JP2012054363A - Sealing method of electronic component - Google Patents

Sealing method of electronic component Download PDF

Info

Publication number
JP2012054363A
JP2012054363A JP2010195054A JP2010195054A JP2012054363A JP 2012054363 A JP2012054363 A JP 2012054363A JP 2010195054 A JP2010195054 A JP 2010195054A JP 2010195054 A JP2010195054 A JP 2010195054A JP 2012054363 A JP2012054363 A JP 2012054363A
Authority
JP
Japan
Prior art keywords
electronic component
sheet
resin composition
sealing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010195054A
Other languages
Japanese (ja)
Inventor
Akira Ito
彰 伊藤
Hiroshi Fujiura
浩 藤浦
Fumiaki Okazaki
文彰 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2010195054A priority Critical patent/JP2012054363A/en
Priority to PCT/JP2011/002891 priority patent/WO2011148620A1/en
Priority to KR1020127017351A priority patent/KR20130079311A/en
Priority to CN201180007104.XA priority patent/CN102725323B/en
Publication of JP2012054363A publication Critical patent/JP2012054363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a convenient sealing method of an electronic component capable of ensuring high yield.SOLUTION: In the sealing method of an electronic component where an electronic component mounted on a circuit board is covered with a sheet consisting of a thermosetting resin composition and cured by heating, the electronic component is covered with a sheet consisting of a thermosetting resin composition having a melt viscosity of 0.1-50 Pa s at 100°C before curing and a contact angle of 20-100 degrees to a resist film on the circuit board after curing. The periphery of a contact portion of the electronic component and the circuit board is enclosed and a clearance is formed therebetween.

Description

本発明は、電子部品の封止方法に関する。より詳しくは、本発明は、基板上に配置された半導体、抵抗、ダイオード、コンデンサー等の電子部品や弾性表面波装置(SAWデバイス)、水晶デバイス、高周波デバイス、加速度センサー等の中空デバイスを熱硬化性樹脂組成物からなるシートの硬化物で封止する電子部品の封止方法に関する。   The present invention relates to an electronic component sealing method. More specifically, the present invention thermosets electronic devices such as semiconductors, resistors, diodes, capacitors, etc., and hollow devices such as surface acoustic wave devices (SAW devices), crystal devices, high frequency devices, acceleration sensors, etc., disposed on a substrate. The present invention relates to a method for sealing an electronic component that is sealed with a cured product of a sheet made of a conductive resin composition.

従来から、電子部品等の封止は、粉末状エポキシ樹脂組成物を用いたトランスファー成形法、液状エポキシ樹脂組成物やシリコーン樹脂等を用いてポッティング法、ディスペンス法、印刷法等により行なわれてきた。しかしながら、このような封止方法では、高価な成形機を要したり、必要な部分以外に封止樹脂が付着したりして不良品につながるケースがあり、より安価で煩雑な工程を要しない封止方法が切望されていた。
簡易的な方法として、封止材料である熱硬化性樹脂、好ましくはエポキシ樹脂からなる薄板状樹脂シートを、基板面上に実装された半導体全面を覆うように被せたのちに加熱して、その薄板状樹脂シートを軟化させて粘性と粘着力を持たせることで、その薄板状樹脂シートを上記半導体と上記基板面に接着させ、その加熱処理後に上記軟化した薄板状樹脂シートが硬化することで上記半導体を封止する方法が開示されている(特許文献1、2等参照)。
特許文献1および2に記載の技術は、シート状の封止用樹脂を用いて電子部品を封止する技術であるが、この技術においては、封止用樹脂の硬化物に反りやねじれが発生しやすいという問題点や、電子部品細部への樹脂の充填不良によるボイドが発生しやすいという問題点があった。これは、特許文献1および2においては、用いられるエポキシ樹脂の種類や性状を全く把握しておらず、適切な封止条件の選定が難しいためであると推察される。
Conventionally, sealing of electronic parts and the like has been performed by a transfer molding method using a powdery epoxy resin composition, a potting method, a dispensing method, a printing method, etc. using a liquid epoxy resin composition or a silicone resin. . However, in such a sealing method, there is a case where an expensive molding machine is required, or a sealing resin adheres to a part other than a necessary part, leading to a defective product, so that a cheaper and complicated process is not required. A sealing method has been desired.
As a simple method, a thermosetting resin as a sealing material, preferably a thin plate-like resin sheet made of an epoxy resin, is applied to cover the entire surface of the semiconductor mounted on the substrate surface, and then heated. By softening the thin plate-like resin sheet to have viscosity and adhesive force, the thin plate-like resin sheet is bonded to the semiconductor and the substrate surface, and after the heat treatment, the softened thin plate-like resin sheet is cured. A method for sealing the semiconductor is disclosed (see Patent Documents 1 and 2, etc.).
The techniques described in Patent Documents 1 and 2 are techniques for sealing electronic components using a sheet-like sealing resin. In this technique, the cured resin is warped or twisted. There is a problem that it is easy to form, and a void is easily generated due to poor filling of the resin in the details of the electronic component. This is presumed to be because, in Patent Documents 1 and 2, the type and properties of the epoxy resin used are not grasped at all, and it is difficult to select appropriate sealing conditions.

また、電子部品と基板との間に隙間を形成させる必要のあるデバイスの封止において、従来の液状封止材料を用いたディスペンス法では、デバイス直下のアクティブ面への封止材料の流入を抑制することが困難であるため、チップあるいは基板上にダムを設け封止材料の流入を制御することが行なわれている(例えば、特許文献3〜5参照)。このような手法においては、液状封止材料の流動を完全に制御することは困難であり、歩留り低下を引き起こす要因となっていた。また、デバイスの小型化、低コスト化を妨げる要因にもなっていた。
このような問題を解決するために、例えば、封止用熱硬化型接着シートを用いて、中空型デバイスを封止する方法が提案されている(特許文献6参照)。
しかしながら、上記封止用熱硬化型接着シートを用いた中空型デバイスの封止では、中空部分への封止樹脂の流入を完全に阻止することは出来るものの、基板と電子部品との間に形成された隙間を完全に封止することができない。又、前記中空部分に、加熱溶融された樹脂の一部を充填した状態で電子部品をシート封止すること、すなわち、中空部分への溶融樹脂の充填性を調節することは困難であり、封止は満足のいくものではなかった。
In addition, when sealing a device that requires a gap between the electronic component and the substrate, the dispensing method using a conventional liquid sealing material suppresses the inflow of the sealing material to the active surface directly under the device. Therefore, it is difficult to control the inflow of the sealing material by providing a dam on the chip or the substrate (for example, see Patent Documents 3 to 5). In such a method, it is difficult to completely control the flow of the liquid sealing material, which causes a decrease in yield. In addition, it has been a factor that hinders downsizing and cost reduction of devices.
In order to solve such a problem, for example, a method of sealing a hollow device using a thermosetting adhesive sheet for sealing has been proposed (see Patent Document 6).
However, the sealing of the hollow type device using the sealing thermosetting adhesive sheet can completely prevent the sealing resin from flowing into the hollow part, but it is formed between the substrate and the electronic component. The formed gap cannot be completely sealed. In addition, it is difficult to seal the electronic component in a state where the hollow portion is filled with a part of the resin melted by heating, that is, it is difficult to adjust the filling property of the molten resin into the hollow portion. The stop was not satisfactory.

特開平10−125825号公報JP-A-10-125825 特開2003−249510号公報JP 2003-249510 A 特開2004−64732号公報JP 2004-64732 A 特開2004−56296号公報JP 2004-56296 A 特開2005−39331号公報JP 2005-39331 A 特開2008−260845号公報JP 2008-260845 A

本発明は、このような事情に鑑みなされたもので、基板上に実装された電子部品や中空デバイス(本発明では、これも電子部品とみなして説明する)を熱硬化性樹脂組成物からなるシートで封止することによって、簡便かつ歩留り良く行なうことのできる電子部品の封止方法を提供するものである。   The present invention has been made in view of such circumstances, and an electronic component or a hollow device (which will be described as an electronic component in the present invention) mounted on a substrate is made of a thermosetting resin composition. It is an object of the present invention to provide an electronic component sealing method that can be performed simply and with high yield by sealing with a sheet.

本発明者らは、上記目的を達成するために、電子部品の封止方法について研究を重ねた。その結果、本発明に到達した。
すなわち、本発明は、以下
(1)基板上に実装された電子部品を熱硬化性樹脂組成物からなるシートで被覆し、加熱硬化する電子部品の封止方法であって、
硬化前の100℃における溶融粘度が0.1〜50Pa・sであり、基板上のレジスト膜に対する硬化後の接触角が20〜100度である熱硬化性樹脂組成物からなるシートで前記電子部品を被覆し、電子部品と基板との接触部周辺を密閉して電子部品と基板との間に隙間を形成させることを特徴とする電子部品の封止方法、
(2)加熱硬化された前記シートの一部を前記隙間に充填させる上記(1)記載の電子部品の封止方法、
(3)80〜150℃下で、前記シートを流動化させた後、さらに100〜180℃下にて、0.5〜2時間加熱して流動化した同シートを硬化させ上記(1)または(2)に記載の電子部品の封止方法、
(4)前記シートが、
(A)液状ビスフェノール型エポキシ樹脂、(B)軟化点が95℃以下の固形状多官能エポキシ樹脂、(C)エポキシ樹脂用硬化剤、(D)無機フィラー及び(E)難燃剤を必須成分として含む熱硬化性樹脂組成物からなり、前記(A)/(B)の質量比が10/90〜30/70であり、かつ前記(D)の含有量が同熱硬化性樹脂組成物全量の20〜80質量%である上記(1)〜(3)のいずれかに記載の電子部品の封止方法および
(5)前記隙間が200μm以下である上記(1)〜(4)のいずれかに記載の電子部品の封止方法を提供する。
In order to achieve the above-mentioned object, the present inventors have conducted research on a method for sealing an electronic component. As a result, the present invention has been reached.
That is, the present invention is (1) a method for encapsulating an electronic component in which an electronic component mounted on a substrate is covered with a sheet made of a thermosetting resin composition and heat-cured,
The electronic component comprising a sheet made of a thermosetting resin composition having a melt viscosity of 0.1 to 50 Pa · s at 100 ° C. before curing and a contact angle after curing with respect to a resist film on the substrate of 20 to 100 degrees. And sealing the periphery of the contact portion between the electronic component and the substrate to form a gap between the electronic component and the substrate,
(2) The electronic component sealing method according to (1), wherein a part of the heat-cured sheet is filled in the gap.
(3) After fluidizing the sheet at 80 to 150 ° C., further heating the fluidized sheet at 100 to 180 ° C. for 0.5 to 2 hours to cure the fluidized sheet (1) or (2) the electronic component sealing method according to
(4) The sheet is
(A) Liquid bisphenol type epoxy resin, (B) Solid polyfunctional epoxy resin having a softening point of 95 ° C. or less, (C) Curing agent for epoxy resin, (D) Inorganic filler and (E) Flame retardant as essential components The (A) / (B) mass ratio is 10/90 to 30/70, and the content of (D) is the total amount of the thermosetting resin composition. The electronic component sealing method according to any one of (1) to (3) above and (5) any one of (1) to (4) above, wherein the gap is 200 μm or less. The electronic component sealing method described is provided.

本発明の電子部品の封止方法は、基板と電子部品との間に形成された隙間を熱硬化性樹脂組成物からなるシートによる封止を行うにあたり、同隙間部分においてボイドの発生がなく、電子部品と基板との間に形成された隙間を所望の形状に封止する方法を提供することができる。   The sealing method of the electronic component of the present invention, when performing sealing with a sheet made of a thermosetting resin composition the gap formed between the substrate and the electronic component, there is no occurrence of voids in the gap portion, A method for sealing a gap formed between the electronic component and the substrate into a desired shape can be provided.

(a)〜(e)は基板と実装された電子部品との間に形成された隙間周辺を封止材料で密閉または隙間を充填した状態を示した一例の断面模式図である。(A)-(e) is a cross-sectional schematic diagram of an example which showed the state which sealed the gap periphery formed between the board | substrate and the mounted electronic component with the sealing material, or was filled with the gap. (a)および(b)は異常な封止状態を示した断面模式図である。(A) And (b) is the cross-sectional schematic diagram which showed the abnormal sealing state. フロー性試験の状態を示すイメージ図である。It is an image figure which shows the state of a flow property test. 接触角試験の状況を示すイメージ図である。It is an image figure which shows the condition of a contact angle test.

以下、本発明の電子部品の封止方法における実施の形態について図面を用いて詳細に説明する。
本発明の電子部品の封止方法は下記のようにして行うことができる。
基板上に実装された電子部品を熱硬化性樹脂組成物からなるシート(以下、シート状熱硬化性樹脂組成物と称する場合がある)で被覆し、80〜150℃程度、好ましくは100〜150℃の温度に加熱して、同シートを流動化させた後、さらに100〜180℃程度の温度にて、0.5〜2時間程度加熱して流動化した同シートを硬化させて電子部品と基板との間に形成された隙間周辺を密閉または隙間を充填することができる。その断面模式図の一例を図1(a)〜(e)に示す。各図において、1は熱硬化性樹脂組成物からなるシート、2および3は電子部品(2は、たとえば、チップ型デバイス、3はたとえば、バンプ)、4は基板である。
本発明において、密閉とは図1(a)、(c)または(d)のように電子部品と基板との間に形成された隙間が維持された状態を言い、充填とは図1(b)や(e)のように同隙間に熱硬化性樹脂組成物が充満して隙間がなくなった状態を言う。したがって、本発明の電子部品の封止方法という表現は、具体的には密閉方法または充填方法を意味し、封止は、具体的には密閉または充填を意味する。
Embodiments of the electronic component sealing method of the present invention will be described below in detail with reference to the drawings.
The electronic component sealing method of the present invention can be performed as follows.
An electronic component mounted on a substrate is covered with a sheet made of a thermosetting resin composition (hereinafter sometimes referred to as a sheet-like thermosetting resin composition), and is about 80 to 150 ° C., preferably 100 to 150. After heating the sheet to a temperature of ℃ and fluidizing the sheet, further heating the fluidized sheet for about 0.5 to 2 hours at a temperature of about 100 to 180 degrees C to cure the electronic component and The periphery of the gap formed between the substrate and the gap can be sealed or filled. An example of the schematic cross-sectional view is shown in FIGS. In each figure, 1 is a sheet made of a thermosetting resin composition, 2 and 3 are electronic components (2 is a chip-type device, 3 is a bump, for example), and 4 is a substrate.
In the present invention, sealing means a state in which a gap formed between an electronic component and a substrate is maintained as shown in FIGS. 1A, 1C, or 1D, and filling means FIG. ) Or (e) refers to a state in which the gap is filled with the thermosetting resin composition and the gap is eliminated. Therefore, the expression “sealing method of electronic component” of the present invention specifically means a sealing method or a filling method, and sealing specifically means sealing or filling.

ここで前記熱硬化性樹脂組成物からなるシートの物性値は以下の通りである。
すなわち、100℃における溶融粘度が0.1〜50Pa・s、基板上のレジスト膜に対する熱硬化性樹脂組成物からなるシートの硬化後の接触角が20〜100度である。基板と電子部品との間に形成された隙間への熱硬化性樹脂組成物からなるシートによる封止を行うにあたり、シートがこのような溶融粘度および接触角を有することにより、熱硬化性樹脂組成物により密閉または充填された部分にボイドの発生がなく、所望の形状となるように電子部品を封止することができる。
電子部品が中空デバイスの場合、部品下面に隙間を確保する必要があるため前記溶融粘度は特に2〜40Pa・sが望ましく、又半導体や抵抗などの電子部品では隙間を充填する必要があるため、0.3〜1.5Pa・sが望ましい。
100℃における溶融粘度が0.1未満であると、電子部品と基板との間に形成された隙間周辺を密閉した状態で電子部品をシートで封止できるが、溶融した樹脂組成物の流動性が高くなって封止すべき範囲からはみ出す〔図2(a)参照〕。一方、50Pa・sを越えると電子部品と基板との間に形成された隙間周辺または隙間が完全に密閉または充填できない部分が生ずる〔図2(b)参照〕。
図2(a)および図2(b)は異常な封止状態を示した断面模式図である。
Here, physical properties of the sheet made of the thermosetting resin composition are as follows.
That is, the melt viscosity at 100 ° C. is 0.1 to 50 Pa · s, and the contact angle after curing of the sheet made of the thermosetting resin composition to the resist film on the substrate is 20 to 100 degrees. In performing sealing with a sheet made of a thermosetting resin composition in a gap formed between a substrate and an electronic component, the sheet has such a melt viscosity and a contact angle. The electronic component can be sealed so that a void is not generated in a portion sealed or filled with an object and a desired shape is obtained.
When the electronic component is a hollow device, it is necessary to ensure a gap on the lower surface of the component, so the melt viscosity is particularly preferably 2 to 40 Pa · s, and it is necessary to fill the gap in an electronic component such as a semiconductor or a resistor. 0.3 to 1.5 Pa · s is desirable.
When the melt viscosity at 100 ° C. is less than 0.1, the electronic component can be sealed with a sheet in a state in which the periphery of the gap formed between the electronic component and the substrate is sealed, but the fluidity of the molten resin composition Becomes higher and protrudes from the range to be sealed [see FIG. 2 (a)]. On the other hand, when the pressure exceeds 50 Pa · s, a portion around the gap formed between the electronic component and the substrate or a portion where the gap cannot be completely sealed or filled occurs (see FIG. 2B).
FIG. 2A and FIG. 2B are schematic cross-sectional views showing an abnormal sealing state.

基板上のレジスト膜に対する熱硬化性樹脂組成物からなるシートの硬化後の接触角が20度未満であると、電子部品と基板との間に形成された隙間周辺を密閉した状態で電子部品をシートで封止できるが溶融した樹脂の流動性が高くなって密閉すべき範囲からはみ出す〔図2(a)参照〕。一方、100度を超えると、電子部品と基板との間に形成された隙間周辺を完全に密閉できない部分が生ずる〔図2(b)参照〕。
電子部品が中空デバイスの場合、基板と電子部品との間に隙間を確保する必要があるため、前記接触角は特に40〜100度が望ましく、又半導体や抵抗などの電子部品では隙間が完全に充填される必要があるため20〜40度が望ましい。
ここで、溶融粘度は同熱硬化性樹脂組成物からなるシートの切片について、レオメーター(Rhenemetric Scientific社製、ARES)において、25mmφのパラレルプレートを使用して、100℃定温下、歪み50%(最大)、角速度50rad/秒の下で、3分後の粘度を求めたものである。
又硬化後の接触角とは、熱硬化性樹脂組成物からなるシートの切片をエポキシ系ソルダーレジストを塗布したFR−4基板にのせ、熱硬化性樹脂組成物からなるシートの切片が完全硬化した後の硬化物と基板のソルダーレジスト面との角度を求めたものである〔図4参照〕。図4は接触角試験の状況を示すイメージ図である。
When the contact angle after curing of the sheet made of the thermosetting resin composition with respect to the resist film on the substrate is less than 20 degrees, the electronic component is sealed in the vicinity of the gap formed between the electronic component and the substrate. Although it can be sealed with a sheet, the fluidity of the molten resin becomes high and protrudes from the range to be sealed [see FIG. 2 (a)]. On the other hand, when the angle exceeds 100 degrees, there is a portion where the periphery of the gap formed between the electronic component and the substrate cannot be completely sealed [see FIG. 2 (b)].
When the electronic component is a hollow device, it is necessary to secure a gap between the substrate and the electronic component. Therefore, the contact angle is particularly preferably 40 to 100 degrees, and the electronic component such as a semiconductor or a resistor has a perfect gap. 20-40 degrees is desirable because it needs to be filled.
Here, the melt viscosity was determined by using a 25 mmφ parallel plate on a rheometer (ARES, manufactured by Rhenometric Scientific) for a section of a sheet made of the same thermosetting resin composition at a constant temperature of 100 ° C. and a strain of 50% ( Maximum), and the viscosity after 3 minutes under an angular velocity of 50 rad / sec.
The contact angle after curing refers to a piece of a sheet made of a thermosetting resin composition placed on an FR-4 substrate coated with an epoxy solder resist, and the piece of a sheet made of a thermosetting resin composition is completely cured. The angle between the later cured product and the solder resist surface of the substrate is obtained [see FIG. 4]. FIG. 4 is an image diagram showing the situation of the contact angle test.

また、本発明の方法は実装された基板と電子部品との間に形成された隙間が200μm以下のものに好ましく適用できる。
なお、本発明の熱硬化性樹脂組成物からなるシートで被覆する方法を電子部品のひとつである弾性表面波素子に適用した場合、弾性表面波素子は素子両端に外部接続用電極を有しており、この外部接続用電極と配線基板の表面に形成されている配線パターンとがハンダ等で接続され、回路を形成するように配線基板上に実装される。そのとき、配線基板の表面と弾性表面波素子の配線基板に対向する面との間には隙間が形成されており、素子表面に電子機能部を有している。本発明における熱硬化性樹脂組成物からなるシートで被覆すれば、この電子機能部が熱硬化性樹脂組成物に接触したり、配線基板に接触したりせず、素子の機能が阻害されない〔図1(d)参照〕。この弾性表面波素子と同様に電子機能部を有する素子としては、水晶振動子等の圧電素子、高周波回路を形成する回路素子、受光素子等のセンサ素子等が挙げられる。
The method of the present invention can be preferably applied to a case where the gap formed between the mounted substrate and the electronic component is 200 μm or less.
In addition, when the method of covering with a sheet made of the thermosetting resin composition of the present invention is applied to a surface acoustic wave element which is one of electronic components, the surface acoustic wave element has electrodes for external connection at both ends of the element. The external connection electrodes and the wiring pattern formed on the surface of the wiring board are connected by solder or the like and mounted on the wiring board so as to form a circuit. At that time, a gap is formed between the surface of the wiring board and the surface of the surface acoustic wave element facing the wiring board, and an electronic function part is provided on the element surface. If it is coated with a sheet made of the thermosetting resin composition in the present invention, this electronic function part does not come into contact with the thermosetting resin composition or contact with the wiring board, and the function of the device is not hindered [Fig. 1 (d)]. Similar to the surface acoustic wave element, examples of the element having an electronic function part include a piezoelectric element such as a crystal resonator, a circuit element forming a high-frequency circuit, and a sensor element such as a light receiving element.

図1(e)に示すように、必要に応じて、溶融した樹脂組成物を電子部品下面(隙間)全体に行き渡らせることを目的として、前記隙間の下部の搭載基板に孔を設けてもよい。前記孔を通じて減圧下で充填を行ってもよい。また基板の孔の数は複数でも構わない。こうすることで隙間部分全面を隙間なく充填して封止することができる。
なお、図1(b)のように、基板4に孔がない場合でも、シートの被覆の仕方を工夫、たとえば、シートの上部から一方向を開放(たとえば、図2において、紙面の手前側または向こう側の一箇所を開放)して空気の逃げ道を形成させるように被覆して上部から押さえ付けて空気を逃がしながら、かつ、シートの一部を隙間に入り込ませながら硬化させたり、減圧下で硬化させることにより隙間部分全体が実質的に充填された状態になるように封止することができる。シートの被覆の仕方は任意であり、電子部品全体を被覆しても良いし、一箇所を開放するように被覆しても良い。
ただし、圧電素子等の機械的圧力に対して弱い電子部品の場合は上部から押さえ付ける方式は好ましくない。
また、本封止方法では、熱硬化性樹脂組成物からなるシートで被覆された電子部品の低背化及び上面の平滑化を目的として、0.5MPa以下の低い圧力でプレス成形や熱ラミネート成形して、電子部品に熱硬化性樹脂組成物からなるシートを仮接着する工程を行うことが好ましい。
このとき、ラミネート条件としては、例えば、温度範囲30〜180℃、加熱加圧ロール0.1〜5m/分の速度で通過させることにより良好な仮接着体が得られる。
As shown in FIG. 1 (e), if necessary, a hole may be provided in the mounting substrate below the gap for the purpose of spreading the molten resin composition over the entire lower surface (gap) of the electronic component. . Filling may be performed under reduced pressure through the holes. The number of holes in the substrate may be plural. By doing so, the entire gap portion can be filled and sealed without gaps.
As shown in FIG. 1B, even if the substrate 4 has no holes, the sheet coating method is devised. For example, one direction is opened from the top of the sheet (for example, in FIG. Open the other side of the sheet and cover it to form an air escape path and press it from the top to escape the air and harden it while part of the sheet enters the gap, or under reduced pressure By curing, the entire gap portion can be sealed so as to be substantially filled. The method of covering the sheet is arbitrary, and the entire electronic component may be covered or may be covered so as to open one place.
However, in the case of electronic parts that are weak against mechanical pressure, such as piezoelectric elements, the method of pressing from the top is not preferable.
In addition, in this sealing method, press molding or thermal lamination molding is performed at a low pressure of 0.5 MPa or less for the purpose of reducing the height and smoothing the upper surface of an electronic component covered with a sheet made of a thermosetting resin composition. And it is preferable to perform the process of temporarily adhering the sheet | seat which consists of a thermosetting resin composition to an electronic component.
At this time, as a lamination condition, for example, a good temporary bonded body can be obtained by passing it at a temperature range of 30 to 180 ° C. and a heating and pressing roll at a speed of 0.1 to 5 m / min.

〔熱硬化性樹脂組成物からなるシートの作製〕
本発明の封止方法で使用する熱硬化性樹脂組成物からなるシートの調製方法に特に制限はないが、例えば下記のようにして調製することができる。
まず、前述した(A)液状ビスフェノール型エポキシ樹脂、(B)軟化点が95℃以下の固形状多官能エポキシ樹脂、(C)エポキシ樹脂用硬化剤、(D)無機フィラー及び(E)難燃剤からなる必須成分、並びに必要に応じて用いられる各種任意成分を高速混合機などにより、均一に混合したのち、ニーダー、二本ロール、連続混練装置などで十分混練する。混練温度としては50〜110℃程度が好ましい。このようにして得られた熱硬化性樹脂組成物を冷却後、成形機にて50〜100℃程度の温度、圧力0.5〜1.5MPa程度の条件でプレスして、熱硬化性樹脂組成物からなるシートを作製する。
前記熱硬化性樹脂組成物からなるシートの厚さは、通常0.1〜2.0mm程度、好ましくは0.1〜1.0mmである。
[Preparation of sheet made of thermosetting resin composition]
Although there is no restriction | limiting in particular in the preparation method of the sheet | seat which consists of a thermosetting resin composition used with the sealing method of this invention, For example, it can prepare as follows.
First, (A) liquid bisphenol type epoxy resin, (B) solid polyfunctional epoxy resin having a softening point of 95 ° C. or less, (C) curing agent for epoxy resin, (D) inorganic filler, and (E) flame retardant The essential components consisting of the above and various optional components used as necessary are uniformly mixed with a high-speed mixer or the like, and then sufficiently kneaded with a kneader, two rolls, a continuous kneader or the like. The kneading temperature is preferably about 50 to 110 ° C. After the thermosetting resin composition thus obtained is cooled, it is pressed with a molding machine at a temperature of about 50 to 100 ° C. under a pressure of about 0.5 to 1.5 MPa, and a thermosetting resin composition is obtained. A sheet made of material is prepared.
The thickness of the sheet made of the thermosetting resin composition is usually about 0.1 to 2.0 mm, preferably 0.1 to 1.0 mm.

本発明の封止方法で用いられる熱硬化性樹脂組成物からなるシートの組成においては、(A)成分として用いられる液状ビスフェノール型エポキシ樹脂としては、一分子中に2個以上のエポキシ基を有する液状のビスフェノール型化合物であればよく、特に制限はないが、例えばビスフェノールA型及びビスフェノールF型が好適である。
このうち、液状ビスフェノールA型エポキシ樹脂が好ましく用いられ、その具体的例としては、ダウケミカル社製の「DER383J」、三菱化学社製の「807」(エポキシ当量170)、三井化学社製の「R140P」(エポキシ当量188)などが使用される。
なお、本発明において、液状ビスフェノール型エポキシ樹脂とは、25℃において液状を呈するビスフェノール型エポキシ樹脂を指す。
In the composition of the sheet comprising the thermosetting resin composition used in the sealing method of the present invention, the liquid bisphenol type epoxy resin used as the component (A) has two or more epoxy groups in one molecule. There is no particular limitation as long as it is a liquid bisphenol type compound, but for example, bisphenol A type and bisphenol F type are suitable.
Among these, liquid bisphenol A type epoxy resin is preferably used. Specific examples thereof include “DER383J” manufactured by Dow Chemical Company, “807” (Epoxy Equivalent 170) manufactured by Mitsubishi Chemical Corporation, “ R140P "(epoxy equivalent 188) or the like is used.
In the present invention, the liquid bisphenol type epoxy resin refers to a bisphenol type epoxy resin that exhibits a liquid state at 25 ° C.

(B)成分として用いられる軟化点が95℃以下の固形状多官能エポキシ樹脂としては、例えば、ビフェニル骨格含有アラルキル型エポキシ樹脂の混合物やジシクロペンタジエン型エポキシ樹脂の混合物などが挙げられる。
当該軟化点が95℃以下の固形状多官能エポキシ樹脂の市販品としては、日本化薬社製の「NC3000(軟化点57℃)」、「NC3000H(軟化点70℃)」、東都化成社製の「YDCN704(軟化点90℃)」などが好ましく使用される。
本発明における軟化点は、JIS K2207に基づいて、規定の環に試料を充填し、水浴またはグリセリン浴中で水平に支え、試料の中央に規定の球を置いて浴温を毎分5℃の速さで上昇させ、球を包み込んだ試料が環台の底板に接触した時に読み取った温度である。
本発明において、(A)液状ビスフェノール型エポキシ樹脂と、(B)軟化点が95℃以下の固形状多官能エポキシ樹脂を併用することで、すなわち融点の異なる2種類のエポキシ樹脂を配合することで、室温でシート状、高温で液状の挙動を示すシート状の熱硬化性樹脂組成物(熱硬化性樹脂組成物からなるシート)を得ることができる。
Examples of the solid polyfunctional epoxy resin having a softening point of 95 ° C. or lower used as the component (B) include a mixture of a biphenyl skeleton-containing aralkyl epoxy resin and a mixture of dicyclopentadiene epoxy resins.
As a commercial product of the solid polyfunctional epoxy resin having a softening point of 95 ° C. or lower, “NC3000 (softening point 57 ° C.)”, “NC3000H (softening point 70 ° C.)” manufactured by Nippon Kayaku Co., Ltd., manufactured by Tohto Kasei Co., Ltd. “YDCN704 (softening point 90 ° C.)” or the like is preferably used.
According to JIS K2207, the softening point in the present invention is that a sample is filled in a specified ring, supported horizontally in a water bath or a glycerin bath, and a specified sphere is placed in the center of the sample, and the bath temperature is 5 ° C./min. The temperature is read when the sample enveloping the ball and enclosing the ball comes into contact with the bottom plate of the ring base.
In the present invention, by combining (A) a liquid bisphenol type epoxy resin and (B) a solid polyfunctional epoxy resin having a softening point of 95 ° C. or lower, that is, by blending two types of epoxy resins having different melting points. A sheet-like thermosetting resin composition (sheet made of a thermosetting resin composition) exhibiting a sheet-like behavior at room temperature and a liquid behavior at high temperatures can be obtained.

本発明においては、前記(A)/(B)の質量比は10/90〜30/70の範囲にあることが好ましい。液状エポキシ樹脂が、上記範囲より少ないか又は固形状エポキシ樹脂の軟化点が95℃を超えるとシートに割れまたは欠けが発生し好ましくない。
また、液状エポキシ樹脂が上記範囲より多いか又は固形状エポキシ樹脂の軟化点が低すぎると、シートが形成されにくくなる。このような観点から、(A)/(B)の質量比は15/85〜25/75の範囲であることがより好ましく、また固形状エポキシ樹脂の軟化点の下限は、通常40℃程度である。
In the present invention, the mass ratio of (A) / (B) is preferably in the range of 10/90 to 30/70. If the liquid epoxy resin is less than the above range or the softening point of the solid epoxy resin exceeds 95 ° C., the sheet is unfavorably cracked or chipped.
Moreover, when there are more liquid epoxy resins than the said range, or the softening point of a solid epoxy resin is too low, it will become difficult to form a sheet | seat. From such a viewpoint, the mass ratio of (A) / (B) is more preferably in the range of 15/85 to 25/75, and the lower limit of the softening point of the solid epoxy resin is usually about 40 ° C. is there.

(C)成分として用いられるエポキシ樹脂用硬化剤としては、特に制限はなく、従来エポキシ樹脂の硬化剤として使用されているものの中から、任意のものを適宜選択して用いることができ、例えばアミン系、フェノール系、酸無水物系などが挙げられる。アミン系硬化剤としては、例えばジシアンジアミドや、m−フェニレンジアミンなどの芳香族ジアミン等が好ましく挙げられる。
このエポキシ樹脂用硬化剤の使用量は、硬化性及び硬化樹脂物性のバランスなどの点から、前記(A)および(B)成分のエポキシ樹脂に対する当量比で、通常0.5〜1.5当量比程度、好ましくは0.7〜1.3当量比の範囲で選定される。
本発明の封止方法で使用する熱硬化性樹脂組成物からなるシートにおいては、本発明の効果が損なわれない範囲で、必要に応じて、エポキシ樹脂用硬化促進剤を含有させることができる。
このエポキシ樹脂用硬化促進剤としては、特に制限はなく、従来エポキシ樹脂の硬化促進剤として使用されているものの中から、任意のものを適宜選択して用いることができる。例えば、芳香族ジメチルウレア、脂肪族ジメチルウレア等のウレア類などを例示することができる。
このエポキシ樹脂用硬化促進剤の使用量は、硬化促進性及び硬化樹脂物性のバランスなどの点から、上記(A)、(B)成分の両エポキシ樹脂の合計量100質量部に対し、通常0.1〜10質量部程度、好ましくは0.4〜5質量部の範囲で選定される。
There is no restriction | limiting in particular as a hardening | curing agent for epoxy resins used as (C) component, From what is conventionally used as a hardening | curing agent of an epoxy resin, arbitrary things can be selected suitably and used, for example, an amine. Type, phenol type, acid anhydride type and the like. Preferred examples of the amine curing agent include dicyandiamide and aromatic diamines such as m-phenylenediamine.
The amount of the epoxy resin curing agent used is an equivalent ratio of the components (A) and (B) to the epoxy resin, usually 0.5 to 1.5 equivalents, from the viewpoint of the balance between curability and cured resin properties. The ratio is selected within a range of preferably about 0.7 to 1.3 equivalent ratio.
In the sheet | seat which consists of a thermosetting resin composition used with the sealing method of this invention, the hardening accelerator for epoxy resins can be contained as needed in the range which does not impair the effect of this invention.
There is no restriction | limiting in particular as this hardening accelerator for epoxy resins, From the things conventionally used as a hardening accelerator of an epoxy resin, arbitrary things can be selected suitably and can be used. For example, ureas such as aromatic dimethylurea and aliphatic dimethylurea can be exemplified.
The use amount of the curing accelerator for epoxy resin is usually 0 with respect to 100 parts by mass of the total amount of both epoxy resins of the components (A) and (B) from the viewpoint of balance between curing acceleration and physical properties of the cured resin. .About 1-10 parts by mass, preferably 0.4-5 parts by mass.

(D)成分として用いられる無機フィラーとしては特に制限はなく、例えば溶融シリカ、球状シリカなどのシリカ類;アルミナなど、通常用いられているものを使用することができる。
当該無機フィラーの質量平均粒子径は、製造時の作業性及び隙間への熱硬化性樹脂組成物の充填効率の観点から、4〜30μmの範囲にあることが好ましい。なお、この質量平均粒子径は、レーザ回折散乱方式(例えば、島津製作所製、装置名:SALD−3100)により測定された値である。
当該無機フィラーとしては、球状シリカが好ましく、例えば電気化学工業社製の「FB−959(質量平均粒子径:25μm)」などが好適である。
当該無機フィラーの含有量は、熱硬化性樹脂組成物全量に基づき、20〜80質量%であることが好ましい。この含有量が20質量%未満では、シート状熱硬化性樹脂組成物を用いて電子部品を封止する際、溶融した樹脂の流動性が高くなって封止すべき範囲からはみ出したり〔図2(a)参照〕、硬化物に反りや、ねじれが発生しやすい。一方80質量%を超えると、シートに割れや欠けが発生したり、溶融時の流動性が低下し、隙間に未充填箇所が発生〔図2(b)参照〕したりするため好ましくない。
There is no restriction | limiting in particular as an inorganic filler used as (D) component, For example, normally used things, such as silicas, such as fused silica and spherical silica; Alumina, can be used.
The mass average particle diameter of the inorganic filler is preferably in the range of 4 to 30 μm from the viewpoint of workability during production and filling efficiency of the thermosetting resin composition into the gaps. In addition, this mass average particle diameter is a value measured by a laser diffraction scattering method (for example, Shimadzu Corporation, apparatus name: SALD-3100).
As the inorganic filler, spherical silica is preferable. For example, “FB-959 (mass average particle diameter: 25 μm)” manufactured by Denki Kagaku Kogyo Co., Ltd. is suitable.
It is preferable that content of the said inorganic filler is 20-80 mass% based on the thermosetting resin composition whole quantity. When the content is less than 20% by mass, when the electronic component is sealed using the sheet-like thermosetting resin composition, the fluidity of the molten resin is increased, and the resin may protrude from the range to be sealed [FIG. (See (a)], the cured product is likely to warp or twist. On the other hand, if it exceeds 80% by mass, cracks and chips are generated in the sheet, fluidity at the time of melting is lowered, and unfilled portions are generated in the gaps (see FIG. 2B), which is not preferable.

(E)成分として用いられる難燃剤としては特に制限はなく、例えばリン化合物や、金属水和物などを用いることができる。
リン化合物としては、例えば(a)ホスファゼン化合物、(b)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドや、その誘導体、(c)リン酸エステル化合物、(d)リン酸エステルアミドなどがある。
金属水和物としては水酸化アルミニウム、水酸化マグネシウムが用いられ、水酸化アルミニウム化合物としては、例えば、昭和電工社製の「H42M」が好ましく使用される。
本発明においては、前記難燃剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その含有量は、難燃剤の種類にもよるが、難燃性及び他の物性のバランスの面から、樹脂組成物全量に基づき、5〜50質量%であることが好ましく、より好ましくは、10〜40質量%、さらに好ましくは10〜35質量%である。
There is no restriction | limiting in particular as a flame retardant used as (E) component, For example, a phosphorus compound, a metal hydrate, etc. can be used.
Examples of phosphorus compounds include (a) phosphazene compounds, (b) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, derivatives thereof, (c) phosphate ester compounds, (d) Examples include phosphoric ester amides.
As the metal hydrate, aluminum hydroxide or magnesium hydroxide is used. As the aluminum hydroxide compound, for example, “H42M” manufactured by Showa Denko KK is preferably used.
In this invention, the said flame retardant may be used individually by 1 type, and may be used in combination of 2 or more type. Further, the content is preferably 5 to 50% by mass based on the total amount of the resin composition, more preferably, from the viewpoint of the balance between flame retardancy and other physical properties, although it depends on the type of flame retardant. 10 to 40% by mass, more preferably 10 to 35% by mass.

〔他の任意成分〕
本発明の封止方法で使用される熱硬化性樹脂組成物においては、他の任意成分として、本発明の効果を阻害しない範囲で、シリコーンゴムやシリコーンゲルなどの粉末、シリコーン変性エポキシ樹脂やフェノール樹脂、メタクリル酸メチル−ブタジエン−スチレン共重合体のような熱可塑性樹脂などの低応力化剤;n−ブチルグリシジルエーテル、フェニルグリシジルエーテル、スチレンオキサイド、t−ブチルフェニルグリシジルエーテル、ジシクロペンタジエンジエポキシド、フェノール、クレゾール、t−ブチルフェノールなどの粘度降下用希釈剤;ノニオン系界面活性剤、フッ素系界面活性剤、シリコーンオイルなどの濡れ向上剤や消泡剤等を適宜含有させることができる。
[Other optional ingredients]
In the thermosetting resin composition used in the sealing method of the present invention, as other optional components, powders such as silicone rubber and silicone gel, silicone-modified epoxy resins and phenols are used as long as the effects of the present invention are not impaired. Resin, stress reducing agent such as thermoplastic resin such as methyl methacrylate-butadiene-styrene copolymer; n-butyl glycidyl ether, phenyl glycidyl ether, styrene oxide, t-butylphenyl glycidyl ether, dicyclopentadiene diepoxide , Phenol, cresol, t-butylphenol and other viscosity reducing diluents; nonionic surfactants, fluorine surfactants, wetting improvers such as silicone oil, antifoaming agents, and the like can be appropriately contained.

本発明の封止方法によれば、熱硬化性樹脂組成物からなるシートで電子部品を被覆し、加熱することで容易に電子部品を封止することができるため封止工程を簡略化して製造を簡便に行うことができる。さらに電子部品と基板との間に形成された隙間への樹脂の充填を行なうにあたり、同部分のボイドの発生もなく、加熱硬化後所望の形状に電子部品を封止することが出来、かつ、硬化物の反りやねじれが少ない上、難燃性にも優れたものである。また、大掛かりな設備を必要とせずに電子機能部を有する電子部品の機能を阻害することなく封止することができるため、製造コストの低減を図ることができる。   According to the sealing method of the present invention, the electronic component can be easily sealed by covering the electronic component with a sheet made of the thermosetting resin composition and heating, so that the sealing process is simplified and manufactured. Can be performed easily. Furthermore, when filling the resin into the gap formed between the electronic component and the substrate, there is no generation of voids in the same part, the electronic component can be sealed in a desired shape after heat curing, and The cured product is less warped and twisted and has excellent flame retardancy. Moreover, since it can seal without obstructing the function of the electronic component which has an electronic function part, without requiring large equipment, manufacturing cost can be reduced.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例における諸特性は、以下に示す方法に従って求めた。
(1)ゲルタイム
JIS C 2105の試験管法に準拠して、100℃のオイルバス中でシート状熱硬化性樹脂組成物がゲルになるまでの時間を測定した。
(2)シート特性
次の判定基準で評価した。
○:室温で柔軟であり、180度折り曲げ時、割れ及び欠けが発生せず、かつ液状でない。
×:シート化が不可能。
(3)溶融時の流動性
6mm口、厚さ0.5mmのチップをFR−4基板上に設置したものを用意し、その上に9mm口に切り出した樹脂からなるシートをのせ、100℃2時間硬化させ、埋め込み性を目視にて確認し、下記の判定基準で評価した。
○:樹脂によりチップが埋め込まれている
×:樹脂が十分に溶融・流動せず、基板/樹脂間にチップから外部に至る空隙がある
(4)溶融粘度
レオメーター〔Rhenemetric Scientific社製、ARES〕にて測定(100℃)した。すなわち同熱硬化性樹脂からなるシート片(25mmφ)について、25mmφのパラレルプレートを使用して、100℃定温下、歪み50%(最大)、角速度50rad/秒の下で、3分後の粘度を求めたものである。
<硬化物>
(5)硬化後の接触角
FR−4基板〔45mm×30mm、レジスト塗布済み、レジスト:太陽インキ社製、「PSR−4000 G24K 緑」〕上に熱硬化性樹脂組成物からなるシートを0.05g載せ、100℃、2時間硬化後、接触角計〔協和界面科学(株)製接触角計CD−A〕により樹脂と基板の接触角を測定した(図4参照)。
(6)フロー性
FR−4基板(45mm×30mm)上に塗布されたレジスト〔太陽インキ社製、「PSR−4000 G24K 緑」〕膜上に高さ50μmのスペーサーを四隅に有したカバーガラスを載せた治具に、同カバーガラス端部に小片化した熱硬化性樹脂からなるシート(30mm×20mm)を設置し、100℃で2時間加熱して流動化した樹脂組成物を硬化させた後、端部からの侵入距離を計測した(図3参照)。
図3はフロー性試験の状況を示すイメージ図である。
(7)ガラス転移点
TMA/SS150〔セイコーインスツルメンツ社製〕において、室温から200℃まで昇温(昇温スピード10℃/分)して、ガラス転移点を測定した。
(8)難燃性
UL94に準拠して、試験片厚み1.6mmで難燃性を評価した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the various characteristics in each example were calculated | required according to the method shown below.
(1) Gel time Based on the test tube method of JIS C2105, the time until a sheet-like thermosetting resin composition became a gel was measured in an oil bath at 100 ° C.
(2) Sheet characteristics Evaluation was made according to the following criteria.
◯: Flexible at room temperature, not cracked or chipped when bent 180 degrees, and not liquid.
X: Sheeting is impossible.
(3) Fluidity at the time of melting Prepare a chip having a 6 mm opening and a 0.5 mm thick chip placed on an FR-4 substrate, and place a sheet made of resin cut into a 9 mm opening on the chip, and 100 ° C. 2 It was cured for a period of time, and the embedding property was visually confirmed, and evaluated according to the following criteria.
○: The chip is embedded with resin. X: The resin is not sufficiently melted and flowed, and there is a gap between the substrate and the resin from the chip to the outside. (4) Melt viscosity rheometer (ARES, manufactured by Renemetric Scientific) (100 ° C.). That is, for a sheet piece (25 mmφ) made of the same thermosetting resin, using a 25 mmφ parallel plate, the viscosity after 3 minutes under a constant temperature of 100 ° C., a strain of 50% (maximum), and an angular velocity of 50 rad / sec. It is what I have sought.
<Hardened product>
(5) Contact angle after curing A sheet made of a thermosetting resin composition on an FR-4 substrate [45 mm × 30 mm, resist-coated, resist: “PSR-4000 G24K green” manufactured by Taiyo Ink Co., Ltd.] After setting at 05 g and curing at 100 ° C. for 2 hours, the contact angle between the resin and the substrate was measured with a contact angle meter (contact angle meter CD-A manufactured by Kyowa Interface Science Co., Ltd.) (see FIG. 4).
(6) Flowability A resist glass coated on an FR-4 substrate (45 mm × 30 mm) [manufactured by Taiyo Ink Co., Ltd., “PSR-4000 G24K green”] A cover glass having spacers with a height of 50 μm on the four corners. After placing a sheet (30 mm × 20 mm) made of a thermosetting resin fragmented on the end of the cover glass on the mounted jig and heating it at 100 ° C. for 2 hours to cure the fluidized resin composition The penetration distance from the end was measured (see FIG. 3).
FIG. 3 is an image diagram showing a flow test.
(7) Glass transition point In TMA / SS150 [manufactured by Seiko Instruments Inc.], the glass transition point was measured by raising the temperature from room temperature to 200 ° C (temperature rise speed 10 ° C / min).
(8) Flame retardance Based on UL94, the flame retardance was evaluated with a test piece thickness of 1.6 mm.

(実施例1〜5)
表1に示す配合組成の各原料をニーダーに仕込み、75℃で1時間撹拌混合して、各熱硬化性樹脂組成物を調製した。次いで、各樹脂組成物それぞれを30℃に冷却後、成形機により、70℃、1.0MPaの条件でプレス成形して厚さ0.5mmのシートとし、熱硬化性樹脂組成物からなる各シートを作製した。
基板上に実装された電子部品を上記シートで被覆した後、常圧下で、100℃の温度に2時間加熱して、同シートを流動化させた後、さらに150℃の温度にて、1時間程度加熱して流動化した同樹脂組成物を硬化させるという条件により電子部品と基板との間に形成された隙間を保持しながら電子部品をシートにより封止することができた。
図1(a)〜(d)は基板上に実装された電子部品を熱硬化性樹脂組成物からなるシートで被覆し、封止した状態を示した断面模式図である。図1(e)は孔を設けた基板上に実装された電子部品に熱硬化性樹脂組成物からなるシートを被覆し、基板と実装された電子部品との間に形成された隙間を封止材料で充填した状態を示した断面模式図である。
(Examples 1-5)
Each raw material of the composition shown in Table 1 was charged into a kneader and stirred and mixed at 75 ° C. for 1 hour to prepare each thermosetting resin composition. Next, after cooling each resin composition to 30 ° C., each sheet comprising a thermosetting resin composition is press-molded under conditions of 70 ° C. and 1.0 MPa with a molding machine to form a sheet having a thickness of 0.5 mm. Was made.
After the electronic component mounted on the substrate is covered with the above sheet, the sheet is heated to a temperature of 100 ° C. for 2 hours under normal pressure to fluidize the sheet, and further at a temperature of 150 ° C. for 1 hour. The electronic component could be sealed with the sheet while maintaining the gap formed between the electronic component and the substrate under the condition that the resin composition that had been fluidized by heating to some extent was cured.
1A to 1D are schematic cross-sectional views showing a state where an electronic component mounted on a substrate is covered with a sheet made of a thermosetting resin composition and sealed. Fig. 1 (e) covers a sheet made of a thermosetting resin composition on an electronic component mounted on a substrate having holes, and seals a gap formed between the substrate and the mounted electronic component. It is the cross-sectional schematic diagram which showed the state filled with the material.

(比較例1、2)
表1記載の所定のものとした以外は、実施例と同様の操作を行った。
図2(a)および(b)は熱硬化性樹脂組成物からなるシート中の樹脂の流動性が適切でないことによる異常な封止状態を示す断面模式図である。
各例における諸特性の評価結果を表1に示す。
(Comparative Examples 1 and 2)
The same operation as in the example was performed except that the predetermined ones shown in Table 1 were used.
2 (a) and 2 (b) are schematic cross-sectional views showing an abnormal sealing state due to improper fluidity of the resin in the sheet made of the thermosetting resin composition.
Table 1 shows the evaluation results of various characteristics in each example.

実施例および比較例で使用した各成分は以下の通りである。
1.液状ビスフェノール型エポキシ樹脂
(1)DER383J:ダウケミカル社製のビスフェノールA型エポキシ樹脂(エポキシ当量:190)
(2)807:三菱化学社製のビスフェノールF型エポキシ樹脂(エポキシ当量:170)
2.軟化点95℃以下の固形状エポキシ樹脂
(1)NC3000:日本化薬社製のビフェニル骨格含有多官能型エポキシ樹脂(エポキシ当量:285、軟化点:57℃)
(2)NC3000H:日本化薬社製のビフェニル骨格型エポキシ樹脂(エポキシ当量:290、軟化点:70℃)
3.硬化剤
(1)DICY:日本カーバイド社製のジシアンジアミド
(2)EH−4370S:ADEKA社製の変性脂肪族ポリアミン
4.触媒
U−CAT3502T:サンアプロ社製の芳香族ジメチルウレア
5.無機フィラー
FB−959:電気化学工業社製の球状シリカ(質量平均粒子径:25μm)
6.難燃剤
H42M:昭和電工社製の水酸化アルミニウム(粒子径:1.5μm)
7.レジスト
PSR−4000 G24K 緑:太陽インキ社製のエポキシ系レジスト
表1と図1から分かるように、実施例のすべてにおいて、溶融粘度を樹脂組成で調節し、熱硬化性樹脂からなるシートにより各種所望の形状に封止でき、かつ、難燃性の項目も良好である。これに対し、比較例1、2のように、レジスト膜に対する硬化後の接触角が20〜100度の範囲外にあるものは、それぞれ溶融樹脂が流れすぎたり、溶融時の流動性が劣って電子部品と基板との間に形成された隙間が完全に密閉できなかった。その断面図を図2(a)および(b)に示す。
Each component used in Examples and Comparative Examples is as follows.
1. Liquid bisphenol type epoxy resin (1) DER383J: bisphenol A type epoxy resin manufactured by Dow Chemical Company (epoxy equivalent: 190)
(2) 807: Bisphenol F type epoxy resin manufactured by Mitsubishi Chemical Corporation (epoxy equivalent: 170)
2. Solid epoxy resin having a softening point of 95 ° C. or lower (1) NC3000: bifunctional skeleton-containing polyfunctional epoxy resin manufactured by Nippon Kayaku Co., Ltd. (epoxy equivalent: 285, softening point: 57 ° C.)
(2) NC3000H: biphenyl skeleton type epoxy resin manufactured by Nippon Kayaku Co., Ltd. (epoxy equivalent: 290, softening point: 70 ° C.)
3. Curing agent (1) DICY: Dicyandiamide manufactured by Nippon Carbide Corporation (2) EH-4370S: Modified aliphatic polyamine manufactured by ADEKA Corporation Catalyst U-CAT3502T: aromatic dimethylurea manufactured by San Apro Inorganic filler FB-959: spherical silica (mass average particle diameter: 25 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
6). Flame retardant H42M: Aluminum hydroxide manufactured by Showa Denko (particle size: 1.5 μm)
7). Resist PSR-4000 G24K Green: Epoxy resist manufactured by Taiyo Ink Co. As can be seen from Table 1 and FIG. 1, in all of the examples, the melt viscosity is adjusted by the resin composition and various desired by the sheet made of thermosetting resin It can be sealed in the shape of, and the flame retardant item is also good. On the other hand, as in Comparative Examples 1 and 2, when the contact angle after curing with respect to the resist film is outside the range of 20 to 100 degrees, the molten resin flows too much or the fluidity at the time of melting is inferior. The gap formed between the electronic component and the substrate could not be completely sealed. The sectional views are shown in FIGS. 2 (a) and 2 (b).

本発明の電子部品の封止方法は、簡易な操作により電子部品を熱硬化性樹脂組成物からなるシートで被覆することにより、加熱溶融時、電子部品と基板との間に形成された隙間への樹脂の充填性を調節出来、かつ、加熱硬化後、同部分のボイドの発生もなく所望の形状に電子部品を封止する方法を提供することができる。   In the electronic component sealing method of the present invention, the electronic component is covered with a sheet made of a thermosetting resin composition by a simple operation, so that the gap formed between the electronic component and the substrate is heated and melted. Thus, it is possible to provide a method of sealing an electronic component in a desired shape without the occurrence of voids in the same portion after heat curing.

1:熱硬化性樹脂組成物からなるシート
2:電子部品(たとえば、チップ型デバイス)
3:電子部品(たとえば、バンプ)
4:基板
1: Sheet made of thermosetting resin composition 2: Electronic component (for example, chip-type device)
3: Electronic component (for example, bump)
4: Substrate

Claims (5)

基板上に実装された電子部品を熱硬化性樹脂組成物からなるシートで被覆し、加熱硬化する電子部品の封止方法であって、
硬化前の100℃における溶融粘度が0.1〜50Pa・sであり、基板上のレジスト膜に対する硬化後の接触角が20〜100度である熱硬化性樹脂組成物からなるシートで前記電子部品を被覆し、電子部品と基板との接触部周辺を密閉して電子部品と基板との間に隙間を形成させることを特徴とする電子部品の封止方法。
An electronic component mounted on a substrate is covered with a sheet made of a thermosetting resin composition, and is a method for sealing an electronic component that is heat-cured,
The electronic component comprising a sheet made of a thermosetting resin composition having a melt viscosity of 0.1 to 50 Pa · s at 100 ° C. before curing and a contact angle after curing with respect to a resist film on the substrate of 20 to 100 degrees. And sealing the periphery of the contact portion between the electronic component and the substrate to form a gap between the electronic component and the substrate.
加熱硬化された前記シートの一部を前記隙間に充填させる請求項1記載の電子部品の封止方法。   The method for sealing an electronic component according to claim 1, wherein a part of the heat-cured sheet is filled in the gap. 80〜150℃下で、前記シートを流動化させた後、さらに100〜180℃下にて、0.5〜2時間加熱して流動化した同シートを硬化させる請求項1または2に記載の電子部品の封止方法。   3. The fluidized sheet according to claim 1, wherein after fluidizing the sheet at 80 to 150 ° C., the fluidized sheet is further cured by heating at 100 to 180 ° C. for 0.5 to 2 hours. Electronic component sealing method. 前記シートが、
(A)液状ビスフェノール型エポキシ樹脂、(B)軟化点が95℃以下の固形状多官能エポキシ樹脂、(C)エポキシ樹脂用硬化剤、(D)無機フィラー及び(E)難燃剤を必須成分として含む熱硬化性樹脂組成物からなり、前記(A)/(B)の質量比が10/90〜30/70であり、かつ前記(D)の含有量が同熱硬化性樹脂組成物全量の20〜80質量%である請求項1〜3のいずれかに記載の電子部品の封止方法。
The sheet is
(A) Liquid bisphenol type epoxy resin, (B) Solid polyfunctional epoxy resin having a softening point of 95 ° C. or less, (C) Curing agent for epoxy resin, (D) Inorganic filler and (E) Flame retardant as essential components The (A) / (B) mass ratio is 10/90 to 30/70, and the content of (D) is the total amount of the thermosetting resin composition. It is 20-80 mass%, The sealing method of the electronic component in any one of Claims 1-3.
前記隙間が200μm以下である請求項1〜4のいずれかに記載の電子部品の封止方法。   The said clearance gap is 200 micrometers or less, The sealing method of the electronic component in any one of Claims 1-4.
JP2010195054A 2010-05-26 2010-08-31 Sealing method of electronic component Pending JP2012054363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010195054A JP2012054363A (en) 2010-08-31 2010-08-31 Sealing method of electronic component
PCT/JP2011/002891 WO2011148620A1 (en) 2010-05-26 2011-05-24 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet
KR1020127017351A KR20130079311A (en) 2010-05-26 2011-05-24 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet
CN201180007104.XA CN102725323B (en) 2010-05-26 2011-05-24 Flaky resin composition, use the manufacture method of the sealing method of the circuit components of this flaky resin composition, electronic devices and components, method of attachment and fixing means and composite sheet, the electronic devices and components using this composite sheet, electronics, composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195054A JP2012054363A (en) 2010-08-31 2010-08-31 Sealing method of electronic component

Publications (1)

Publication Number Publication Date
JP2012054363A true JP2012054363A (en) 2012-03-15

Family

ID=45907397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195054A Pending JP2012054363A (en) 2010-05-26 2010-08-31 Sealing method of electronic component

Country Status (1)

Country Link
JP (1) JP2012054363A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136926A1 (en) * 2012-03-16 2013-09-19 株式会社村田製作所 Device for producing sealing resin sheet and method for producing sealing resin sheet
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
JP2014040533A (en) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp Thermosetting resin composition; method for manufacturing a heat-conductive resin sheet; and heat-conductive resin sheet; and semiconductor device for power applications
JP2016162909A (en) * 2015-03-03 2016-09-05 日東電工株式会社 Hollow type electronic device sealing sheet, and manufacturing method of hollow type electronic device package
WO2020184549A1 (en) * 2019-03-11 2020-09-17 京セラ株式会社 Module, module production method, and resin sheet
WO2021029259A1 (en) * 2019-08-09 2021-02-18 ナガセケムテックス株式会社 Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
KR20230019132A (en) 2021-07-29 2023-02-07 토요잉크Sc홀딩스주식회사 Electronic component mounting board, electronic component protection sheet, and electronic device
US12002686B2 (en) 2020-01-27 2024-06-04 Kioxia Corporation Semiconductor device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028376A (en) * 1999-07-14 2001-01-30 Toshiba Corp Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2006124434A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Epoxy resin-inorganic material composite sheet and molded article
WO2010061980A1 (en) * 2008-11-28 2010-06-03 味の素株式会社 Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028376A (en) * 1999-07-14 2001-01-30 Toshiba Corp Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2006124434A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Epoxy resin-inorganic material composite sheet and molded article
WO2010061980A1 (en) * 2008-11-28 2010-06-03 味の素株式会社 Resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136926A1 (en) * 2012-03-16 2013-09-19 株式会社村田製作所 Device for producing sealing resin sheet and method for producing sealing resin sheet
US10096763B2 (en) 2012-03-26 2018-10-09 Murata Manufacturing Co., Ltd. Elastic wave device and method for manufacturing same
CN104205631A (en) * 2012-03-26 2014-12-10 株式会社村田制作所 Elastic wave apparatus and method for manufacturing same
JPWO2013146374A1 (en) * 2012-03-26 2015-12-10 株式会社村田製作所 Elastic wave device and manufacturing method thereof
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
JP2014040533A (en) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp Thermosetting resin composition; method for manufacturing a heat-conductive resin sheet; and heat-conductive resin sheet; and semiconductor device for power applications
JP2016162909A (en) * 2015-03-03 2016-09-05 日東電工株式会社 Hollow type electronic device sealing sheet, and manufacturing method of hollow type electronic device package
WO2020184549A1 (en) * 2019-03-11 2020-09-17 京セラ株式会社 Module, module production method, and resin sheet
JPWO2020184549A1 (en) * 2019-03-11 2020-09-17
JP7167303B2 (en) 2019-03-11 2022-11-08 京セラ株式会社 MODULE, MODULE MANUFACTURING METHOD AND RESIN SHEET
WO2021029259A1 (en) * 2019-08-09 2021-02-18 ナガセケムテックス株式会社 Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
JP6894077B1 (en) * 2019-08-09 2021-06-23 ナガセケムテックス株式会社 Multi-layer sheet for mold underfill sealing, mold underfill sealing method, electronic component mounting board and manufacturing method of electronic component mounting board
US12002686B2 (en) 2020-01-27 2024-06-04 Kioxia Corporation Semiconductor device and method of manufacturing the same
KR20230019132A (en) 2021-07-29 2023-02-07 토요잉크Sc홀딩스주식회사 Electronic component mounting board, electronic component protection sheet, and electronic device

Similar Documents

Publication Publication Date Title
JP2012054363A (en) Sealing method of electronic component
KR101044132B1 (en) Liquid resin composition for electronic element and electronic element device
KR101031151B1 (en) Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP2011014885A (en) Dam material composition of underfill material for multilayer semiconductor device, and method of manufacturing multilayer semiconductor device using the same dam material composition
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
WO2011013326A1 (en) Liquid resin composition and semiconductor device formed using same
WO2011148620A1 (en) Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet
JP2008127577A (en) Epoxy resin composition for sealing multi-chip package and multi-chip package using the same
JP2013163747A (en) Liquid resin composition for sealing semiconductor, and semiconductor device
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
JPH10289969A (en) Semiconductor device and sealing resin sheet for use therefor
JP2015083634A (en) Epoxy resin, electronic component device using the epoxy resin and method for manufacturing electronic component device
KR20110123731A (en) Adhesive for electronic components
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
JP2009256466A (en) Adhesive for electronic part
JP4747586B2 (en) Method for producing liquid encapsulating resin composition for semiconductor
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP2009126980A (en) Liquid sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP4810835B2 (en) Liquid sealing resin composition for underfill and semiconductor device using the same
JP2012107149A (en) Liquid sealing resin composition and semiconductor device
WO2010073559A1 (en) Liquid resin composition and semiconductor device
JP2017119767A (en) Resin composition for underfilling, electronic component device and method for producing electronic component device
JP2009013308A (en) Sheet-like epoxy resin composition and semiconductor device using the same
JP2008247951A (en) Liquid epoxy resin composition for protecting semiconductor device, cured epoxy resin, method for producing semiconductor device and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113