JP2012134383A - Method for connection of electronic component - Google Patents

Method for connection of electronic component Download PDF

Info

Publication number
JP2012134383A
JP2012134383A JP2010286338A JP2010286338A JP2012134383A JP 2012134383 A JP2012134383 A JP 2012134383A JP 2010286338 A JP2010286338 A JP 2010286338A JP 2010286338 A JP2010286338 A JP 2010286338A JP 2012134383 A JP2012134383 A JP 2012134383A
Authority
JP
Japan
Prior art keywords
substrate
electrode
thermosetting resin
electronic component
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010286338A
Other languages
Japanese (ja)
Inventor
Akira Ito
彰 伊藤
Shinichi Kazama
真一 風間
Michinobu Suzuki
道信 鈴木
Fumiaki Okazaki
文彰 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2010286338A priority Critical patent/JP2012134383A/en
Priority to KR1020127017351A priority patent/KR20130079311A/en
Priority to CN201180007104.XA priority patent/CN102725323B/en
Priority to PCT/JP2011/002891 priority patent/WO2011148620A1/en
Publication of JP2012134383A publication Critical patent/JP2012134383A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • H01L2224/29007Layer connector smaller than the underlying bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method which allows electrical connection between an electronic component and a substrate to be made with ease and good yield.SOLUTION: The method for electrically connecting an electronic component having a second electrode for connection with a substrate having a first electrode for connection through the first and second electrodes comprises: a step for putting a conductive paste on the first electrode of the substrate; a step for putting a thermosetting resin sheet in an area of the substrate where the first electrode is not formed; and a step for mounting the electronic component on the substrate so that the second electrode is brought into contact with the first electrode of the substrate, and heating the substrate with the electronic component to a temperature of 80-150°C under a pressure of 0.1 Pa or below to harden by heat the conductive paste and the thermosetting resin sheet concurrently, thereby electrically connecting the electronic component with substrate.

Description

本発明は、電子部品の接続方法に関する。   The present invention relates to a method for connecting electronic components.

電子部品の組立工程におけるダイアタッチ工程では、基板に液状接着剤を塗布して電子部品を搭載した後に、液状接着剤を加熱硬化することで電子部品を基板に接続していた。しかしながら、ダイアタッチ工程による電子部品の組み立てにおいては、電子部品の表面や基板のパッドに液状接着剤が付着したり、基板の電極部へのしみだしによって、基板電極部と電子部品のパッドとを接続するための導電ペーストの、接合領域の面積や幅寸法が変動したりして、電子部品と基板との電気的接続の信頼性に劣るという問題が生じていた。   In the die attach process in the assembly process of an electronic component, after the liquid adhesive is applied to the substrate and the electronic component is mounted, the liquid adhesive is heated and cured to connect the electronic component to the substrate. However, in the assembly of electronic components by the die attach process, liquid adhesive adheres to the surface of the electronic component or the pad of the substrate, or the substrate electrode portion and the pad of the electronic component are separated by oozing into the electrode portion of the substrate. There has been a problem that the reliability of electrical connection between the electronic component and the substrate is inferior due to fluctuations in the area and width of the bonding region of the conductive paste for connection.

このような問題に鑑みて、例えば、半導体チップを搭載したインターポーザと基板とを接続する際に、最初に、インターポーザと基板との間に熱硬化性樹脂シートを介在させ、この熱硬化性樹脂シートに150℃程度の熱を加えて一旦溶融した後硬化させ、インターポーザと基板とを機械的に接続した後、インターポーザの下部に形成した導電性バンプを230℃程度で加熱して溶融させ、インターポーザと基板とを電気的に接続する方法等が提案されている(特許文献1)。   In view of such problems, for example, when connecting an interposer on which a semiconductor chip is mounted and a substrate, first, a thermosetting resin sheet is interposed between the interposer and the substrate, and this thermosetting resin sheet After applying a heat of about 150 ° C. to melt and then curing, mechanically connecting the interposer and the substrate, the conductive bump formed on the lower portion of the interposer is heated to melt at about 230 ° C. A method of electrically connecting a substrate and the like has been proposed (Patent Document 1).

また、最初に、半導体素子の導電性バンプと基板の電極部とを電気的に接続した後、半導体素子と基板との間にエポキシ樹脂を充填し、一定の温度に加熱してエポキシ樹脂を硬化させることにより、半導体素子と基板とを機械的に接続する方法等も提案されている(特許文献2)。   First, after electrically connecting the conductive bumps of the semiconductor element and the electrode part of the substrate, the epoxy resin is filled between the semiconductor element and the substrate, and the epoxy resin is cured by heating to a certain temperature. Thus, a method of mechanically connecting the semiconductor element and the substrate has also been proposed (Patent Document 2).

しかしながら、上述した技術においては、少なくとも2段階の加熱工程が必要となり、さらに必要に応じて加圧工程も含まれることになるので、工程数の増加に伴うコスト高の問題が生じ、さらに加圧工程を含む場合は、電子部品が脆い場合は破損等が生じて好ましくない。   However, the above-described technology requires at least two heating steps, and further includes a pressurization step as necessary. This causes a problem of high costs accompanying an increase in the number of steps, and further pressurization. In the case of including a process, if the electronic component is fragile, it is not preferable because damage or the like occurs.

一方、半導体チップを実装する前に、予め実装する基板の半導体素子搭載領域にエポキシ樹脂をベースレジンとして導電粒子を添加したペーストを塗布あるいは導電性フィルムを配置し、その後、上記ペーストあるいは導電性フィルムを介して半導体チップを実装することにより、半導体チップと基板との機械的接続と電気的接続とを同時に行う方法が提案されている(特許文献3)。   On the other hand, before mounting a semiconductor chip, a paste to which conductive particles are added using an epoxy resin as a base resin is applied or a conductive film is placed on a semiconductor element mounting region of a substrate to be mounted in advance, and then the paste or the conductive film A method has been proposed in which a semiconductor chip and a substrate are mechanically and electrically connected at the same time by mounting the semiconductor chip via a pin (Patent Document 3).

しかしながら、この方法の場合、電気的接続部以外にも導電粒子等が分散するため、半導体チップと基板との間で電気的絶縁を取らなければならないような箇所が導通してしまったり、導電粒子が高価であるので、電気的接続部以外にも導電粒子等が分散することにより、コストが増大してしまうなどの問題が生じていた。また、加圧工程が必須の工程となるので、上述のように、半導体チップが脆い場合は半導体チップが破損してしまうなどの問題もあった。   However, in the case of this method, conductive particles and the like are dispersed in addition to the electrical connection portion, so that a portion where electrical insulation must be taken between the semiconductor chip and the substrate is conducted, or the conductive particles However, since the conductive particles and the like are dispersed in addition to the electrical connection portion, there has been a problem that the cost is increased. In addition, since the pressurizing step is an essential step, as described above, when the semiconductor chip is fragile, there is a problem that the semiconductor chip is damaged.

特許2002−343828号Patent 2002-343828 特開平9−181122号JP-A-9-181122 特開2001−326245号JP 2001-326245 A

本発明は、電子部品と基板との電気的接続及び機械的接続を簡易かつ歩留まりよく行うことが可能な新規な方法を提供することを目的とする。   An object of the present invention is to provide a novel method capable of easily and mechanically connecting an electronic component and a substrate with each other and mechanically connecting them.

上記目的を達成すべく、本発明は、
接続用の第1の電極を有する基板と、接続用の第2の電極を有する電子部品とを、前記第1の電極及び前記第2の電極を介して電気的に接続する方法であって、
前記基板の前記第1の電極上に導電性ペーストを配置する工程と、
前記基板の前記第1の電極の非形成領域において、熱硬化性樹脂シートを配置する工程と、
前記電子部品を、前記第2の電極と前記基板の前記第1の電極とが接触するようにして前記基板上に搭載し、0.1Pa以下の圧力下において、80〜150℃の温度で加熱し、前記導電性ペースト及び前記熱硬化性樹脂シートを同時に加熱硬化させて、前記電子部品を前記基板に電気的に接続する工程と、
を具えることを特徴とする、電子部品の接続方法に関する。
In order to achieve the above object, the present invention provides:
A method of electrically connecting a substrate having a first electrode for connection and an electronic component having a second electrode for connection via the first electrode and the second electrode,
Disposing a conductive paste on the first electrode of the substrate;
Disposing a thermosetting resin sheet in a non-formation region of the first electrode of the substrate;
The electronic component is mounted on the substrate so that the second electrode and the first electrode of the substrate are in contact with each other, and heated at a temperature of 80 to 150 ° C. under a pressure of 0.1 Pa or less. And thermally curing the conductive paste and the thermosetting resin sheet simultaneously to electrically connect the electronic component to the substrate;
It is related with the connection method of an electronic component characterized by comprising.

以上より、本発明によれば、電子部品と基板との電気的接続を簡易かつ歩留まりよく行うことが可能な新規な方法を提供することができる。   As described above, according to the present invention, it is possible to provide a novel method capable of easily and electrically connecting the electronic component and the substrate.

実施形態における電子部品の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the electronic component in embodiment. 実施形態における電子部品の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the electronic component in embodiment. 実施形態における電子部品の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the electronic component in embodiment. 実施形態における電子部品の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the electronic component in embodiment. 実施形態における電子部品の接続方法を説明するための工程図である。It is process drawing for demonstrating the connection method of the electronic component in embodiment.

以下、本発明のその他の特徴及び利点について、発明を実施するための形態に基づいて詳細に説明する。   Hereinafter, other features and advantages of the present invention will be described in detail based on embodiments for carrying out the invention.

図1〜図5は、本実施形態における電子部品の接続方法を説明するための工程図である。
最初に、図1に示すように、第1の電極としてのランド部12が形成された基板11を準備する。基板11は、例えばガラス基板、セラミック基板、樹脂基板(BT、PET等)、ガラスエポキシ基板(FR−4、FR−5)、金属酸化物を表面に被覆した金属板等から構成することができる。
1 to 5 are process diagrams for explaining a method of connecting electronic components in the present embodiment.
First, as shown in FIG. 1, a substrate 11 on which a land portion 12 as a first electrode is formed is prepared. The substrate 11 can be composed of, for example, a glass substrate, a ceramic substrate, a resin substrate (BT, PET, etc.), a glass epoxy substrate (FR-4, FR-5), a metal plate whose surface is coated with a metal oxide, or the like. .

次いで、図2に示すように、基板11のランド部12上に導電性ペースト13を塗布する。この導電性ペースト13は、樹脂をベースレジンとし、導電粒子を添加したものを用いることができる。ここで用いられる導電粒子としては金、銀、ニッケル等の金属粒子が挙げられる。また、樹脂としては、エポキシ樹脂、アクリル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂、シリコーン樹脂等様々な材料が利用可能であるが、これらを単独あるいは2種以上組み合わせて用いることもできる。なかでも、粘性、耐熱性等の面に優れるエポキシ樹脂が好適に用いられる。樹脂は、25℃の室温において液状であることが望ましい。樹脂には接続信頼性確保に必要な樹脂物性を得る等の目的で無機フィラー、例えばシリカ等を添加してもよい。   Next, as shown in FIG. 2, a conductive paste 13 is applied on the land portion 12 of the substrate 11. As the conductive paste 13, a paste containing resin as a base resin and added with conductive particles can be used. Examples of the conductive particles used here include metal particles such as gold, silver, and nickel. In addition, as the resin, various materials such as epoxy resin, acrylic resin, polyurethane resin, polystyrene resin, polyester resin, polyimide resin, phenol resin, and silicone resin can be used. You can also. Among these, an epoxy resin excellent in terms of viscosity, heat resistance and the like is preferably used. The resin is desirably liquid at room temperature of 25 ° C. An inorganic filler such as silica may be added to the resin for the purpose of obtaining resin properties necessary for ensuring connection reliability.

なお、市販の導電性ペーストとして、例えば、エポキシ樹脂をベースレジンとし、銀を導電粒子とする京セラケミカル製ケミタイトCT265Lが好適に用いられる。熱硬化の条件は、100℃下、1.5時間である。   As a commercially available conductive paste, for example, Kyocera Chemical Chemite CT265L using epoxy resin as a base resin and silver as conductive particles is preferably used. The conditions for thermosetting are 1.5 hours at 100 ° C.

導電性ペースト13は、例えばディスペンサーを用いる手法や、スクリーン印刷の手法などによって塗布することができる。なお、塗布方法は特に限定されるものではない。   The conductive paste 13 can be applied by, for example, a method using a dispenser or a screen printing method. The application method is not particularly limited.

次いで、図3に示すように、基板11上の、ランド部12及び導電性ペースト13の非形成領域において、熱硬化性樹脂シート14を配置する。この熱硬化性樹脂シート14は、例えば、硬化前の100℃における溶融粘度が0.4〜100Pa・s、ゲルタイムが20〜300分であるようなものであることが好ましい。  Next, as shown in FIG. 3, a thermosetting resin sheet 14 is disposed on the substrate 11 in a region where the land portion 12 and the conductive paste 13 are not formed. The thermosetting resin sheet 14 is preferably such that, for example, the melt viscosity at 100 ° C. before curing is 0.4 to 100 Pa · s and the gel time is 20 to 300 minutes.

硬化前の100℃における溶融粘度が0.4Pa・s未満であると、熱硬化性樹脂シート14の加熱硬化時における流動性が高くなり、基板11上のランド部12及び導電性ペースト13へ溶融樹脂が侵入及び混入して、後の工程における電子部品との接続の際に、電気的接続性に不具合が生じる場合がある。一方、硬化前の100℃における溶融粘度が100Pa・sを超えると、熱硬化性樹脂シート14の加熱硬化時における流動性が低くなり、硬化後の熱硬化性樹脂シート14中にボイドが発生する場合がある。したがって、基板11と電子部品とを機械的に強固に接続できない場合がある。   When the melt viscosity at 100 ° C. before curing is less than 0.4 Pa · s, the fluidity of the thermosetting resin sheet 14 at the time of heat curing is increased, and the melt is melted into the land portion 12 and the conductive paste 13 on the substrate 11. When the resin enters and mixes and is connected to an electronic component in a later process, a problem may occur in electrical connectivity. On the other hand, when the melt viscosity at 100 ° C. before curing exceeds 100 Pa · s, the fluidity of the thermosetting resin sheet 14 at the time of heat curing becomes low, and voids are generated in the thermosetting resin sheet 14 after curing. There is a case. Therefore, the substrate 11 and the electronic component may not be mechanically firmly connected.

なお、上述した作用効果をより顕著に奏するためには、硬化前の100℃における溶融粘度が0.5 〜20 Pa・sであることが好ましく、 0.7〜 5.0 Pa・sであることがより好ましい。   In addition, in order to exhibit the effect mentioned above more notably, it is preferable that the melt viscosity in 100 degreeC before hardening is 0.5-20 Pa.s, and is 0.7-5.0 Pa.s. It is more preferable.

また、100℃でのゲルタイムが前記範囲外であると、以下の工程で示すように、導電性ペースト13及び熱硬化性樹脂シート14を一括して硬化させるのが困難になる。なお、ゲルタイムは、特に60分以内であることが好ましい。   Further, if the gel time at 100 ° C. is outside the above range, it becomes difficult to cure the conductive paste 13 and the thermosetting resin sheet 14 at a time as shown in the following steps. The gel time is particularly preferably within 60 minutes.

上述した溶融粘度は、熱硬化性樹脂シート14を、レオメーター(Rhenemetric Scientific社製、ARES)において、25mmφのパラレルプレートを使用して、100℃定温下、歪み50%(最大)、角速度50rad/sの下で、3分後の粘度を求めたものである。また、ゲルタイムは100℃のオイルバス中で熱硬化性樹脂シート14がゲルになるまでの時間を測定することにより求めた(試験管法、JISC2105)。   The above-mentioned melt viscosity is obtained by using the thermosetting resin sheet 14 in a rheometer (Rhenetic Scientific, ARES) using a 25 mmφ parallel plate at a constant temperature of 100 ° C., strain 50% (maximum), angular velocity 50 rad / The viscosity after 3 minutes is determined under s. Moreover, the gel time was calculated | required by measuring the time until the thermosetting resin sheet 14 becomes a gel in a 100 degreeC oil bath (test tube method, JISC2105).

上述した特性を満足する熱硬化性樹脂シート14は、例えば(A)液状ビスフェノール型エポキシ樹脂、(B)軟化点が70℃以下の固形状多官能エポキシ樹脂、(C)エポキシ樹脂用硬化剤、(D)無機フィラー及び(E)難燃剤を含み、(A)液状ビスフェノール型エポキシ樹脂と(B)軟化点が70℃以下の固形状多官能エポキシ樹脂との質量比(A)/(B)が10/90〜30/70であり、(D)無機フィラーの含有量が全体の10質量%〜80質量%であるような熱硬化性樹脂から構成することができる。   The thermosetting resin sheet 14 that satisfies the above-described characteristics includes, for example, (A) a liquid bisphenol type epoxy resin, (B) a solid polyfunctional epoxy resin having a softening point of 70 ° C. or less, (C) a curing agent for epoxy resin, (D) Mass ratio of inorganic filler and (E) flame retardant, (A) liquid bisphenol type epoxy resin and (B) solid polyfunctional epoxy resin having a softening point of 70 ° C. or less (A) / (B) Is 10/90 to 30/70, and (D) the content of the inorganic filler can be 10% to 80% by mass of the thermosetting resin.

(A)成分として用いられる液状ビスフェノール型エポキシ樹脂としては、一分子中に2個以上のエポキシ基を有する液状のビスフェノール型化合物であればよく、特に制限はないが、例えばビスフェノールA型及びビスフェノールF型が好適である。このうち、液状ビスフェノールA型エポキシ樹脂が好ましく用いられ、その具体例としては、ダウケミカル社製の「DER383J」、三菱化学社製の「807」(エポキシ当量170)、三井化学社製の「R140P」(エポキシ当量188)などが使用される。   The liquid bisphenol type epoxy resin used as the component (A) is not particularly limited as long as it is a liquid bisphenol type compound having two or more epoxy groups in one molecule. For example, bisphenol A type and bisphenol F A mold is preferred. Among these, liquid bisphenol A type epoxy resin is preferably used. Specific examples thereof include “DER383J” manufactured by Dow Chemical Company, “807” (epoxy equivalent 170) manufactured by Mitsubishi Chemical Corporation, and “R140P manufactured by Mitsui Chemicals, Inc. (Epoxy equivalent 188) or the like.

なお、本実施形態において、液状ビスフェノール型エポキシ樹脂とは、25℃において液状を呈するビスフェノール型エポキシ樹脂を指す。   In the present embodiment, the liquid bisphenol type epoxy resin refers to a bisphenol type epoxy resin that exhibits a liquid state at 25 ° C.

(B)成分として用いられる軟化点が70℃以下の固形状多官能エポキシ樹脂としては、例えば、ビフェニル骨格含有アラルキル型エポキシ樹脂の混合物やジシクロペンタジエン型エポキシ樹脂の混合物などが挙げられる。軟化点が70℃以下の固形状多官能エポキシ樹脂の市販品としては、日本化薬社製の「NC3000(軟化点57℃)」、「NC3000H(軟化点70℃)」、東都化成社製の「YDCN704(軟化点90℃)」などが好ましく使用される。   Examples of the solid polyfunctional epoxy resin having a softening point of 70 ° C. or lower used as the component (B) include a mixture of biphenyl skeleton-containing aralkyl epoxy resin and a mixture of dicyclopentadiene epoxy resin. Examples of commercially available solid polyfunctional epoxy resins having a softening point of 70 ° C. or lower include “NC3000 (softening point 57 ° C.)”, “NC3000H (softening point 70 ° C.)” manufactured by Nippon Kayaku Co., Ltd. “YDCN704 (softening point 90 ° C.)” or the like is preferably used.

本実施形態では、(A)液状ビスフェノール型エポキシ樹脂と、(B)軟化点が70℃以下の固形状多官能エポキシ樹脂とを併用する、すなわち融点の異なる2種類のエポキシ樹脂を配合した熱硬化性樹脂を用いることによって、室温でシート状、高温で液状の挙動を示す上記熱硬化性樹脂シート14を得ることができる。   In this embodiment, (A) a liquid bisphenol-type epoxy resin and (B) a solid polyfunctional epoxy resin having a softening point of 70 ° C. or less are used in combination, that is, thermosetting containing two types of epoxy resins having different melting points. By using the curable resin, it is possible to obtain the thermosetting resin sheet 14 that exhibits a sheet-like behavior at room temperature and a liquid behavior at high temperature.

上記熱硬化性樹脂組成物において、(A)液状ビスフェノール型エポキシ樹脂と(B)軟化点が70℃以下の固形状多官能エポキシ樹脂との質量比(A)/(B)は、10/90〜30/70の範囲にあることを要する。液状エポキシ樹脂が、上記範囲より少ないか又は固形状エポキシ樹脂の軟化点が70℃を超えると、上記熱硬化性樹脂組成物から熱硬化性樹脂シート14を製造した際に、割れまたは欠けが発生し好ましくない。   In the thermosetting resin composition, the mass ratio (A) / (B) of (A) liquid bisphenol type epoxy resin and (B) solid polyfunctional epoxy resin having a softening point of 70 ° C. or less is 10/90. It must be in the range of ~ 30/70. When the liquid epoxy resin is less than the above range or the softening point of the solid epoxy resin exceeds 70 ° C., cracking or chipping occurs when the thermosetting resin sheet 14 is produced from the thermosetting resin composition. It is not preferable.

また、液状エポキシ樹脂が上記範囲より多いか又は固形状エポキシ樹脂の軟化点が低すぎると、上記熱硬化性樹脂組成物から、熱硬化性樹脂シート14を製造するのが困難となる。   Moreover, when there are more liquid epoxy resins than the said range, or the softening point of a solid epoxy resin is too low, it will become difficult to manufacture the thermosetting resin sheet 14 from the said thermosetting resin composition.

なお、上述した作用効果をより顕著に奏するようにするためには、質量比(A)/(B)は15/85〜25/75の範囲であることがより好ましく、また固形状エポキシ樹脂の軟化点の下限は、通常40℃程度であることが好ましい。   In order to achieve the above-described effects more significantly, the mass ratio (A) / (B) is more preferably in the range of 15/85 to 25/75, and the solid epoxy resin The lower limit of the softening point is usually preferably about 40 ° C.

(C)成分として用いられるエポキシ樹脂用硬化剤としては、特に制限はなく、従来エポキシ樹脂の硬化剤として使用されているものの中から、任意のものを適宜選択して用いることができ、例えばアミン系、フェノール系、酸無水物系などが挙げられる。アミン系硬化剤としては、例えばジシアンジアミドや、m−フェニレンジアミンなどの芳香族ジアミン等が好ましく挙げられる。   There is no restriction | limiting in particular as a hardening | curing agent for epoxy resins used as (C) component, From what is conventionally used as a hardening | curing agent of an epoxy resin, arbitrary things can be selected suitably and used, for example, an amine. Type, phenol type, acid anhydride type and the like. Preferred examples of the amine curing agent include dicyandiamide and aromatic diamines such as m-phenylenediamine.

なお、上記熱硬化性樹脂組成物には、必要に応じて、エポキシ樹脂用硬化促進剤を含有させることができる。このエポキシ樹脂用硬化促進剤としては、特に制限はなく、従来エポキシ樹脂の硬化促進剤として使用されているものの中から、任意のものを適宜選択して用いることができる。例えば、芳香族ジメチルウレア、脂肪族ジメチルウレア等のウレア類などを例示することができる。   In addition, the said thermosetting resin composition can be made to contain the hardening accelerator for epoxy resins as needed. There is no restriction | limiting in particular as this hardening accelerator for epoxy resins, From the things conventionally used as a hardening accelerator of an epoxy resin, arbitrary things can be selected suitably and can be used. For example, ureas such as aromatic dimethylurea and aliphatic dimethylurea can be exemplified.

(D)成分として用いられる無機フィラーとしては特に制限はなく、例えば溶融シリカ、球状シリカなどのシリカ類;アルミナなど、通常用いられているものを使用することができる他、難燃効果も有する水酸化アルミニウム、水酸化マグネシウムも用いることができる。水酸化アルミニウム化合物としては、例えば昭和電工社製の「H42M」を好ましく使用することができる。   (D) There is no restriction | limiting in particular as an inorganic filler used as a component, For example, silicas, such as fused silica and spherical silica; A thing normally used, such as an alumina, can also be used, and also water which has a flame-retardant effect Aluminum oxide and magnesium hydroxide can also be used. As the aluminum hydroxide compound, for example, “H42M” manufactured by Showa Denko KK can be preferably used.

無機フィラーの質量平均粒子径は、製造時の作業性および充填効率の観点から、1〜30μmの範囲にあることが好ましい。なお、この質量平均粒子径は、レーザ回折散乱方式(たとえば、島津製作所製、装置名:SALD-3100)により測定された値である。   The mass average particle diameter of the inorganic filler is preferably in the range of 1 to 30 μm from the viewpoint of workability during production and filling efficiency. The mass average particle diameter is a value measured by a laser diffraction scattering method (for example, manufactured by Shimadzu Corporation, apparatus name: SALD-3100).

無機フィラーとしては、水酸化アルミニウム化合物や球状シリカが好ましく、前者のものは、例えば、昭和電工社製の「H42M」が好ましく、後者のものは、例えば、電気化学工業社製の「FB−959(質量平均粒子径:25μm)」などが好適である。   As the inorganic filler, an aluminum hydroxide compound or spherical silica is preferable. For example, the former is preferably “H42M” manufactured by Showa Denko KK, and the latter is, for example, “FB-959 manufactured by Denki Kagaku Kogyo. (Mass average particle diameter: 25 μm) ”is preferable.

無機フィラーの含有量は、上記熱硬化性樹脂組成物の全量に対し、10〜80質量%であることを要する。この含有量が10質量%未満では、上記熱硬化性樹脂組成物から熱硬化性樹脂シート14を製造するに際し、以下に説明するようにシート14を用いて電子部品を固定する際、溶融した樹脂の流動性が高くなって導電ペースト13と混じり、硬化物に反りや、ねじれが発生しやすい。一方80質量%を超えると、熱硬化性樹脂シート14に割れや欠けが発生し、さらには溶融時の流動性が低下して、熱硬化性樹脂シート14の接着性の低下等の問題が起きやすくなるため好ましくない。   Content of an inorganic filler needs to be 10-80 mass% with respect to the whole quantity of the said thermosetting resin composition. When the content is less than 10% by mass, when the thermosetting resin sheet 14 is produced from the thermosetting resin composition, a molten resin is used when fixing electronic components using the sheet 14 as described below. The fluidity of the resin becomes high and is mixed with the conductive paste 13, and the cured product is likely to warp and twist. On the other hand, if it exceeds 80% by mass, the thermosetting resin sheet 14 is cracked or chipped, and the fluidity at the time of melting is lowered, causing problems such as a decrease in adhesiveness of the thermosetting resin sheet 14. Since it becomes easy, it is not preferable.

上記熱硬化性樹脂組成物から熱硬化性樹脂シート14を製造する場合は、例えば以下のようにして行う。すなわち、熱硬化性樹脂組成物を構成する各成分を、ニーダー、二本ロール、連続混練装置などで50〜110℃程度の混練温度で十分混練した後、得られた上記熱硬化性樹脂組成物を冷却し、成形機にて50〜100℃程度の温度、圧力0.5〜1.5MPaの条件でプレスして、熱硬化性樹脂シート14を製造する。   When manufacturing the thermosetting resin sheet 14 from the said thermosetting resin composition, it carries out as follows, for example. That is, the components constituting the thermosetting resin composition are sufficiently kneaded at a kneading temperature of about 50 to 110 ° C. with a kneader, a two-roller, a continuous kneader, or the like, and then the thermosetting resin composition obtained is obtained. Then, the thermosetting resin sheet 14 is manufactured by pressing with a molding machine under conditions of a temperature of about 50 to 100 ° C. and a pressure of 0.5 to 1.5 MPa.

なお、熱硬化性樹脂シート14の厚さは20〜100μmが好ましい。20μm未満の場合には、熱硬化性樹脂シート14単体での取り扱い作業性 の観点から好ましくない。一方100μmを超える場合は、基板11に対する電子部品の接合厚さが増大し、得られた電子部品アセンブリが厚くなってしまう。   In addition, as for the thickness of the thermosetting resin sheet 14, 20-100 micrometers is preferable. When it is less than 20 μm, it is not preferable from the viewpoint of handling workability with the thermosetting resin sheet 14 alone. On the other hand, when the thickness exceeds 100 μm, the bonding thickness of the electronic component to the substrate 11 increases, and the obtained electronic component assembly becomes thick.

次いで、図4に示すように、電子部品15を準備する。この電子部品15の下面には第2の電極としての電極パッド16が形成されている。電極パッド16上には、Cr−Cu、Ti−Pd等のバリアメタル膜を介して、電解メッキ法により金属バンプ電極17が形成されている。金属電極バンプ17は、例えばAu、Ag、Cuから構成することができる。   Next, as shown in FIG. 4, an electronic component 15 is prepared. An electrode pad 16 as a second electrode is formed on the lower surface of the electronic component 15. A metal bump electrode 17 is formed on the electrode pad 16 by electrolytic plating via a barrier metal film such as Cr—Cu or Ti—Pd. The metal electrode bump 17 can be made of, for example, Au, Ag, or Cu.

また、金属バンプ電極17の代わりに、はんだ材を供給し、リフローすることによってはんだバンプとすることもできる。   Moreover, it can also be set as a solder bump by supplying a solder material instead of the metal bump electrode 17, and reflowing.

金属バンプ電極17の高さ(厚さ)は、例えば3〜30μmとすることができる。   The height (thickness) of the metal bump electrode 17 can be set to 3 to 30 μm, for example.

なお、本実施形態においては、導電性ペースト13を基板11のランド部12上に設けたが、金属バンプ電極17上に設けるようにすることもできる。   In the present embodiment, the conductive paste 13 is provided on the land portion 12 of the substrate 11, but may be provided on the metal bump electrode 17.

その後、電子部品15の金属バンプ電極17と基板11の導電性ペースト13との位置が一致するようにして電子部品15を基板11上に配置し、0〜0.1Paの圧力下、80〜150℃程度の温度に加熱する。そして、導電性ペースト13及び熱硬化性樹脂シート14を同時に溶融させた後、冷却して、導電性ペースト13及び熱硬化性樹脂シート14を一括して硬化させる。これによって、図5に示すように、基板11と電子部品15とは、導電性ペースト13等の硬化物である電気的接続体18によって電気的に接続されるとともに、熱硬化性樹脂シート14の硬化物19によって機械的に接続される。  Thereafter, the electronic component 15 is placed on the substrate 11 so that the positions of the metal bump electrodes 17 of the electronic component 15 and the conductive paste 13 of the substrate 11 coincide with each other, and 80 to 150 under a pressure of 0 to 0.1 Pa. Heat to a temperature of about ℃. And after making the electrically conductive paste 13 and the thermosetting resin sheet 14 fuse simultaneously, it cools and the electrically conductive paste 13 and the thermosetting resin sheet 14 are hardened collectively. As a result, as shown in FIG. 5, the substrate 11 and the electronic component 15 are electrically connected by the electrical connection body 18 that is a cured product such as the conductive paste 13 and the thermosetting resin sheet 14. It is mechanically connected by the cured product 19.

このように、本実施形態では、導電性ペースト13及び熱硬化性樹脂シート14を一括して溶融及び硬化させて、基板11及び電子部品15を電気的及び機械的に接続するので、従来に比し、1段の加熱工程を実施するのみで足りる。また、上述した加熱処理によって導電性ペースト13及び熱硬化性樹脂シート14が同時に流動化するようになるので、電子部品15に加える圧力は最大でも0.1Paとすることができる。したがって、電子部品15が脆い場合においても電子部品15を破壊してしまうようなことがない。   As described above, in this embodiment, the conductive paste 13 and the thermosetting resin sheet 14 are collectively melted and cured, and the substrate 11 and the electronic component 15 are electrically and mechanically connected. In addition, it is sufficient to carry out a one-step heating process. In addition, since the conductive paste 13 and the thermosetting resin sheet 14 are fluidized simultaneously by the heat treatment described above, the pressure applied to the electronic component 15 can be 0.1 Pa at the maximum. Therefore, even when the electronic component 15 is fragile, the electronic component 15 is not destroyed.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。なお、各例における諸特性は、以下に示す方法に従って求めた。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. In addition, the various characteristics in each example were calculated | required according to the method shown below.

(1)溶融粘度
熱硬化性樹脂シートをレオメーター(RhenemetricScientific社製、ARES)にて測定(100℃)した。すなわち該熱硬化性樹脂シート片について、レオメーターにおいて、25mmφのパラレルプレートを使用して、100℃定温下、歪み50%(最大)、角速度50rad/sの下で、3分後の粘度を求めたものである。
(1) Melt Viscosity A thermosetting resin sheet was measured (100 ° C.) with a rheometer (RENEmetric Scientific, ARES). That is, for the thermosetting resin sheet piece, the viscosity after 3 minutes was obtained using a 25 mmφ parallel plate in a rheometer under a constant temperature of 100 ° C., a strain of 50% (maximum), and an angular velocity of 50 rad / s. It is a thing.

(2)ゲルタイム
JIS C 2105の試験管法に準拠して、100℃のオイルバス中でシート状樹脂組成物がゲルになるまでの時間を測定した。
(2) Gel time Based on the test tube method of JIS C2105, the time until a sheet-like resin composition became a gel was measured in an oil bath at 100 ° C.

(3)電極部への染み出し
接続後の電子部品を切断し電極部を目視により観察し、以下の基準で評価した。
○:樹脂の染み出し面積が電極面積の5%未満
△:樹脂の染み出し面積が電極面積の5%以上15%未満
×:樹脂の染み出し面積が電極面積の15%以上
(3) Exudation to electrode part The electronic component after a connection was cut | disconnected, the electrode part was observed visually, and the following references | standards evaluated.
○: Exudation area of resin is less than 5% of electrode area △: Exudation area of resin is not less than 5% and less than 15% of electrode area ×: Exudation area of resin is not less than 15% of electrode area

(4)導通性
テスターで抵抗値を測り、以下の基準で評価した。
○:抵抗値が100Ω未満
×:抵抗値が100Ω以上
(4) Conductivity The resistance value was measured with a tester and evaluated according to the following criteria.
○: Resistance value is less than 100Ω ×: Resistance value is 100Ω or more

(5)電子部品の状態
導電ペーストと熱硬化性樹脂シートの両者を硬化後、目視による電子部品の外観を調べ、以下の基準で評価した。
○:電子部品の変形、割れ、欠けなし
×:電子部品の変形、割れ、欠けあり
(5) State of electronic component After both the conductive paste and the thermosetting resin sheet were cured, the appearance of the electronic component was visually examined and evaluated according to the following criteria.
○: No deformation, cracking or chipping of electronic parts ×: Deformation, cracking or chipping of electronic parts

(熱硬化性樹脂シートの製造:実施例1〜5)
表1に示す配合組成の各原料をニーダーに仕込み、75℃で1時間撹拌混合して、各樹脂組成物を調製した。次いで、各樹脂組成物それぞれを30℃に冷却後、成形機により、70℃、1.0MPaの条件でプレス成形して厚さ0.5mmの熱硬化性樹脂シートとした。各例における諸特性の評価結果を表1に示す。
(Manufacture of thermosetting resin sheet: Examples 1 to 5)
Each raw material of the composition shown in Table 1 was charged into a kneader and stirred and mixed at 75 ° C. for 1 hour to prepare each resin composition. Next, each resin composition was cooled to 30 ° C. and then press-molded with a molding machine under the conditions of 70 ° C. and 1.0 MPa to obtain a thermosetting resin sheet having a thickness of 0.5 mm. Table 1 shows the evaluation results of various characteristics in each example.

(電子部品の接続)
(実施例1〜5)
基板上に予め形成された電極部上に、ディスペンサーを用いて導電ペーストを塗布後、導電ペースト塗布部に隣接して、表1の各実施例に対応する特性を有する熱硬化性樹脂シートを配置した。その後、導電ペースト、熱硬化性樹脂シート両者を覆うようにして電子部品をマウント後、加圧せずに、80℃〜150℃の温度に2時間加熱して熱硬化性樹脂シートを溶融するとともに、導電ペーストを溶融し、その後硬化させて、電子部品と基板との電気的接続と共に物理的固定を行った。結果を表1示す。
(Connection of electronic components)
(Examples 1-5)
After applying a conductive paste using a dispenser on a pre-formed electrode part on a substrate, a thermosetting resin sheet having characteristics corresponding to each example in Table 1 is disposed adjacent to the conductive paste application part. did. Then, after mounting the electronic component so as to cover both the conductive paste and the thermosetting resin sheet, the thermosetting resin sheet is melted by heating to a temperature of 80 ° C. to 150 ° C. for 2 hours without applying pressure. The conductive paste was melted and then cured, and physical fixing was performed together with the electrical connection between the electronic component and the substrate. The results are shown in Table 1.

(比較例1)
ビスフェノールA型エポキシ樹脂のエピコート828(ジャパンエポキシレジン社製、商品名)90質量部、ジシアンジアミド1質量部、及びイミダゾール2E4MZ(四国化成工業製)0.5質量部を混合して得た熱硬化性樹脂中に、無機フィラーとして平均粒径3.4μmのシリカのFB3LDX(電気化学工業社製、商品名)及び平均粒径0.6μmのシリカのSE2100(アドマテックス社製、商品名)とを質量比で3:1の割合で予備混合した混合シリカを10質量部加え、分散させて接着剤を得た。
(Comparative Example 1)
Thermosetting obtained by mixing 90 parts by mass of Epicoat 828 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), 1 part by mass of dicyandiamide, and 0.5 parts by mass of imidazole 2E4MZ (manufactured by Shikoku Chemicals). In the resin, FB3LDX (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.) of silica having an average particle diameter of 3.4 μm and SE2100 (trade name, manufactured by Admatex Co., Ltd.) of silica having an average particle diameter of 0.6 μm are used as inorganic fillers. 10 parts by mass of mixed silica premixed at a ratio of 3: 1 was added and dispersed to obtain an adhesive.

得られた接着剤を、基板電極上の導電ペースト付与部に隣接して塗布したが、両者が混じり硬化後の導通性が良好でなかった。   The obtained adhesive was applied adjacent to the conductive paste application part on the substrate electrode, but both were mixed and the conductivity after curing was not good.

(比較例2)
ビスフェノールA型エポキシ樹脂のエピコート828(ジャパンエポキシレジン社製、商品名)2.9質量部、トリスヒドロキシフェニルメタン型エポキシ樹脂のEPPN−501HY(日本化薬社製、商品名)2.9質量部、ノボラック型フェノール樹脂のDL−65(明和化成社製、商品名)3.5質量部、アクリル共重合樹脂のテイサンレジンSG−P3(ナガセケムテックス社製、商品名)9.5質量部、トリフェニルホスフィンのPP−200(北興化学社製、商品名)0.13質量部、球状溶融シリカ(平均粒径:5.5μm)のFB−7SDC(電気化学工業社製、商品名)47.0質量部、メチルエチルケトン66質量部を加えて樹脂組成物を調製した。次に、上記組成物をポリエステルフィルム上にコーターにて塗工し、乾燥させて熱硬化型樹脂シートを得た。
(Comparative Example 2)
Epicoat 828 of bisphenol A type epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name) 2.9 parts by mass, EPPN-501HY of trishydroxyphenylmethane type epoxy resin (made by Nippon Kayaku Co., Ltd., trade name) 2.9 parts by mass DL-65 (product name, manufactured by Meiwa Kasei Co., Ltd.) 3.5 parts by mass of novolak type phenol resin, Teisan resin SG-P3 (product name) manufactured by Nagase ChemteX Corporation, 9.5 parts by mass, PP-200 of triphenylphosphine (made by Hokuko Chemical Co., Ltd., trade name) 0.13 parts by mass, FB-7SDC (made by Denki Kagaku Kogyo Co., trade name) of spherical fused silica (average particle size: 5.5 μm) 0 parts by mass and 66 parts by mass of methyl ethyl ketone were added to prepare a resin composition. Next, the composition was coated on a polyester film with a coater and dried to obtain a thermosetting resin sheet.

得られた熱硬化型樹脂シートを、実施例1と同様の操作により基板上に配置した後、実施例と同様、導電ペースト、熱硬化性樹脂シート両者を覆うようにして電子部品をマウント後、100℃,圧力300kPaの条件にて1分間真空プレスした。大気開放後、基板を175℃のオーブンに1時間投入することにより熱硬化型樹脂シートを加熱硬化させた。しかしながら、この方法では、電子部品の変形が生じた。  After placing the obtained thermosetting resin sheet on the substrate by the same operation as in Example 1, after mounting the electronic component so as to cover both the conductive paste and the thermosetting resin sheet, as in Example, It vacuum-pressed for 1 minute on the conditions of 100 degreeC and the pressure of 300 kPa. After opening to the atmosphere, the substrate was put into an oven at 175 ° C. for 1 hour to heat and cure the thermosetting resin sheet. However, in this method, the electronic component is deformed.

(比較例3)
EVA系ホットメルトシートのエルファンOH (日本マタイ社製、商品名)を用いた以外は、比較例2と同様の操作を行ったが、比較例1と同様に溶融樹脂と導電ペーストが混じり導通性が良好でなかった。
(Comparative Example 3)
The same operation as in Comparative Example 2 was performed except that the EVA-based hot melt sheet Elfhan OH (made by Nihon Matai Co., Ltd., trade name) was used. As in Comparative Example 1, the molten resin and the conductive paste were mixed and conducted. The properties were not good.

本実施例で使用した各成分は以下の通りである。
1.液状エポキシ樹脂
DER383J:ダウケミカル社製のビスフェノールA型エポキシ樹脂(エポキシ当量:190)
2.固形状エポキシ樹脂
NC3000:日本化薬社製のビフェニル骨格含有多官能型エポキシ樹脂(エポキシ当量:285、軟化点:57℃)
3.硬化剤
DICY:日本カーバイド社製のジシアンジアミド
4.硬化促進剤
U−CAT3502T:サンアプロ社製の芳香族ジメチルウレア
5.無機フィラー
H42M:昭和電工社製の水酸化アルミニウム(粒子径:1.5μm)
6.導電ペースト
CT265L:京セラケミカル社製の銀ペースト
Each component used in the present example is as follows.
1. Liquid epoxy resin DER383J: bisphenol A type epoxy resin manufactured by Dow Chemical Co. (epoxy equivalent: 190)
2. Solid epoxy resin NC3000: polyfunctional epoxy resin containing biphenyl skeleton manufactured by Nippon Kayaku Co., Ltd. (epoxy equivalent: 285, softening point: 57 ° C.)
3. Curing agent DICY: Dicyandiamide manufactured by Nippon Carbide Corporation 4. Curing accelerator U-CAT3502T: Aromatic dimethylurea manufactured by Sun Apro Inorganic filler H42M: Showa Denko Co., Ltd. aluminum hydroxide (particle diameter: 1.5 μm)
6). Conductive paste CT265L: Silver paste manufactured by Kyocera Chemical

Figure 2012134383
Figure 2012134383

表1から明らかなように、実施例では、いずれも電子部品の変形がなく、かつ、導通性、接着性の結果も良好であった。これに対し、液状接着剤を用いた比較例1では、導電ペーストと液状接着剤が混じることに起因する導通不良が発生した。比較例2では実施例と成分の異なる熱硬化性樹脂シートを用いたものであるが導通性は良好であったものの、物理的固定にあたっては高圧を要したため電子部品の変形が生じた。また、熱可塑性樹脂シートを用いた比較例3では、比較例1と同様の結果となったばかりか接着力の低下も大きかった。   As is apparent from Table 1, in the examples, there was no deformation of the electronic parts, and the results of conductivity and adhesiveness were good. On the other hand, in Comparative Example 1 using the liquid adhesive, a conduction failure caused by mixing of the conductive paste and the liquid adhesive occurred. In Comparative Example 2, a thermosetting resin sheet having a different component from that of the example was used, but although the electrical conductivity was good, the electronic component was deformed because a high pressure was required for physical fixation. Further, in Comparative Example 3 using the thermoplastic resin sheet, not only the same result as in Comparative Example 1 was obtained, but also the decrease in adhesive strength was large.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。   The present invention has been described in detail based on the above specific examples. However, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

11 基板
12 ランド部(第1の電極)
13 導電性ペースト
14 熱硬化性樹脂シート
15 電子部品
16 電極パッド(第2の電極)
17 金属バンプ電極
18 電気的接続体
19 熱硬化性樹脂シートの硬化物
11 Substrate 12 Land (first electrode)
13 conductive paste 14 thermosetting resin sheet 15 electronic component 16 electrode pad (second electrode)
17 Metal bump electrode 18 Electrical connection body 19 Hardened material of thermosetting resin sheet

Claims (3)

接続用の第1の電極を有する基板と、接続用の第2の電極を有する電子部品とを、前記第1の電極及び前記第2の電極を介して電気的に接続する方法であって、
前記基板の前記第1の電極上に導電性ペーストを配置する工程と、
前記基板の前記第1の電極の非形成領域において、熱硬化性樹脂シートを配置する工程と、
前記電子部品を、前記第2の電極と前記基板の前記第1の電極とが接触するようにして前記基板上に搭載し、0.1Pa以下の圧力下において、80〜150℃の温度で加熱し、前記導電性ペースト及び前記熱硬化性樹脂シートを同時に加熱硬化させて、前記電子部品を前記基板に電気的に接続する工程と、
を具えることを特徴とする、電子部品の接続方法。
A method of electrically connecting a substrate having a first electrode for connection and an electronic component having a second electrode for connection via the first electrode and the second electrode,
Disposing a conductive paste on the first electrode of the substrate;
Disposing a thermosetting resin sheet in a non-formation region of the first electrode of the substrate;
The electronic component is mounted on the substrate so that the second electrode and the first electrode of the substrate are in contact with each other, and heated at a temperature of 80 to 150 ° C. under a pressure of 0.1 Pa or less. And thermally curing the conductive paste and the thermosetting resin sheet simultaneously to electrically connect the electronic component to the substrate;
A method for connecting electronic components, comprising:
前記熱硬化性樹脂シートの、硬化前の100℃における溶融粘度が0.4〜100Pa・Sであり、100℃におけるゲルタイムが20分〜300分であることを特徴とする、請求項1に記載の電子部品の接続方法。   The melt viscosity at 100 ° C before curing of the thermosetting resin sheet is 0.4 to 100 Pa · S, and the gel time at 100 ° C is 20 to 300 minutes. To connect electronic components. 前記熱硬化性樹脂シートが、(A)液状ビスフェノール型エポキシ樹脂、(B)軟化点が70℃以下の固形状多官能エポキシ樹脂、(C)エポキシ樹脂用硬化剤、(D)無機フィラー及び(E)難燃剤を含む熱硬化性樹脂組成物からなり、
(A)液状ビスフェノール型エポキシ樹脂と(B)軟化点が70℃以下の固形状多官能エポキシ樹脂との質量比(A)/(B)が10/90〜30/70であり、(D)無機フィラーの含有量が前記熱硬化性樹脂組成物の10質量%〜80質量%であることを特徴とする、請求項1又は2に記載の電子部品の接続方法。
The thermosetting resin sheet comprises (A) a liquid bisphenol type epoxy resin, (B) a solid polyfunctional epoxy resin having a softening point of 70 ° C. or less, (C) a curing agent for epoxy resin, (D) an inorganic filler, and ( E) comprising a thermosetting resin composition containing a flame retardant,
(A) Mass ratio (A) / (B) of liquid bisphenol type epoxy resin and (B) solid polyfunctional epoxy resin having a softening point of 70 ° C. or lower is 10/90 to 30/70, (D) The method for connecting electronic parts according to claim 1 or 2, wherein the content of the inorganic filler is 10% by mass to 80% by mass of the thermosetting resin composition.
JP2010286338A 2010-05-26 2010-12-22 Method for connection of electronic component Withdrawn JP2012134383A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010286338A JP2012134383A (en) 2010-12-22 2010-12-22 Method for connection of electronic component
KR1020127017351A KR20130079311A (en) 2010-05-26 2011-05-24 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet
CN201180007104.XA CN102725323B (en) 2010-05-26 2011-05-24 Flaky resin composition, use the manufacture method of the sealing method of the circuit components of this flaky resin composition, electronic devices and components, method of attachment and fixing means and composite sheet, the electronic devices and components using this composite sheet, electronics, composite sheet
PCT/JP2011/002891 WO2011148620A1 (en) 2010-05-26 2011-05-24 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286338A JP2012134383A (en) 2010-12-22 2010-12-22 Method for connection of electronic component

Publications (1)

Publication Number Publication Date
JP2012134383A true JP2012134383A (en) 2012-07-12

Family

ID=46649625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286338A Withdrawn JP2012134383A (en) 2010-05-26 2010-12-22 Method for connection of electronic component

Country Status (1)

Country Link
JP (1) JP2012134383A (en)

Similar Documents

Publication Publication Date Title
JP3853979B2 (en) Manufacturing method of semiconductor devices
JP4537555B2 (en) Semiconductor package manufacturing method and semiconductor package
JP5299279B2 (en) Film-like resin composition for sealing filling, semiconductor package using the same, method for manufacturing semiconductor device, and semiconductor device
WO1998028788A1 (en) Manufacture of semiconductor device
JPWO2010079831A1 (en) Semiconductor package manufacturing method, semiconductor sealing method, and solvent-type semiconductor sealing epoxy resin composition
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JP3999840B2 (en) Resin sheet for sealing
US20040007769A1 (en) Solvent-free thermosetting resin composition, process for producing the same, and product therefrom
WO2004059721A1 (en) Electronic component unit
JP2012054363A (en) Sealing method of electronic component
JP2005307037A (en) Film-shaped epoxy resin composition
JP2017098376A (en) Resin composition, circuit board, exothermic body-mounted substrate and circuit board manufacturing method
JP2014103257A (en) Method for manufacturing electronic component device and electronic component device
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
JP6575321B2 (en) Resin composition, circuit board, heating element mounting board, and circuit board manufacturing method
KR102368748B1 (en) Adhesive agent and connection structure
JP3911088B2 (en) Semiconductor device
JP5525236B2 (en) Fiber reinforced resin case, manufacturing method thereof, and hollow resin package device for storing electronic components
JP5274744B2 (en) Film adhesive and semiconductor device using the same
TWI789406B (en) Conductive adhesive composition, bonded structure using same, and method for producing bonded structure
JP6283520B2 (en) Adhesive composition for semiconductor and semiconductor device
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP2001207031A (en) Resin composition for semiconductor sealing and semiconductor device
JP3957244B2 (en) Manufacturing method of semiconductor devices
JPH11297904A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304