JP2012134248A - Resonance coil and non-contact power transmission device with resonance coil - Google Patents

Resonance coil and non-contact power transmission device with resonance coil Download PDF

Info

Publication number
JP2012134248A
JP2012134248A JP2010283664A JP2010283664A JP2012134248A JP 2012134248 A JP2012134248 A JP 2012134248A JP 2010283664 A JP2010283664 A JP 2010283664A JP 2010283664 A JP2010283664 A JP 2010283664A JP 2012134248 A JP2012134248 A JP 2012134248A
Authority
JP
Japan
Prior art keywords
coil
resonance
resonance coil
conductor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010283664A
Other languages
Japanese (ja)
Other versions
JP5595893B2 (en
Inventor
Makoto Hirayama
誠 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010283664A priority Critical patent/JP5595893B2/en
Priority to PCT/JP2011/078843 priority patent/WO2012086473A1/en
Publication of JP2012134248A publication Critical patent/JP2012134248A/en
Application granted granted Critical
Publication of JP5595893B2 publication Critical patent/JP5595893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a compact and inexpensive resonance coil in which there is no dielectric breakdown between coil conductors, and to provide a non-contact power transmission device equipped with the resonance coil.SOLUTION: The resonance coil 50 includes a coil conductor 51 having multiple number of turns and used for transmitting power to a partner coil by resonance phenomenon and receiving power transmitted from the partner coil, and a mold member 52 including the coil conductor 51. Between one turn 55[k] of the coil conductor 51 and other turn 55[k+1] contiguous to the one turn 55[k], an interconductor gap G having a size according to a potential difference between the one turn 55[k] and other turn 55[k+1] is provided.

Description

本発明は、共鳴現象によって相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信する共鳴コイル、及び、その共鳴コイルを有する非接触電力伝送装置に関するものである。   The present invention relates to a resonance coil that transmits power to a counterpart coil or receives power transmitted from the counterpart coil by a resonance phenomenon, and a non-contact power transmission apparatus having the resonance coil.

近年、例えば、電気自動車等が備える二次電池(以下、単に「バッテリ」という)の充電などにおいて、充電作業を容易にするために、プラグ接続等の物理的接続を必要としないワイヤレス(非接触)での電力伝送技術が用いられている。   In recent years, for example, charging of a secondary battery (hereinafter simply referred to as “battery”) included in an electric vehicle or the like is wireless (non-contact) that does not require physical connection such as plug connection in order to facilitate charging work. ) Is used.

このようなワイヤレス電力伝送技術として、電磁誘導現象を利用した電磁誘導方式、電磁波を利用した電磁波送信方式、共鳴現象を利用した共鳴方式などが知られている。中でも、共鳴方式は、送信共鳴コイルに交流電力を供給して、電磁場を介して送信共鳴コイルと当該送信共鳴コイルに対向配置された受信共鳴コイルとを共鳴させて、電力を伝送する技術であり、数kWの大電力を比較的離れた場所間で伝送することが可能である。   As such wireless power transmission technology, an electromagnetic induction method using an electromagnetic induction phenomenon, an electromagnetic wave transmission method using an electromagnetic wave, a resonance method using a resonance phenomenon, and the like are known. Among them, the resonance method is a technique for transmitting electric power by supplying AC power to the transmission resonance coil and causing the transmission resonance coil to resonate with the reception resonance coil disposed opposite to the transmission resonance coil via an electromagnetic field. It is possible to transmit large power of several kW between relatively distant places.

しかしながら、このような共鳴方式のワイヤレス電力伝送技術を、例えば、電気自動車のバッテリ充電システムなどの数kWから数十kWの大電力が伝送されるシステムに適用した場合、図7に示すように、共鳴状態になると共鳴コイルが有する管状に巻回されたコイル導線の端部あるいは端部近傍において高電圧が生じ、当該共鳴コイルを収容する、アースされたケースなどとの間で絶縁破壊が起きて火花放電が発生してしまうなどの問題があった。そして、このような問題を解決する技術が、例えば、特許文献1に開示されている。   However, when such a resonance-type wireless power transmission technology is applied to a system in which large power of several kW to several tens of kW is transmitted, such as a battery charging system of an electric vehicle, for example, as shown in FIG. When the resonance state is reached, a high voltage is generated at or near the end of the coil wire wound in the tubular shape of the resonance coil, and dielectric breakdown occurs between the resonance coil and the grounded case that houses the resonance coil. There were problems such as the occurrence of spark discharge. And the technique which solves such a problem is disclosed by patent document 1, for example.

特許文献1に開示されている共鳴コイル901は、図8に示すように、コイル導線910と絶縁性の樹脂920とを備えている。コイル導線910は、管状に複数回巻回されている。そして、この絶縁性の樹脂920が、コイル導線910の長手方向の端部910aに近いほど厚みが増すようにコイル導線910に被覆加工されているので、コイル導線910の端部910aにおける絶縁耐力を高めて火花放電を防止することができた。また、この共鳴コイル901のコイル導線910には、コイル導線910の巻回部間には一定の導線間ギャップが設けられており、コイル導線910の巻回部間での絶縁破壊による火花放電を防いでいた。   As shown in FIG. 8, the resonance coil 901 disclosed in Patent Document 1 includes a coil conductor 910 and an insulating resin 920. The coil conducting wire 910 is wound in a tubular shape a plurality of times. And since this insulating resin 920 is coated on the coil conductor 910 so that the thickness increases as the length of the end 910a in the longitudinal direction of the coil conductor 910 increases, the dielectric strength at the end 910a of the coil conductor 910 is increased. It was possible to prevent spark discharge. In addition, the coil conductor 910 of the resonance coil 901 has a certain inter-conductor gap between the winding portions of the coil conductor 910, and spark discharge due to dielectric breakdown between the winding portions of the coil conductor 910. It was preventing.

特開2010−73885号公報JP 2010-73885 A

例えば、電気自動車のバッテリの充電システムなどでは、燃費向上、車内スペース確保、及び、充電エリアの有効利用等のために共鳴コイルの小型化が求められている。しかしながら、上述した構成の共鳴コイルにおいて、図7から判るようにコイル導線の各巻回部間に生じる電位差がコイル導線の箇所によって異なるにもかかわらず、コイル導線の導線間ギャップの大きさが、最も大きい電位差に合わせて一定にされているので、これより電位差が低い箇所においては、導線間ギャップが必要以上の大きさとなって過剰となり、そのため、無駄な部分が生じて小型化できないという問題があった。または、共鳴コイルを小型化するとコイル導線の巻回部間の導線間ギャップが小さくなるので、コイル導線の巻回部間での絶縁破壊を防ぐために、コイル導線の被覆に絶縁性能の高い樹脂を用いたり、樹脂の厚みを増したりするなどの対策が必要となり、製造コストが増加してしまうという問題があった。   For example, in a battery charging system for an electric vehicle, the resonance coil is required to be miniaturized in order to improve fuel efficiency, secure a space in the vehicle, and effectively use a charging area. However, in the resonance coil having the above-described configuration, the size of the gap between the conductors of the coil conductor is the largest even though the potential difference generated between the winding portions of the coil conductor differs depending on the location of the coil conductor as can be seen from FIG. Since it is made constant according to the large potential difference, the gap between the conductors becomes larger than necessary at the location where the potential difference is lower than this, and there is a problem that a wasteful portion is generated and the size cannot be reduced. It was. Or, if the resonance coil is downsized, the gap between the windings of the coil conductor becomes smaller, so in order to prevent dielectric breakdown between the windings of the coil conductor, a resin with high insulation performance is coated on the coil conductor coating. There is a problem that the manufacturing cost increases because measures such as use or increasing the thickness of the resin are required.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、コイル導線間での絶縁破壊のない小型で安価な共鳴コイル及びそれを備える非接触電力伝送装置を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a small and inexpensive resonant coil that does not cause dielectric breakdown between coil conductors and a non-contact power transmission device including the same.

本発明者は、共鳴コイルの小型化と低コストとを両立すべく、共鳴コイルの構成について検討を重ねた結果、コイル導線の各巻回部間には異なる電位差が生じており、この各巻回部間における電位差に応じて適切な大きさの導線間ギャップを設けることで、小型形状でありながら低コストを実現できることを見出し、本発明の完成に至った。   As a result of repeated investigations on the configuration of the resonance coil in order to achieve both reduction in size and cost of the resonance coil, the present inventor has produced different potential differences between the winding portions of the coil conductor. It has been found that by providing a gap between the conductors of an appropriate size according to the potential difference between them, it is possible to realize low cost while having a small shape, and the present invention has been completed.

請求項1に記載された発明は、上記目的を達成するために、共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、複数回巻回されたコイル導線を有し、そして、前記コイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、前記一の巻回部と前記他の巻回部との間に生じる電位差に応じた大きさの導線間ギャップが設けられていることを特徴とする共鳴コイルである。   In order to achieve the above object, the invention described in claim 1 is a resonance coil that transmits electric power to a counterpart coil by a resonance phenomenon or receives electric power transmitted from the counterpart coil. And between the one winding part of the coil conductor and another winding part adjacent to the one winding part, the one winding part and the other winding part. The resonance coil is characterized in that a gap between conductors having a size corresponding to a potential difference generated between the winding portion and the winding portion is provided.

請求項2に記載された発明は、請求項1に記載された発明において、前記コイル導線が、管状に複数回巻回されており、前記コイル導線の軸方向中央部における前記導線間ギャップの大きさが、前記コイル導線の軸方向両端部における前記導線間ギャップの大きさより大きいことを特徴とするものである。   The invention described in claim 2 is the invention described in claim 1, wherein the coil conductor is wound in a tubular shape a plurality of times, and the gap between the conductors in the central portion in the axial direction of the coil conductor is large. Is larger than the size of the gap between the conductors at both ends in the axial direction of the coil conductor.

請求項3に記載された発明は、請求項1又は2に記載された発明において、前記コイル導線には、その表面を覆う絶縁被覆部材が設けられていることを特徴とするものである。   The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the coil conductor is provided with an insulating coating member covering the surface thereof.

請求項4に記載された発明は、請求項1〜3のいずれか一項に記載された発明において、前記導線間ギャップに充填されて前記コイル導線を内包するように設けられた絶縁部材を有していることを特徴とするものである。   The invention described in claim 4 is the invention described in any one of claims 1 to 3, further comprising an insulating member provided so as to fill the gap between the conductors and enclose the coil conductor. It is characterized by that.

請求項5に記載された発明は、上記目的を達成するために、共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルであることを特徴とする非接触電力伝送装置である。   In order to achieve the above object, the invention described in claim 5 includes a transmission resonance coil that transmits electric power by a resonance phenomenon and a reception resonance coil that receives electric power transmitted from the transmission resonance coil. In the contact power transmission device, at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to any one of claims 1 to 4, wherein the contact power transmission device is a non-contact power transmission device. .

請求項1に記載された発明によれば、複数回巻回されたコイル導線を有し、そして、このコイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、これら一の巻回部と他の巻回部との間に生じる電位差に応じた大きさの導線間ギャップが設けられているので、例えば、上述した特許文献1の共鳴コイルのように、コイル導線間に生じる最も大きい電位差に応じた大きさの一定の導線間ギャップが設けられた構成では、電位差が小さい箇所では過剰な大きさの導線間ギャップとなって共鳴コイルが小型化できないところ、本発明では、コイル導線の各巻回部間に生じる電位差に合わせた大きさの導線間ギャップを設けることで、導線間ギャップを適切な大きさとして過剰な大きさの導線間ギャップをなくすことができ、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the first aspect of the present invention, the coil conductor is wound a plurality of times, and one winding portion of the coil conductor and another winding portion adjacent to the one winding portion are provided. Is provided with a gap between the conductors having a size corresponding to the potential difference generated between the one winding part and the other winding part. In the configuration in which a constant gap between conductors having a size corresponding to the largest potential difference generated between the coil conductors is provided as described above, an excessively large gap between conductors is formed at a location where the potential difference is small, and the resonance coil is small. However, in the present invention, by providing an inter-conductor gap having a size that matches the potential difference generated between the winding portions of the coil conductor, an inter-conductor gap having an excessive size can be obtained by setting the inter-conductor gap to an appropriate size. Can be lost, carp It can provide an inexpensive resonance coil compact without dielectric breakdown between turns.

請求項2に記載された発明によれば、コイル導線が、管状に複数回巻回されており、このコイル導線の軸方向中央部における導線間ギャップの大きさが、コイル導線の軸方向両端部における導線間ギャップの大きさより大きいので、コイル導線の各巻回部間に生じる電位差が、管状のコイル導線の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the invention described in claim 2, the coil conductor is wound in a tubular shape a plurality of times, and the size of the gap between the conductors in the axial central portion of the coil conductor is equal to both axial ends of the coil conductor. In the resonance coil having the characteristic that the potential difference generated between the winding portions of the coil conductor is large at the axial center of the tubular coil conductor and is small at both ends, the gap between the coil conductors is larger than the gap between the conductors. A small and inexpensive resonance coil without dielectric breakdown can be provided.

請求項3に記載された発明によれば、コイル導線には、その表面を覆う絶縁被覆部材が設けられているので、各巻回部間の絶縁耐力が向上して導線間ギャップの大きさをより小さくすることができ、共鳴コイルをさらに小型化できる。   According to the invention described in claim 3, since the coil conductor is provided with the insulating coating member that covers the surface thereof, the dielectric strength between the winding portions is improved and the size of the gap between the conductors is further increased. Therefore, the resonance coil can be further reduced in size.

請求項4に記載された発明によれば、導線間ギャップに充填されてコイル導線を内包するように設けられた絶縁部材を有しているので、各巻回部間の絶縁耐力が向上して導線間ギャップの大きさをより小さくすることができ、共鳴コイルをさらに小型化できる。   According to the fourth aspect of the present invention, since the insulating member is provided so as to fill the gap between the conductive wires and enclose the coil conductive wire, the dielectric strength between the respective winding portions is improved and the conductive wire is provided. The size of the gap can be further reduced, and the resonance coil can be further miniaturized.

請求項5に記載された発明によれば、送信共鳴コイル及び受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルであるので、小型で安価な共鳴コイルを用いることにより、小型で安価な非接触電力伝送装置を提供できる。   According to the invention described in claim 5, since at least one of the transmission resonance coil and the reception resonance coil is the resonance coil described in any one of claims 1 to 4, a small and inexpensive resonance coil is provided. Can be used to provide a small and inexpensive contactless power transmission device.

本発明の共鳴コイルの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the resonance coil of this invention. 図1の共鳴コイルが有するコイル導線の側面図である。It is a side view of the coil conducting wire which the resonance coil of FIG. 1 has. 図1の共鳴コイルの変形例の構成を示す図であって、(a)は、丸型平面コイルの正面図であり、(b)は、角形平面コイルの正面図である。It is a figure which shows the structure of the modification of the resonance coil of FIG. 1, Comprising: (a) is a front view of a round planar coil, (b) is a front view of a square planar coil. 本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the wireless power transmission apparatus which concerns on one Embodiment of the non-contact power transmission apparatus of this invention. 図4のワイヤレス電力伝送装置のブロック図である。It is a block diagram of the wireless power transmission apparatus of FIG. 共鳴型電力伝送方式の原理を示す説明図である。It is explanatory drawing which shows the principle of a resonance-type electric power transmission system. コイル導線における、共鳴状態での電圧分布を模式的に示す図である。It is a figure which shows typically the voltage distribution in the resonance state in a coil conducting wire. 従来の共鳴コイルの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the conventional resonance coil.

(共鳴コイルの一実施形態)
以下、本発明の共鳴コイルの一実施形態について、図1、図2を参照して説明する。
(One Embodiment of Resonance Coil)
Hereinafter, an embodiment of a resonance coil of the present invention will be described with reference to FIGS.

共鳴コイルは、共鳴現象を利用して、対向配置された相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信するのに用いられる。   The resonance coil is used to transmit power to or receive power transmitted from the counterpart coil by using a resonance phenomenon.

各図に示す本発明に係る共鳴コイル(図中、符号50で示す)は、コイル導線51と、絶縁部材としてのモールド部材52と、を有している。   The resonance coil according to the present invention shown in each drawing (indicated by reference numeral 50 in the drawings) includes a coil conductor 51 and a mold member 52 as an insulating member.

コイル導線51は、各図に示すように、例えば、直径5mmの銅線を管状(ソレノイド)に複数回(n回)巻回した、直径Dが600mm、長さLが200mmの空心のらせんコイルである。このコイル導線51には、複数の円形部分(1ターン)である巻回部55[1]〜55[n]が設けられている。コイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1](k:1〜n−1)との間(以下、単に巻回部55間という)には、これら巻回部55間の電位差に応じて、つまり、この電位差が生じた場合でもこれら巻回部55間で絶縁破壊が起きないようにするために必要な最小限の大きさの導線間ギャップGが設けられている。この導線間ギャップGの大きさは、共振状態におけるコイル導線51の電圧分布に応じて定められる。   As shown in each drawing, the coil conductor 51 is, for example, an air-core spiral coil having a diameter D of 600 mm and a length L of 200 mm, in which a copper wire having a diameter of 5 mm is wound around a tubular (solenoid) a plurality of times (n times). It is. The coil conductor 51 is provided with winding portions 55 [1] to 55 [n] which are a plurality of circular portions (one turn). Between one winding part 55 [k] of the coil conducting wire 51 and another winding part 55 [k + 1] (k: 1 to n−1) adjacent thereto (hereinafter simply referred to as between the winding parts 55). Corresponds to the potential difference between the winding portions 55, that is, between the conductors of the minimum size necessary to prevent dielectric breakdown between the winding portions 55 even when this potential difference occurs. A gap G is provided. The size of the gap G between the conductors is determined according to the voltage distribution of the coil conductor 51 in the resonance state.

共振状態におけるコイル導線51の電圧分布を図7に示す。そして、この図7から明らかなように、コイル導線51における単位距離間の電位差(即ち、グラフの傾き)は、コイル導線51の長手方向中央部(即ち、グラフの原点)ほど大きく、長手方向両端部に近づくにしたがって小さくなる。つまり、管状に巻回されたコイル導線51は、箇所によって巻回部55間の電位差が異なり、具体的には、その軸方向(即ち、長さL方向)中央部ほど巻回部55間の電位差が大きく、軸方向両端部に近づくにしたがって巻回部55間の電位差が小さくなる。   FIG. 7 shows the voltage distribution of the coil conductor 51 in the resonance state. As is clear from FIG. 7, the potential difference between unit distances in the coil conductor 51 (ie, the slope of the graph) is larger at the central portion in the longitudinal direction of the coil conductor 51 (ie, the origin of the graph). It gets smaller as it gets closer to the part. That is, the coil conductor 51 wound in a tubular shape has a different potential difference between the winding portions 55 depending on the location. Specifically, the central portion in the axial direction (that is, the length L direction) is between the winding portions 55. The potential difference is large, and the potential difference between the winding portions 55 becomes smaller as it approaches the both ends in the axial direction.

このことから、管状に巻回されたコイル導線51の導線間ギャップGの大きさは、各図に示すように、コイル導線51の軸方向中央部から軸方向両端部に向かうにしたがって、徐々に小さくなるように設けられている。換言すると、コイル導線51の軸方向中央部における導線間ギャップGの大きさが、軸方向両端部における導線間ギャップGの大きさより大きくなるように設けられている。   From this, the size of the inter-conductor gap G of the coil conductor 51 wound in a tubular shape is gradually increased from the axial central portion of the coil conductor 51 toward both axial ends as shown in each drawing. It is provided to be smaller. In other words, the inter-conductor gap G at the central portion in the axial direction of the coil conductor 51 is provided to be larger than the inter-conductor gap G at both end portions in the axial direction.

モールド部材52は、例えば、PI(ポリイミド)やPFA(テトラフルオロエチレン・パーフルオロアリキルビニルエーテル共重合体)などの高耐圧の絶縁性を有する合成樹脂で構成されており、例えば、コイル導線51の全体が収容された直方体枠型に溶融状態で流し込まれたのち凝固されることにより、導線間ギャップGに充填されてコイル導線51を内包するように設けられている。モールド部材52の絶縁破壊電圧(AC)は、PIで15〜20[kV/mm]程度であり、PFAで150[kV/mm]程度であり、その一方で、空気の絶縁破壊電圧(AC)は、3[kV/mm]程度であるので、このようなモールド部材52を設けることにより、導線間ギャップGの大きさをより小さくすることができる。   The mold member 52 is made of, for example, a synthetic resin having a high withstand voltage such as PI (polyimide) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer). It is provided so as to fill the gap G between the conductors and enclose the coil conductor 51 by being poured into a cuboid frame mold in which the whole is accommodated in a molten state and then solidified. The dielectric breakdown voltage (AC) of the mold member 52 is about 15 to 20 [kV / mm] in PI and about 150 [kV / mm] in PFA, while the dielectric breakdown voltage (AC) of air. Is about 3 [kV / mm], and by providing such a mold member 52, the size of the gap G between the conducting wires can be further reduced.

本実施形態においては、コイル導線51の各巻回部間に生じる電位差に合わせた適切な大きさの導線間ギャップGを設けている。その一方で、従来の構成の場合、例えば、導線間ギャップGの大きさを全て同一にした場合、その大きさは、コイル導線51の軸方向中央部における巻回部55間の電位差、即ち、最も大きい電位差に合わせて定められるので、コイル導線51の軸方向両端部においては、導線間ギャップGの大きさが過剰となって、無駄な部分が生じてしまう。   In the present embodiment, an inter-conductor gap G having an appropriate size is provided in accordance with the potential difference generated between the winding portions of the coil conductor 51. On the other hand, in the case of the conventional configuration, for example, when the sizes of the gaps G between the conducting wires are all the same, the magnitude is the potential difference between the winding portions 55 in the central portion in the axial direction of the coil conducting wire 51, that is, Since it is determined in accordance with the largest potential difference, the size of the gap G between the conductors becomes excessive at both ends of the coil conductor 51 in the axial direction, resulting in useless portions.

そして、本実施形態によれば、導線間ギャップGについて、巻回部55間の電位差が比較的低いコイル導線51の軸方向両端部では、導線間ギャップGの大きさを小さくし、巻回部55間の電位差が比較的高いコイル導線51の軸方向中央部では、導線間ギャップGの大きさを大きくすることにより、巻回部55間の電位差に応じた大きさの導線間ギャップG設けて、小型化を実現している。   And according to this embodiment, about the gap G between conducting wires, the magnitude | size of the gap G between conducting wires is made small in the axial direction both ends of the coil conducting wire 51 where the electrical potential difference between the winding parts 55 is comparatively low, and winding part In the central portion in the axial direction of the coil conductor 51 having a relatively high potential difference between 55, by increasing the size of the inter-conductor gap G, an inter-conductor gap G having a size corresponding to the potential difference between the winding portions 55 is provided. Realized miniaturization.

以上より、本発明によれば、複数回巻回されたコイル導線51を有し、そして、このコイル導線51の一の巻回部55[k]と当該一の巻回部55[k]に隣接する他の巻回部55[k+1]との間には、これら一の巻回部55[k]と他の巻回部55[k+1]との間に生じる電位差に応じた大きさの導線間ギャップGが設けられているので、例えば、上述した特許文献1の共鳴コイルのように、コイル導線間に生じる最も大きい電位差に応じた大きさの一定の導線間ギャップが設けられた構成では、電位差が小さい箇所では過剰な大きさの導線間ギャップとなって共鳴コイルが小型化できないところ、本発明では、コイル導線51の各巻回部55間に生じる電位差に合わせた大きさの導線間ギャップGを設けることで、このような過剰な大きさの導線間ギャップをなくすことができ、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイル50を実現できる。   As described above, according to the present invention, the coil conductor 51 is wound a plurality of times, and one coiled portion 55 [k] of the coil conductor 51 and the one coiled portion 55 [k] are provided. Between the adjacent other winding portions 55 [k + 1], a conductor having a size corresponding to a potential difference generated between the one winding portion 55 [k] and the other winding portion 55 [k + 1]. Since the gap G is provided, for example, in the configuration in which a constant gap between conductors having a size corresponding to the largest potential difference generated between the coil conductors is provided as in the resonance coil of Patent Document 1 described above, In places where the potential difference is small, the gap between the conductors becomes excessively large and the resonance coil cannot be reduced in size. Such an excessive You can eliminate the wires between the gap of can, can realize an inexpensive resonance coil 50 in a small no dielectric breakdown between the coil wires 51.

また、コイル導線51が、管状に複数回巻回されており、このコイル導線51の軸方向中央部における導線間ギャップGの大きさが、コイル導線51の軸方向両端部における導線間ギャップGの大きさより大きいので、コイル導線51の各巻回部55間に生じる電位差が、管状のコイル導線51の軸方向中央部で大きく、軸方向両端部で小さくなる特性を有する共鳴コイル50において、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイルを実現できる。   In addition, the coil conductor 51 is wound in a tubular shape a plurality of times, and the size of the gap G between the conductors in the axial center of the coil conductor 51 is equal to the gap G between the conductors G at both axial ends of the coil conductor 51. In the resonance coil 50 having a characteristic that the potential difference generated between the winding portions 55 of the coil conductor 51 is large at the axial center portion of the tubular coil conductor 51 and becomes small at both ends in the axial direction. It is possible to realize a small and inexpensive resonance coil without insulation breakdown between the two.

また、導線間ギャップGに充填されてコイル導線51を内包するように設けられた、絶縁体からなるモールド部材52を有しているので、コイル導線51間の絶縁破壊耐性(絶縁耐力)が向上して導線間ギャップGの大きさをより小さくすることができ、共鳴コイルをさらに小型化できる。   Moreover, since it has the mold member 52 which consists of an insulator provided so that the gap G between conductors may be filled and to enclose the coil conductor 51, the dielectric breakdown tolerance (dielectric strength) between the coil conductors 51 improves. Thus, the size of the gap G between the conducting wires can be further reduced, and the resonance coil can be further downsized.

本実施形態では、コイル導線51が銅線のみで構成されているものであったが、これに限定されるものではなく、例えば、コイル導線51には、例えば、PIやPFAなどからなる、コイル導線51の表面を覆う絶縁被覆部材が設けられていてもよい。このようにすることで、コイル導線51の絶縁耐力が向上して導線間ギャップGの大きさをより小さくすることができ、共鳴コイルをさらに小型化できる。また、本実施形態では、モールド部材52を有するものであったが、これに限定されるものではなく、モールド部材52を有しない構成でも良い。   In the present embodiment, the coil conductor 51 is composed only of a copper wire. However, the present invention is not limited to this. For example, the coil conductor 51 includes a coil made of PI, PFA, or the like. An insulating covering member that covers the surface of the conducting wire 51 may be provided. By doing in this way, the dielectric strength of the coil conducting wire 51 can be improved, the size of the gap G between the conducting wires can be further reduced, and the resonance coil can be further downsized. Moreover, in this embodiment, although it has the mold member 52, it is not limited to this, The structure which does not have the mold member 52 may be sufficient.

また、本実施形態のコイル導線51は、管状に複数回巻回され、導線間ギャップGは、コイル導線51の軸方向中央部から軸方向両端部に向かうにしたがって、徐々に小さくなるように設けられているものであったが、これに限定されるものではなく、例えば、図3(a)、(b)に示すような、導線間ギャップGが半径方向(中心から放射状に広がる方向)中央部から内縁部及び外縁部に向かうにしたがって徐々に小さくなるように、コイル導線51が平板状に複数回巻回されている平型らせんコイルなどであってもよく、本発明の目的に反しない限り、コイル導線51の各巻回部55間に生じる電位差に応じた大きさの導線間ギャップGが設けられているものであればよい。   In addition, the coil conductor 51 of the present embodiment is wound in a tubular shape a plurality of times, and the gap G between the conductors is provided so as to gradually decrease from the axial center of the coil conductor 51 toward both axial ends. However, the present invention is not limited to this. For example, as shown in FIGS. 3A and 3B, the gap G between the conductors is in the center in the radial direction (the direction in which the gap spreads radially from the center). The coil conductor 51 may be a flat spiral coil or the like in which the coil conductor 51 is wound a plurality of times in a flat shape so as to gradually decrease from the portion toward the inner edge and the outer edge, and does not contradict the purpose of the present invention. As long as the gap G between conductors of the magnitude | size according to the electric potential difference which arises between each winding part 55 of the coil conducting wire 51 is provided, what is necessary is just.

(非接触電力伝送装置の一実施形態)
次に、上述した共鳴コイルを備えた、本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置ついて、図4〜図6を参照して説明する。
(One Embodiment of Non-contact Power Transmission Device)
Next, a wireless power transmission device according to an embodiment of the non-contact power transmission device of the present invention provided with the above-described resonance coil will be described with reference to FIGS.

図4は、本発明の実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。同図に示すように、本実施形態に係るワイヤレス電力伝送装置10は、電気自動車5に設けられる受電装置12と、該受電装置12に交流電力を供給する給電装置11と、を備えており、給電装置11より出力される交流電力を非接触(ワイヤレス)で受電装置12に送信する。給電装置11は、電力送信用の通信コイル24を備えており、該通信コイル24に交流電力が供給されると、この交流電力は、受電装置12に設けられている電力受信用の通信コイル31に伝達される。   FIG. 4 is an explanatory diagram showing the configuration of the wireless power transmission device according to the embodiment of the present invention. As shown in the figure, a wireless power transmission device 10 according to the present embodiment includes a power receiving device 12 provided in an electric vehicle 5 and a power feeding device 11 that supplies AC power to the power receiving device 12. The AC power output from the power feeding device 11 is transmitted to the power receiving device 12 in a non-contact (wireless) manner. The power feeding device 11 includes a communication coil 24 for power transmission. When AC power is supplied to the communication coil 24, the AC power is supplied to the power reception communication coil 31 provided in the power receiving device 12. Is transmitted to.

電気自動車5に設けられる受電装置12は、充電時に電気自動車5を給電装置11の所定位置に置いたときに、電力送信用の通信コイル24と接近する電力受信用の通信コイル31と、整流器33と、を備えている。更に、直流電力が充電されるバッテリ35と、該バッテリ35の電圧を降圧してサブバッテリ41に供給するDC/DCコンバータ42と、バッテリ35の出力電力を交流電力に変換するインバータ43と、該インバータ43より出力される交流電力により駆動するモータ44を備えている。   The power receiving device 12 provided in the electric vehicle 5 includes a power receiving communication coil 31 that approaches the power transmitting communication coil 24 and a rectifier 33 when the electric vehicle 5 is placed at a predetermined position of the power feeding device 11 during charging. And. Furthermore, a battery 35 charged with DC power, a DC / DC converter 42 that steps down the voltage of the battery 35 and supplies it to the sub-battery 41, an inverter 43 that converts output power of the battery 35 into AC power, A motor 44 driven by AC power output from the inverter 43 is provided.

図5は、本発明の実施形態に係るワイヤレス電力伝送装置10のブロック図であり、給電装置11、及び電気自動車5に搭載される受電装置12を備えている。   FIG. 5 is a block diagram of the wireless power transmission device 10 according to the embodiment of the present invention, which includes a power feeding device 11 and a power receiving device 12 mounted on the electric vehicle 5.

給電装置11は、電力伝送用のキャリア信号を出力するキャリア発振器21と、該キャリア発振器21より出力されるキャリア信号(即ち、交流電力)を増幅する電力増幅器23、及び電力増幅器23で増幅された交流電力を出力する通信コイル24を備えている。通信コイル24は、後述するように給電コイル(一次コイル)L1と送信共鳴コイルX1から構成されている。そして、この送信共鳴コイルX1として、上述した共鳴コイル50を用いている。   The power supply apparatus 11 is amplified by a carrier oscillator 21 that outputs a carrier signal for power transmission, a power amplifier 23 that amplifies the carrier signal (that is, AC power) output from the carrier oscillator 21, and the power amplifier 23. A communication coil 24 that outputs AC power is provided. As will be described later, the communication coil 24 includes a feeding coil (primary coil) L1 and a transmission resonance coil X1. And the resonance coil 50 mentioned above is used as this transmission resonance coil X1.

キャリア発振器21は、電力伝送用の交流信号として例えば周波数1〜100[MHz]の交流電力を出力する。   The carrier oscillator 21 outputs, for example, AC power having a frequency of 1 to 100 [MHz] as an AC signal for power transmission.

電力増幅器23は、キャリア発信器21より出力された交流電力を増幅する。そして、増幅した交流電力を通信コイル24に出力する。通信コイル24は、受電装置12に設けられる通信コイル31と連携し、共鳴型電力伝送方式によりワイヤレスで交流電力を通信コイル31に伝送する。共鳴型電力伝送方式(即ち、共鳴方式)については後述する。   The power amplifier 23 amplifies the AC power output from the carrier transmitter 21. Then, the amplified AC power is output to the communication coil 24. The communication coil 24 cooperates with the communication coil 31 provided in the power receiving device 12 and wirelessly transmits AC power to the communication coil 31 by a resonance type power transmission method. The resonance type power transmission method (that is, the resonance method) will be described later.

また、受電装置12は、電力送信用の通信コイル24より送信される交流電力を受信する電力受信用の通信コイル31と、この通信コイル31で受信された交流電力を整流して、直流電圧を生成する整流器33と、を備える。また、車両駆動用のモータ44(図4参照)に電力を供給するバッテリ35を備え、該バッテリ35は、整流器33より出力される直流電力により充電される。   The power receiving device 12 rectifies the AC power received by the communication coil 31 and receives the AC power transmitted from the power transmission communication coil 24, and rectifies the DC voltage. And a rectifier 33 to be generated. Further, a battery 35 that supplies electric power to a vehicle driving motor 44 (see FIG. 4) is provided, and the battery 35 is charged by DC power output from the rectifier 33.

通信コイル31は、後述するように受電コイル(一次コイル)L2と受信共鳴コイルX2から構成されている。そして、この受信共鳴コイルX2として、上述した共鳴コイル50を用いている。   As will be described later, the communication coil 31 includes a power receiving coil (primary coil) L2 and a receiving resonance coil X2. The above-described resonance coil 50 is used as the reception resonance coil X2.

次に、共鳴型電力伝送方式について説明する。図6は、共鳴型電力伝送方式の原理を示す説明図である。図示のように、給電装置11には、給電コイルL1、及び該給電コイルL1と同心円状に且つ近接して配置された送信共鳴コイルX1(即ち、共鳴コイル50)が設けられている。なお、給電コイルL1と送信共鳴コイルX1により図4、図5に示す通信コイル24が構成される。また、受電装置12には、受電コイルL2、及び該受電コイルL2と同心円状に且つ近接して配置された受信共鳴コイルX2(即ち、共鳴コイル50)が設けられている。なお、受電コイルL2と受信共鳴コイルX2により図4、図5に示す通信コイル31が構成される。   Next, the resonance type power transmission method will be described. FIG. 6 is an explanatory diagram showing the principle of the resonant power transmission method. As shown in the figure, the power feeding device 11 is provided with a power feeding coil L1 and a transmission resonance coil X1 (that is, a resonance coil 50) that is disposed concentrically and in proximity to the power feeding coil L1. The power supply coil L1 and the transmission resonance coil X1 constitute the communication coil 24 shown in FIGS. In addition, the power receiving device 12 is provided with a power receiving coil L2 and a receiving resonance coil X2 (that is, a resonance coil 50) disposed concentrically and in proximity to the power receiving coil L2. The power receiving coil L2 and the receiving resonance coil X2 constitute the communication coil 31 shown in FIGS.

そして、給電コイルL1に1次電流を流すと、電磁誘導により送信共鳴コイルX1に誘導電流が流れ、更に、該送信共鳴コイルX1のインダクタンスLs、及び浮遊容量Csにより、該送信共鳴コイルX1が共鳴周波数ωs(=1/√Ls・Cs)で共鳴する。すると、この送信共鳴コイルX1に近接して設けられた、受電装置12側の受信共鳴コイルX2が共鳴周波数ωsで共鳴し、受信共鳴コイルX2に2次電流が流れる。更に、電磁誘導により受信共鳴コイルX2に近接した受電コイルL2に2次電流が流れる。   When a primary current is passed through the feeding coil L1, an induced current flows through the transmission resonance coil X1 by electromagnetic induction, and the transmission resonance coil X1 resonates due to the inductance Ls and the stray capacitance Cs of the transmission resonance coil X1. Resonates at a frequency ωs (= 1 / √Ls · Cs). Then, the reception resonance coil X2 on the power receiving device 12 side provided near the transmission resonance coil X1 resonates at the resonance frequency ωs, and a secondary current flows through the reception resonance coil X2. Further, a secondary current flows through the power receiving coil L2 close to the receiving resonance coil X2 due to electromagnetic induction.

上記の動作により、給電装置11から受電装置12に、ワイヤレスで電力を送信することができることとなる。   With the above operation, power can be transmitted from the power feeding device 11 to the power receiving device 12 wirelessly.

次に、図4、図5に示した本発明のワイヤレス電力伝送装置の動作について説明する。図4に示すように、電気自動車5が給電装置11の所定位置に置かれ、給電装置11に設けられる通信コイル24と、電気自動車5の受電装置12に設けられる通信コイル31が対向する位置となると、バッテリ35への充電を行うことができる。   Next, the operation of the wireless power transmission device of the present invention shown in FIGS. 4 and 5 will be described. As shown in FIG. 4, the electric vehicle 5 is placed at a predetermined position of the power feeding device 11, and the communication coil 24 provided in the power feeding device 11 and the communication coil 31 provided in the power receiving device 12 of the electric vehicle 5 are opposed to each other. Then, the battery 35 can be charged.

充電が開始されると、図5に示すキャリア発振器21より、周波数1〜100[MHz]程度の交流電力が出力される。   When charging is started, AC power having a frequency of about 1 to 100 [MHz] is output from the carrier oscillator 21 shown in FIG.

そして、キャリア発信器21より出力された交流電力は、電力増幅器23にて増幅される。増幅された交流電力は、通信コイル24,31を介して、前述した共鳴型電力伝送の原理により、受電装置12に伝送されることになる。   Then, the AC power output from the carrier transmitter 21 is amplified by the power amplifier 23. The amplified AC power is transmitted to the power receiving device 12 through the communication coils 24 and 31 based on the principle of the resonance power transmission described above.

受電装置12に伝送された交流電力は、通信コイル31から整流器33に出力される。   The AC power transmitted to the power receiving device 12 is output from the communication coil 31 to the rectifier 33.

そして、整流器33では、交流電力を整流して所定電圧の直流電力に変換し、この電力をバッテリ35に供給して、該バッテリ35を充電する。これにより、バッテリ35を充電することができる。   The rectifier 33 rectifies AC power and converts it into DC power of a predetermined voltage, supplies this power to the battery 35, and charges the battery 35. Thereby, the battery 35 can be charged.

以上より、本発明によれば、送信共鳴コイルX1及び受信共鳴コイルX2として、上述した共鳴コイル50を用いているので、この共鳴コイル50のコイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間には、それら一の巻回部55[k]と他の巻回部55[k+1]との間に生じる電位差に応じた大きさの導線間ギャップGが設けられており、そのため、過剰な大きさの導線間ギャップをなくすことができ、送信共鳴コイルX1及び受信共鳴コイルX2を低コストで小型化でき、したがって、小型で安価な非接触電力伝送装置を提供できる。   As described above, according to the present invention, since the above-described resonance coil 50 is used as the transmission resonance coil X1 and the reception resonance coil X2, one winding portion 55 [k] of the coil conductor 51 of the resonance coil 50 and Between the other winding portions 55 [k + 1] adjacent to the winding portion 55 [k + 1], the size of the winding portion 55 [k + 1] is different from that of the one winding portion 55 [k + 1]. An inter-conductor gap G is provided, so that an excessively large inter-conductor gap can be eliminated, and the transmission resonance coil X1 and the reception resonance coil X2 can be reduced in size at low cost. A contact power transmission device can be provided.

本実施形態においては、送信共鳴コイルX1及び受信共鳴コイルX2の両方とも上述した共鳴コイル50を用いていたが、これに限定されるものではなく、送信共鳴コイルX1及び受信共鳴コイルX2のうち少なくとも一方に共鳴コイル50を用いるものであればよい。   In the present embodiment, the resonance coil 50 described above is used for both the transmission resonance coil X1 and the reception resonance coil X2. However, the present invention is not limited to this, and at least one of the transmission resonance coil X1 and the reception resonance coil X2 is used. Any one using the resonance coil 50 may be used.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

5 電気自動車
10 ワイヤレス電力伝送装置(非接触電力伝送装置)
50 共鳴コイル
51 コイル導線
52 モールド部材(絶縁部材)
55 巻回部
X1 送信共鳴コイル(共鳴コイル)
X2 受信共鳴コイル(共鳴コイル)
5 Electric vehicle 10 Wireless power transmission device (non-contact power transmission device)
50 Resonant coil 51 Coil conductor 52 Mold member (insulating member)
55 winding part X1 transmission resonance coil (resonance coil)
X2 receiving resonance coil (resonance coil)

Claims (5)

共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、
複数回巻回されたコイル導線を有し、そして、
前記コイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、前記一の巻回部と前記他の巻回部との間に生じる電位差に応じた大きさの導線間ギャップが設けられている
ことを特徴とする共鳴コイル。
A resonance coil that transmits power to a counterpart coil by a resonance phenomenon or receives power transmitted from the counterpart coil,
Having a coil wire wound several times; and
Between the one winding part of the coil conductor and the other winding part adjacent to the one winding part, there is a potential difference generated between the one winding part and the other winding part. A resonance coil having a gap between conductors of a corresponding size.
前記コイル導線が、管状に複数回巻回されており、
前記コイル導線の軸方向中央部における前記導線間ギャップの大きさが、前記コイル導線の軸方向両端部における前記導線間ギャップの大きさより大きいことを特徴とする請求項1に記載の共鳴コイル。
The coil conductor is wound into a tube a plurality of times;
2. The resonance coil according to claim 1, wherein a size of the gap between the conductors in an axially central portion of the coil conductor is larger than a size of the gap between the conductors in both axial ends of the coil conductor.
前記コイル導線には、その表面を覆う絶縁被覆部材が設けられていることを特徴とする請求項1又は2に記載の共鳴コイル。   The resonance coil according to claim 1, wherein the coil conductor is provided with an insulating covering member that covers a surface thereof. 前記導線間ギャップに充填されて前記コイル導線を内包するように設けられた絶縁部材を有していることを特徴とする請求項1〜3のいずれか一項に記載の共鳴コイル。   The resonance coil according to any one of claims 1 to 3, further comprising an insulating member provided so as to be filled in the gap between the conductive wires and to enclose the coil conductive wire. 共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、
前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルである
ことを特徴とする非接触電力伝送装置。
In a non-contact power transmission apparatus having a transmission resonance coil that transmits power by a resonance phenomenon, and a reception resonance coil that receives power transmitted from the transmission resonance coil,
5. The contactless power transmission device according to claim 1, wherein at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to claim 1.
JP2010283664A 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same Active JP5595893B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010283664A JP5595893B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same
PCT/JP2011/078843 WO2012086473A1 (en) 2010-12-20 2011-12-07 Resonance coil and contactless power transmission system incorporating the same resonance coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283664A JP5595893B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Publications (2)

Publication Number Publication Date
JP2012134248A true JP2012134248A (en) 2012-07-12
JP5595893B2 JP5595893B2 (en) 2014-09-24

Family

ID=46649523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283664A Active JP5595893B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Country Status (1)

Country Link
JP (1) JP5595893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530557A (en) * 2014-09-26 2017-10-12 パワーバイプロキシ リミテッド Transmitter for inductive power transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744577B1 (en) * 2015-10-21 2017-06-09 한국철도기술연구원 Design Apparatus and Method of Wireless Power Transmission System for Catenary Status Monitoring System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229316A (en) * 2002-02-05 2003-08-15 Iq Four:Kk High-voltage pulse transformer
WO2007105339A1 (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corporation High voltage generation transformer for discharge lamp lighting device
JP2007281131A (en) * 2006-04-05 2007-10-25 Toshiba Corp Resin-molded coil
JP2009099685A (en) * 2007-10-15 2009-05-07 Institute Of Physical & Chemical Research Pulse transformer
JP2010073885A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Resonance coil and non-contact feeding system
JP2010130878A (en) * 2008-12-01 2010-06-10 Toyota Industries Corp Contactless power transmission system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229316A (en) * 2002-02-05 2003-08-15 Iq Four:Kk High-voltage pulse transformer
WO2007105339A1 (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corporation High voltage generation transformer for discharge lamp lighting device
JP2007281131A (en) * 2006-04-05 2007-10-25 Toshiba Corp Resin-molded coil
JP2009099685A (en) * 2007-10-15 2009-05-07 Institute Of Physical & Chemical Research Pulse transformer
JP2010073885A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Resonance coil and non-contact feeding system
JP2010130878A (en) * 2008-12-01 2010-06-10 Toyota Industries Corp Contactless power transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530557A (en) * 2014-09-26 2017-10-12 パワーバイプロキシ リミテッド Transmitter for inductive power transmission system
US10818430B2 (en) 2014-09-26 2020-10-27 Apple Inc. Transmitter for inductive power transfer system

Also Published As

Publication number Publication date
JP5595893B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
KR102167688B1 (en) Receiving coil for wireless chargement of electric vehicle and wireless power receiving apparatus using the same
US9431166B2 (en) Inductor and method of manufacturing the same
KR101896631B1 (en) Non-contact Charging Module and Non-contact Charging Instrument
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
JP2013219210A (en) Non-contact power transmission device
WO2015040650A1 (en) Contactless power transmission device
JP5811353B2 (en) Contactless power supply system
JP5888542B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
JP5595893B2 (en) Resonant coil and non-contact power transmission device having the same
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
JP6232191B2 (en) Power feeding unit, power receiving unit, and power feeding system
JP2011229202A (en) Wireless power transmission coil
WO2012086473A1 (en) Resonance coil and contactless power transmission system incorporating the same resonance coil
JP2014116543A (en) Antenna and wireless power supply device
JP5595894B2 (en) Resonant coil and non-contact power transmission device having the same
US10930430B2 (en) Coil assembly
JP5595895B2 (en) Resonant coil and non-contact power transmission device having the same
JP5888541B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
KR20170028900A (en) Device for inductively charging an electrical storage unit
CN110391696A (en) Method and apparatus for carrying out wireless charging to energy storage in fixation or mobile subscriber
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2015220891A (en) Resonator and wireless power supply system
JP7059759B2 (en) Coil unit, wireless power transmission device, wireless power receiving device and wireless power transmission system
JP7059760B2 (en) Coil unit, wireless power transmission device, wireless power receiving device and wireless power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250