわち、餌料素材の選定、炭酸ガス超臨界又は亜臨界状態でのデンプン樹脂化条件、押出成形条件の選定によって要求される形状や強度、保存性等を改善でき、一般的なEP飼料に用いられるエクストルーダ(高温高圧造粒機)などの他の製造方法ではできなかった新規餌料が製造できることになり、
(1)アワビの摂食性、成長性の促進については、ハイブリッド餌料成形体中の海藻含有量を増加させ、大量の海藻を含有しても海水中で崩壊せずに形状を保持できる強度を持つデンプン熱可塑性樹脂化条件(脱水縮合度など)、海藻混合条件(混合する海藻の大きさ)、押出成形条件(温度、圧力、スクリュー回転数)を最適化することで可能となり、また、必須栄養素や誘引物質等の添加もできる。
(2)海藻同様の形状と柔軟性については、アワビに忌避作用がない可塑剤とデンプンを選定した上で、薄板状に引き伸ばしても十分な強度を持ち、かつ水分を比較的保持した成形体の組成と成形条件調製で解決できる。
(3)海水中でも崩壊し難い強度については、餌料の圧縮や熱可塑性樹脂化デンプンの分子量を増大させるためにデンプン熱可塑性化条件(脱水縮合工程)の調整によって解決できる。
(4)保存性、非変質性については、加工時の滅菌、水分活性調整効果があるので、押出成形条件(温度)調整や無機塩、糖アルコールなどの可塑性・添加剤種の選定、組成検討によって解決できる。 また、熱可塑化デンプン樹脂は、石油由来の合成樹脂とは異なり、生体への毒性がなく、可食性、生分解性を持ち、餌料のマトリックス材料としての適正が高いことを確認している。
That is, it can improve the shape, strength, storage stability, etc. required by selection of feed materials, starch resination conditions in carbon dioxide supercritical or subcritical state, selection of extrusion molding conditions, and is used for general EP feed New food that could not be produced by other production methods such as extruder (high-temperature high-pressure granulator) can be produced.
(1) Regarding the promotion of abalone feeding and growth, it has the strength to increase the seaweed content in the hybrid food molding and maintain its shape without collapsing in seawater even if it contains a large amount of seaweed It is possible by optimizing starch thermoplastic resin conditions (degree of dehydration condensation, etc.), seaweed mixing conditions (size of seaweed to be mixed), extrusion molding conditions (temperature, pressure, screw rotation speed), and essential nutrients And attractants can also be added.
(2) Regarding the shape and flexibility similar to seaweed, a molded body that has sufficient strength even when stretched into a thin plate shape and relatively retained moisture after selecting a plasticizer and starch that do not repel abalone. Can be solved by adjusting the composition and molding conditions.
(3) The strength that does not easily disintegrate even in seawater can be solved by adjusting the starch thermoplasticizing conditions (dehydration condensation step) in order to increase the molecular weight of the compression of the feed or the thermoplastic resinized starch.
(4) Preservability and non-altering properties have effects of sterilization during processing and water activity adjustment, adjustment of extrusion molding conditions (temperature), selection of plastics and additive types such as inorganic salts and sugar alcohols, and composition studies Can be solved by. In addition, unlike petroleum-derived synthetic resins, it has been confirmed that thermoplastic starch resins have no toxicity to living bodies, are edible and biodegradable, and are highly suitable as matrix materials for feed.

本発明により、作出される餌料は栄養組成、嗜好性、保存性、保形性などを各種飼育動物の飼育特性に対応させ、調整し、加工することができる。
例えば、本発明により、作出したアワビ用餌料には以下の優れた効果がある。
(1)餌料効率の良い餌料
高成長の餌料を与えることにより、餌料コストの削減や飼育期間短縮による人件費等の削減に繋がる。
(2)保存性の良い餌料
常温で長期間保存できることにより、設備コストや餌料コストの削減に繋がる
(3)海水中の逸散が少ない餌料
餌料を効率的に摂食させることで餌料コストの削減に繋がる。
(4)海水中の安定性が良い餌料
アワビ養殖で主要な作業である給餌・残餌回収等の作業が省力化され、人件費等の削減に繋がる。
(5)加工性が良い餌料
熱可塑性樹脂であるため、餌料のサイズや形状は自由に変化させることができ、対象とする用途の目的に応じた様々な形状に加工することができる。
According to the present invention, the prepared feed can be adjusted and processed so that the nutritional composition, palatability, preservability, shape retention and the like correspond to the breeding characteristics of various domestic animals.
For example, the abalone feed produced by the present invention has the following excellent effects.
(1) Feed with good feed efficiency Feeding high-growth feed leads to reductions in feed costs and labor costs due to shortening of the breeding period.
(2) Feeds with good storage stability Can be stored at room temperature for a long time, leading to reductions in equipment costs and feed costs (3) Feeds with low dissipation in seawater Feeding costs can be reduced by feeding food efficiently It leads to.
(4) Feed with good stability in seawater The main tasks in abalone farming, such as feeding and collection of residual food, will be saved, leading to a reduction in labor costs.
(5) Feed with good processability Since it is a thermoplastic resin, the size and shape of the feed can be freely changed, and can be processed into various shapes according to the purpose of the intended application.

押出し成形直後及び圧縮成形後の餌料の状態を示す写真である。It is a photograph which shows the state of the feed immediately after extrusion molding and after compression molding. 浸水試験の結果を示す平板状の餌料成形体を示す写真である。It is a photograph which shows the flat food molded object which shows the result of a water immersion test. 本発明に係る熱可塑性デンプンハイブリッド餌料成形体の形状の例を示す斜視図である。It is a perspective view which shows the example of the shape of the thermoplastic starch hybrid feed molding which concerns on this invention. 本発明に係る熱可塑性デンプンハイブリッド餌料成形体による箱状体の例を示す斜視図である。It is a perspective view which shows the example of the box-shaped body by the thermoplastic starch hybrid feed molding which concerns on this invention.

本発明に係る熱可塑性デンプンハイブリッド海藻餌料成形体の製造方法としては、ワカメ、コンブ等の海藻粉末0〜60重量%、魚粉などを含む魚介類0〜60重量%、食品加工残滓0〜60重量%、デンプンなどの多糖類10〜80重量%、可食性のグリセリン等の可塑剤1〜50重量%からなる組成物に塩化マグネシウム等の無機塩を添加したものを破砕混合工程、100℃以上の炭酸ガスの超臨界又は亜臨界条件の殺菌又は滅菌工程、脱水縮合工程、押出し熱可塑工程により熱可塑樹脂化する。   As a manufacturing method of the thermoplastic starch hybrid seaweed food molding concerning the present invention, seaweed powder such as seaweed and kombu 0 to 60% by weight, seafood including fish meal etc. 0 to 60% by weight, food processing residue 0 to 60% %, A composition comprising 10 to 80% by weight of a polysaccharide such as starch, 1 to 50% by weight of a plasticizer such as edible glycerin, and a mixture obtained by adding an inorganic salt such as magnesium chloride. It is converted into a thermoplastic resin by a supercritical or subcritical sterilization or sterilization process of carbon dioxide gas, a dehydration condensation process, or an extrusion thermoplastic process.

海藻のつなぎ材料として多糖類を使用することにより、餌料の強度の向上、膨潤速度および崩壊速度を低下させることができる。多糖類としてはデンプン、セルロース、ヘミセルロースなどを使用する。多糖類が多く含まれるイモ類、穀類(小麦由来が好ましい)などをそのまま使用することもできる。多糖類の配合量は使用する海藻の種類により異なる。この多糖類の重量配合量については、原材料全体の10重量%〜80重量%であることが望ましい。さらに好ましくは30重量%〜70重量%であることが望ましい。また、このように、つなぎ材料として石油由来のプラスチック樹脂ではなく植物由来の安価な澱粉等の多糖類を使用することは、経済的に有利であり、また自然環境に対しても優しい。   By using polysaccharides as a seaweed tether, it is possible to improve the strength of the feed, reduce the swelling rate and the decay rate. As the polysaccharide, starch, cellulose, hemicellulose and the like are used. Potatoes and cereals (preferably derived from wheat) containing a large amount of polysaccharides can be used as they are. The amount of polysaccharide blended varies depending on the type of seaweed used. About the weight compounding quantity of this polysaccharide, it is desirable that it is 10 to 80 weight% of the whole raw material. More preferably, it is 30 to 70% by weight. As described above, it is economically advantageous to use polysaccharides such as plant-derived inexpensive starch instead of petroleum-derived plastic resin as a connecting material, and it is also friendly to the natural environment.

また、本発明の餌料の強度の向上、膨潤速度および分解・崩壊速度を低下させるために生分解性の樹脂を使用することもできる。生分解性樹脂としては脂肪族、芳香族のポリエステル又はそれらの共重合ポリエステルなどを使用することができる。   In addition, a biodegradable resin can be used to improve the strength of the feed of the present invention, and reduce the swelling rate and degradation / disintegration rate. As the biodegradable resin, aliphatic polyester, aromatic polyester or copolymerized polyester thereof can be used.

本発明の熱可塑性デンプンハイブリッド餌料成形体は、海藻、魚介類、食品加工残滓と多糖類を混合し、押出し機により熱可塑化することにより樹脂化し、これを冷却して固化させることにより固形状の餌料とするものである。熱可塑化する場合、可塑剤を加えることにより、熱可塑性を向上させることができる。また、可塑剤の配合量を増加させることにより、さらに熱可塑性を向上させることができる。可塑剤には可食性のグリセリン、プロピレングリコール、ソルビトール、マンニトール、キシリトールなどが使用できる。   The thermoplastic starch hybrid feed molded article of the present invention is a solid form obtained by mixing seaweed, seafood, food processing residue and polysaccharides, resinating by thermoplasticizing with an extruder, and cooling and solidifying this. It is to be used as a feed. When thermoplasticizing, thermoplasticity can be improved by adding a plasticizer. Further, the thermoplasticity can be further improved by increasing the blending amount of the plasticizer. Edible glycerin, propylene glycol, sorbitol, mannitol, xylitol and the like can be used as the plasticizer.

また、可塑剤の添加は熱可塑性を向上させるだけでなく、熱可塑化した樹脂に柔軟性を持たせることができる。例えば、本発明の餌料をアワビ養殖に使用する場合、アワビが餌料を摂食した際の感触は天然のワカメやコンブと同様の状態にすることが好ましい。すなわち、天然の海藻に近似した適度な硬度と柔軟性を持たせることが好ましい。本発明の餌料は可塑剤の配合量を多くすることにより優れた柔軟性を持たせることができる。経済性を考慮すると、可食性可塑剤の重量配合量は原材料全体の1重量%〜50重量%であることが望ましい。さらに好ましくは1重量%〜35重量%であることが望ましい。   Moreover, the addition of a plasticizer not only improves the thermoplasticity but also allows the thermoplasticized resin to have flexibility. For example, when the feed of the present invention is used for abalone culture, it is preferable that the feel when abalone eats the feed be in a state similar to that of natural seaweed or kombu. That is, it is preferable to have an appropriate hardness and flexibility similar to natural seaweed. The feed of the present invention can have excellent flexibility by increasing the blending amount of the plasticizer. In consideration of economy, it is desirable that the weight blending amount of the edible plasticizer is 1% by weight to 50% by weight of the whole raw material. More preferably, the content is 1% by weight to 35% by weight.

また、塩化マグネシウム、塩化カルシウム等の無機塩類の添加は、無機塩類による水分活性調整作用で、嗜好性(高水分)と保存性(低自由水)の両立を図ることができる。ここで、水分活性とは、食品中の自由水の割合を表す数値で食品の保存性の指標であり、食品中で微生物が繁殖するためには適切な量の自由水が存在することが不可欠であり、0.6以下ではすべての微生物が繁殖不可能となる。   Addition of inorganic salts such as magnesium chloride and calcium chloride can adjust both the palatability (high moisture) and the storage stability (low free water) by adjusting the water activity by the inorganic salts. Here, the water activity is a numerical value representing the ratio of free water in food and is an index of food preservation. It is essential that an appropriate amount of free water is present in order for microorganisms to grow in food. In the case of 0.6 or less, all microorganisms cannot be propagated.

また、上記の各可塑剤を配合する際に、魚油、肝油、エビ油、イカ油を併用すると、餌料に可塑性や柔軟性を持たせるだけでなく、摂餌成分としての働きを持たせることができる。また、その他に、摂餌成分として各種アミノ酸ならびにアミノ酸混合物、ビタミン、ミネラル、色素、脂肪などの許可された添加剤、水産動物エキスや精製魚油(油脂)等を必要に応じて配合し使用することもできる。   In addition, when blending each of the plasticizers described above, fish oil, liver oil, shrimp oil, and squid oil can be used not only to give the feed plasticity and flexibility, but also to act as a feeding ingredient. it can. In addition, various amino acids and amino acid mixtures, permitted additives such as vitamins, minerals, pigments, fats, aquatic animal extracts and refined fish oils (oils and fats) should be added and used as necessary. You can also.

本発明の製造工程は、100℃以上の炭酸ガス超臨界又は亜臨界条件の殺菌又は滅菌工程、脱水縮合工程、押出し可塑成形工程からなる一貫連続工程が好ましい。ちなみに、炭酸ガスは温度31.1℃以上、圧力7.48MPa以上の条件下で超臨界状態となり、温度31.1℃以上、圧力7.48MPa未満の条件下および温度31.1℃未満、圧力7.48MPa以上の条件下で亜臨界状態となる。これらの工程により殺菌又は滅菌され、熱可塑樹脂化された固形状餌料を得ることができる。   The production process of the present invention is preferably an integrated continuous process comprising a carbon dioxide supercritical or subcritical sterilization or sterilization process at 100 ° C. or higher, a dehydration condensation process, and an extrusion plastic molding process. Incidentally, carbon dioxide gas becomes a supercritical state under the conditions of a temperature of 31.1 ° C. or more and a pressure of 7.48 MPa or more, a temperature of 31.1 ° C. or more and a pressure of less than 7.48 MPa, a temperature of less than 31.1 ° C., a pressure 7. It becomes a subcritical state under the condition of 48 MPa or more. By these steps, a solid feed sterilized or sterilized and converted into a thermoplastic resin can be obtained.

腐敗とは細菌により蛋白質、炭水化物、脂肪などが分解された状態を意味する。腐敗したものを摂取すると分解物が動物の生体に悪影響を及ぼし生理障害が発生する。しかし、本発明の餌料の場合、100℃以上の炭酸ガス超臨界又は亜臨界条件で殺菌又は滅菌した後、脱水縮合工程で再縮合されるため、加工後の腐敗を防止することができ、アワビに害はなく、そのアワビを摂取する人体にも害は及ばない。   Rotting means a state in which proteins, carbohydrates, fats and the like are decomposed by bacteria. Ingestion of spoiled food will cause the degradation products to adversely affect the animal's body and cause physiological disorders. However, in the case of the feed of the present invention, it is sterilized or sterilized under supercritical or subcritical conditions of carbon dioxide at 100 ° C. or higher, and then recondensed in the dehydration condensation process. There is no harm to the human body that ingests the abalone.

海藻には水分が多く含まれているが、これらの水は可塑剤として作用し、必要のない水分については脱水縮合工程で30重量%以下に調整される。含水率の測定は常温加熱、直接法(※五訂 日本食品標準成分表分析マニュアル)で求めた。   Seaweed contains a lot of water, but these waters act as plasticizers, and unnecessary water is adjusted to 30% by weight or less in the dehydration condensation process. The moisture content was measured by heating at room temperature and using the direct method (* 5th edition Japanese Food Standard Composition Table Analysis Manual).

本発明の餌料は押出し成形、圧縮成形により製造するため、その形状およびサイズは金型等を用いて自由に変化させることができ、対象動物の成長度合いにより調節することが可能である。例えば、図3に示すように押出し時に、成形体1を筒状または半筒状等に形成して凹部2を設けることにより、夜行性であるアワビに対する遮光と避難場所となるシェルター機能を付与することができる。また、成形体1の外層3と内層4に厚みの差や硬度差を持たせることで、保形性の高い外殻と柔軟で摂食が容易な内面を持たせることもでき、アワビをより安定した環境で肥育することができる。   Since the feed of the present invention is produced by extrusion molding or compression molding, its shape and size can be freely changed using a mold or the like, and can be adjusted according to the degree of growth of the target animal. For example, as shown in FIG. 3, at the time of extrusion, the molded body 1 is formed in a cylindrical shape or a semi-cylindrical shape, and the concave portion 2 is provided, thereby providing a shelter function as a nocturnal abalone and a shelter function as an evacuation site. be able to. In addition, by providing the outer layer 3 and the inner layer 4 of the molded body 1 with a difference in thickness or hardness, it is possible to provide an outer shell with high shape retention and an inner surface that is flexible and easy to eat. Can be fattened in a stable environment.

すなわち、海水に対する膨潤速度を遅くしたい場合については、外層3を硬く厚くする割合を多くすることで膨潤する速度を遅めにコントロールすることができる。また、海水中において部分的に強度を持たせたい場合においても同様で、海水の膨潤を抑制させ強度を保持することができる。一方、被覆しない部位については、すぐに摂食される柔軟性を持たせ、全体として餌料の膨潤速度に幅を持たせることで長い期間にわたり、アワビが摂食することで良好な成長を得ることができる。   That is, when it is desired to slow the swelling speed with respect to seawater, the swelling speed can be controlled to be slow by increasing the ratio of making the outer layer 3 harder and thicker. The same applies to the case where it is desired to partially provide strength in seawater, and the strength can be maintained by suppressing the swelling of seawater. On the other hand, about the part which is not covered, it has the flexibility to be eaten immediately, and the growth rate of the food as a whole gives a wide growth rate by feeding abalone over a long period of time. Can do.

さらに、図4に示すように、アワビなどの水棲生物を放流する場合に、開閉自在な蓋5aを備え、各側面に複数の通水孔5bが形成された箱状の餌料成形体5を作り、これに種苗を入れて海中に投入沈下することで、食害生物による捕食を避けるとともに、放流後の餌の補給を併せて行うことで生残率を向上させることもできる。   Further, as shown in FIG. 4, when releasing aquatic organisms such as abalone, a box-shaped food molded body 5 having a lid 5a that can be opened and closed and having a plurality of water passage holes 5b formed on each side surface is formed. By adding seedlings and submerging them into the sea and subsiding them in the sea, it is possible to avoid predation by pests and to improve the survival rate by supplementing the food after release.

ワカメ粉末7.4重量%、コンブ粉末7.4重量%、小麦デンプン37.0重量%、小麦粉27.8重量%、グリセリン3.7重量%、塩化マグネシウム16.7重量%の餌料原料混合物100重量部に飽和炭酸水(pH=5.4)46.0重量部を投入し、混合工程で混合したスラリー(かゆ状の混合物)をせん断力下、145℃、1MPaで滅菌処理を行った。その後、連続した減圧状態での脱水縮合工程を経て、縦3mm、横50mmのノズルからダイス圧力0.3MPaで押出し、平板状の金型を装着したプレス機を使用して厚み2〜3mmの平板状に成形した。製造した餌料には適度の弾力性、柔軟性があり、アワビが摂餌したことを確認できた(図1参照)。   Feed material mixture 100 of wakame powder 7.4 wt%, kombu powder 7.4 wt%, wheat starch 37.0 wt%, wheat flour 27.8 wt%, glycerin 3.7 wt%, magnesium chloride 16.7 wt% 46.0 parts by weight of saturated carbonated water (pH = 5.4) was added to parts by weight, and the slurry (itch mixture) mixed in the mixing step was sterilized at 145 ° C. and 1 MPa under shear force. Then, after a dehydration condensation process in a continuous reduced pressure state, extrusion was performed at a die pressure of 0.3 MPa from a nozzle having a length of 3 mm and a width of 50 mm, and a flat plate having a thickness of 2 to 3 mm using a press machine equipped with a flat plate mold. Formed into a shape. The manufactured feed had moderate elasticity and flexibility, and it was confirmed that abalone had been fed (see FIG. 1).

成形した直後の餌料の水分、水分活性の測定、細菌検査を実施した結果、水分14.4%、水分活性0.50、一般細菌数300個/g以下、カビ陰性(−)であった。   As a result of measuring the moisture and water activity of the feed immediately after molding and conducting a bacterial test, the water content was 14.4%, the water activity was 0.50, the number of general bacteria was 300 / g or less, and the mold was negative (-).

さらに、ポリエチレン製チャック付き袋に25℃で60日間保管した餌料の水分、水分活性の測定、細菌検査も実施した。結果は、水分14.1%、水分活性0.50で変化せず、また、一般細菌数300個/g以下、カビ陰性(−)であり、黴の発生、腐敗は認められなかった。結果を表1及び表2に示す。   In addition, the moisture and water activity of the food stored in a polyethylene bag with a chuck for 60 days at 25 ° C. were measured, and the bacteria were also examined. The result was 14.1% moisture and water activity 0.50, and the number of general bacteria was 300 or less / g, mold-negative (-), and generation of sputum and spoilage were not observed. The results are shown in Tables 1 and 2.

図2に示すように、実施例1において製造した平板状の餌料成形体を、水中に浸漬して腐敗性試験(一般細菌数、かび)を実施した結果、陸上水槽、海面生簀への浸漬1日、3日経過後も腐敗は認められなかった。   As shown in FIG. 2, as a result of performing the septic test (general number of bacteria, mold) by immersing the plate-shaped molded food product produced in Example 1 in water, immersion in an onshore water tank and sea surface ginger 1 No corruption was observed after 3 days.

実施例1において製造した平板状の餌料成形体を、8〜11℃の海水中に浸漬して崩壊状態を調査した結果、7日経過後も保形していた。これにより、餌料が崩壊するまでにアワビが摂取するのに十分な時間があることが確認できた。結果を図2、表3及び表4に示す。   As a result of investigating the collapsed state by immersing the plate-like food molded article produced in Example 1 in seawater at 8 to 11 ° C., the shape was retained even after 7 days. This confirmed that there was enough time for the abalone to ingest before the food collapsed. The results are shown in FIG. 2, Table 3 and Table 4.

実施例1と同様にして主原料をワカメ粉末3.5重量%、コンブ粉末2.6重量%、小麦デンプン45.6重量%、小麦粉17.5重量%、グリセリン3.5重量%、塩化マグネシウム21.9重量%、ビタミン混合物4.3重量%、タラ肝油0.7重量%、大豆レシチン0.4重量%の餌料原料混合物100重量部に飽和炭酸水(pH=5.3)43.0重量部を投入し、混合工程で混合したスラリー(かゆ状の混合物)をせん断力下、140℃、1MPaで滅菌処理を行った。その後、連続した減圧状態での脱水縮合工程を経て、縦3mm、横50mmのノズルからダイス前圧力0.2MPaで押出し、厚み2〜3mmの平板状に成形された餌料を製造した。   In the same manner as in Example 1, the main raw materials were 3.5% by weight of wakame powder, 2.6% by weight of kumbu powder, 45.6% by weight of wheat starch, 17.5% by weight of wheat flour, 3.5% by weight of glycerin, magnesium chloride 23.0% by weight, vitamin mixture 4.3% by weight, cod liver oil 0.7% by weight, soy lecithin 0.4% by weight, 100 parts by weight of feed ingredient mixture, saturated carbonated water (pH = 5.3) 43.0 Part by weight was added, and the slurry (itch mixture) mixed in the mixing step was sterilized at 140 ° C. and 1 MPa under shear force. Thereafter, through a continuous dehydration condensation process in a reduced pressure state, extrusion was performed from a nozzle of 3 mm in length and 50 mm in width at a pressure before die of 0.2 MPa to produce a feed formed into a flat plate having a thickness of 2 to 3 mm.

成形した直後の餌料の水分、水分活性の測定、細菌検査を実施した結果、水分15.7%、水分活性0.52、一般細菌数300個/g以下、カビ陽性(+)(実数30個/g)であった。   As a result of measuring the water content and water activity of the feed immediately after molding and conducting a bacterial test, the water content was 15.7%, the water activity was 0.52, the number of general bacteria was 300 or less, mold positive (+) (30 real numbers) / g).

さらに、ポリエチレン製チャック付き袋に25℃で60日間保管した餌料の水分、水分活性の測定、細菌検査も実施した。結果は、水分15.1%、水分活性0.50で変化せず、また、一般細菌数300個/g以下、カビ陰性(−)であり、黴の発生、腐敗は認められなかった。結果を表5及び表6に示す。   In addition, the moisture and water activity of the food stored in a polyethylene bag with a chuck for 60 days at 25 ° C. were measured, and the bacteria were also examined. The results were unchanged at 15.1% moisture and 0.50 water activity, and the number of general bacteria was 300 or less / g, mold-negative (−), and generation of sputum and spoilage were not observed. The results are shown in Tables 5 and 6.

実施例2において製造した平板状の餌料成形体を、水中に浸漬して腐敗性試験(一般細菌数、かび)を実施した結果、陸上水槽、海面生簀への浸漬1日、3日経過後も腐敗は認められなかった。結果を表7及び表8に示す。   As a result of immersing the plate-shaped molded food product produced in Example 2 in water and conducting a septic test (general number of bacteria, fungi), it was rotted after a lapse of 1 day and 3 days in an onshore water tank and sea surface ginger. Was not recognized. The results are shown in Table 7 and Table 8.

上記各実施例において、塩化マグネシウムを添加することにより、水分が14〜18%、水分活性が約0.5というアワビに対する嗜好性と保存性に優れた餌料が得られた。   In each of the above Examples, by adding magnesium chloride, a feed excellent in palatability and storage stability with abalone having a water content of 14 to 18% and a water activity of about 0.5 was obtained.

1 餌料
2 凹部
3 外層
4 内層
5 箱体
5a 蓋
5b 通水孔
DESCRIPTION OF SYMBOLS 1 Feed 2 Recess 3 Outer layer 4 Inner layer 5 Box 5a Lid 5b Water passage hole

Claims (4)

海藻0〜60重量%、魚介類0〜60重量%、食品加工残滓0〜60重量%、デンプンなどの多糖類10〜80重量%、可食性の可塑剤1〜50重量%からなる組成物に無機塩類を添加し、熱可塑樹脂化して形成したことを特徴とする熱可塑性デンプンハイブリッド餌料成形体。 A composition comprising 0 to 60% by weight of seaweed, 0 to 60% by weight of seafood, 0 to 60% by weight of food processing residue, 10 to 80% by weight of polysaccharides such as starch, and 1 to 50% by weight of edible plasticizer. A thermoplastic starch hybrid feed molded article formed by adding inorganic salts and forming a thermoplastic resin. 請求項1からなる組成物を100℃以上の炭酸ガスの超臨界又は亜臨界条件の殺菌又は滅菌工程、脱水縮合工程、押出し熱可塑工程により熱可塑樹脂化することを特徴とする熱可塑性デンプンハイブリッド餌料成形体の製造方法。 A thermoplastic starch hybrid characterized in that the composition comprising claim 1 is converted into a thermoplastic resin by a supercritical or subcritical sterilization or sterilization process of carbon dioxide at 100 ° C or higher, a dehydration condensation process, and an extrusion thermoplastic process. A method for producing a molded food product. 請求項1又は請求項2からなる餌料成形体を、ブロック状、塊状、平板状、ペレット状、粒状の型枠内で圧縮成形し、餌料内の気泡を減少させたことを特徴とする熱可塑性デンプンハイブリッド餌料成形体。 Thermoplastic characterized by compression-molding the molded body of the feed consisting of claim 1 or claim 2 in a block, block, flat plate, pellet, or granular mold to reduce bubbles in the feed. Starch hybrid feed molding. 請求項1乃至請求項3のいずれかからなる餌料成形体を、シェルター機能を有する形状に成形加工したことを特徴とする熱可塑性デンプンハイブリッド餌料成形体。 A thermoplastic starch hybrid food molded article, wherein the food molded article comprising any one of claims 1 to 3 is molded into a shape having a shelter function.
JP2010294522A 2010-12-29 2010-12-29 Thermoplastic starch hybrid feed molding and method for producing the same Active JP5598795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294522A JP5598795B2 (en) 2010-12-29 2010-12-29 Thermoplastic starch hybrid feed molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294522A JP5598795B2 (en) 2010-12-29 2010-12-29 Thermoplastic starch hybrid feed molding and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012139181A true JP2012139181A (en) 2012-07-26
JP5598795B2 JP5598795B2 (en) 2014-10-01

Family

ID=46676129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294522A Active JP5598795B2 (en) 2010-12-29 2010-12-29 Thermoplastic starch hybrid feed molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP5598795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119644A (en) * 2013-12-20 2015-07-02 ジェックス株式会社 Solid feed for aquarium fish

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129396A (en) * 1974-03-20 1975-10-13
JPS6291989U (en) * 1985-11-30 1987-06-12
JPH01231854A (en) * 1988-03-11 1989-09-18 Kyokuto Shiryo Kk Assorted feed for breeding sea snail and echinoid and production thereof
JPH10248497A (en) * 1997-03-14 1998-09-22 Nippon Nousan Kogyo Kk Feed for snail and its production
JP2005130823A (en) * 2003-10-31 2005-05-26 Yasui Kk Fish feed
JP2008086274A (en) * 2006-10-03 2008-04-17 Yasui Kk Solid fish feed and method for producing the same
JP2010035434A (en) * 2008-07-31 2010-02-18 Yasui Kk Smooth solid-shaped fish bait and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129396A (en) * 1974-03-20 1975-10-13
JPS6291989U (en) * 1985-11-30 1987-06-12
JPH01231854A (en) * 1988-03-11 1989-09-18 Kyokuto Shiryo Kk Assorted feed for breeding sea snail and echinoid and production thereof
JPH10248497A (en) * 1997-03-14 1998-09-22 Nippon Nousan Kogyo Kk Feed for snail and its production
JP2005130823A (en) * 2003-10-31 2005-05-26 Yasui Kk Fish feed
JP2008086274A (en) * 2006-10-03 2008-04-17 Yasui Kk Solid fish feed and method for producing the same
JP2010035434A (en) * 2008-07-31 2010-02-18 Yasui Kk Smooth solid-shaped fish bait and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119644A (en) * 2013-12-20 2015-07-02 ジェックス株式会社 Solid feed for aquarium fish

Also Published As

Publication number Publication date
JP5598795B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
AU2002329946B2 (en) Biodegradable fishing lure and material
KR101560791B1 (en) Feedstuff for carnivorous freshwater fish farming and its manufacturing method
US20120207799A1 (en) Oral delivery vehicle and material
AU2002329946A1 (en) Biodegradable fishing lure and material
CN104026413B (en) The special slow heavy property feed of a kind of bighead and preparation technology thereof
CN104798705A (en) Giant freshwater prawn breeding method
Ditchburn et al. Versatility of the humble seaweed in biomanufacturing
Olufeagba et al. Growth performance of all male tilapia (Oreochromis niloticus) fed commercial and on–farm compounded diet
CN101156651A (en) Ricefield eel postlarva swelling particle mixed feed
CN106577371A (en) Finless eel breeding pilot feeding method employing baits of different gradient proportions
KR101681389B1 (en) Aquaculture Methods for Mottled Eel
JP5598795B2 (en) Thermoplastic starch hybrid feed molding and method for producing the same
JP2008086274A (en) Solid fish feed and method for producing the same
JP5146182B2 (en) Smooth solid fish food and method for producing the same
CN111513208A (en) Low-fish-meal compound feed for largemouth black bass juvenile fish and preparation method thereof
JP2011142896A (en) Method for producing organic fermented feed
CN102485020A (en) Soft feed for babylonia areolata parent mature stage and preparation method thereof
WO2015172573A1 (en) Initial feed for early-stage larvas of eels and culturing method therefor
Uspenskaya et al. Aquaculture: problems and modern perspective on topical solution.
Sahu et al. Development of Fish Hydrolysate (Bind-Add+) incorporated extruded pellets and its performance in Tilapia (Oreochromis niloticus) feeding trial
Pratiwy et al. The use of Fermented Feed on the Growth of Tilapia (Oreochromis niloticus): A Review
CN103694713B (en) A kind of preparation method of biodegradable protein plastic
CN115191383B (en) Industrial material conversion and domestication and rough standard cultivation method for carnivorous fish seedlings by using prepared fine feed
KR102498176B1 (en) Manufacturing method of feed composition for fish using effective microorganisms and yellow worm
JP2001275579A (en) Bacterium-containing solid feed for cultured fish and use of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5598795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250