JP2012129101A - 過充電検知方法 - Google Patents

過充電検知方法 Download PDF

Info

Publication number
JP2012129101A
JP2012129101A JP2010280569A JP2010280569A JP2012129101A JP 2012129101 A JP2012129101 A JP 2012129101A JP 2010280569 A JP2010280569 A JP 2010280569A JP 2010280569 A JP2010280569 A JP 2010280569A JP 2012129101 A JP2012129101 A JP 2012129101A
Authority
JP
Japan
Prior art keywords
storage battery
oxygen
overcharge
nickel
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010280569A
Other languages
English (en)
Inventor
Hiroshi Takano
洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010280569A priority Critical patent/JP2012129101A/ja
Publication of JP2012129101A publication Critical patent/JP2012129101A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】過充電状態を高精度に検知することができる過充電検知方法を提供することを目的とする。
【解決手段】検知極21とニッケル水素蓄電池1の負極端子11との間の電圧を電圧計22により計測することで、過充電により正極2から発生した酸素の電解液7中の濃度を測定することができる。そのため、充電中のニッケル水素蓄電池1が過充電状態に至ったことを高精度に検知することができる。
【選択図】図1

Description

本発明は、ニッケル水素蓄電池、鉛蓄電池及びニッケルカドミウム蓄電池の過充電検知方法に関する。
ニッケル水素蓄電池は鉛蓄電池に比べてエネルギー密度が大きく、電池寿命の長さや環境負担の少ないことが特長であり、近年、ハイブリッド自動車、携帯機器等の電源用途、また、電力貯蔵用途等として注目されている。一方、鉛蓄電池は安価であるため、自動車の電源用途等に広く用いられている。
ニッケル水素蓄電池や鉛蓄電池では、充電時に正極から酸素が発生し、充電が進むに従がって発生する酸素量が増大するため、特に過充電時には電池内圧の過大な増大や、発生した酸素が負極にて水素や鉛と反応して水や酸化鉛に転換することによる電池温度の上昇が起こる。このため、過充電すると電池の劣化の加速や最悪のケースでは爆発が生じてしまう恐れがあった。
そこで、過充電を防止するために、蓄電池の充電の完了を検知する方法が知られている。例えば、特許文献1には、電池の電圧降下(−ΔV)を検出することにより蓄電池の満充電状態を検知する方法が記載されている。また、特許文献2には、単位時間当たりの電池温度の変化量(ΔT/Δt)を検出することにより過充電状態を検知する方法が記載されている。
特許文献1に記載の方法は、ニッケル水素蓄電池が定電流で充電される時に、満充電状態になると電池電圧がピーク値から下降する性質を利用するものであり、一般的に−ΔVはピーク電圧から1セル当たり数十mVに設定される。一方、特許文献2に記載の方法は、前述したように過充電時に正極から発生する酸素と水素との反応に伴い発生する熱による電池温度の上昇を利用するものであり、一般的にΔT/Δtは1〜2℃/分に設定される。
特開2002−359934号公報 特開平08−98421号公報
しかしながら、上記の検出方法では、満充電状態を判定する−ΔVやΔT/Δtを小さく設定すると、蓄電池を過充電することなく満充電状態とすることができるが、ノイズ等の影響で実際には満充電状態でない蓄電池を間違えて満充電状態と判定しやすくなる恐れがある。一方、−ΔVやΔT/Δtを大きく設定すると、間違えて満充電状態と判定することは少なくなるが、実際には過充電状態となっているのに過充電状態と判定されない恐れがある。
本発明は、このような課題を解決するためになされたものであり、充電中のニッケル水素蓄電池、鉛蓄電池及びニッケルカドミウム蓄電池が過充電状態に至ったことを高精度に検知することができる過充電検知方法を提供することを目的とする。
以上の課題を解決するため、本発明の一態様に係る過充電検知方法は、正極と、負極と、前記正極と前記負極との間に配された電解液とを備える蓄電池の過充電検知方法であって、前記蓄電池は、ニッケル水素蓄電池、鉛蓄電池又はニッケルカドミウム蓄電池であり、前記蓄電池の充電に伴って前記正極から発生する酸素を検出することにより過充電状態を検知することを特徴とする。
上記過充電検知方法においては、前記電解液中の酸素濃度を測定することにより過充電状態を検知することが好ましい。
また、上記過充電検知方法においては、酸素還元触媒を含む第三電極を前記電解液と接するように前記蓄電池内に配し、該第三電極及び前記負極間の電圧及び電流のうち少なくとも1つを計測することにより酸素濃度を測定することが好ましい。
さらに、上記過充電検知方法においては、前記酸素還元触媒は酸素を選択的に還元する性質を有する触媒であることが好ましい。
本発明の過充電検知方法によれば、ニッケル水素蓄電池、鉛蓄電池及びニッケルカドミウム蓄電池の充電に伴って正極から発生する酸素を検出することにより、蓄電池の過充電状態を高精度に検知することができる。
本発明の実施形態に係る酸素センサを備えたニッケル水素蓄電池の縦断面図である。 ニッケル水素蓄電池の充電時の電池電圧及び検知極の電圧の挙動を示した図である。
以下、本発明に係る過充電検知方法の実施の形態を、図面を参照しながら詳細に説明する。
本実施形態における過充電検知方法は、ニッケル水素蓄電池について、充電に伴って正極から発生する酸素を検出することにより、ニッケル水素蓄電池の過充電状態を検知する。
酸素を検出する手段は特に限定されるものではないが、酸素センサを用いて酸素を検出する手段が好ましい。
酸素を検出する酸素センサとしては、磁気式、限界電流式、ガルバニ電池式等が広く用いられている。いずれの酸素センサを用いても酸素を検出することは可能であるが、ニッケル水素蓄電池の作動温度、雰囲気下で精度良く酸素を検出し、過充電状態を高精度に検知することができる酸素センサを用いることが好ましい。このような酸素センサを用いた過充電検知方法を、過充電状態を検知するのに用いられる酸素センサ20を備えたニッケル水素蓄電池1の縦断面図である図1を参照しながら説明する。
ニッケル水素蓄電池1は、水酸化ニッケルからなる正極2と、水素吸蔵合金からなる負極3と、正極2と負極3を隔離するセパレータ4と、正極2の負極3と対向する面の反対側の面を覆うように配置される正極集電体5と、負極3の正極2と対向する面の反対側の面を覆うように配置される負極集電体6と、所定量の電解液7を収容できる大きさを有する電池外装缶8と、この電池外装缶8を塞ぐ正極端子となる封口体9と、正極集電体5と封口体9を連結する集電タブ10とを備える。なお、電池外装缶8の底部は負極端子11となっている。
負極3に使用する水素吸蔵合金としては特に限定されるものではないが、遷移元素(チタン、マンガン、ジルコニウム、ニッケルなど)の合金をベースとしたAB2型や、希土類元素、ニオブ、ジルコニウム1に対して触媒効果を持つ遷移元素(ニッケル、コバルト、アルミニウムなど)5を含む合金をベースとしたAB5型等が挙げられる。また、マグネシウム合金、チタン−鉄系合金、パラジウム系合金、カドミウム系合金等が挙げられる。
また、セパレータ4は正極2と負極3の間に介在して、両極活物質の接触に伴う短絡の防止や、電解液7を保持しイオンを通過させ導電性を確保する役割を果たすものであれば特に限定されるものではないが、不織布等が挙げられる。
さらに、電解液7はアルカリ性の水溶液である。アルカリ性の水溶液としては特に限定されるものではないが、水酸化カリウム水溶液、水酸化ナトリウム水溶液等が挙げられる。
また、酸素センサ20は、検知極21(本発明の構成要件である第三電極に相当する)と、電圧計22とを備え、検知極21は、正極2及び負極3とは接触せず、電解液7と接するようにニッケル水素蓄電池1内に配されている。そして、電圧計22の正極端子23は、検知極21と電圧計22との電気的接続を良好にするために用いられている検知極集電体25を介して検知極21に接続され、電圧計22の負極端子24は負極端子11に接続されている。
検知極21は、アルカリ燃料電池のカソード触媒に用いられている電極であり、具体的には酸素還元触媒を含む電極である。検知極21において酸素が還元されると、検知極21から電圧計22に電流が流れ、検知極21と負極端子11との間の電圧が計測される。
酸化還元触媒としては特に限定されるものではないが、白金、酸化コバルト等が挙げられる。これらの酸化還元触媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
また、酸素還元触媒としては、特に酸素を選択的に還元する性質を有する触媒であることがより好ましい。酸素を選択的に還元することにより酸素の検出精度が高められ、過充電状態をより高精度に検知することができるからである。酸素を選択的に還元する性質を有する触媒としては特に限定されるものではないが、NaCo24やLaFe3Sr310等が挙げられる。これらの酸素を選択的に還元する性質を有する触媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
本実施形態の過充電検知方法においては、酸素センサ20の電圧計22により、検知極21とニッケル水素蓄電池1の負極端子11との間の電圧を計測することで、正極2から発生した酸素の濃度を測定し、測定した酸素濃度に基づいてニッケル水素蓄電池1の過充電状態を検知する。具体的には、ニッケル水素蓄電池1が満充電状態となった後にさらに充電を行い過充電状態となると、ニッケル水素蓄電池1内の電解液7中の酸素濃度が高くなり、酸素濃度の上昇に伴って電圧計22において計測される電圧の値も高くなる。そのため、計測した電圧の値に基づいて酸素濃度を測定することで、充電中のニッケル水素蓄電池1が過充電状態に至ったことを検知することが可能となる。従がって、過充電状態を高精度に検知することができる。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては、酸素センサ20は電圧を計測することにより酸素濃度を測定することとしたが、電圧計の代わりに電流計を用いて、電流を測定することにより酸素濃度を計測することも可能である。また、電圧と電流の両方を測定してもよい。
また、本実施形態の過充電検知方法は、ニッケル水素蓄電池に限定されるものではなく、正極から発生する酸素の量が過充電に伴い増大するような電池に適用することが可能であり、例えば鉛蓄電池やニッケルカドミウム蓄電池等に適用することが可能である。
さらに、本実施形態の過充電検知方法により過充電状態を検知した際には、音や光を発すること(例えばアラーム等)により過充電状態を報知するような構造にしてもよく、また、自動的に充電を終了するような構造とすることも可能である。
以下に、実施例を示して、本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
図1に示すように、正極及び負極とは絶縁され且つ電解液に浸漬される位置に、酸素還元触媒を含む検知極を配することにより、ニッケル水素蓄電池に酸素センサを設けた。検知極は、NaCo24の粉末1gに、三井・デュポンフロロケミカル株式会社製のポリテトラフルオロエチレン(PTFE)ディスパージョン(銘柄:31−JR)を5g加えて混合したペーストを、検知極集電体としてのニッケル板上に厚さが100μmになるように塗布し、280℃に熱処理を行うことで作製した。
ニッケル水素蓄電池の充電中の電池電圧と、上記のように作製した検知極とニッケル水素蓄電池の負極との間の電圧とを計測し、その測定結果を図2に示した。なお、充電はニッケル水素蓄電池の放電容量と同じ電流で1時間かけて行った。
図2に示すように、満充電状態から過充電状態に変化する際の電池電圧の変化に比して、本実施例における酸素センサの検知極とニッケル水素蓄電池の負極との間の電圧の変化が大きかった。そのため、本実施例の過充電検知方法によれば、高精度に、且つ、容易に過充電状態を検知することが可能である。
1 ニッケル水素蓄電池
2 正極
3 負極
7 電解液
20 酸素センサ
21 検知極
22 電圧計

Claims (4)

  1. 正極と、負極と、前記正極と前記負極との間に配された電解液とを備える蓄電池の過充電検知方法であって、
    前記蓄電池は、ニッケル水素蓄電池、鉛蓄電池又はニッケルカドミウム蓄電池であり、
    前記蓄電池の充電に伴って前記正極から発生する酸素を検出することにより過充電状態を検知することを特徴とする過充電検知方法。
  2. 前記電解液中の酸素濃度を測定することにより過充電状態を検知することを特徴とする請求項1に記載の過充電検知方法。
  3. 酸素還元触媒を含む第三電極を前記電解液と接するように前記蓄電池内に配し、該第三電極及び前記負極間の電圧及び電流のうち少なくとも1つを計測することにより酸素濃度を測定することを特徴とする請求項2に記載の過充電検知方法。
  4. 前記酸素還元触媒は酸素を選択的に還元する性質を有する触媒であること特徴とする請求項3に記載の過充電検知方法。
JP2010280569A 2010-12-16 2010-12-16 過充電検知方法 Pending JP2012129101A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280569A JP2012129101A (ja) 2010-12-16 2010-12-16 過充電検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280569A JP2012129101A (ja) 2010-12-16 2010-12-16 過充電検知方法

Publications (1)

Publication Number Publication Date
JP2012129101A true JP2012129101A (ja) 2012-07-05

Family

ID=46645906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280569A Pending JP2012129101A (ja) 2010-12-16 2010-12-16 過充電検知方法

Country Status (1)

Country Link
JP (1) JP2012129101A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506498A (ja) * 2012-11-30 2016-03-03 テスラ モーターズ,インコーポレーテッド 直列接続された電池素子における過充電事象検出に対する応答

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506498A (ja) * 2012-11-30 2016-03-03 テスラ モーターズ,インコーポレーテッド 直列接続された電池素子における過充電事象検出に対する応答

Similar Documents

Publication Publication Date Title
JP6200978B2 (ja) 蓄電池、ならびに当該蓄電池を用いて電気エネルギーを蓄積及び放出する方法
US8917095B2 (en) Vehicle system and method for detecting hydrogen sulfide
US10109902B2 (en) Metal-air battery having a device for controlling the potential of the negative electrode
US20110199054A1 (en) Methods for charging metal-air cells
US9847560B2 (en) Electrochemical energy cell, and rechargeable battery for repeatedly storing electrical energy, and also method for determining an electrode potential of an electrode of an electrochemical energy storage cell
KR101357470B1 (ko) 이차전지용 전극단자 및 이를 포함하는 리튬 이차전지
CN201904414U (zh) 三电极电池
JP5385569B2 (ja) 酸性電解質を用いた電池
US10074877B2 (en) Method for charging a zinc-air battery with limited potential
JP5875089B2 (ja) ニッケル水素電池の充電量表示装置および充電量表示方法
Kumar et al. Introduction to electrochemical cells
Binder et al. Improvements of the Rechargeable Alkaline MnO2‐Zn Cell
JP2012129101A (ja) 過充電検知方法
JP5851624B2 (ja) リチウム空気電池用の水性電解液
JP2009151977A (ja) コイン形二次電池
US10211464B2 (en) Electrochemical cell aluminum-manganese
JPH06290817A (ja) 二次電池装置
Nakatsugawa et al. Discharge behavior of water-activated magnesium battery
JP4618025B2 (ja) 組電池及びその充電制御方法
JP2005085674A (ja) 非水電解質二次電池
Kumar et al. Introduction to battery systems
JP2017174541A (ja) レドックスフロー電池の正・負極の過電圧測定方法およびその方法を行うための装置
JP6874806B2 (ja) 水溶液系二次電池および水溶液系二次電池システム
JP2013077434A (ja) リチウム空気キャパシター電池
JPS6046516B2 (ja) 密閉型蓄電池の過充電検出方法