JP2012127837A - 高温超電導磁気センサ及びその製造方法 - Google Patents

高温超電導磁気センサ及びその製造方法 Download PDF

Info

Publication number
JP2012127837A
JP2012127837A JP2010280196A JP2010280196A JP2012127837A JP 2012127837 A JP2012127837 A JP 2012127837A JP 2010280196 A JP2010280196 A JP 2010280196A JP 2010280196 A JP2010280196 A JP 2010280196A JP 2012127837 A JP2012127837 A JP 2012127837A
Authority
JP
Japan
Prior art keywords
input
squid
magnetic sensor
coil
trimming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280196A
Other languages
English (en)
Other versions
JP5608067B2 (ja
Inventor
Akira Tsukamoto
塚本  晃
Seiji Adachi
成司 安達
Yasuo Oshikubo
靖夫 押久保
Keiichi Tanabe
圭一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Hitachi Ltd
Original Assignee
International Superconductivity Technology Center
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Hitachi Ltd filed Critical International Superconductivity Technology Center
Priority to JP2010280196A priority Critical patent/JP5608067B2/ja
Priority to DE102011120784.1A priority patent/DE102011120784B4/de
Priority to US13/326,966 priority patent/US8781542B2/en
Publication of JP2012127837A publication Critical patent/JP2012127837A/ja
Application granted granted Critical
Publication of JP5608067B2 publication Critical patent/JP5608067B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】複数のSQUIDを有し、その中から所望のものを選択し使用できる高温超電導磁気センサを提供する。
【解決手段】基板上に形成された超電導層を有し、超電導層に複数のSQUID2が形成されている高温超電導磁気センサ1において、超電導層に形成されSQUID2毎に接続又は磁気結合する複数の入力コイル5と、超電導層に形成され複数の入力コイル5と閉ループを形成するように接続された検出コイル7と、超電導層に形成され入力コイル5毎の両端を短絡しているが切断可能な複数のトリミング配線6とを有する。複数のSQUID2の電気と磁気の特性の測定結果に基づいて、高温超電導磁気センサ1の用途に適したSQUID2を選択し、選択されたSQUID2に磁気結合する入力コイル5の両端を短絡しているトリミング配線を切断する。
【選択図】図1A

Description

本発明は、基板上に形成された超電導層に複数の超電導量子干渉素子(SQUID:Superconducting Quantum Interference Device)が形成されている高温超電導磁気センサ及びその製造方法に関する。
SQUIDは最も高感度に磁気信号を検出できる磁気センサとして知られており、脳や心臓などから自発的に発生する微弱な生体磁気信号の計測や、残留磁気や過電流探傷法による非破壊検査、さらに、最近では超低磁場MRI(磁気共鳴イメージング)などに使用されている。しかし、冷却に高価で取り扱いが難しい液体ヘリウムが必要な低温超電導体のSQUIDでは、SQUIDの応用範囲は限られていた。液体窒素温度で超電導特性を示す高温超電導体の発見以降、液体窒素温度で動作する高温超電導体のSQUIDの開発が精力的に進められ、現在、100fT/Hz以下の検出感度を有する高温超伝導磁気センサを購入可能になっており、研究開発の最先端では10fT/Hz以下の検出感度を有する高温超伝導磁気センサも報告されている。高温超電導体のSQUIDは低コストで取り扱いが容易な液体窒素を用いた冷却が可能なため、様々な構造が提案されている(非特許文献1〜6参照)。
Chapter 1 Introduction ,"The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, Volume I"、Edited by John Clarke, Alex I. Braginski 、ISBN: 978-3-527-40229-8 J. M. Jaycox and M. B. Ketchen, IEEE Trans Magn. MAG-17, 400-403 (1981) A.Tsukamoto, IEEE Trans. Appl. Supercond. Vol.15 No.2 (2005) 173-176 H. Wakana, S. Adachi, K. Hata, T. Hato, Y. Tarutani, K. Tanabe, IEEE Trans. Appl. Supercond. Vol.19 No.3 (2009) 782-785 S. Adachi, K. Hata, T. Hato, Y. Tarutani, K. Tanabe, Physica C, vol. 468, No.15-20, pp.1936-1941,(2008) E. Dantsker, S. Tanaka, J. Clarke, Appl. Phys. Lett. Vol.70 No.15 (1997) 2037-2039
非特許文献1では、(DC−)SQUIDの基本構造が提案されている。SQUIDは、SQUIDインダクタと2つのジョセフソン接合からなる閉ループ構造を有している。SQUIDの電極間に臨界電流Iよりも若干大きなバイアス電流Iを流し、2つのジョセフソン接合に電圧Vを発生させると、閉ループ構造に鎖交する磁束Φにより端子間に発生する電圧Vが磁束量子Φ0(2.07x10-15Wb)を周期として周期的に変化する。フラックス・ロックド・ループ回路(FLL回路)を用いたフィードバック制御により、磁束量子Φ0の1/105〜1/106というわずかな磁束の変化を測定可能である。
SQUIDは通常数十から数百μmのサイズしかないため、高感度な磁気センサとして使用する場合、より大きなサイズの検出コイルを使用する。検出コイルは、入力コイルとで磁束トランス(閉ループ構造)を構成し、入力コイルをSQUIDに磁気結合させて使用する。SQUIDインダクタのインダクタンスをL、検出コイルの面積をAp、検出コイルのインダクタンスをLp、入力コイルのインダクタンスをLi、SQUIDと入力コイル間の相互インダクタンスをMとし、入力コイルと検出コイル間の配線部分のインダクタンスの影響は無視すると、外部磁場Bが検出コイルに印加されたときにSQUIDにより検出される磁束Φは、式(1)となる。
Φ=Ip・M
=BAp・M/(Lp+Li
=BAp・k(Li・Ls1/2/(Lp+Li) (1)
ここで、Ipは磁束トランスに流れる遮蔽電流であり、相互インダクタンスMは式M=k(Li・Ls1/2の関係を有し、kは結合係数(0<k<1)である。外部磁場BとSQUIDにより検出される磁束Φの比は有効面積Aeffと呼ばれ、式(2)の関係を有する。
Aeff=Φ/B
=Ap・M/(Lp+Li
=Ap・k(Li・Ls1/2/(Lp+Li) (2)
式(2)は、有効面積Aeffが大きいほどSQUID磁気センサの検出感度(SQUIDにより検出される磁束Φ)が高いことを示している。SQUIDのインダクタンスLは、大きすぎるとSQUIDの変調電圧振幅ΔVが小さくなり磁束雑音が増加するため、通常40−100pH程度である。また、検出コイルも用途に応じてサイズや形状が決まるため、検出コイルの面積ApとインダクタンスLpも別途決まる値となる。したがって、式(2)で有効面積Aeffを最大にするための調整可能なパラメータは結合係数kと入力コイルのインダクタンスLiになる。結合係数kは入力コイルとSQUIDの磁気結合が完全な場合に最大値の1となり、このときに有効面積Aeffも最大になる。一方、入力コイルのインダクタンスLiは、式(2)より、検出コイルのインダクタンスLpに等しい(Li=Lp)時に、有効面積Aeffが最大になる(Aeff=Ap(Ls/Li1/2/2))。
非特許文献2では、理想的な構造である集積型SQUIDが提案されている。集積型SQUIDでは、マルチターン構造の入力コイルがワッシャー型のSQUIDインダクタ上に薄い絶縁体層を介して積層された構造となっており、結合係数kは1に近い値が得られる。また、検出コイルのインダクタンスLpと入力コイルのインダクタンスLiが等しくなるように(Li=Lp)、入力コイルのマルチターン構造の巻き数は最適化されている。ただし、非特許文献2は、超電導体にニオブ(Nb)を使用した低温超電導SQUID(LTS−SQUID)の場合であり、高温超電導体による集積型SQUIDは、その製造歩留まりは低い。これは、多元系複合酸化物構造の高温超電導体では組成ずれや偏析により析出物が発生しやすく、上下2層の高温超電導体層の間の層間絶縁層で絶縁不良が起きたり、多層プロセスの過程で薄膜特性や接合の劣化が起きたりするためである。
非特許文献3では、直接結合(直結)型SQUIDが提案されている。直接結合型SQUIDは、1層の超電導体薄膜でSQUIDを作製することができる。ジョセフソン接合には、バイクリスタル接合やステップエッジ接合などの単層の超電導体薄膜で形成可能な粒界接合が用いられている。直接結合型SQUIDではスリットホール型のSQUIDインダクタ(インダクタンスLs)に検出コイル(インダクタンスLp)が直接接続されており、入力コイル(インダクタンスLi)はSQUIDインダクタ(インダクタンスLs)に兼用されることで省かれている。すなわち、検出コイル(インダクタンスLp)に鎖交した磁束により誘導される遮蔽電流IpがSQUIDインダクタ(インダクタンスLs)に直接流れる構造である。直接結合型SQUIDでは、兼用により入力コイルのインダクタンスLiはSQUIDインダクタのインダクタンスLsに等しく(Li=Ls)、検出コイルのインダクタンスLpは、数nHから数十nHの値であるので、SQUIDインダクタのインダクタンスLsより大きい(Lp>>Ls)。この場合の有効面積Aeffは、式(2)より、式(3)のような近似式となる。この場合の有効面積Aeff(検出コイルとSQUIDとの結合効率)は、非特許文献2の有効面積Aeff(=Ap(Ls/Li1/2/2))より小さくなっている。
Aeff=Ap・Ls/(Lp+Ls) (3)
また、非特許文献3では、1層の超電導体薄膜でのSQUIDの作製でも、高温超電導体での接合特性がばらつくことが記載されている。例えば、動作温度におけるSQUIDの臨界電流で、10-100μA程度が求められ、理想的には10-20μAが求められるところ、100μAを超え、歩留まりを低下させる場合があった。そこで、複数のSQUIDを同じ検出コイルに直列に接続し、複数のSQUIDの中から良好な特性のSQUIDを選択して使用することで歩留まりを改善する工夫がなされている。非特許文献3では、選択されないSQUIDのSQUIDインダクタのインダクタンスLsも、検出コイルのインダクタンスLpに足されるように機能する。すなわち、n個のSQUID(n番目のインダクタンスをLs,nとする)を直列に配置した場合の有効面積Aeffは式(4)のようになる。
Aeff=Ap・Ls/(Lp+ΣLs,n) (4)
ここで、ΣLs,nはn個のSQUIDのSQUIDインダクタの総和(Ls,1+Ls,2+・・・+Ls,n)を示している。式(3)に比べると、分母が約ΣLs,n ・(n-1)/n増加するため、有効面積Aeffが減少する。しかしながら、直結型の場合、通常は検出コイルのインダクタンスLpの方がSQUIDインダクタのインダクタンスLsよりも2桁以上大きい(Lp>>ΣLs)。この場合、複数のSQUIDを直列に配置したことによる有効面積Aeffの減少は小さく、実用上は問題とならない。
発明者の所属する研究機関では、高温超電導体でも、LTS-SQUIDレベルの高感度化を目指し、集積型SQUIDの開発を進めている。その結果、2層の超電導層を含む高温超電導多層構造プロセスで、入力コイルがSQUIDインダクタ上に積層した構造の集積型SQUIDの試作に成功している(非特許文献4、5)。この集積型SQUIDでも、マルチターン構造の入力コイルがワッシャー型のSQUIDインダクタ上に薄い絶縁体層を介して積層された構造となっており、結合係数kは1に近い値が得られる。そして、20−40fT/Hz1/2の優れた雑音特性が得られている。しかし、高温超電導体に特有の接合特性のばらつきに加え、層間絶縁層の不良などにより歩留まりが低下する場合があった。
非特許文献3の直接結合型SQUIDと同じように、非特許文献4、5の集積型SQUIDを直列に接続することで、歩留まり改善が可能と考えられるが、非特許文献3の場合とは異なり、有効面積Aeffすなわち検出感度が低下すると考えられた。n個の集積型SQUIDを直列に並べた構造の有効面積Aeffは、式(2)より、式(5)のように求まる。
Aeff=Ap・k(Li・Ls1/2/(Lp+ΣLi,n) (5)
ここで、ΣLi,nはn個の集積型SQUIDの入力コイルのインダクタンスの総和(Li,1+Li,2+・・・+Li,n)を示している。集積型SQUIDでは、検出コイルのインダクタンスLpと入力コイルのインダクタンスLiが等しくなるように設計されるため(Li=Lp)、1つの集積型SQUIDの場合に比べ、有効面積Aeffが約2/(n+1)倍になる。したがって、集積型SQUIDでは複数のSQUIDを直列に接続した構造は、一見すると、実用的でないと考えられ、実際に試作された例はない。このように、歩留まりの低下しやすい集積型SQUIDにおいて、歩留まりを向上させる手法が待たれているのであるが、1つの高温超電導磁気センサで、複数の集積型SQUIDの中から不良品でないものを選択し使用できれば、個々の集積型SQUIDでは歩留まりが低くても、高温超電導磁気センサとしては歩留まりが向上でき、有用である。
また、検出感度(有効面積Aeff)の面で有利な集積型SQUIDであるが、直接結合型SQUIDよりも磁束トラップが起き易いという問題がある。高温超電導SQUIDは、冷却に液体ヘリウムが必要なLTS−SQUIDに比べ冷却が容易であり、高温超電導SQUIDはより広い応用展開が検討されている。地質探査など液体ヘリウムの調達が困難な屋外での応用や工場などでの非破壊検査などへの応用が検討されている。いずれも、磁気シールドを使用しない環境で使用する場合が多いため、高温超電導磁気センサを地磁気中で冷却することになる。このときに、超電導体中に磁束がトラップされる現象が起きると、トラップされた磁束の運動によりSQUIDに雑音が発生し微弱な信号の測定が困難になる。トラップ現象が起きはじめるしきい値磁場BTの強度と超電導体のサイズには以下の式(6)の関係がある(非特許文献6参照)。なお、wは超電導体の幅である。
BT=πΦ0/4w2 (6)
直接結合型SQUIDではSQUIDインダクタの幅は5μm程度であり、式(6)より求められるしきい値磁場BTは65μT程度となる。日本での地磁気は30〜50μT程度であるため、直接結合型SQUIDでは地磁気中での冷却で磁束トラップが起こりにくい。一方、集積型SQUIDではマルチターンの入力コイルをSQUIDインダクタと効率良く磁気結合させるため、入力コイルをSQUIDインダクタ上に積層した構造になっている。そのため、SQUIDインダクタの幅が広くなり、通常100〜300μm程度の幅となっている。幅が100μmの場合でも、しきい値磁場BTは0.16μTと、地磁気以下になる。したがって、集積型SQUIDでは、地磁気中で冷却して使用すると磁束トラップが起きやすい。
非特許文献6では、その磁束トラップを防止できる集積型SQUIDが提案されている。この集積型SQUIDでは、SQUIDインダクタの幅が広い構造でも、SQUIDインダクタの部材をメッシュ構造にしたり、スリットホールを設けたりすることで、SQUIDインダクタを構成する最小線幅を細くし、磁束トラップを防止している。
また、集積型SQUIDの別の問題としてダイナミックレンジの問題がある。集積型SQUIDの場合、マルチターン構造で積層される入力コイル部分に必ず上下2層の超電導体同士の接続部分が必要になる。高温超電導体は接続部分で臨界電流密度が低下することが知られている。そのため、検出コイルと入力コイルからなる磁束トランスの臨界電流は入力コイル部分の超電導接続部分の臨界電流で制限されることになる。このことは、大きな磁場変動を検出コイルが受けても、流れる遮蔽電流に上限があることを意味しており、磁気センサのダイナミックレンジを制限する。一方、直接結合型SQUIDでは一層の超電導体薄膜で形成されているため、上下2層の超電導体同士の接続部分を含まない。したがって、直接結合型SQUIDでは、測定ダイナミックレンジが広くなっている。
このように、感度面では集積型SQUIDが有利であるが、直接結合型SQUIDには磁束トラップが起こりにくいことやダイナミックレンジが広いことなどのメリットもあるため、利用用途に応じて、集積型SQUIDを選択したり、直接結合型SQUIDを選択したりする必要がある。逆に、1つの高温超電導磁気センサで、集積型SQUIDを選択したり、直接結合型SQUIDを選択したりできれば、高感度と広いダイナミックレンジとが両立でき、有用である。
また、高温超電導磁気センサの冷却方法には、液体窒素で直接冷却する方法と冷凍機冷却や液体窒素で冷却されたロッドを介して熱伝導により冷却する方式がある。このため、使用する冷却方法により、SQUIDの温度(動作温度)が異なり、SQUIDの臨界電流の最適値が変化する。例えば、液体窒素冷却のロッドを介して熱伝導で冷却する場合、動作温度は液体窒素で直接冷却した場合の77Kに比べて動作温度は1−2K程度高くなると考えられる。その動作温度で20-100μAの臨界電流を実現するためには、あらかじめ接合幅を広くするなど、77Kでの臨界電流値を大きめに設計する必要がある。逆に、1つの高温超電導磁気センサで、冷却方法(動作温度)に応じて、接合幅が互いに異なるように特性および構造の異なる複数の(集積型)SQUIDの中から選択できれば、冷却方法(動作温度)によらず使用でき、有用である。
前記より、1つの高温超電導磁気センサで、複数のSQUIDの中から所望のものを選択し使用できれば、高温超電導磁気センサとして、歩留まりが向上できたり、高感度と広いダイナミックレンジとを両立できたり、冷却方法(動作温度)によらず使用できたりと有用である。
そこで、本発明が解決しようとする課題は、複数のSQUIDを有し、その中から所望のものを選択し使用できる高温超電導磁気センサとその製造方法を提供することである。
前記課題を解決するために、本発明は、
基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサにおいて、
前記超電導層に形成され、前記SQUID毎に接続又は磁気結合する複数の入力コイルと、
前記超電導層に形成され、複数の前記入力コイルと閉ループを形成するように接続された検出コイルと、
前記超電導層に形成され、前記入力コイル毎の両端を短絡しているが切断可能な複数のトリミング配線とを有することを特徴としている。
また、本発明は、
基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサの製造方法において、
前記SQUID毎に接続又は磁気結合する複数の入力コイルと、複数の前記入力コイルと閉ループを形成するように接続された検出コイルと、前記入力コイル毎の両端を短絡している複数のトリミング配線とを、前記超電導層に形成し、
複数の前記SQUIDの電気的、磁気的特性の測定結果に基づいて、複数の前記SQUIDの中から前記高温超電導磁気センサの用途に適した前記SQUIDを選択し、
選択された前記SQUIDに接続又は磁気結合する前記入力コイルの両端を短絡している前記トリミング配線を切断することを特徴としている。
本発明によれば、複数のSQUIDを有し、その中から所望のものを選択し使用できる高温超電導磁気センサとその製造方法を提供することができる。
本発明の第1の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の回路図である。 本発明の第1の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の回路図である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の平面図である。 図2Aの超電導量子干渉素子D2周辺の拡大図である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の回路図である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の平面図である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の回路図である。 本発明の第2の実施形態に係る高温超電導磁気センサの製造方法のフローチャートである。 本発明の第2の実施形態に係る高温超電導磁気センサの製造途中における断面図である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)に設けられた複数の超電導量子干渉素子(SQUID)の中の1つSQUIDの電流−電圧特性である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)に設けられた複数の超電導量子干渉素子(SQUID)の中の1つSQUIDの電圧−磁束特性である。 本発明の第2の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の雑音特性である。 本発明の第3の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の平面図である。 図10Aの下側に配置された超電導量子干渉素子周辺の拡大図である。 本発明の第4の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の超電導量子干渉素子D1周辺の拡大図である。 図11Aの超電導量子干渉素子D1周辺の拡大図である。 本発明の第5の実施形態に係る高温超電導磁気センサ(グラジオメータ構造、トリミング配線未切断の状態)の平面図である。 図12Aの超電導量子干渉素子周辺の拡大図である。 図12Bの超電導量子干渉素子周辺の拡大図である。 本発明の第5の実施形態に係る高温超電導磁気センサ(トリミング配線未切断の状態)の回路図である。 本発明の第5の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の平面図である。 本発明の第5の実施形態に係る高温超電導磁気センサ(トリミング配線切断の状態)の回路図である。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。また、以下の開示は、本発明の一実施例にすぎず、本発明の技術範囲を何ら限定するものではない。
(第1の実施形態)
図1Aに、本発明の第1の実施形態に係る高温超電導磁気センサ1の回路図を示す。図1Aでは、トリミング配線6が未切断の状態を示している。高温超電導磁気センサ1は、複数の(図中では3個の)超電導量子干渉素子(SQUID)2を有している。
SQUID2はそれぞれ、2つのジョセフソン接合3とSQUIDインダクタ4とが直列に接続された閉ループ構造になっている。2つのジョセフソン接合3の間には、SQUIDインダクタ4の接続されている側に電極8bが接続され、SQUIDインダクタ4の接続されていない側に電極8aが接続されている。SQUID毎に、SQUIDインダクタ4に接続又は磁気結合する入力コイル5が設けられている。複数の入力コイル5は、直列に接続されている。この複数の入力コイル5の直列接続の両端に、検出コイル7が接続され、複数の入力コイル5と検出コイル7とが直列に接続された磁束トランス(入力コイル側の閉ループ)L1が形成されている。
複数のトリミング配線6はそれぞれ、入力コイル5の両端を短絡するように、入力コイル5の両端の間に接続されている。これにより、複数のトリミング配線6は、直列に接続され、この複数のトリミング配線6の直列接続の両端に、検出コイル7が接続され、複数のトリミング配線6と検出コイル7とが直列に接続されたトリミング配線側の閉ループL2が形成されている。トリミング配線6のインダクタンスLwは、入力コイル5のインダクタンスLsよりも小さくなっている。トリミング配線6はそれぞれ単独に切断可能になっている。
複数のSQUID2の電気と磁気の特性の測定結果に基づいて、複数のSQUID2の中から高温超電導磁気センサ1の今回の用途に適し、不良品でないSQUID2を選択する。そして、選択されたSQUID2に接続又は磁気結合する入力コイル5の両端を短絡しているトリミング配線6を切断する。
図1Bに、本発明の第1の実施形態に係る高温超電導磁気センサ1のトリミング配線6の1つを切断した状態の回路図を示す。図1Bの例では、3つあったトリミング配線6の中の右側のトリミング配線6が切断されて除去されたため、その後には、切断部6aが生じている。このため、トリミング配線6は、複数の入力コイル5の中の一部の入力コイル5(5b)の両端を短絡しているが、他の入力コイル5(5a)の両端は短絡していない。これにより、選択されていた図1Bの例では右側のSQUID2(2a)が、使用される状態になり、他のSQUID2(2b)が、使用されない状態になる。遮蔽電流は、インダクタンスの小さい方を流れるので、入力コイル5(5b)がトリミング配線6で短絡されていると、トリミング配線6を流れて、入力コイル5(5b)は流れない。一方、トリミング配線6が切断された入力コイル5(5a)には、遮蔽電流が流れる。遮蔽電流が流れる入力コイル5(5a)に磁気結合するSQUIDインダクタ4を有するSQUID2(2a)が稼動し使用されることになる。なお、複数のトリミング配線6と検出コイル7とで形成されていたトリミング配線側の閉ループL2は、切断部6aによって、開いた状態になっている。複数の入力コイル5と検出コイル7とで形成されていた入力コイル側の閉ループL1は、切断部6aの有無に関係なく、閉じた状態になっている。
高温超電導磁気センサ1の構造での有効面積Aeffは、式(7)で表される。
Aeff=Ap・k(Li・Ls1/2/(Lp+Li+(n-1)Lw) (7)
ここで、nは直列に接続された集積型SQUID2の個数であり、Lwはトリミング配線6のインダクタンスである。トリミング配線6のインダクタンスLwを入力コイル5のインダクタンスLiよりも十分小さくすることで(Lw<<Li)、式(2)の一つの集積型SQUIDが検出コイル7に接続された場合の有効面積と一致するため、複数の集積型SQUIDを配置したことによる感度低下を防ぐことができる。そして、第1の実施形態では、トリミング配線6のインダクタンスLwを、入力コイル5のインダクタンスLiよりも十分小さく設定している(Lw<<Li)。これにより、第1の実施形態では、複数のSQUID2を配置しても感度の低下を起こすことなく、複数のSQUID2の中から用途に適したSQUID2を選択し使用することが可能になる。1つの高温超電導磁気センサ1で、複数の集積型SQUID2の中から不良品でないものを選択し使用できるので、たとえ、個々の集積型SQUID2では歩留まりが低い場合でも、高温超電導磁気センサ1としては歩留まりが向上でき、有用である。
第1の実施形態では、SQUID2の選択に際して、あらかじめすべての入力コイル5をトリミング配線6で短絡しておき、選択され使用するSQUID2に対応するトリミング配線6を切断するが、これに限らない。例えば、あらかじめすべての入力コイル5をトリミング配線6で短絡しておかずに、SQUID2の選択に際して、選択され使用するSQUID2に対応する入力コイル5(5a)を除いた他の入力コイル5(5b)の両端をトリミング配線6で接続し短絡させてもよい。
なお、SQUID2の選択においては、電磁気特性や顕微鏡などによる形状観察などの評価を行い選択することが可能である。または、設計パラメータから選択することも可能である。すなわち、設計パラメータにおいて、構造の異なる複数の集積型SQUID2を設計し製造しておけば、1つの高温超電導磁気センサ1で、冷却方法(動作温度)に応じて、構造の異なる複数の集積型SQUID2の中から選択できるので、冷却方法(動作温度)によらず、1つの高温超電導磁気センサ1を使用でき、有用である。また、構造において異ならせる設計パラメータとしては、SQUID2のジョセフソン接合3の接合幅、入力コイル5のインダクタンスLi、SQUIDインダクタ4のインダクタンスLなどを採用することができる。設計パラメータにおいて、構造の異なる複数の集積型SQUID2や入力コイル5を設計し製造しておけば、1つの高温超電導磁気センサ1で、使用目的に応じて、構造の異なる複数の集積型SQUIDの中から選択できるので、使用目的によらず、1つの高温超電導磁気センサ1を使用でき、有用である。
また、第1の実施形態では、複数の集積型SQUID2に磁気結合する入力コイル5を直列に接続したが、第3の実施形態で詳述するように、複数の集積型SQUID2に磁気結合する入力コイル5と、複数の直接結合型SQUID2に接続する入力コイル5(SQUIDインダクタ4と兼用)とを直列に接続してもよい。これによれば、1つの高温超電導磁気センサで、集積型SQUID2を選択したり、直接結合型SQUID2を選択したりできるので、1つの高温超電導磁気センサで、高感度と広いダイナミックレンジとが両立でき、有用である。
なお、トリミング配線6が切断された高温超電導磁気センサ1は、高感度化し有用であり、トリミング配線6が切断されていない高温超電導磁気センサ1(トリミング配線6が取付けられていない高温超電導磁気センサ1も含む)は、感度が高くなく有用でないと、
考えがちであるが、この考えは正しくない。それは、単に、トリミング配線6が切断されていない高温超電導磁気センサ1でも、トリミング配線6を切断すれば高感度化しうるのだから有用であるということに止まらない。それは、トリミング配線6が切断されていない高温超電導磁気センサ1(トリミング配線6が取付けられていない高温超電導磁気センサ1も含む)は、それが有する複数の直接結合型SQUID2はそれぞれ、感度が悪いながらも電気磁気特性を測定でき、その測定特性に基づいて、所望の直接結合型SQUID2を選択できるという有用な機能を有していると考えられるからである。この機能は、高温超電導磁気センサ1に、その選択の前から、あらかじめ、トリミング配線6を設けておくか、その選択の後にトリミング配線6を設けて、使用しない直接結合型SQUID2を稼動しないようにするかに関わらず存在していると考えられる。従来は、この機能が見逃され、トリミング配線6が切断されていない高温超電導磁気センサ1(トリミング配線6が取付けられていない高温超電導磁気センサ1も含む)ですら製造されることはなかった。
(第2の実施形態)
図2Aに、本発明の第2の実施形態に係る高温超電導磁気センサ1の平面図を示す。図2Aでは、トリミング配線6が未切断の状態を示している。第2の実施形態が、第1の実施形態と異なっている点は、より具体的に高温超電導磁気センサ1の平面図を示し、高温超電導磁気センサ1が有する集積型SQUID2の数が4つの場合を示している点であり、回路構成に大きな差はない。
高温超電導磁気センサ1は、外側に、薄膜状のリング9を有している。リング9の外側の輪郭と、内側の輪郭とは、略正方形(四角形)をしている。この四角形のリング9の各辺の中央付近のリング9の内側に、入力コイル5と、入力コイル5が磁気結合する集積型SQUID2(D1、D2、D3、D4)が形成されている。入力コイル5と集積型SQUID2(D1、D2、D3、D4)とは、それぞれ4つずつ形成されている。4つの集積型SQUID2は、説明の便宜上区別し、リング9の四角形の下辺には集積型SQUID2(D1)が配置され、以下、反時計回りに、リング9の四角形の右辺には集積型SQUID2(D2)が配置され、リング9の四角形の上辺には集積型SQUID2(D3)が配置され、リング9の四角形の右辺には集積型SQUID2(D4)が配置されている。集積型SQUID2(D1、D2、D3、D4)毎に、電極8aと電極8bとが2つずつ、リング9の内側に沿うように設けられている。
リング9には、入力コイル5と集積型SQUID2(D1、D2、D3、D4)の近傍に、スリット9aが設けられている。スリット9aは、リング9の内側の縁には達しているが、外側の縁には達していない。スリット9aはリング9の外側の縁には達していないので、リング9は閉ループとなり開かれていない。
そして、リング9におけるスリット9aの領域の外側の領域が、トリミング配線6になっている。スリット9aとトリミング配線6とは、それぞれ4つずつ形成されている。トリミング配線6は、リング9の外周側に配置され、入力コイル5と集積型SQUID2(D1、D2、D3、D4)は、リング9の内側に配置されている。そして、入力コイル5とトリミング配線6の間のリング9の領域に、スリット9aが形成されている。リング9におけるトリミング配線6とスリット9aを除いた領域が、検出コイル7になっている。トリミング配線6に相当するリング9の幅W1は、検出コイル7に相当するリング9の幅W0より狭くなっている。そして、リング9は、4分割された検出コイル7と、4つ(複数)のトリミング配線6とが交互に直列に接続されて、トリミング配線側の閉ループL2を構成している。
トリミング配線6の長さは、スリット9aの幅程度とみなせるので、トリミング配線6は、その長さが、その幅W1に対して短い超電導体であるため、トリミング配線6のインダクタンスLwは、入力コイル5のインダクタンスLiよりも十分に小さくなっている(Lw<<Li)。これにより、検出コイル7に遮蔽電流Ipが生じると、遮蔽電流Ipは、トリミング配線6を経由するトリミング配線側の閉ループL2を主に流れ、入力コイル5を経由する磁束トランス(入力コイル側の閉ループ)L1を殆んど流れない。
図2Bに、図2Aの集積型SQUID2(D2)周辺の拡大図を示す。集積型SQUID2(D2)は、2つのジョセフソン接合3とSQUIDインダクタ4とが直列に接続された閉ループ構造になっている。ジョセフソン接合3には、ランプエッジ型接合が用いられている。図2Bを含め全図面中の平面図において、「点々」でハッチングされた領域は、基板21(図7参照)上に形成された上下2層の高温超電導層の内で下側の高温超電導層(第1超電導層)DL(図7参照)の配置された領域を示し、「白抜き」でハッチングされた領域は、下側の第1超電導層DLの上方に絶縁層22(図7参照)を介して形成された上側の第2超電導層ULの配置された領域を示している。この表示法は、図2A、図4、図10A、図10B、図11A、図11B、図12A、図12B、図12C、図14でも同様である。ジョセフソン接合3では、第1超電導層DLのエッジがランプ状になっているところに、第2超電導層ULが上から接している。ジョセフソン接合3では、第1超電導層DLと、第2超電導層ULが重なっている。
SQUIDインダクタ4は、ワッシャー構造(コの字形状)の1ターンのコイルである。SQUIDインダクタ4は、下側の第1超電導層DLで形成されている。SQUIDインダクタ4は、略正方形(四角形)のパターン形状をしており、その正方形の一辺の中央から、正方形の中心にかけてスリット4aが切られている。SQUIDインダクタ4の外周部分のスリット4aの両側にそれぞれ、ジョセフソン接合3が形成されている。これにより、2つのジョセフソン接合3のそれぞれの一端は、SQUIDインダクタ4に接続している。そして、2つのジョセフソン接合3のそれぞれのもう一端は、互いに接続するとともに、配線13を介して電極8aに接続している。また、SQUIDインダクタ4の正方形のスリット4aの切られている辺に対向する辺の中央から、配線14が引き出されている。配線14は、図示を省略した絶縁層22(図7参照)に設けられたコンタクトホールC3を介して、配線15に接続し、配線15は電極8bに接続している。
SQUIDインダクタ4の上方に、絶縁層22(図7参照)を介して、渦巻状のマルチターン構造の入力コイル5が形成されている。SQUIDインダクタ4は、下側の第1超電導層DL(図7参照)に形成され、入力コイル5は、上側の第2超電導層UL(図7参照)に形成されている。第1超電導層DLと第2超電導層ULの間には絶縁層22が形成されているので、SQUIDインダクタ4と、入力コイル5とは、絶縁層22を隔て対向している。これにより、SQUIDインダクタ4と入力コイル5の結合係数kは1に近い値が得られる。入力コイル5は、例えば、巻線幅を2μmとし、図2Bに示すようにターン数を20ターンとすることができる。入力コイル5の外終端は、配線11により検出コイル7の一端に接続されている。入力コイル5の内終端は、絶縁層22(図7参照)に設けられたコンタクトホールC1を介して、SQUIDインダクタ4に接続している。SQUIDインダクタ4は、配線12と絶縁層22(図7参照)に設けられたコンタクトホールC2を介して、検出コイル7に接続されている。このように、スリット9aを隔てて分割された検出コイル7の間には、順に、配線11、入力コイル5、コンタクトホールC1、SQUIDインダクタ4の一部、配線12、コンタクトホールC2が接続されている。これにより、スリット9aを隔てて分割された検出コイル7の間に、入力コイル5が接続されている。また、図2Aに示すように、スリット9aを隔てて分割された検出コイル7の間には、トリミング配線6が接続されているので、第2の実施形態でも、あらかじめすべての入力コイル5をトリミング配線6で短絡していることになる。
入力コイル5は、図2Bに示す20ターンのようなマルチのターン数を有しているので、入力コイル5のインダクタンスLiは、トリミング配線6のインダクタンスLwよりも十分に大きくなっている(Lw<<Li)。これにより、検出コイル7に遮蔽電流Ipが生じると、遮蔽電流Ipは、トリミング配線6を経由するトリミング配線側の閉ループL2を主に流れ、入力コイル5を経由する磁束トランス(入力コイル側の閉ループ)L1を殆んど流れない。
図3に、本発明の第2の実施形態に係る高温超電導磁気センサ1の等価回路図を示す。図3では、トリミング配線6が未切断の状態を示している。便宜上、4つのSQUIDインダクタ4それぞれのインダクタンスLs、4つの入力コイル5それぞれのインダクタンスLi、4つのトリミング配線6それぞれのインダクタンスLwは、同じ符号で表示しているが、異なる値に設計することも可能である。検出コイル7は、4つに分割されていることに対応して、分割された4つの検出コイル7毎に、検出コイル7のインダクタンスLpが4等分されたインダクタンスLp/4を付している。ただ、これは、高温超電導磁気センサ1の平面図と等価回路図の対応関係の理解を容易にするためであり、第1の実施形態で図1Aに示した検出コイル7のインダクタンスLpと等価である。
また、SQUIDインダクタ4は、第1の実施形態(図1A)では、入力コイル5と磁気結合はするが接続はしていないが、第2の実施形態では、図2Bに示したように、コンタクトホールC1を介して入力コイル5に接続しているので、この接続を図3の等価回路図にも反映させている。この接続によって、SQUIDインダクタ4と入力コイル5の磁気結合の結合係数kが低下することはない。
また、SQUIDインダクタ4は、第1の実施形態(図1A)では、トリミング配線6と接続はしていないが、第2の実施形態では、図2Bに示したように、コンタクトホールC2と配線12等を介して、トリミング配線6に接続しているので、この接続を図3の等価回路図にも反映させている。トリミング配線6は、この接続によって、SQUIDインダクタ4の配線12とコンタクトホールC1の間を介して、入力コイル5に接続しており、この場合のトリミング配線6と入力コイル5の間に接続されたSQUIDインダクタ4は、インダクタンスとして機能しておらず、単なる配線として機能していると考えられる。
また、第2の実施形態では、4つの集積型SQUID2(D1、D2、D3、D4)のジョセフソン接合3の接合幅をそれぞれ、1.2μm、2.0μm、3.0μm、4.0μmとしている。4つの集積型SQUID2(D1、D2、D3、D4)それぞれに関して、4つのSQUIDインダクタ4のインダクタンスLsはすべて等しく、約40pHとしており(Ls=約40pH)、4つの入力コイル5のインダクタンスLiはすべて等しく、約7nHにしており(Li=約7nH)、検出コイルのインダクタンスをLpは、約10nHにしている(Lp=約10nH)。
図3に示すような、トリミング配線6が切断されていない高温超電導磁気センサ1に、磁場を印加すると、検出コイル7に誘起される遮蔽電流I(図2A参照)は、インダクタンスが大きな入力コイル5には殆ど流れず、インダクタンスが小さいトリミング配線6を流れる。どの入力コイル5にも遮蔽電流Iが殆ど流れないため、この状態では高感度な磁気センサとして機能しない。しかしながら、集積型SQUID2(D1、D2、D3、D4)の電流-電圧特性の評価は可能である。また、比較的強い磁場を印加することで、わずかではあるが入力コイル5に流れる遮蔽電流成分と集積型SQUID2(D1、D2、D3、D4)に直接鎖交する磁場成分により、集積型SQUID2の磁場応答、すなわち電圧-磁束特性を評価することが可能である。電流−電圧特性、電圧−磁場特性から各集積型SQUID2(D1、D2、D3、D4)の臨界電流I、接合抵抗R、変調電圧振幅ΔVなどの電気・磁気特性を測定(取得)でき、これらの電気・磁気特性の測定結果から用途に適し使用可能な集積型SQUID2(D1、D2、D3、D4)を選択可能である。そして、例えば、集積型SQUID2(D2)を選択したとする。
用途に適し使用可能な集積型SQUID2として、集積型SQUID2(D2)を選択した後に、その選択した集積型SQUID2(D2)に接続及び/又は磁気結合する入力コイル5の両端を短絡しているトリミング配線6を切断する。
図4と図5に、本発明の第2の実施形態に係る高温超電導磁気センサ1で、集積型SQUID2(D2)に接続及び/又は磁気結合する入力コイル5の両端を短絡しているトリミング配線6を切断したものを示す。トリミング配線6が切断された後には、切断部6aが生じる。トリミング配線6の切断は、切断部6aが、スリット9aからリング9の外周端にかけて生じるように行われる。切断部6aは、スリット9aに接し、連なっている。切断部6aとスリット9aとにより、閉じていたリング9が開かれることになる。これにより、複数のトリミング配線6と検出コイル7とで形成されていたトリミング配線側の閉ループL2は、切断部6aによって、開いた状態になる。一方、複数の入力コイル5と検出コイル7とで形成されていた入力コイル側の閉ループL1は、切断部6aの有無に関係なく、閉じた状態のままである。
この状態で磁場を印加すると、検出コイル7を流れる遮蔽電流Iは、切断部6aにおいてトリミング配線6(ループL2の一部)を流れることができないため、選択し使用する集積型SQUID2(D2)に接続及び/又は磁気結合する入力コイル5(ループL1の一部)を流れる。これにより、集積型SQUID2(D2)が、用途に適し高感度なSQUID磁気センサとして機能し、ひいては、高温超電導磁気センサ1が用途に適し高感度なSQUID磁気センサとして機能する。なお、集積型SQUID2(D2)の他の集積型SQUID2(D1、D3、D4)では、切断前と同様に遮蔽電流Iは、殆ど、インダクタンスが小さいトリミング配線6を流れている。
次に、高温超電導磁気センサ1の製造方法とこれに伴う測定結果について説明する。高温超電導磁気センサ1の製造では、超電導層を2層含む高温超電導多層構造を作製している。
図6に、本発明の第2の実施形態に係る高温超電導磁気センサ1の製造方法のフローチャートを示す。このフローチャートは主要なステップのみを記載しており、製造方法の説明は、図7の高温超電導磁気センサ1の製造途中における断面図を参照しながら、適宜、図6のフローチャートに戻ることにする。
まず、図7(a)に示すように、4層構造の基板21を形成した。15×15mmの大きさの酸化マグネシウム(MgO(100))基板21aを使用し、その上に配向制御バッファー層21bとして膜厚5nmのBaZrO3層と、黒色均熱層21cとして膜厚300nmのPr1.4Ba1.6Cu2.6Ga0.4Oy層と、下部絶縁層21dとして膜厚250nmのSrSnO3層を、順にオフアクシススパッタ法によって形成し積層させた。
次に、図6のステップS1として、基板21の上に、下部超電導層(第1超電導層)DLとして、膜厚250nmのSmBa2Cu3Oy(SmBCO)をオフアクシススパッタ法によって成膜した。そして、図7(b)に示すように、下部超電導層(第1超電導層)DLを所望の回路パターン形状(例えば、SQUIDインダクタ4のパターン形状)に加工した。回路パターン形成は、フォトリソグラフィ法と、イオンミリングによるドライエッチング法で行った。
次に、図6のステップS2として、図7(b)に示すように、層間絶縁層(絶縁層)22として、膜厚280nmのSrSnO3(SSO)層をオフアクシススパッタ法によって形成した。そして、図7(c)に示すように、層間絶縁層22を所望の回路パターン形状に加工した。回路パターン形成は、フォトリソグラフィ法と、イオンミリングによるドライエッチング法で行った。層間絶縁層22のこのエッチングによって、ランプエッジ型ジョセフソン接合3のランプ斜面と、下部超電導層(第1超電導層)DLと上部超電導層(第2超電導層)ULの接続のためのコンタクトホールC1等のランプ斜面を、層間絶縁層22と下部超電導層(第1超電導層)DLに形成した。すなわち、このエッチングでは、層間絶縁層22と同時に下部超電導層(第1超電導層)DLもエッチングしている。
次に、図6のステップS3として、図7(c)に示すように、上部超電導層(第2超電導層)ULとして、膜厚250nmのLa0.1-Er0.95Ba1.95Cu3Oy(L1ErBCO)層を、レーザー蒸着法により形成した。ランプエッジ型ジョセフソン接合3の下部超電導層(第1超電導層)DLのランプ斜面上に上部超電導層(第2超電導層)ULが形成されることにより、ランプエッジ型ジョセフソン接合3が完成する。コンタクトホールC1等の下部超電導層(第1超電導層)DLのランプ斜面上に上部超電導層(第2超電導層)ULが形成されることにより、下部超電導層(第1超電導層)DLと上部超電導層(第2超電導層)ULが接続する。さらに、上部超電導層(第2超電導層)ULの上に、金(Au)電極層23として膜厚100nmの金層をスパッタ法で形成した。そして、図7(d)に示すように、金電極層23と上部超電導層(第2超電導層)ULを所望の回路パターン形状(例えば、入力コイル5や検出コイル7やトリミング配線6等のパターン形状)に加工した。また、ランプエッジ型ジョセフソン接合3の接合幅は、4つの集積型SQUID2(D1、D2、D3、D4)毎に変え、1.2μm、2.0μm、3.0μm、4.0μmとした。回路パターン形成は、フォトリソグラフィ法と、イオンミリングによるドライエッチング法で行った。上部超電導層(第2超電導層)ULと金電極層23は同時にエッチングしているため、上部超電導層(第2超電導層)ULの表面はすべて金電極層23で覆われている。
次に、図6のステップS4として、高温超電導磁気センサ1を、1気圧の酸素雰囲気中で、400〜500℃に加熱して熱処理を行った。ここまでの製造工程により、図2Aに示ようにトリミング配線6が切断されていない状態の高温超電導磁気センサ1が完成した。
次に、図6のステップS5として、高温超電導磁気センサ1に形成されている集積型SQUID2の個数n(第2の実施形態では4個)と同じ回数だけ測定を行う。すなわち、高温超電導磁気センサ1に形成されているすべての集積型SQUID2について測定を行う。測定としては、電流−電圧特性の測定を4つの集積型SQUID2毎に、電圧−磁束特性の測定を4つの集積型SQUID2毎に、測定温度77Kの条件の下で行った。測定では、高温超電導磁気センサ1を液体窒素中に浸けて、冷却した。
図8Aに、4つの集積型SQUID2(D1、D2、D3、D4)の中の1つの集積型SQUID2(D2、接合幅wj=2.0μm)についての電流−電圧特性の測定結果を示す。集積型SQUID2(D2)の電流-電圧特性は、良好なジョセフソン特性に典型的なRSJ的な非線形特性を示した。臨界電流Icは42μA、接合抵抗Rnは2.6Ω(ohm)であった。
図8Bに、4つの集積型SQUID2(D1、D2、D3、D4)の中の1つの集積型SQUID2(D2、接合幅wj=2.0μm)についての電圧−磁束特性の測定結果を示す。集積型SQUID2(D2)の電圧−磁束特性は、SQUIDに特徴的な周期的に変動する特性を示した。変調電圧振幅ΔVは38μVであった。このように、入力コイル5がトリミング配線6によって短絡した状態でも、各集積型SQUID2(D1、D2、D3、D4)の基本特性の測定が可能であり、その測定結果を基に用途に適した特性の集積型SQUID2を選択可能である。なお、必ずしもすべてのSQUIDを測定しなくても、仕様を満たす特性のSQUIDが見いだされた時点で次のステップに進むことも可能である。
次に、図6のステップS6として、複数の集積型SQUID2(D1、D2、D3、D4)の中のどれかが、用途に適してOKであるか否か判定し、用途に適した集積型SQUID2を選択する。
表1に、4つの集積型SQUID2(D1(SQUID−1)、D2(SQUID−2)、D3(SQUID−3)、D4(SQUID−4))の測定結果(測定温度77K)を示す。4つの集積型SQUID2(D1、D2、D3、D4)は、どれも不良品ではなく、正常に動作することが確認された。そして、本第2の実施形態の例では、用途として、温度77Kでの使用を想定したので、変調電圧振幅ΔVが大きく、臨界電流値Icが適正である集積型SQUID2(D2)を選択することにし(ステップS6、Yes)、ステップS7へ進んだ。一方、4つの集積型SQUID2(D1、D2、D3、D4)が、例えば、どれも不良品でありOKでなかった場合には(ステップS6、No)、ステップS9へ進み、高温超電導磁気センサ1は廃棄され、第2の実施形態の製造方法は終了する。
Figure 2012127837
次に、図6のステップS7として、図4と図7(e)に示すように、トリミング配線6を切断して、切断部6aを生成する。ステップS6で選択した集積型SQUID2(D2)に磁気結合する入力コイル5の両端を短絡するトリミング配線6を切断する。前記したリソグラフィーとエッチングで切断することも可能であるが、本実施例では、トリミング配線6を目視あるいは実体顕微鏡で見ることができ、手作業により切断可能な構造に設計したため、ダイヤモンドペンを使用し、実体顕微鏡下で手作業で切断した。切断では、トリミング配線6が形成されていた第2超電導層ULが削られる。
特別な装置を使用することなく容易かつ安価に切断できるので、この切断の作業は、エンドユーザでも行うことが可能である。もちろん、これに先立つ、複数の集積型SQUID2(D1、D2、D3、D4)の中からの選択も、さらには、複数の集積型SQUID2(D1、D2、D3、D4)の測定もエンドユーザが行うことが可能である。また、エンドユーザが測定はしなくても、選択できるように、高温超電導磁気センサ1に、製造者が測定した測定結果が添えられていると便利である。
最後に、図6のステップS8として、高温超電導磁気センサ1を実装し、高温超電導磁気センサ1を完成させた。実装(切断)後で、集積型SQUID2(D2)の臨界電流I、変調電圧振幅ΔVに大きな変化は見られなかった。磁気センサとしての検出効率を表す有効面積Aeffは、2.0mm2であった。この値は、従来作製していた集積型SQUID2が一つしか含まれていない高温超電導磁気センサの有効面積(1.7〜2.1mm2)と一致しており、本発明により検出効率、すなわち検出感度を低下させることがないことを確認できた。
図9に、切断後の高温超電導磁気センサ1の磁場換算雑音特性を示す。これより、ホワイト領域で、約30fT/Hz1/2の優れた雑音特性が得られた。
本第2の実施形態では、77Kでの最終使用を想定して、集積型SQUID2(D2)を選択した。しかしながら、熱伝導を利用した冷却で使用する場合(用途)は使用温度が77Kよりも高温になる可能性がある。使用温度が上昇すると臨界電流Icが減少することが予想されるため、このような場合(用途)には、臨界電流Icが大きめの集積型SQUID2を選択することができる。例えば、表1の集積型SQUID2(D1)や(D4)を選択することになる。
また、第2の実施形態の高温超電導磁気センサ1を複数回試作したが、いずれの場合も、少なくとも一つの集積型SQUID2では臨界電流I、変調電圧振幅ΔVが適正な値になっており、どの試作でも使用可能な素子を作製できた。このことから、本発明が製造歩留まり向上に極めて有効であることを確認できた。
(第3の実施形態)
図10Aに、本発明の第3の実施形態に係る高温超電導磁気センサ1の平面図を示し、図10Bに、図10Aの高温超電導磁気センサ1の下側に配置されたSQUID2周辺の拡大図である。図10Aでは、トリミング配線6が未切断の状態を示している。第3の実施形態では、異なる構造のSQUID素子である集積型SQUID2(D2、D3、D4)と、直接結合(直結)型SQUID2(D11、D12、D13、D14)を混載した場合について述べる。
第3の実施形態が、第2の実施形態と異なっている点は、検出コイル7(リング9)の下辺中央に配置されていた集積型SQUID2(D1)が、複数(図10Bでは4つ)の直結型SQUID2(D11、D12、D13、D14)に置き換わっている点である。
図10Bに示すように、4つの直結型SQUID2(D11、D12、D13、D14)が直列に接続され、その両端が、検出コイル7に直列に接続されている。第3の実施形態の高温超電導磁気センサ1も、第2の実施形態で説明した製造方法により作製可能である。
直結型SQUID2(D11、D12、D13、D14)では、スリットホール型のSQUIDインダクタ41、42、43、44(インダクタンスLs)の直列接続に、検出コイル7(インダクタンスLp)が直接接続されており、入力コイル51、52、53、54(インダクタンスLi)は、SQUIDインダクタ41、42、43、44(インダクタンスLs)に兼用されることで省かれている。すなわち、検出コイル7(インダクタンスLp)に鎖交した磁束により誘導される遮蔽電流Ipが、SQUIDインダクタ41、42、43、44(インダクタンスLs)に直接流れる構造である。直結型SQUID2(D11、D12、D13、D14)では、兼用により入力コイル51、52、53、54のインダクタンスLiはSQUIDインダクタ41、42、43、44のインダクタンスLsに等しく(Li=Ls)、検出コイル7のインダクタンスLpは、数nHから数十nHの値であるので、SQUIDインダクタ41、42、43、44のインダクタンスLsより大きくなっている(Lp>>Ls)。
第3の実施形態では、集積型SQUIDが必要な用途には、集積型SQUID2(D2、D3、D4)を選択して使用し、直結型SQUIDが必要な用途には、直結型SQUID2(D11、D12、D13、D14)を選択して使用することができる。4つの直結型SQUID2(D11、D12、D13、D14)のうち使用するSQUIDは一つだけであるので、必ずしも複数の直結型SQUIDを作製しておく必要はないが、複数のSQUIDを作製することで、歩留まり向上と最適な特性のSQUIDを選択できるメリットがある。例えば、3つの直結型SQUID2(D11、D12、D13)では、SQUIDインダクタ41、42、43のインダクタンスLsの値はいずれも等しく40pHとして、ジョセフソン接合3の接合幅は順に、2、3、4μmとなっており、直結型SQUID2(D14)では、SQUIDインダクタ44のインダクタンスLsの値は50pH、ジョセフソン接合3の接合幅は3μmとなっており、設計されたパラメータを変えている。
直結型SQUID2(D11)では、2つのジョセフソン接合3が形成されている第1超電導層DL1が、コンタクトホールC4を介して、第2超電導層ULに形成され電極8c(図10A参照)に接続する配線16に接続されている。同様に、直結型SQUID2(D12)では、2つのジョセフソン接合3が形成されている第1超電導層DL2が、コンタクトホールC5を介して、第2超電導層ULに形成され電極8c(図10A参照)に接続する配線17に接続されている。直結型SQUID2(D13)では、2つのジョセフソン接合3が形成されている第1超電導層DL3が、コンタクトホールC6を介して、第2超電導層ULに形成され電極8c(図10A参照)に接続する配線18に接続されている。直結型SQUID2(D14)では、2つのジョセフソン接合3が形成されている第1超電導層DL4が、コンタクトホールC7を介して、第2超電導層ULに形成され電極8c(図10A参照)に接続する配線19に接続されている。
直結型SQUID2(D11、D12、D13、D14)が選択され、トリミング配線6が切断されても、さらに、4つの直結型SQUID2(D11、D12、D13、D14)の中から、用途にあった直結型SQUID2(D11、D12、D13、D14)を選択し、使用する必要がある。そして、選択した直結型SQUIDを使用するには、選択した直結型SQUIDに接続する配線16〜19に接続する電極8cに、外部計測器を接続すればよい。
第3の実施形態によれば、1つの高温超電導磁気センサで、感度面で有利な集積型SQUIDと、磁束トラップが起こりにくくダイナミックレンジが広い直接結合型SQUIDとを、利用用途に応じて、選択し使用することができる。汎用性のある高温超電導磁気センサを提供できる。
(第4の実施形態)
図11Aに、本発明の第4の実施形態に係る高温超電導磁気センサ1の集積型SQUID2(D1)周辺の平面図を示し、図11Bに、図11Aの集積型SQUID2(D1)周辺の拡大図を示す。図11Aでは、トリミング配線6が未切断の状態を示している。第4の実施形態でも、異なる構造のSQUID素子である集積型SQUID2(D1)と、直結型SQUID2(D11)を混載した場合について述べる。
第4の実施形態の高温超電導磁気センサ1は、第2の実施形態の高温超電導磁気センサ1をベースとして、その第2の実施形態の高温超電導磁気センサ1の配線11の間に、第3の実施形態の直結型SQUID2(D11)のSQUIDインダクタ41を直列にしたものと考えることができる。配線11は集積型SQUID2(D1)の入力コイル(第1入力コイル)5に接続し、配線11に接続するSQUIDインダクタ41は、直結型SQUID2(D11)の入力コイル(第2入力コイル)51を兼ねているので、入力コイル(第1入力コイル)5と入力コイル(第2入力コイル)51とは直列に接続していると考えることができる。この直列接続は、一端が、配線11を介して検出コイル7に接続し、もう一端が、コンタクトホールC1から配線12を介して検出コイル7に接続している。これらのことから、入力コイル5と入力コイル51と検出コイル7とで磁束トランス(入力コイル側の閉ループ)L1が形成されている。
この直列接続は、集積型SQUID2(D1)だけでなく、他の集積型SQUID2(D2、D3、D4)に設けてもよい。第4の実施形態の高温超電導磁気センサ1も、第2の実施形態で説明した製造方法により作製可能である。
第4の実施形態によれば、選択によりトリミング配線6を切断しても、集積型SQUID2(D1等)と直結型SQUID2(D11等)の両方が使用可能になっているので、対応する電極8a〜8cを切り替えるだけで、広範囲にわたる高精度な磁気信号計測が可能となる。
また、第4の実施形態においては、入力コイル5と入力コイル51と検出コイル7とで磁束トランス(入力コイル側の閉ループ)L1が形成されていれば、トリミング配線6は必要ないのである。トリミング配線6がなくても、電極8a〜8cを切り替えることで、集積型SQUID2(D1)と直結型SQUID2(D11)の選択・使用ができるからである。
(第5の実施形態)
図12Aに、本発明の第5の実施形態に係る高温超電導磁気センサ(グラジオメータ構造)1の平面図を示す。図12Aでは、トリミング配線6(61、62)が未切断の状態を示している。第5の実施形態では、本発明をグラジオメータに適用した場合について述べる。第5の実施形態でも、構成要素は、第1〜第4の実施形態と一致しており、できるだけ同じ符号を付して、説明を省略するとともに、その理解を容易にしている。
高温超電導磁気センサ(グラジオメータ構造)1では、複数(図12Aでは2つ)の集積型SQUID2(D1、D2)が、直列に接続され、その直列接続が、平面型一次微分検出コイル(検出コイル)7に直列に接続されている。
平面型一次微分検出コイル(検出コイル)7は、左右2つの検出コイル(第1検出コイル)71(7)と検出コイル(第2検出コイル)72(7)で形成されている。左右2つの検出コイル71(7)と検出コイル72(7)は、集積型SQUID2(D1、D2)の入力コイル5を中にして、互いに対向するように配置されている。
左側の検出コイル71(7)は、上側の検出コイル中央上下部73(7)と、コンタクトホールC8と、集積型SQUID2(D1)の入力コイル5と、検出コイル中央部74(7)と、集積型SQUID2(D2)の入力コイル5と、コンタクトホールC8と、下側の検出コイル中央上下部73(7)を順に経由して磁束トランス(入力コイル側の閉ループ)L11(L1)を形成している。同様に、右側の検出コイル72(7)は、上側の検出コイル中央上下部73(7)と、コンタクトホールC8と、集積型SQUID2(D1)の入力コイル5と、検出コイル中央部74(7)と、集積型SQUID2(D2)の入力コイル5と、コンタクトホールC8と、下側の検出コイル中央上下部73(7)を順に経由して磁束トランス(入力コイル側の閉ループ)L12(L1)を形成している。
集積型SQUID2(D1)(の入力コイル5)の左右両側には、トリミング配線61(6)と62(6)が設けられている。集積型SQUID2(D1)(の入力コイル5)の検出コイル71(7)の側には、トリミング配線(第1トリミング配線)61(6)が設けられ、集積型SQUID2(D1)(の入力コイル5)の検出コイル72(7)の側には、トリミング配線(第2トリミング配線)62(6)が設けられている。集積型SQUID2(D2)(の入力コイル5)の左右両側にも、トリミング配線61(6)と62(6)が設けられている。集積型SQUID2(D2)(の入力コイル5)の検出コイル71(7)の側には、トリミング配線(第1トリミング配線)61(6)が設けられ、集積型SQUID2(D2)(の入力コイル5)の検出コイル72(7)の側には、トリミング配線(第2トリミング配線)62(6)が設けられている。トリミング配線61(6)と62(6)は、検出コイル中央上下部73(7)と検出コイル中央部74(7)の間を接続している。これにより、検出コイル中央上下部73(7)と検出コイル中央部74(7)の間で、集積型SQUID2(D1、D2)(の入力コイル5)とトリミング配線61(6)と62(6)とは、並列に接続されている。すなわち、集積型SQUID2(D1、D2)(の入力コイル5)の両端は、トリミング配線61(6)と62(6)のそれぞれによって、短絡されていることがわかる。なお、トリミング配線61(6)と62(6)が、集積型SQUID2(D1、D2)の左右両側に設けられているのは、左右の検出コイル71(7)と72(7)の幾何学的バランスを保つためである。また、電極8a、8bも前記の幾何学的バランスを保つように配置している。
左側の検出コイル71(7)は、上側の検出コイル中央上下部73(7)と、上側のトリミング配線62(6)と、検出コイル中央部74(7)と、下側のトリミング配線62(6)と、下側の検出コイル中央上下部73(7)を順に経由して、トリミング配線側の閉ループL21(L2)を形成している。同様に、右側の検出コイル72(7)は、上側の検出コイル中央上下部73(7)と、上側のトリミング配線61(6)と、検出コイル中央部74(7)と、下側のトリミング配線61(6)と、下側の検出コイル中央上下部73(7)を順に経由して、トリミング配線側の閉ループL22(L2)を形成している。
入力コイル5は、図12Bと図12Cに示すようにマルチターン構造を有しているので、入力コイル5のインダクタンスLiは、トリミング配線6のインダクタンスLwよりも十分に大きくなっている(Lw<<Li)。これにより、検出コイル71(7)と72(7)に遮蔽電流Ipが生じると、遮蔽電流Ipは、トリミング配線61、62(6)を経由するトリミング配線側の閉ループL21とL22(L2)を主に流れ、入力コイル5を経由する磁束トランス(入力コイル側の閉ループ)L11とL12(L1)を殆んど流れない。以上により、それぞれの閉ループL21とL22に鎖交した磁束の差に相当する遮蔽電流Ipが、検出コイル中央部74(7)を流れることになる。
集積型SQUID2(D1)とその入力コイル5は、集積型SQUID2(D2)とその入力コイル5に対して、線対称な構造になっている。
図12Bと図12Cとに、集積型SQUID2(D2)周辺の拡大図を示す。SQUIDインダクタ4のスリット4a内には、引き出し配線5cが形成されている。引き出し配線5cの一端は、コンタクトホールC1を介して、入力コイル5の内終端に接続している。引き出し配線5cのもう一端は、配線13に接続することなく絶縁されて配線13の下を通って、検出コイル中央部74(7)に接続している。入力コイル5の外終端は、配線11とコンタクトホールC8を介して下側の検出コイル中央上下部73(7)に接続されている。配線11は、配線14に接続することなく絶縁されて配線14の上を通っている。これらにより、検出コイル中央部74(7)と検出コイル中央上下部73(7)の間に、入力コイル5が接続されていることがわかる。また、第2の実施形態とは異なり、入力コイル5は、SQUIDインダクタ4には接続していないことがわかる。
図13に、本発明の第5の実施形態に係る高温超電導磁気センサ1の等価回路図を示す。図13では、トリミング配線61、62(6)が未切断の状態を示している。入力コイル5は、SQUIDインダクタ4に磁気結合しており、接続していないことがわかる。
図14と図15に、本発明の第5の実施形態に係る高温超電導磁気センサ1で、集積型SQUID2(D2)に磁気結合する入力コイル5の両端を短絡している2つのトリミング配線61(6)と62(6)を切断したものを示す。2つのトリミング配線61(6)と62(6)の切断された後には、切断部6aが生じている。この切断により、検出コイル中央部74(7)を流れるそれぞれの閉ループL21とL22に鎖交した磁束の差に相当する遮蔽電流Ipが、集積型SQUID2(D2)の入力コイル5に流れ込むようになり、集積型SQUID2(D2)により検出されることになる。なお、2つのトリミング配線61(6)と62(6)の両方を切断しているので、左右の検出コイル71(7)と72(7)の幾何学的バランスは保たれている。
また、この切断に先立って、集積型SQUID2(D1、D2)の測定と選択が行われるが、第2の実施形態と同様に実施することができる。
1 高温超電導磁気センサ
2 超電導量子干渉素子(SQUID)
3 (ランプエッジ型)ジョセフソン接合
4 SQUIDインダクタ
4a スリット
5 入力コイル
5a 引き出し配線
6 トリミング配線
6a 除去されたトリミング配線(切断部)
7 検出コイル
8a、8b、8c 電極
9 リング
9a スリット
11〜19 配線
21 基板
21a MgO基板
21b 配向制御バッファー層
21c 黒色均熱層
21d 下部絶縁層
22 層間絶縁層(絶縁層)
23 金電極層
61 第1トリミング配線
62 第2トリミング配線
71 第1検出コイル
72 第2検出コイル
C1〜C7 コンタクトホール
D1、D2、D3、D4 超電導量子干渉素子(SQUID)
D11、D12、D13、D14 超電導量子干渉素子(SQUID)
L1、L11、L12 磁束トランス(入力コイル側の閉ループ)
L2、L21、L22 トリミング配線側の閉ループ
DL 第1超電導層
UL 第2超電導層
W0 リングの幅(検出コイルにおける)
W1 リングの幅(トリミング配線における)

Claims (16)

  1. 基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサにおいて、
    前記超電導層に形成され、前記SQUID毎に接続又は磁気結合する複数の入力コイルと、
    前記超電導層に形成され、複数の前記入力コイルと閉ループを形成するように接続された検出コイルと、
    前記超電導層に形成され、前記入力コイル毎の両端を短絡しているが切断可能な複数のトリミング配線とを有することを特徴とする高温超電導磁気センサ。
  2. 基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサにおいて、
    前記超電導層に形成され、前記SQUID毎に接続又は磁気結合する複数の入力コイルと、
    前記超電導層に形成され、複数の前記入力コイルと閉ループを形成するように接続された検出コイルと、
    前記超電導層に形成され、複数の前記入力コイルの中の一部の前記入力コイルの両端を短絡しているが切断可能なトリミング配線とを有することを特徴とする高温超電導磁気センサ。
  3. 前記SQUID毎に設計された構造が異なっていることを特徴とする請求項1又は請求項2に記載の高温超電導磁気センサ。
  4. 前記入力コイル毎に設計された構造が異なっていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の高温超電導磁気センサ。
  5. 前記トリミング配線のインダクタンスが、前記入力コイルのインダクタンスよりも小さいことを特徴とする請求項1乃至請求項4のいずれか1項に記載の高温超電導磁気センサ。
  6. 前記超電導層は、前記基板上に形成された第1超電導層と、前記第1超電導層の上方に絶縁層を介して形成された第2超電導層とを有し、
    前記SQUIDのインダクタと前記入力コイルとは、前記第1超電導層と前記第2超電導層の相異なる層に形成され、前記絶縁層を隔て対向し、
    前記入力コイルは、マルチターン構造であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の高温超電導磁気センサ。
  7. 複数の前記入力コイルの中の一部の前記入力コイルが、前記SQUIDのインダクタを兼ねていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の高温超電導磁気センサ。
  8. 前記検出コイルは、
    複数の前記入力コイルと第1閉ループを形成する第1検出コイルと、
    複数の前記入力コイルを中にして前記第1検出コイルと対向するように配置され、複数の前記入力コイルと第2閉ループを形成する第2検出コイルとを有するグラジオメータ構造であり、
    複数の前記トリミング配線は、
    前記入力コイルそれぞれに対して前記第1検出コイル側に配置され、前記入力コイルそれぞれの両端を短絡する第1トリミング配線と、
    前記入力コイルそれぞれに対して前記第2検出コイル側に配置され、前記入力コイルそれぞれの両端を短絡する第2トリミング配線とを有することを特徴とする請求項1に記載の高温超電導磁気センサ。
  9. 前記検出コイルは、
    複数の前記入力コイルと第1閉ループを形成する第1検出コイルと、
    複数の前記入力コイル中にして前記第1検出コイルと対向するように配置され、複数の前記入力コイルと第2閉ループを形成する第2検出コイルとを有するグラジオメータ構造であり、
    複数の前記トリミング配線は、
    複数の前記入力コイルの中の一部の前記入力コイルに対して前記第1検出コイル側に配置され、前記一部の入力コイルの両端を短絡する第1トリミング配線と、
    前記一部の入力コイルに対して前記第2検出コイル側に配置され、前記一部の入力コイルの両端を短絡する第2トリミング配線とを有することを特徴とする請求項2に記載の高温超電導磁気センサ。
  10. 前記入力コイルは、
    複数の前記SQUIDの中の一部の前記SQUIDに磁気結合する第1入力コイルと、
    前記第1入力コイルに直列に接続され、複数の前記SQUIDの中の他の一部の前記SQUIDのインダクタを兼ねている第2入力コイルとを有し、
    前記検出コイルは、前記第1入力コイルと前記第2入力コイルと共に閉ループを形成するように接続され、
    前記トリミング配線は、前記第1入力コイルと前記第2入力コイルの直列接続の両端を短絡していることを特徴とする請求項1又は請求項2に記載の高温超電導磁気センサ。
  11. 基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサにおいて、
    前記超電導層に形成され、複数の前記SQUIDの中の1つの前記SQUIDに磁気結合する第1入力コイルと、
    前記超電導層に形成され、複数の前記SQUIDの中の他の1つの前記SQUIDのインダクタを兼ねている第2入力コイルと、
    前記超電導層に形成され、前記第1入力コイルと前記第2入力コイルと共に閉ループを形成するように接続された検出コイルとを有することを特徴とする高温超電導磁気センサ。
  12. 前記超電導層に形成された薄膜状のリングを有し、
    前記リングは、前記検出コイルと複数の前記トリミング配線とが直列に接続されたものであることを特徴とする請求項1又は請求項2に記載の高温超電導磁気センサ。
  13. 前記トリミング配線は、前記リングの外周側に配置され、
    前記入力コイルは、前記リングの内側に配置され、
    前記リングの、前記入力コイルと前記トリミング配線の間には、スリットが形成され、
    前記トリミング配線に相当する前記リングの幅は、前記検出コイルに相当する前記リングの幅より狭くなっていることを特徴とする請求項12に記載の高温超電導磁気センサ。
  14. 複数の前記トリミング配線の中の一部の前記トリミング配線に相当する前記リングにおいて、前記超電導層が削られ、前記リングが開かれていることを特徴とする請求項12又は請求項13に記載の高温超電導磁気センサ。
  15. 基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサの製造方法において、
    前記SQUID毎に接続又は磁気結合する複数の入力コイルと、複数の前記入力コイルと閉ループを形成するように接続された検出コイルと、前記入力コイル毎の両端を短絡している複数のトリミング配線とを、前記超電導層に形成し、
    複数の前記SQUIDの電気的、磁気的特性の測定結果に基づいて、複数の前記SQUIDの中から前記高温超電導磁気センサの用途に適した前記SQUIDを選択し、
    選択された前記SQUIDに接続又は磁気結合する前記入力コイルの両端を短絡している前記トリミング配線を切断することを特徴とする高温超電導磁気センサの製造方法。
  16. 基板上に形成された超電導層を有し、前記超電導層に複数の超電導量子干渉素子(SQUID)が形成されている高温超電導磁気センサにおいて、
    前記超電導層に形成され、前記SQUID毎に磁気結合する複数の入力コイルと、
    前記超電導層に形成され、複数の前記入力コイルと閉ループを形成するように接続された検出コイルとを有することを特徴とする高温超電導磁気センサ。
JP2010280196A 2010-12-16 2010-12-16 高温超電導磁気センサ及びその製造方法 Active JP5608067B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010280196A JP5608067B2 (ja) 2010-12-16 2010-12-16 高温超電導磁気センサ及びその製造方法
DE102011120784.1A DE102011120784B4 (de) 2010-12-16 2011-12-09 Magnetfeldsensor mit Hochtemperatur-Supraleiter und Herstellungsverfahren dafür
US13/326,966 US8781542B2 (en) 2010-12-16 2011-12-15 High-temperature superconducting magnetic sensor and fabrication method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280196A JP5608067B2 (ja) 2010-12-16 2010-12-16 高温超電導磁気センサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2012127837A true JP2012127837A (ja) 2012-07-05
JP5608067B2 JP5608067B2 (ja) 2014-10-15

Family

ID=46235140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280196A Active JP5608067B2 (ja) 2010-12-16 2010-12-16 高温超電導磁気センサ及びその製造方法

Country Status (3)

Country Link
US (1) US8781542B2 (ja)
JP (1) JP5608067B2 (ja)
DE (1) DE102011120784B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085276A (ja) * 2012-10-25 2014-05-12 National Institute Of Advanced Industrial & Technology 超伝導電流計

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571614B1 (en) 2009-10-12 2013-10-29 Hypres, Inc. Low-power biasing networks for superconducting integrated circuits
US8593141B1 (en) 2009-11-24 2013-11-26 Hypres, Inc. Magnetic resonance system and method employing a digital squid
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
WO2015048881A1 (en) * 2013-10-01 2015-04-09 Gedex Inc. Dual squid measurement device
US10003014B2 (en) * 2014-06-20 2018-06-19 International Business Machines Corporation Method of forming an on-pitch self-aligned hard mask for contact to a tunnel junction using ion beam etching
US10222416B1 (en) 2015-04-14 2019-03-05 Hypres, Inc. System and method for array diagnostics in superconducting integrated circuit
US10067154B2 (en) 2015-07-24 2018-09-04 Honeywell International Inc. Accelerometer with inductive pick-off

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324129A (ja) * 1993-05-12 1994-11-25 Chodendo Sensor Kenkyusho:Kk 磁束変化量測定方法
JP2001091611A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 高磁場分解能磁束計

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264874A (ja) 1990-03-15 1991-11-26 Shin Gijutsu Jigyodan 高感度磁束計
JPH078467A (ja) 1992-02-06 1995-01-13 Biomagnetic Technol Inc 生体磁力計及び磁気データの収集方法
DE10063735C1 (de) 2000-12-18 2002-04-18 Inst Physikalische Hochtech Ev SQUID-Sensor, beinhaltend zwei in Reihe geschaltete direkt gekoppelte SQUIDs
JP4593255B2 (ja) * 2004-12-08 2010-12-08 株式会社日立製作所 Nmr装置およびnmr計測用プローブ
JP5386080B2 (ja) * 2007-12-21 2014-01-15 株式会社日立製作所 厚膜抵抗体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324129A (ja) * 1993-05-12 1994-11-25 Chodendo Sensor Kenkyusho:Kk 磁束変化量測定方法
JP2001091611A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 高磁場分解能磁束計

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085276A (ja) * 2012-10-25 2014-05-12 National Institute Of Advanced Industrial & Technology 超伝導電流計

Also Published As

Publication number Publication date
US8781542B2 (en) 2014-07-15
JP5608067B2 (ja) 2014-10-15
US20120157319A1 (en) 2012-06-21
DE102011120784B4 (de) 2019-05-29
DE102011120784A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5608067B2 (ja) 高温超電導磁気センサ及びその製造方法
JP5771137B2 (ja) 高温超電導磁気センサ
US20160351306A1 (en) Measuring instrument, electrical resistance elements and measuring system for measuring time-variable magnetic fields or field gradients
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
KR100277570B1 (ko) 초전도 자기공진 프로브코일
US5767043A (en) Multiple squid direct signal injection device formed on a single layer substrate
US20150340139A1 (en) Superconductive coil device and production method therefor
Arzeo et al. Toward ultra high magnetic field sensitivity YBa2Cu3O7− δ nanowire based superconducting quantum interference devices
Granata et al. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications
US10732234B2 (en) Superconducting magnetic sensor
Kaczmarek et al. Advanced HTS dc SQUIDs with step-edge Josephson junctions for geophysical applications
Lee et al. Key elements for a sensitive 77 K direct current superconducting quantum interference device magnetometer
Granata et al. Improved superconducting quantum interference device magnetometer for low cross talk operation
Faley et al. Noise analysis of DC SQUIDs with damped superconducting flux transformers
JPH01200679A (ja) 超電導量子干渉計
RU2325004C1 (ru) СВЧ-УСИЛИТЕЛЬ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНОГО СКВИДа
JP5537312B2 (ja) 地下資源探査用磁気センサ
Uzun et al. Fabrication of high-Tc superconducting multilayer structure with YBa2Cu3O7− x thin films separated by SrTiO3 interlayers
US11137455B2 (en) Magnetic field measuring element, magnetic field measuring device, and magnetic field measuring system
Gerber et al. Low temperature scanning electron microscopy study of YBa2Cu3O7− δ multilayer dc SQUID magnetometers
Hahn et al. Operation of a 130-MH z/9-mm Compact HTS Annulus Magnet With a Micro-NMR Probe
JP2001091611A (ja) 高磁場分解能磁束計
JP5618286B2 (ja) 電流比較器
Tsukamoto et al. High-yield fabrication method for high-Tc superconducting quantum interference device magnetometer with integrated multiturn input coil
Granata et al. Integrated SQUID sensors for low cross-talk multichannel systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5608067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250