JP2012134156A - Conductive particle and anisotropic conductive material - Google Patents

Conductive particle and anisotropic conductive material Download PDF

Info

Publication number
JP2012134156A
JP2012134156A JP2012002383A JP2012002383A JP2012134156A JP 2012134156 A JP2012134156 A JP 2012134156A JP 2012002383 A JP2012002383 A JP 2012002383A JP 2012002383 A JP2012002383 A JP 2012002383A JP 2012134156 A JP2012134156 A JP 2012134156A
Authority
JP
Japan
Prior art keywords
conductive
particles
particle
base
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012002383A
Other languages
Japanese (ja)
Other versions
JP5529901B2 (en
Inventor
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012002383A priority Critical patent/JP5529901B2/en
Publication of JP2012134156A publication Critical patent/JP2012134156A/en
Application granted granted Critical
Publication of JP5529901B2 publication Critical patent/JP5529901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive particle and anisotropic conductive material capable of preventing a conduction failure and reducing a resistance value for a demand for further reduction of connection resistance of a conductive particle used as the anisotropic conductive material, in association with rapid progress and development of an electronic apparatus in recent years.SOLUTION: A conductive particle comprises; a base material particle; and a conductive layer formed on a surface of the base material particle containing nickel or nickel alloy. In the conductive particle, the conductive layer has projections formed of aggregate of massive fine particles on a surface of the conductive layer.

Description

本発明は、導通不良防止とともに抵抗値の低減化が可能な導電性粒子及び異方性導電材料に関する。 The present invention relates to conductive particles and anisotropic conductive materials capable of preventing conduction failure and reducing resistance.

導電性粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂粒子等の非導電性粒子の表面に、導電層として金属メッキ層を形成させた導電性粒子が用いられている。しかしながら、このような異方性導電材料を用いて回路基板同士を電気的に接続すると、導電性粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性粒子と回路基板等との間の接続抵抗が高くなることがあった。特に近年の電子機器の急激な進歩や発展に伴って、導電性粒子と回路基板等との間の接続抵抗の更なる低減が求められてきている。 As conductive particles used in such anisotropic conductive materials, conventionally, a metal plating layer is formed as a conductive layer on the surface of non-conductive particles such as resin particles having a uniform particle size and appropriate strength. Conductive particles are used. However, when the circuit boards are electrically connected using such an anisotropic conductive material, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive particles and the circuit board, and the conductive particles and the circuit board. In some cases, the connection resistance between them and the like increases. In particular, with rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance between conductive particles and circuit boards.

接続抵抗を低減する目的で、表面に突起を有する導電性粒子が開示されている(例えば、特許文献1参照)。この導電性粒子は、導電性粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等を突起が突き破ることで(樹脂排除性)、突起と回路基板等とを確実に接続させることで、導電性粒子と回路基板等との間の接続抵抗の低減を図っている。 For the purpose of reducing connection resistance, conductive particles having protrusions on the surface are disclosed (for example, see Patent Document 1). This conductive particle ensures that the protrusion and the circuit board are connected by the protrusion breaking through the binder resin or the like existing between the conductive layer on the surface of the conductive particle and the circuit board (resin eliminability). Thus, the connection resistance between the conductive particles and the circuit board is reduced.

しかしながら、このような表面に突起を有する導電性粒子を用いても樹脂排除以上の効果は得られず、接続抵抗の低減効果は不充分であった。 However, even when conductive particles having protrusions on such a surface are used, an effect more than resin exclusion cannot be obtained, and the effect of reducing connection resistance is insufficient.

特開2000−243132号公報JP 2000-243132 A

本発明は、上記現状に鑑み、導通不良防止とともに抵抗値の低減化が可能な導電性粒子及び異方性導電材料を提供することを目的とする。 An object of this invention is to provide the electroconductive particle and anisotropic conductive material which can reduce a resistance value while preventing a conduction defect in view of the said present condition.

本発明は、基材粒子と、前記基材粒子の表面に形成されたニッケル又はニッケル合金を含有する導電層とからなる導電性粒子であって、前記導電層は、表面に塊状微粒子の凝集体からなる突起を有する導電性粒子である。
以下に本発明を詳述する。
The present invention is a conductive particle comprising base particles and a conductive layer containing nickel or a nickel alloy formed on the surface of the base particles, and the conductive layer is an aggregate of aggregated fine particles on the surface It is the electroconductive particle which has the processus | protrusion consisting of.
The present invention is described in detail below.

本発明者は、鋭意検討の結果、回路基板等の電気的接続に用いる導電性粒子として、所定の突起を有する導電性粒子を用いることで、樹脂排除して確実に導電性粒子と回路基板等とを接触させることができることに加え、導電接続時に回路基板間を圧着したときに、突起部分がつぶれることにより導電性粒子と回路基板等との接触を点接触から面接触とすることにより、回路基板と導電性粒子とを確実に導電接続させることができ、接続抵抗を低減することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventor uses conductive particles having predetermined protrusions as conductive particles used for electrical connection of a circuit board or the like, thereby eliminating the resin and ensuring that the conductive particles and the circuit board or the like are used. In addition to being able to make contact between the circuit boards during conductive connection, the protrusions are crushed and the contact between the conductive particles and the circuit board is changed from point contact to surface contact. It has been found that the substrate and the conductive particles can be reliably conductively connected and the connection resistance can be reduced, and the present invention has been completed.

本発明の導電性粒子は、基材粒子と、上記基材粒子の表面に形成されたニッケル又はニッケル合金を含有する導電層とからなる導電性粒子である。 The electroconductive particle of this invention is an electroconductive particle which consists of a base material particle and the electroconductive layer containing the nickel or nickel alloy formed in the surface of the said base material particle.

上記基材粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば無機材料を用いてなるものでも有機材料を用いてなるものでもよいが、弾性変形性及び復元性に優れていることから、樹脂を用いてなる樹脂粒子であることが好ましい。 The substrate particles are not particularly limited, and may be those using an inorganic material or an organic material as long as they have an appropriate elastic modulus, elastic deformability, and restoration property. And since it is excellent in the restoring property, it is preferable that it is a resin particle using a resin.

上記樹脂粒子を構成する樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;アクリレートとジビニルベンゼンとの共重合樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラニンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。 The resin constituting the resin particles is not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, polybutadiene; polymethyl methacrylate, polymethyl acrylate Acrylic resin such as acrylate and divinylbenzene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melanin formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like. These resins may be used alone or in combination of two or more.

上記基材粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として回路基板等に用いられる範囲を超えることがある。
なお、上記基材粒子の平均粒子径は、無作為に選んだ50個の基材粒子について粒子径を測定し、これらを算術平均したものとする。
Although it does not specifically limit as an average particle diameter of the said base particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it may exceed the range used for circuit boards and the like as anisotropic conductive materials. is there.
In addition, the average particle diameter of the said base particle shall measure a particle diameter about 50 base particles chosen at random, and shall mean these arithmetically.

上記導電層を構成するニッケル合金を形成するニッケル以外の金属としては特に限定されず、例えば、亜鉛、鉄、鉛、錫、銅、コバルト、アンチモン、ビスマス等が挙げられる。
また、上記導電層を構成するニッケル合金を形成する非金属としては特に限定されず、例えば、リン、ホウ素等が挙げられる。これらの非金属は、導電層を形成する際に用いられるメッキ液中の還元剤等に一般的に含有されている。
It does not specifically limit as metals other than nickel which form the nickel alloy which comprises the said conductive layer, For example, zinc, iron, lead, tin, copper, cobalt, antimony, bismuth etc. are mentioned.
Moreover, it does not specifically limit as a nonmetal which forms the nickel alloy which comprises the said conductive layer, For example, phosphorus, boron, etc. are mentioned. These non-metals are generally contained in a reducing agent or the like in the plating solution used when forming the conductive layer.

上記導電層は、含リン率の好ましい下限が2%、好ましい上限が8%である。これにより、後述する突起の硬さが適度なものとなり、効果的に導通不良防止とともに、抵抗値の低減化が可能となる。 The conductive layer has a preferred lower limit of phosphorus content of 2% and a preferred upper limit of 8%. As a result, the hardness of the protrusions to be described later becomes moderate, and it is possible to effectively prevent conduction failure and reduce the resistance value.

上記導電層は、表面に塊状微粒子の凝集体からなる突起を有する。
本発明の導電性粒子においては、上記突起が塊状微粒子の凝集体で構成されていることにより、上記突起が、本発明の導電性粒子を用いてなる異方性導電材料を回路基板等に挟んで導電接続時に圧着することにより崩れる柔らかい突起となる。その結果、回路基板等と本発明の導電性粒子との間に存在する異方性導電材料中のバインダー樹脂等を突き破るとともに(樹脂排除性)、回路基板等の面で突起がつぶれ、先端が平坦化するため、本発明の導電性粒子と回路基板等とが面接触となり、導通不良防止とともに、抵抗値の低減化が可能となる。
The conductive layer has protrusions made of aggregates of massive fine particles on the surface.
In the conductive particles of the present invention, the protrusions are composed of aggregates of massive fine particles, so that the protrusions sandwich an anisotropic conductive material using the conductive particles of the present invention between circuit boards and the like. It becomes a soft protrusion that collapses by crimping at conductive connection. As a result, it breaks through the binder resin or the like in the anisotropic conductive material existing between the circuit board and the conductive particles of the present invention (resin eliminability), and the protrusion is crushed on the surface of the circuit board and the tip is Since the surface is flattened, the conductive particles of the present invention and the circuit board or the like are brought into surface contact, thereby preventing conduction failure and reducing the resistance value.

上記導電層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。10nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、基材粒子と導電層との熱膨張率の差から、上記導電層が剥離しやすくなることがある。
なお、上記導電層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
Although it does not specifically limit as thickness of the said conductive layer, A preferable minimum is 10 nm and a preferable upper limit is 500 nm. When the thickness is less than 10 nm, desired conductivity may not be obtained. When the thickness exceeds 500 nm, the conductive layer may be easily peeled due to a difference in thermal expansion coefficient between the base particle and the conductive layer.
Note that the thickness of the conductive layer is a thickness obtained by measuring ten randomly selected particles and arithmetically averaging them.

上記塊状微粒子の平均粒子径としては特に限定されないが、好ましい下限は50nm、好ましい上限は300nmである。50nm未満であると、突起部分の強度が著しく劣り、本発明の導電性粒子をバインダー樹脂等と混練するとき等に突起が破損することがあり、300nmを超えると、突起が高くなりすぎ、回路基板等を圧着したときに突起がつぶれないことがある。 The average particle diameter of the massive fine particles is not particularly limited, but a preferred lower limit is 50 nm and a preferred upper limit is 300 nm. If the thickness is less than 50 nm, the strength of the projection portion is remarkably inferior, and the projection may be damaged when the conductive particles of the present invention are kneaded with a binder resin or the like. The protrusion may not collapse when a substrate or the like is crimped.

上記突起の平均高さとしては特に限定されないが、好ましい下限は上記基材粒子の平均粒子径の3%、好ましい上限は上記基材粒子の平均粒子径の17%である。上記基材粒子の平均粒子径の3%未満であると、充分な樹脂排除性が得られないことがあり、上記基材粒子の平均粒子径の17%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。 The average height of the protrusions is not particularly limited, but a preferable lower limit is 3% of the average particle diameter of the base particles, and a preferable upper limit is 17% of the average particle diameter of the base particles. If the average particle diameter of the base material particles is less than 3%, sufficient resin exclusion may not be obtained. If the average particle diameter of the base material particles exceeds 17%, protrusions may be formed on the circuit board or the like. There is a risk of digging deep and damaging the circuit board.

上記突起の存在密度としては特に限定されないが、導電性粒子1個に対して好ましい下限は25個、好ましい上限は50個である。25個未満であると、導電性粒子の向きによっては突起と回路基板等とが接触しないことがあり、50個を超えると、突起同士が重なり合い、導電接続時に導電性粒子と回路基板等とを圧着した際に突起がつぶれにくいことがある。
なお、本発明の導電性粒子においては、上記塊状微粒子の凝集体からなる突起の数が導電性粒子1個に対して25〜50個であれば、凝集体で構成されていない突起等を有していてもよいが、この場合は、本発明の特徴となる塊状微粒子の凝集体からなる突起が全体の突起の50%以上を占めることが好ましい。
The density of the protrusions is not particularly limited, but the preferred lower limit is 25 and the preferred upper limit is 50 for one conductive particle. If the number is less than 25, depending on the direction of the conductive particles, the protrusions may not contact the circuit board. If the number exceeds 50, the protrusions overlap each other, and the conductive particles and the circuit board may be connected during conductive connection. When crimped, the protrusions may be difficult to collapse.
In the conductive particles of the present invention, if the number of projections made of aggregates of the above-mentioned massive fine particles is 25 to 50 with respect to one conductive particle, the conductive particles have projections not composed of aggregates. However, in this case, it is preferable that the projections made of aggregates of massive fine particles that characterize the present invention occupy 50% or more of the total projections.

本発明の導電性粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、ニッケル(合金)を含有する導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 In the conductive particles of the present invention, a gold layer is preferably formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer containing nickel (alloy), reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、ニッケル(合金)を含有する導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層がニッケル(合金)層を侵食し、基材粒子とニッケル(合金)を含有する導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. When the thickness is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer containing nickel (alloy), and the connection resistance value may increase. When the thickness exceeds 100 nm, the gold layer becomes nickel (alloy). ) Layer may be eroded and adhesion between the substrate particles and the conductive layer containing nickel (alloy) may be deteriorated.

本発明の導電性粒子を製造する方法としては特に限定されないが、例えば、無電解メッキ法により製造することができる。
無電解メッキ法とは、基材粒子を水酸化ナトリウム水溶液等のアルカリ溶液でエッチングすることにより表面を粗にし、次いで、上記基材粒子の表面に触媒付与を行った後、メッキ安定剤を含有する基材粒子分散液に、メッキ安定剤、次亜リン酸ナトリウム(還元剤)を含有するニッケルメッキ液を添加し、触媒付与された該基材粒子の表面に、下記反応式で示される還元反応によりニッケル(合金)を含有する導電層を析出させる方法である。
Ni2++HPO +HO→Ni+HPO +2H
Although it does not specifically limit as a method to manufacture the electroconductive particle of this invention, For example, it can manufacture by the electroless-plating method.
The electroless plating method involves roughening the surface by etching the base particles with an alkaline solution such as an aqueous sodium hydroxide solution, and then applying a catalyst to the surface of the base particles and then containing a plating stabilizer. A nickel stabilizer containing a plating stabilizer and sodium hypophosphite (reducing agent) is added to the base material particle dispersion, and the surface of the base material provided with a catalyst is reduced by the following reaction formula. In this method, a conductive layer containing nickel (alloy) is deposited by reaction.
Ni 2+ + H 2 PO 2 + H 2 O → Ni + H 2 PO 3 + 2H +

ここで、エッチングの際に高濃度の水酸化ナトリウム水溶液等のアルカリ溶液で激しくエッチングすることにより基材粒子の表面を著しく粗にして、上記触媒となるパラジウム等の付着量を多くしたり、基材粒子分散液中のメッキ安定剤の量を少なくしてメッキ反応時のメッキ液を不安定化させたりすることにより、微小な塊状微粒子の凝集体で構成される突起を形成することができる。
基材粒子の表面をエッチングするためのアルカリ溶液の濃度をA(重量%)、基材粒子分散液中におけるメッキ安定剤の濃度をB(mol/L)とするとき、エッチングするためのアルカリ溶液の濃度Aを高くしてもよいし、基材粒子分散液中におけるメッキ安定剤の濃度Bを極力低くしてもよいが、AとBとの比(B/A)が下記式(1)の範囲である場合に、極めて高い効率で塊状微粒子の凝集体からなる突起を有する本発明の導電性粒子を製造することができる。
基材粒子の表面をアルカリ溶液を用いてエッチングする工程1と、エッチングされた前記基材粒子の表面に触媒付与を行う工程2と、メッキ安定剤を含有する基材粒子分散液に、ニッケル又はニッケル合金、及び、メッキ安定剤を含有するメッキ液を添加し、触媒付与された前記基材粒子の表面に導電層を形成させる工程3とを有する導電性粒子の製造方法であって、上記工程1のアルカリ溶液の濃度をA(重量%)、上記工程3の基材粒子分散液中におけるメッキ安定剤の濃度をB(mol/L)とするとき、AとBとの比(B/A)が下記式(1)を満たす導電性粒子の製造方法もまた、本発明の1つである。
5.0×10−7<B/A<3.0×10−6 (1)
Here, during etching, the surface of the base material particles is made extremely rough by vigorously etching with an alkaline solution such as a high concentration sodium hydroxide aqueous solution to increase the adhesion amount of palladium or the like as the catalyst. By reducing the amount of the plating stabilizer in the material particle dispersion and destabilizing the plating solution at the time of the plating reaction, it is possible to form protrusions composed of aggregates of minute massive particles.
Alkaline solution for etching when the concentration of the alkali solution for etching the surface of the substrate particles is A (wt%) and the concentration of the plating stabilizer in the substrate particle dispersion is B (mol / L) The concentration A of B may be increased, or the concentration B of the plating stabilizer in the base particle dispersion may be reduced as much as possible, but the ratio (A / B) of A and B is represented by the following formula (1) In the case of the above range, it is possible to produce the conductive particles of the present invention having protrusions composed of aggregates of massive fine particles with extremely high efficiency.
Step 1 of etching the surface of the base particles using an alkaline solution, Step 2 of applying a catalyst to the surface of the etched base particles, and a base particle dispersion containing a plating stabilizer in nickel or A step of adding a plating solution containing a nickel alloy and a plating stabilizer to form a conductive layer on the surface of the base material particles provided with a catalyst. When the concentration of the alkaline solution of 1 is A (% by weight) and the concentration of the plating stabilizer in the base particle dispersion in the above step 3 is B (mol / L), the ratio of A to B (B / A The manufacturing method of the electroconductive particle which satisfy | fills following formula (1) is also one of this invention.
5.0 × 10 −7 <B / A <3.0 × 10 −6 (1)

上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
As a method for performing the catalyst application, for example, acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution are performed on base particles etched with an alkaline solution, and a palladium dichloride (PdCl 2 ) solution is then provided. The method of performing the electroless-plating pre-processing process which performs activating in is mentioned.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

また、本発明の導電性粒子の製造方法においては、上記基材粒子の表面の触媒付着量が増加している過程で、反応系の温度を高くする、pHを調整する等により反応速度を著しく速めることでも、塊状微粒子の凝集体からなる上記突起を効果的に作製することができる。 Further, in the method for producing conductive particles of the present invention, the reaction rate is remarkably increased by increasing the temperature of the reaction system, adjusting the pH, etc. in the process of increasing the amount of catalyst attached to the surface of the base material particles. By speeding up, it is possible to effectively produce the protrusions made of aggregates of massive fine particles.

本発明の導電性粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive particles of the present invention are added to an insulating resin binder, and are uniformly mixed and dispersed. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive particles of the present invention to an insulating resin binder, and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive particle of this invention.

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性粒子及び異方性導電材料を提供することができる。 According to the present invention, it is possible to provide conductive particles and an anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

実施例1で得られた導電性粒子のSEM写真である。2 is a SEM photograph of conductive particles obtained in Example 1. 実施例2で得られた導電性粒子のSEM写真である。2 is a SEM photograph of conductive particles obtained in Example 2. 比較例1で得られた導電性粒子のSEM写真である。4 is a SEM photograph of conductive particles obtained in Comparative Example 1.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(導電層形成工程)
平均粒子径3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂からなる基材粒子10gに、5重量%水酸化ナトリウム水溶液によるアルカリエッチング、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材粒子を得た。
得られた基材粒子を水1500mLで希釈し、メッキ安定剤として、硝酸ビスマスを0.005mmol、硝酸タリウムを0.006mmol添加し、10重量%硫酸水と2Nの水酸化ナトリウム水溶液とでpHを5.7に調整、スラリーとし、液温度を26℃に設定した。
このスラリーに、硫酸ニッケル450g/Lを40mL、次亜リン酸ナトリウム150g/Lとクエン酸ナトリウム116g/Lとの混合液を80mL、水280mL、メッキ安定剤として、硝酸ビスマスを0.02mmol、硝酸タリウムを0.024mmol添加し、28重量%アンモニア水でpHを9.3に調整した前期反応メッキ液を80mL/分の添加速度で定量ポンプを通して添加した。
その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、硫酸ニッケル450g/Lを180mL、次亜リン酸ナトリウム150g/Lとクエン酸ナトリウム116g/Lとの混合液を440mL、メッキ安定剤として、硝酸ビスマスを0.3mmol、硝酸タリウムを0.36mmolの後期反応メッキ液を27mL/分の添加速度で定量ポンプを通して添加した。
その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥することで、表面に突起を有する導電層を有する導電性粒子を得た。
Example 1
(Conductive layer formation process)
10 g of base particles made of a copolymer resin of tetramethylol methane tetraacrylate and divinylbenzene having an average particle diameter of 3 μm are subjected to alkali etching with 5% by weight sodium hydroxide aqueous solution, acid neutralization, and sensitizing in a tin dichloride solution. went. Then, the electroless-plating pretreatment which consists of activation in a palladium dichloride solution was performed, the base particle which adhered palladium to the particle | grain surface after filtration washing was obtained.
The obtained base particles are diluted with 1500 mL of water, 0.005 mmol of bismuth nitrate and 0.006 mmol of thallium nitrate are added as plating stabilizers, and the pH is adjusted with 10% by weight sulfuric acid water and 2N aqueous sodium hydroxide solution. The mixture was adjusted to 5.7 to form a slurry, and the liquid temperature was set to 26 ° C.
To this slurry, nickel sulfate 450 g / L 40 mL, sodium hypophosphite 150 g / L and sodium citrate 116 g / L mixed solution 80 mL, water 280 mL, plating stabilizer, bismuth nitrate 0.02 mmol, nitric acid 0.024 mmol of thallium was added, and the pre-reaction plating solution whose pH was adjusted to 9.3 with 28 wt% aqueous ammonia was added through a metering pump at an addition rate of 80 mL / min.
Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.
Next, 180 mL of nickel sulfate 450 g / L, 440 mL of a mixed solution of sodium hypophosphite 150 g / L and sodium citrate 116 g / L, plating stabilizer, bismuth nitrate 0.3 mmol, thallium nitrate 0.36 mmol The late reaction plating solution was added through a metering pump at an addition rate of 27 mL / min.
Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.
Next, the plating solution was filtered, the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain conductive particles having a conductive layer having protrusions on the surface.

(金メッキ工程)
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=5、B=7.33×10−6、B/A=1.5×10−6である。
(Gold plating process)
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 5, B = 7.33 * 10 < -6 >, B / A = 1.5 * 10 < -6 >.

(実施例2)
エッチング用の水酸化ナトリウム水溶液の濃度を10重量%へ変更し、無電解メッキ前期工程のスラリーに添加する安定剤量を硝酸ビスマス0.0125mmol、硝酸タリウム0.015mmolへ変更した以外は実施例1と同様にして、表面に突起を有する導電層を有する導電性粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=10、B=1.83×10−5、B/A=1.8×10−6である。
(Example 2)
Example 1 except that the concentration of the aqueous sodium hydroxide solution for etching was changed to 10% by weight, and the amount of stabilizer added to the slurry in the first electroless plating step was changed to 0.0125 mmol of bismuth nitrate and 0.015 mmol of thallium nitrate. In the same manner as above, conductive particles having a conductive layer having protrusions on the surface were obtained.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 10, B = 1.83 * 10 < -5 >, B / A = 1.8 * 10 < -6 >.

(実施例3)
エッチング用の水酸化ナトリウム水溶液の濃度を10重量%へ変更した以外は実施例1と同様にして、表面に突起を有する導電層を有する導電性粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=10、B=7.33×10−6、B/A=7.3×10−7である。
Example 3
Conductive particles having a conductive layer having protrusions on the surface were obtained in the same manner as in Example 1 except that the concentration of the aqueous sodium hydroxide solution for etching was changed to 10% by weight.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 10, B = 7.33 * 10 < -6 >, B / A = 7.3 * 10 < -7 >.

(実施例4)
エッチング用の水酸化ナトリウム水溶液の濃度を10重量%へ変更し、無電解メッキ前期工程のスラリーに添加する安定剤量を硝酸ビスマス0.02mmol、硝酸タリウム0.024mmolへ変更した以外は実施例1と同様にして、表面に突起を有する導電層を有する導電性粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=10、B=2.93×10−5、B/A=2.9×10−6である。
Example 4
Example 1 except that the concentration of the sodium hydroxide aqueous solution for etching was changed to 10% by weight, and the amount of the stabilizer added to the slurry in the first electroless plating process was changed to 0.02 mmol of bismuth nitrate and 0.024 mmol of thallium nitrate. In the same manner as above, conductive particles having a conductive layer having protrusions on the surface were obtained.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 10, B = 2.93 * 10 < -5 >, B / A = 2.9 * 10 < -6 >.

(比較例1)
基材粒子に無電解メッキ前処理工程の後、無電解メッキ前期工程のスラリーに添加する安定剤量を硝酸ビスマス0.0125mmol、硝酸タリウム0.015molへ変更した以外は実施例1と同様にして、表面に突起を有する導電層を有する導電性粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=5、B=1.83×10−5、B/A=3.7×10−6である。
(Comparative Example 1)
After the electroless plating pretreatment step on the substrate particles, the same procedure as in Example 1 was carried out except that the amount of stabilizer added to the slurry in the previous electroless plating step was changed to 0.0125 mmol of bismuth nitrate and 0.015 mol of thallium nitrate. Thus, conductive particles having a conductive layer having protrusions on the surface were obtained.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 5, B = 1.83 * 10 < -5 >, B / A = 3.7 * 10 < -6 >.

(比較例2)
基材粒子に無電解メッキ前処理工程の後、無電解メッキ前期工程のスラリーに添加する安定剤量を硝酸ビスマス0.02mmol、硝酸タリウム0.024mmolへ変更した以外は実施例1と同様にして、導電層を有する導電性粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性粒子を得た。
なお、本明細書で規定した値について、A=5、B=2.93×10−5、B/A=5.9×10−6である。
(Comparative Example 2)
After the electroless plating pretreatment step on the substrate particles, the same procedure as in Example 1 was performed except that the amount of stabilizer added to the slurry in the previous electroless plating step was changed to bismuth nitrate 0.02 mmol and thallium nitrate 0.024 mmol. Thus, conductive particles having a conductive layer were obtained.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive particles.
In addition, about the value prescribed | regulated in this specification, they are A = 5, B = 2.93 * 10 < -5 >, B / A = 5.9 * 10 < -6 >.

<評価>
実施例1〜4及び比較例1〜2で得られた導電性粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive particle obtained in Examples 1-4 and Comparative Examples 1-2. The results are shown in Table 1.

(1)接続抵抗値の測定
得られた導電性粒子を用いて以下の方法により異方性導電材料を作製し、電極間の接続抵抗値の測定を行った。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、得られたそれぞれの導電性粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性粒子を含有する接着性フィルムを得た。なお、導電性粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、ITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、10N、100℃の圧着条件で熱圧着した後、電極間の接続抵抗値を測定した。
また、作製した試験片に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の接続抵抗値を測定した。
(1) Measurement of connection resistance value An anisotropic conductive material was produced by the following method using the obtained conductive particles, and the connection resistance value between the electrodes was measured.
100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin are sufficiently mixed using a planetary stirrer. Then, it was applied on the release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Subsequently, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. Adhesive film containing conductive particles after adding the particles and mixing well using a planetary stirrer, applying to the release film so that the thickness after drying is 7 μm, and evaporating toluene Got. In addition, the compounding quantity of electroconductive particle was set so that content in a film might be 50,000 pieces / cm < 2 >.
The obtained adhesive film and an adhesive film containing conductive particles were laminated at room temperature to obtain a 17 μm thick anisotropic conductive film having a two-layer structure.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. After affixing this to approximately the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement, a glass substrate having an ITO electrode is obtained. After aligning the electrodes so that they overlap each other, they were bonded together.
The bonded portion of this glass substrate was thermocompression bonded under pressure bonding conditions of 10N and 100 ° C., and then the connection resistance value between the electrodes was measured.
In addition, a reliability test (held at 80 ° C. in a high-temperature and high-humidity environment of 95% RH for 1000 hours) was performed on the prepared test piece, and then the connection resistance value between the electrodes was measured.

(2)塊状微粒子の平均粒子径
得られた導電性粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)により、倍率10000倍で粒子観察を行い、塊状微粒子の粒子径を調べた。塊状微粒子の平均粒子径は、確認された20個の塊状微粒子について粒子径を測定し、それを算術平均して塊状微粒子の平均粒子径とした。
(2) Average particle diameter of massive fine particles The obtained conductive particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation at a magnification of 10,000 times to examine the particle diameter of the massive fine particles. The average particle diameter of the massive fine particles was determined by measuring the particle diameters of the 20 confirmed massive fine particles and arithmetically averaging them.

(3)突起の平均高さ
得られた導電性粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)により、倍率10000倍で粒子観察を行い、突起の高さを調べた。
上記突起の高さは、導電性粒子において最表面を形成する導電層の基準表面から突起として現れている高さを測定した。このとき、突起を付与した効果が得られるものとして、100nm以上のものを突起として選ぶものとした。
突起の平均高さは、確認された20個の突起について高さを測定し、それを算術平均して突起の平均高さとした。
(3) Average height of protrusions The obtained conductive particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation at a magnification of 10,000 times to examine the height of the protrusions.
The height of the protrusion was measured by measuring the height appearing as a protrusion from the reference surface of the conductive layer forming the outermost surface of the conductive particles. At this time, it is assumed that a protrusion having a thickness of 100 nm or more is selected as the protrusion as an effect of providing the protrusion.
The average height of the protrusions was measured for 20 confirmed protrusions, and the average of the protrusions was calculated as the average height of the protrusions.

(4)突起の存在密度
得られた導電性粒子について、日立ハイテクノロジーズ社製走査電子顕微鏡(SEM)により、倍率10000倍で粒子観察を行い、突起の存在密度を調べた。
上記突起の存在密度は、無作為に選んだ20個の粒子について、突起を付与した効果が得られるものとして、100nm以上のものを突起として個数をカウントし、1個の導電性粒子当たりの突起数に換算して、突起の存在密度とした。
(4) Presence density of projections The obtained conductive particles were observed with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation at a magnification of 10,000 times to examine the density of projections.
As for the density of the protrusions, the number of protrusions per one conductive particle was counted by counting the number of protrusions of 100 nm or more as protrusions, assuming that the effect of providing protrusions was obtained for 20 randomly selected particles. Converted to a number, it was defined as the density of protrusions.

(5)含リン率の測定
EDX(Energy Dispersing X−ray analyzer:エネルギー分散型X線分析装置、日本電子データム社製)を用い、導電性粒子の断面を収束イオンビームにて切り出し、導電層中の各部位を成分分析することにより、含リン率の測定を行った。
(5) Measurement of phosphorus content Using EDX (Energy Dispersing X-ray analyzer: manufactured by JEOL Datum Co., Ltd.), the cross section of the conductive particles is cut out with a focused ion beam, and in the conductive layer The phosphorus content was measured by analyzing the components of each of the above.

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性粒子及び異方性導電材料を提供することができる。 According to the present invention, it is possible to provide conductive particles and an anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

Claims (9)

基材粒子と、前記基材粒子の表面に形成されたニッケル又はニッケル合金を含有する導電層とからなる導電性粒子であって、
前記導電層は、表面に塊状微粒子の凝集体からなる突起を有する
ことを特徴とする導電性粒子。
Conductive particles comprising substrate particles and a conductive layer containing nickel or a nickel alloy formed on the surface of the substrate particles,
The conductive particles have projections made of aggregates of massive fine particles on the surface.
塊状微粒子は、平均粒子径が50〜300nmであることを特徴とする請求項1記載の導電性粒子。 The conductive particles according to claim 1, wherein the bulk particles have an average particle diameter of 50 to 300 nm. 突起の平均高さが、基材粒子の平均粒子径の3〜17%であることを特徴とする請求項1又は2記載の導電性粒子。 The conductive particles according to claim 1 or 2, wherein the average height of the protrusions is 3 to 17% of the average particle diameter of the base particles. 突起の存在密度が、導電性粒子1個に対して25〜50個であることを特徴とする請求項1、2又は3記載の導電性粒子。 The conductive particle according to claim 1, 2, or 3, wherein the density of protrusions is 25 to 50 with respect to one conductive particle. 導電層は、含リン率が2〜8%であることを特徴とする請求項1、2、3又は4記載の導電性粒子。 The conductive particles according to claim 1, 2, 3 or 4, wherein the conductive layer has a phosphorus content of 2 to 8%. 基材粒子は、樹脂粒子であることを特徴とする請求項1、2、3、4又は5記載の導電性粒子。 6. The conductive particles according to claim 1, 2, 3, 4 or 5, wherein the base particles are resin particles. 更に、導電層の表面に金層が形成されていることを特徴とする請求項1、2、3、4、5又は6記載の導電性粒子。 The conductive particle according to claim 1, further comprising a gold layer formed on a surface of the conductive layer. 基材粒子の表面をアルカリ溶液を用いてエッチングする工程1と、エッチングされた前記基材粒子の表面に触媒付与を行う工程2と、メッキ安定剤を含有する基材粒子分散液に、ニッケル又はニッケル合金、及び、メッキ安定剤を含有するメッキ液を添加し、触媒付与された前記基材粒子の表面に導電層を形成させる工程3とを有する導電性粒子の製造方法であって、
前記工程1のアルカリ溶液の濃度をA(重量%)、前記工程3の基材粒子分散液中におけるメッキ安定剤の濃度をB(mol/L)とするとき、AとBとの比(B/A)が下記式(1)を満たす
ことを特徴とする導電性粒子の製造方法。
5.0×10−7<B/A<3.0×10−6 (1)
Step 1 of etching the surface of the base particles using an alkaline solution, Step 2 of applying a catalyst to the surface of the etched base particles, and a base particle dispersion containing a plating stabilizer in nickel or Adding a plating solution containing a nickel alloy and a plating stabilizer, and forming a conductive layer on the surface of the base material particles provided with a catalyst, and a method for producing conductive particles comprising:
When the concentration of the alkaline solution in Step 1 is A (% by weight) and the concentration of the plating stabilizer in the base particle dispersion in Step 3 is B (mol / L), the ratio of A to B (B / A) satisfy | fills following formula (1), The manufacturing method of the electroconductive particle characterized by the above-mentioned.
5.0 × 10 −7 <B / A <3.0 × 10 −6 (1)
請求項1、2、3、4、5、6又は7記載の導電性粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive particles according to claim 1, 2, 3, 4, 5, 6 or 7 are dispersed in a resin binder.
JP2012002383A 2012-01-10 2012-01-10 Conductive particles and anisotropic conductive materials Active JP5529901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002383A JP5529901B2 (en) 2012-01-10 2012-01-10 Conductive particles and anisotropic conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002383A JP5529901B2 (en) 2012-01-10 2012-01-10 Conductive particles and anisotropic conductive materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005124225A Division JP4936678B2 (en) 2005-04-21 2005-04-21 Conductive particles and anisotropic conductive materials

Publications (2)

Publication Number Publication Date
JP2012134156A true JP2012134156A (en) 2012-07-12
JP5529901B2 JP5529901B2 (en) 2014-06-25

Family

ID=46649466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002383A Active JP5529901B2 (en) 2012-01-10 2012-01-10 Conductive particles and anisotropic conductive materials

Country Status (1)

Country Link
JP (1) JP5529901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073082A1 (en) 2012-11-08 2014-05-15 エム・テクニック株式会社 Fine metal particles provided with projections
JP2014207222A (en) * 2013-03-19 2014-10-30 積水化学工業株式会社 Method for manufacturing connection structure and connection structure
KR20200080337A (en) 2015-09-18 2020-07-06 데쿠세리아루즈 가부시키가이샤 Connection material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073082A1 (en) 2012-11-08 2014-05-15 エム・テクニック株式会社 Fine metal particles provided with projections
KR20150081425A (en) 2012-11-08 2015-07-14 엠. 테크닉 가부시키가이샤 Fine metal particles provided with projections
US9928932B2 (en) 2012-11-08 2018-03-27 M. Technique Co., Ltd. Metal microparticles provided with projections
JP2014207222A (en) * 2013-03-19 2014-10-30 積水化学工業株式会社 Method for manufacturing connection structure and connection structure
KR20200080337A (en) 2015-09-18 2020-07-06 데쿠세리아루즈 가부시키가이샤 Connection material
KR20230013642A (en) 2015-09-18 2023-01-26 데쿠세리아루즈 가부시키가이샤 Connection material

Also Published As

Publication number Publication date
JP5529901B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JPWO2005073985A1 (en) Conductive fine particles and anisotropic conductive materials
JP2007242307A (en) Conductive particulate and anisotropic conductive material
TW201125661A (en) Conductive fine particles and anisotropic conductive material
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP4772490B2 (en) Method for producing conductive particles
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP2009032397A (en) Conductive fine particle
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

R151 Written notification of patent or utility model registration

Ref document number: 5529901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151