JP2012127738A - Substrate defect checkup system and substrate defect checkup method, and conveying apparatus - Google Patents

Substrate defect checkup system and substrate defect checkup method, and conveying apparatus Download PDF

Info

Publication number
JP2012127738A
JP2012127738A JP2010278014A JP2010278014A JP2012127738A JP 2012127738 A JP2012127738 A JP 2012127738A JP 2010278014 A JP2010278014 A JP 2010278014A JP 2010278014 A JP2010278014 A JP 2010278014A JP 2012127738 A JP2012127738 A JP 2012127738A
Authority
JP
Japan
Prior art keywords
substrate
curved shape
transport
inspection
defect inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010278014A
Other languages
Japanese (ja)
Inventor
Shuichi Hiroi
修一 廣井
Yuichi Shimoda
勇一 下田
Kohei Kinugawa
耕平 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010278014A priority Critical patent/JP2012127738A/en
Publication of JP2012127738A publication Critical patent/JP2012127738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate defect checkup system and a substrate defect checkup method that enable the quantity of distortion a substrate itself involves to be corrected and the substrate to be checked up accurately even if the substrate has lost much of its thickness, and a conveying apparatus that can convey a substrate while correcting the quantity of distortion a substrate itself involves and maintaining the substrate in an examinable range.SOLUTION: In a substrate defect checkup system or a substrate defect checkup method by which a substrate is mounted, conveyed to an examination area for examining the substrate, and photographed by irradiating the examination area with examining light to check up any defect in the substrate, the substrate is reformed into a curved shape and subjected to the examination using a plurality of optical checkup units arranged along the curved shape.

Description

本発明は、表示用パネル等の製造に用いられるガラス基板やプラスチック基板等の基板欠陥検査システム及び基板欠陥検査方法並びに搬送装置に係り、特に大型基板の表面の傷や異物を検査するのに好適な基板欠陥検査システム及び基板欠陥検査方法並びに搬送装置に関する。   The present invention relates to a substrate defect inspection system such as a glass substrate and a plastic substrate used for manufacturing a display panel, a substrate defect inspection method, and a transfer device, and is particularly suitable for inspecting scratches and foreign matter on the surface of a large substrate. The present invention relates to a substrate defect inspection system, a substrate defect inspection method, and a transfer device.

液晶表示パネルや太陽電池パネルの製造は、フォトリソグラフィ技術等によりガラス基板上にパターンを形成して行なわれる。その際に、ガラス基板の表面の傷や異物等の欠陥が存在すると、パターンが良好に形成されず、不良の原因となる。このため、従来から、欠陥検査装置を用いてガラス基板の表面の傷や異物等の欠陥検査が行なわれている。   Manufacture of a liquid crystal display panel and a solar cell panel is performed by forming a pattern on a glass substrate by a photolithography technique or the like. At that time, if there are defects such as scratches or foreign matter on the surface of the glass substrate, the pattern is not formed satisfactorily, causing a defect. For this reason, conventionally, a defect inspection apparatus has been used to inspect defects such as scratches and foreign matter on the surface of a glass substrate.

この種の従来の欠陥検査装置としては、例えば特許文献1、2がある。特許文献1では、基板の全体の平面状態で搬送し検査することが開示されている。特許文献2では、基板を平面状態で搬送し、基板の検査位置で基板の全面からの反射光が目視の視野に入るように基板を湾曲させ、目視検査することが開示されている。   As this type of conventional defect inspection apparatus, there are Patent Documents 1 and 2, for example. In Patent Document 1, it is disclosed that a substrate is transported and inspected in a planar state. Patent Document 2 discloses that a substrate is transported in a planar state, and the substrate is bent and visually inspected so that reflected light from the entire surface of the substrate enters a visual field of view at the inspection position of the substrate.

特開2008−292184号公報JP 2008-292184 A 特開2009−271001号公報JP 2009-271001 A

しかしながら、基板の大型化に伴い、基板が薄板になるほど基板自体が有する歪量が大きくなり、基板の全体の平面度を矯正するのが困難になってきた。特に、特許文献2に開示された技術のように単に湾曲させても、基板自体が有する歪を矯正できない。   However, as the size of the substrate increases, the thinner the substrate, the greater the amount of distortion that the substrate itself has, making it difficult to correct the overall flatness of the substrate. In particular, the distortion of the substrate itself cannot be corrected even if it is simply curved as in the technique disclosed in Patent Document 2.

本発明は上記の課題を鑑みてなされたものであり、本発明の第1の目的は、基板が薄くなっても、基板自体の有する歪量を矯正し、基板を精度よく検査できる基板欠陥検査システム及び基板欠陥検査方法を提供することにある。
また、本発明の第2の目的は、基板が薄くなっても、基板自体の有する歪量を矯正し、基板を検査可能範囲に維持して搬送できる搬送装置を提供することにある。
The present invention has been made in view of the above problems, and a first object of the present invention is to provide a substrate defect inspection that can correct the amount of strain of the substrate itself and accurately inspect the substrate even when the substrate is thin. A system and a substrate defect inspection method are provided.
A second object of the present invention is to provide a transport device that can correct the amount of distortion of the substrate itself and transport the substrate while maintaining it in an inspectable range even when the substrate is thinned.

本発明は、上記の目的を達成するために、少なくとも下記の特徴を有する。
本発明は、基板を載置し前記基板を検査する検査領域に搬送し、前記検査領域に検査光を照射して前記基板を撮像し前記基板の欠陥を検査する基板欠陥検査システムまたは基板欠陥検査方法において、前記基板を湾曲形状に矯正し、前記湾曲形状に沿って配置され複数の光学検査ユニットで前記検査を行うことを第1の特徴とする。
In order to achieve the above object, the present invention has at least the following features.
The present invention provides a substrate defect inspection system or a substrate defect inspection in which a substrate is placed and transported to an inspection region for inspecting the substrate, and the inspection region is irradiated with inspection light to image the substrate and inspect for defects in the substrate. The method is characterized in that the substrate is corrected to a curved shape, and the inspection is performed by a plurality of optical inspection units arranged along the curved shape.

また、本発明は、前記湾曲形状に形成された前記湾曲形状搬送路を、前記基板の面に接し前記垂直方向に複数配置された基板面搬送ローラを前記搬送方向に複数組設けて形成し、前記基板の湾曲形状を保持する湾曲形状保持手段は、前記基板を前記基板面搬送ローラ上で前記湾曲形状に保持することを第2の特徴とする。
さらに、本発明は、前記保持を、前記基板の搬送方向の側部で前記基板に接し、前記基板の両側を挟み込む側部搬送ローラ、または前記基板の搬送方向の端部で基板に接し、前記端部を前記基板面搬送ローラの側に押さえ込む側部搬送ローラで行うことを第3の特徴とする。
In the present invention, the curved conveyance path formed in the curved shape is formed by providing a plurality of substrate surface conveyance rollers arranged in the vertical direction in contact with the surface of the substrate in the conveyance direction, The second feature is that the curved shape holding means for holding the curved shape of the substrate holds the substrate in the curved shape on the substrate surface transport roller.
Further, in the present invention, the holding is in contact with the substrate at a side portion in the transport direction of the substrate, is in contact with the substrate at a side transport roller that sandwiches both sides of the substrate, or an end portion in the transport direction of the substrate, The third feature is that the end is performed by a side conveyance roller that presses the end portion toward the substrate surface conveyance roller.

さらに、本発明は、前記湾曲形状搬送路は、前記基板の面に接し前記垂直方向の形状が湾曲形状を有し、前記基板をエア浮上させるエア浮上ステージで構成され、前記湾曲形状保持手段は、前記浮上された前記基板を前記湾曲形状に保持し、前記搬送装置は前記基板を把持し搬送する駆動部を有することを第4の特徴とする。
また、本発明は、前記保持を、前記基板の搬送方向の端部を前記湾曲形状の傾斜にあった角度で把持する前記駆動部に設けられた把持手段と、前記基板の搬送方向の他の端部を前記湾曲形状の傾斜にあった角度で保持する保持手段とで行うこと第5の特徴とする。
Further, in the present invention, the curved conveyance path is configured by an air levitation stage that contacts the surface of the substrate and has a curved shape in the vertical direction, and floats the substrate in air, and the curved shape holding means includes According to a fourth aspect of the present invention, the floated substrate is held in the curved shape, and the transport device has a drive unit that grips and transports the substrate.
Further, the present invention provides a holding means provided in the drive unit for holding the end in the conveyance direction of the substrate at an angle corresponding to the inclination of the curved shape, and other holding direction in the substrate conveyance direction. A fifth feature is that the end portion is held by holding means for holding the end portion at an angle corresponding to the inclination of the curved shape.

さらに、本発明は、前記保持手段を、前記傾斜にあった角度を持つ開口部を具備し、前記基板が前記開口部内を移動する基板保持ユニットで行うことを第6の特徴とする。
また、本発明は、前記光学検査ユニットを複数設け、前記検査を前記複数の光学検査ユニットを前記湾曲形状に沿って配置して行うことを第7の特徴とする。
Furthermore, the present invention is characterized in that the holding means is a substrate holding unit that includes an opening having an angle corresponding to the inclination and the substrate moves in the opening.
The seventh feature of the present invention is that a plurality of the optical inspection units are provided, and the inspection is performed by arranging the plurality of optical inspection units along the curved shape.

さらに、本発明は、前記搬送を、前記検査領域に向って前記基板の状態を平面から前記湾曲形状に移行させ、検査後は前記基板の状態を前記湾曲形状から前記平面に移行させて行うことを第8の特徴とする。
また、本発明は、基板を搬送する装置であって、前記基板を搬送する方向(搬送方向)と垂直方向に湾曲形状を有する湾曲形状搬送路と、前記湾曲形状搬送路に沿って前記基板を湾曲形状に保持する湾曲形状保持手段と、前記基板を前記湾曲形状搬送路上で搬送させる駆動手段を有することを第9の特徴とする。
Further, according to the present invention, the transfer is performed by moving the state of the substrate from a flat surface to the curved shape toward the inspection region, and after the inspection, the state of the substrate is shifted from the curved shape to the flat surface. Is the eighth feature.
Further, the present invention is an apparatus for transporting a substrate, the curved transport path having a curved shape in a direction perpendicular to the direction of transporting the substrate (transport direction), and the substrate along the curved transport path A ninth feature is that it has a curved shape holding means for holding the curved shape, and a driving means for transporting the substrate on the curved shape conveyance path.

本発明によれば、基板が薄くなっても、基板自体の有する歪量を矯正し、基板を精度よく検査できる基板欠陥検査システムまたは基板欠陥検査方法を提供できる。
また、本発明によれば、基板が薄くなっても、基板自体の有する歪量を矯正し、基板を検査可能範囲に維持して搬送できる搬送装置を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, even if a board | substrate becomes thin, the distortion amount which a board | substrate itself has can be corrected, and the board | substrate defect inspection system or the board | substrate defect inspection method which can test | inspect a board | substrate accurately can be provided.
In addition, according to the present invention, it is possible to provide a transport device that can correct the amount of distortion of the substrate itself and transport the substrate while maintaining the inspectable range even when the substrate is thinned.

本発明のガラス基板欠陥検査システムの第1の実施形態を示す概略図である。It is the schematic which shows 1st Embodiment of the glass substrate defect inspection system of this invention. 第1の実施形態に用いた光学ユニットを示す図である。It is a figure which shows the optical unit used for 1st Embodiment. 本発明の特徴である第1の実施形態の搬送部と光学式検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the conveyance part and optical inspection apparatus of 1st Embodiment which are the characteristics of this invention. 本発明の特徴である第1の実施形態の搬送部の他の実施例を示した図である。It is the figure which showed the other Example of the conveyance part of 1st Embodiment which is the characteristics of this invention. 発明のガラス基板欠陥検査システムの第2の実施形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the glass substrate defect inspection system of invention. 図5の状態における検査ステージの搬送部を上部から見た概略構成を示した図である。It is the figure which showed schematic structure which looked at the conveyance part of the inspection stage in the state of FIG. 5 from the upper part. エア浮上ステージの構成を示した図である。It is the figure which showed the structure of the air levitation stage. 第2の実施形態における光学式検査装置の光学ユニットを含む断面を図6に示す断面B−Bから見た図である。It is the figure which looked at the cross section containing the optical unit of the optical inspection apparatus in 2nd Embodiment from the cross section BB shown in FIG. 第1光学ユニットを含む本実施形態の特徴である精密ステージを図8に示す検査領域Rを含む断面を断面C−Cから見た図である。It is the figure which looked at the cross section containing the test | inspection area | region R which shows the precision stage which is the characteristics of this embodiment containing a 1st optical unit in FIG. 8 from the cross section CC.

以下、図面に基づいて本発明の基板欠陥検査システムの実施形態を、ガラス基板欠陥検査システムを例に説明する。
図1は本発明のガラス基板欠陥検査システムの第1の実施形態100を示す概略図である。ガラス基板欠陥検査システム100は、搬送ロボット(図示せず)等により基板Pが載置されるロードステージ61A、基板Pを検査する光学式検査装置8B、8Cを有する検査ステージ61B、62C及び検査された基板Pを搬送ロボット(図示せず)等によりラインから搬出するアンロードステージ61Dを有する。また、ガラス基板欠陥検査システム100は、ステージ61A〜61Dに設けられ、基板Pを下流のステージに搬送する搬送部41A〜41Dと、各搬送部41A〜41Dを駆動する搬送駆動部41Kとを具備する搬送装置40及び搬送装置40や光学式検査装置8B、8Cの状態を監視し、制御する制御装置30を有する。
Hereinafter, an embodiment of a substrate defect inspection system of the present invention will be described with reference to the drawings, taking a glass substrate defect inspection system as an example.
FIG. 1 is a schematic view showing a first embodiment 100 of the glass substrate defect inspection system of the present invention. The glass substrate defect inspection system 100 includes a load stage 61A on which a substrate P is placed by a transfer robot (not shown) or the like, inspection stages 61B and 62C having optical inspection devices 8B and 8C for inspecting the substrate P, and inspection. An unload stage 61D for unloading the substrate P from the line by a transfer robot (not shown) or the like is provided. Further, the glass substrate defect inspection system 100 includes transport units 41A to 41D that are provided on the stages 61A to 61D and transport the substrate P to the downstream stage, and a transport drive unit 41K that drives the transport units 41A to 41D. And a control device 30 that monitors and controls the state of the transport device 40 and the transport device 40 and the optical inspection devices 8B and 8C.

図1は、ロードステージ61Aが丁度基板PAを載置し、検査ステージ61B、61Bが基板PB、PCを検査し、そしてアンロードステージではこれから基板PDを搬出しようとしている状態を示している。なお、各基板PはX軸である矢印B方向に搬送されている。また、以下の説明では符号を記す全体を表すときは、添え字A〜Dを省略する。   FIG. 1 shows a state in which the load stage 61A has just placed the substrate PA, the inspection stages 61B and 61B inspected the substrates PB and PC, and the unload stage is about to carry out the substrate PD. Each substrate P is transported in the direction of arrow B, which is the X axis. Further, in the following description, the suffixes A to D are omitted when the whole reference numerals are represented.

光学式検査装置8は図2に示す光学ユニット9を図1に示すY方向に複数有する。光学ユニット9は検査光2を基板Pへ照射する投光系、基板Pからの反射光を受光する反射光検出系、及び基板Pからの散乱光を受光する受光系を有する。   The optical inspection apparatus 8 has a plurality of optical units 9 shown in FIG. 2 in the Y direction shown in FIG. The optical unit 9 includes a light projecting system that irradiates the inspection light 2 onto the substrate P, a reflected light detection system that receives reflected light from the substrate P, and a light receiving system that receives scattered light from the substrate P.

投光系は、レーザ光源91、レンズ92,93、及びミラー94を有する。レーザ光源91は、検査光2となるレーザ光を発生する。レンズ92は、レーザ光源91から発生されたレーザ光を集光する。レンズ93は、レンズ92で集光されたレーザ光を集束させる。ミラー94は、レンズ93で集束させたレーザ光を、検査光2として基板Pへ斜めに照射する。   The light projecting system includes a laser light source 91, lenses 92 and 93, and a mirror 94. The laser light source 91 generates laser light that becomes the inspection light 2. The lens 92 condenses the laser light generated from the laser light source 91. The lens 93 focuses the laser light collected by the lens 92. The mirror 94 irradiates the laser beam focused by the lens 93 obliquely onto the substrate P as the inspection light 2.

基板Pへ斜めに照射された検査光2の一部は基板Pの表面で反射され、一部は基板Pの内部へ透過する。基板Pの表面に傷や異物等の欠陥がある場合、基板Pへ照射された検査光2の一部が欠陥により散乱され、散乱光が発生する。基板Pの内部へ透過した検査光2の一部は基板Pの裏面で反射され、一部は基板Pの裏面から外部へ射出される。基板Pの裏面に傷や異物等の欠陥がある場合、基板Pの内部へ透過した検査光2の一部が欠陥により散乱され、散乱光が発生する。   A part of the inspection light 2 irradiated obliquely to the substrate P is reflected by the surface of the substrate P, and a part of the inspection light 2 is transmitted to the inside of the substrate P. When the surface of the substrate P has a defect such as a scratch or a foreign substance, a part of the inspection light 2 irradiated to the substrate P is scattered by the defect, and scattered light is generated. A part of the inspection light 2 transmitted to the inside of the substrate P is reflected by the back surface of the substrate P, and a part is emitted from the back surface of the substrate P to the outside. When there is a defect such as a scratch or a foreign substance on the back surface of the substrate P, a part of the inspection light 2 transmitted to the inside of the substrate P is scattered by the defect, and scattered light is generated.

受光系は、集光レンズ97、結像レンズ98、及びCCDラインセンサー99を有する。集光レンズ97は、基板Pの表面又は裏面からの散乱光を集光し、結像レンズ98は、集光レンズ97で集光された散乱光をCCDラインセンサー99の受光面に結像させる。CCDラインセンサー99は、受光面に複数のCCDが配列され、受光面で受光した散乱光の強度に応じた検出信号を制御装置(図1参照)30の信号変換回路34へ出力する。   The light receiving system includes a condenser lens 97, an imaging lens 98, and a CCD line sensor 99. The condensing lens 97 condenses scattered light from the front or back surface of the substrate P, and the imaging lens 98 forms an image of the scattered light collected by the condensing lens 97 on the light receiving surface of the CCD line sensor 99. . The CCD line sensor 99 has a plurality of CCDs arranged on the light receiving surface, and outputs a detection signal corresponding to the intensity of scattered light received on the light receiving surface to the signal conversion circuit 34 of the control device (see FIG. 1) 30.

反射光検出系は、ミラー94、レンズ95、及びCCDラインセンサー96を有する。基板Pの表面からの反射光は、ミラー94を介してレンズ95に入射する。レンズ95は、基板Pの表面からの反射光を集束させ、CCDラインセンサー96の受光面に結像させる。   The reflected light detection system includes a mirror 94, a lens 95, and a CCD line sensor 96. Reflected light from the surface of the substrate P enters the lens 95 through the mirror 94. The lens 95 focuses the reflected light from the surface of the substrate P and forms an image on the light receiving surface of the CCD line sensor 96.

このとき、CCDラインセンサー96の受光面における反射光の受光位置は、基板Pの表面の高さによって変化する。CCDラインセンサー96は、受光面に複数のCCDが配列され、受光面で受光した反射光の強度に応じた検出信号を制御装置(図1参照)30内の焦点調節制御回路31へ出力する。焦点調節制御回路31は、制御装置30内のCPU32からの指令に従って、焦点調節機構90を駆動する。例えば、基板Pの表面の欠陥の検査を行う場合、焦点調節制御回路31は、CCDラインセンサー96の検出信号から、基板Pの表面からの反射光がCCDラインセンサー96の受光面の中心位置で受光される様に、焦点調節機構90を駆動して光学ユニット9を移動させる。焦点調節機構90は、例えばパルスモータで構成され、焦点調節制御回路31からの駆動パルスに応じて光学ユニット9を上下に移動させて焦点位置を調節する。従って、焦点調節機構90の調節範囲内、即ち検査可能範囲内に光学ユニット9を設ける必要がある。   At this time, the light receiving position of the reflected light on the light receiving surface of the CCD line sensor 96 varies depending on the height of the surface of the substrate P. The CCD line sensor 96 has a plurality of CCDs arranged on the light receiving surface, and outputs a detection signal corresponding to the intensity of the reflected light received on the light receiving surface to the focus adjustment control circuit 31 in the control device (see FIG. 1) 30. The focus adjustment control circuit 31 drives the focus adjustment mechanism 90 according to a command from the CPU 32 in the control device 30. For example, when inspecting a defect on the surface of the substrate P, the focus adjustment control circuit 31 determines that the reflected light from the surface of the substrate P is detected at the center position of the light receiving surface of the CCD line sensor 96 from the detection signal of the CCD line sensor 96. The focus adjustment mechanism 90 is driven to move the optical unit 9 so that the light is received. The focus adjustment mechanism 90 is configured by, for example, a pulse motor, and adjusts the focus position by moving the optical unit 9 up and down in accordance with the drive pulse from the focus adjustment control circuit 31. Therefore, it is necessary to provide the optical unit 9 within the adjustment range of the focus adjustment mechanism 90, that is, within the inspectable range.

図3は、本発明の特徴である第1の実施形態の搬送部41と光学式検査装置8の概略構成を示す図である。各搬送部41A〜41D及び光学式検査装置8B、8Cはそれぞれの間で基本的に同じ構成を有するので、代表して図3に検査ステージ61Bの搬送部41Bと光学式検査装置8Bの構成を示す。但し、煩雑さを避ける為に符号において添え字Bは省略する。図3(a)は搬送部41を上から見た図を、図3(b)は図3(a)におけるA−A断面図を示す。   FIG. 3 is a diagram showing a schematic configuration of the transport unit 41 and the optical inspection device 8 according to the first embodiment, which is a feature of the present invention. Since each of the transport units 41A to 41D and the optical inspection devices 8B and 8C have basically the same configuration, the configuration of the transport unit 41B of the inspection stage 61B and the optical inspection device 8B is representatively shown in FIG. Show. However, in order to avoid complication, the subscript B is omitted from the reference numerals. FIG. 3A shows a view of the transport unit 41 from above, and FIG. 3B shows a cross-sectional view taken along line AA in FIG.

搬送部41は、基板面に接し基板Pを搬送し、湾曲形状搬送路を形成する複数(本例では5個)の基板面搬送ローラ42と、基板Pの搬送方向側部面で接し基板Pを搬送する複数組(本例では両側前後に計4個)の側部搬送ローラ43(湾曲形状保持手段)と、を具備する破線で示す湾曲形成搬送ローラ部44を搬送方向に一組以上(本実施形態では3組(44a〜44c))具備する基板湾曲形状形成手段を有する。図3(a)では煩雑さを避けるために44bと44cに分散して符号を記す。   The transport unit 41 is in contact with the substrate surface, transports the substrate P, and contacts a plurality of (in this example, five) substrate surface transport rollers 42 that form a curved transport path on the side surface in the transport direction of the substrate P. A plurality of sets (four in total in the front and rear sides in this example) of side conveying rollers 43 (curved shape holding means), and one or more sets of curved forming conveying roller portions 44 indicated by broken lines in the conveying direction ( In this embodiment, the substrate curved shape forming means includes three sets (44a to 44c). In FIG. 3 (a), in order to avoid complications, symbols are distributed to 44b and 44c.

5個の基板面搬送ローラ42a〜42eは、図3(b)に示すように基板Pが湾曲の形状を形成できるように段差を持つ回転しない支持軸42sに回転可能に支持されている。また、5個の基板面搬送ローラ42a〜42eのうち両側の基板面搬送ローラ42a、42eは駆動輪42rによって回転する。駆動輪42rは駆動源(図示せず)よって回転する駆動軸42jに固定されている。なお、中心側の基板面搬送ローラ42b〜42dは基板Pの移動に伴って回転する従動輪である。また、図3(a)に示す湾曲形状は実際より誇張して描いている。この点は他の図面においても同様である。   As shown in FIG. 3B, the five substrate surface transport rollers 42a to 42e are rotatably supported by a non-rotating support shaft 42s having a step so that the substrate P can form a curved shape. Further, among the five substrate surface transport rollers 42a to 42e, the substrate surface transport rollers 42a and 42e on both sides are rotated by the drive wheel 42r. The drive wheel 42r is fixed to a drive shaft 42j that is rotated by a drive source (not shown). The substrate-side transport rollers 42b to 42d on the center side are driven wheels that rotate as the substrate P moves. In addition, the curved shape shown in FIG. The same applies to other drawings.

一方、4個の側部搬送ローラ43a〜43dは、基板面搬送ローラ42a、42eの搬送(X)方向前後に設けられ、基板Pの搬送方向の側部面で基板に接し基板Pの両側を挟み込み、下向きの力を与える。この結果、基板Pが5個の基板面搬送ローラ42a〜42eに沿って湾曲を形成する。即ち、基板を湾曲形状に保持する湾曲形状保持手段の役目を果たす。このとき、4個の側部搬送ローラ43a〜43dは、基板面搬送ローラ42a、42eで移動する基板Pによってそれぞれ矢印D、E方向に従動回転する。勿論、4個の側部搬送ローラ43a〜43dのうち少なくとも一個を4個の側部搬送ローラ43a〜43dが矢印D、E方向に回転するように駆動してもよい。   On the other hand, the four side transport rollers 43a to 43d are provided in front of and behind the transport (X) direction of the substrate surface transport rollers 42a and 42e. It pinches and gives downward force. As a result, the substrate P forms a curve along the five substrate surface transport rollers 42a to 42e. That is, it serves as a curved shape holding means for holding the substrate in a curved shape. At this time, the four side conveyance rollers 43a to 43d are driven to rotate in the directions of arrows D and E by the substrate P moved by the substrate surface conveyance rollers 42a and 42e, respectively. Of course, at least one of the four side conveyance rollers 43a to 43d may be driven such that the four side conveyance rollers 43a to 43d rotate in the directions of arrows D and E.

また、光学式検査装置8の基板Pを検査する検査領域で安定した湾曲形状を形成するには次の方法及びその方法を実現する構成が必要である。まず第1の方法は、基板Pがロードステージ61Aに平面状態で載置され、アンロードステージ61Dで平面状態で搬出される場合である。この場合は、検査する前に基板Pを平面状態から湾曲形状状態に、及び検査後に基板Pを湾曲形状状態から平面状態に移行させる必要がある。そのために、例えば、検査ステージ61Bの検査領域の手前において、5個の基板面搬送ローラ42a〜42eうちの中心側の基板面搬送ローラ42b〜42dの高さを徐々に上げ、また側部搬送ローラ43の幅を徐々に狭める構成とする。そして、検査ステージ61Cも検査領域の後部においては、中心側の基板面搬送ローラ42b〜42dの高さを徐々に下げ、また側部搬送ローラ43の幅を徐々に広くし、搬出可能な状態にする構成とする。検査後に基板Pを湾曲形状状態から平面状態に移行は一気に行ってもよい。
第2の方法としては、基板Pが湾曲形状を有するロードステージ61Aに載置され、湾曲形状を有するアンロードステージ61Dで搬出される場合である。この場合は、搬送されてくる基板Pの先端部または後端部に存在する側部搬送ローラ43の幅を徐々に狭めたり広げたりする機構とする。
In addition, in order to form a stable curved shape in the inspection region for inspecting the substrate P of the optical inspection apparatus 8, the following method and a configuration for realizing the method are required. First, the first method is a case where the substrate P is placed on the load stage 61A in a planar state and is unloaded in the planar state on the unload stage 61D. In this case, it is necessary to shift the substrate P from the flat state to the curved state before the inspection, and to shift the substrate P from the curved shape state to the flat state after the inspection. For this purpose, for example, in front of the inspection area of the inspection stage 61B, the heights of the substrate surface transport rollers 42b to 42d on the center side among the five substrate surface transport rollers 42a to 42e are gradually increased, and the side transport rollers The width of 43 is gradually reduced. In the rear part of the inspection area, the inspection stage 61C also gradually lowers the height of the center-side substrate surface transport rollers 42b to 42d and gradually widens the side transport rollers 43 so that it can be unloaded. The configuration is as follows. After the inspection, the substrate P may be shifted from the curved shape state to the planar state all at once.
The second method is a case where the substrate P is placed on a load stage 61A having a curved shape and carried out by an unload stage 61D having a curved shape. In this case, a mechanism that gradually narrows or widens the width of the side conveyance roller 43 existing at the front end portion or the rear end portion of the substrate P being conveyed is adopted.

以上説明したように、強制的に基板Pの形状を湾曲形状に矯正することによって、基板Pが有する歪量によらず安定した湾曲姿勢を維持することができる。
この姿勢に対応して、図3(b)に示すように、光学式検査装置8が複数有する図2に示す光学ユニット9(図3(b)では4ユニット9A〜9D)を基板Pの表面形状に合わせて反搬送(X)方向と垂直(Y)方向に配置する。基板Pの表面形状に完全に合わせて配置することが望ましいが、図2で説明したように光学ユニット9の焦点調節機構90の調節できる範囲に設置すればよい。極端に言えば、焦点調節機構90の調節範囲が広ければ複数の光学ユニット9を平坦に配置してもよい。
As described above, by forcibly correcting the shape of the substrate P into a curved shape, a stable curved posture can be maintained regardless of the amount of strain that the substrate P has.
Corresponding to this posture, as shown in FIG. 3 (b), the optical unit 9 (four units 9A to 9D in FIG. 3 (b)) provided in FIG. Arranged in the opposite direction (X) direction and the vertical (Y) direction according to the shape. Although it is desirable to arrange it completely in accordance with the surface shape of the substrate P, it may be installed in a range where the focus adjustment mechanism 90 of the optical unit 9 can be adjusted as described with reference to FIG. Extremely speaking, if the adjustment range of the focus adjustment mechanism 90 is wide, a plurality of optical units 9 may be arranged flat.

以上説明した実施形態によれば、基板自体の有する歪量を矯正でき、基板を精度よく検査できる。   According to the embodiment described above, the amount of distortion of the substrate itself can be corrected, and the substrate can be inspected with high accuracy.

図4は湾曲形状保持手段の他の実施例を示した図である。図3に示す実施例1では、側部搬送ローラ43で基板Pを挟み込むように上から押さえていたが、図4(a)に示す実施例2は、基板Pの搬送方向の端部を側部搬送ローラ43で直接上から押さえ、基板Pを強制的に湾曲形状に矯正する。この場合の平面−湾曲間の移行は、基板面搬送ローラ42の移行構成は実施例1と同じであるが、第1の方法に対しては側部搬送ローラ43の高さを基板面搬送ローラ42の高さに合わせる機構とし、第2の方法に対しては搬送されてくる基板Pの先端部または後端部に存在する側部搬送ローラ43の高さを徐々に低くしたり高くしたりする機構とする。   FIG. 4 is a view showing another embodiment of the curved shape holding means. In Example 1 shown in FIG. 3, the substrate P is pressed from above so as to be sandwiched by the side conveyance rollers 43. However, Example 2 shown in FIG. The substrate P is forcibly corrected to a curved shape by pressing directly from above with the partial transport roller 43. In this case, the transition between the plane and the curve is the same as that of the first embodiment in the transition configuration of the substrate surface conveyance roller 42, but the height of the side conveyance roller 43 is set to the substrate surface conveyance roller for the first method. For the second method, the height of the side conveyance roller 43 existing at the front end portion or the rear end portion of the substrate P being conveyed is gradually lowered or increased. Mechanism.

また、図4(b)に示す実施例3は、基板Pの搬送方向の両端部における湾曲形状の傾斜にあった傾斜角を持つ開口部45aを有し、基板Pが移動する基板保持ユニット45を検査ステージ61B、61Cに設けて基板Pを強制的に湾曲形状に矯正する。また、開口部45aの内部の摺動面にはローラ45bを設ける、或いは鏡面仕上げするなどして移動し易くする。この場合の平面−湾曲間の移行は、基板面搬送ローラ42の構成は実施例1と同じであるが、第1の方法に対しては基板保持ユニット45の傾斜角度を基板面搬送ローラ42の高さに合わせる変化させた機構とする。第2の方法に対しては特別な機構は必要がないが、基板Pに基板保持ユニット45に開口部45aに挿入し易くする工夫が必要である。
また、以上の説明した基板面搬送ローラ42、側部搬送ローラ43及び湾曲形成搬送ローラ部44等の個数は一例であって、他の個数を設けてもよい。
In addition, the third embodiment shown in FIG. 4B has an opening 45a having an inclination angle corresponding to the inclination of the curved shape at both ends in the transport direction of the substrate P, and the substrate holding unit 45 in which the substrate P moves. Are provided on the inspection stages 61B and 61C to forcibly correct the substrate P into a curved shape. In addition, a roller 45b is provided on the sliding surface inside the opening 45a, or the surface is mirror-finished to facilitate movement. In this case, the transition between the plane and the curve is the same as that of the first embodiment in the configuration of the substrate surface conveyance roller 42, but the inclination angle of the substrate holding unit 45 is set to be different from that of the substrate surface conveyance roller 42 in the first method. The mechanism is changed according to the height. Although a special mechanism is not necessary for the second method, it is necessary to devise the substrate P so that the substrate holding unit 45 can be easily inserted into the opening 45a.
Further, the number of the substrate surface conveyance roller 42, the side conveyance roller 43, the curve formation conveyance roller unit 44, and the like described above is an example, and other numbers may be provided.

図5は本発明のガラス基板欠陥検査システムの第2の実施形態200を示す概略図である。ガラス基板欠陥検査システム200は、第1の実施形態と同様に、搬送ロボット(図示せず)等により基板Pが載置されるロードステージ61A、基板Pを検査する光学式検査装置8B、8Cを有する検査ステージ61B、62C及び検査された基板Pを搬送ロボット(図示せず)等によりラインから搬出するアンロードステージ61Dを有する。また、ガラス基板欠陥検査システム200は、第1の実施形態と同様に、基板Pを保持し下流のステージに搬送する駆動部52と駆動部52を駆動するエア供給吸気部54とを具備する搬送装置50及び搬送装置50や光学式検査装置8B、8Cの状態を監視し、制御する制御装置30を有する。   FIG. 5 is a schematic view showing a second embodiment 200 of the glass substrate defect inspection system of the present invention. Similarly to the first embodiment, the glass substrate defect inspection system 200 includes a load stage 61A on which the substrate P is placed by a transfer robot (not shown) and the like, and optical inspection devices 8B and 8C that inspect the substrate P. The inspection stages 61B and 62C and the inspected substrate P are unloaded stage 61D for unloading from the line by a transfer robot (not shown). Similarly to the first embodiment, the glass substrate defect inspection system 200 includes a drive unit 52 that holds the substrate P and transports the substrate P to a downstream stage, and an air supply intake unit 54 that drives the drive unit 52. A control device 30 is provided for monitoring and controlling the states of the device 50, the transport device 50, and the optical inspection devices 8B and 8C.

また、図5は、アンロードステージ61Dの基板が既に搬出され、ロードステージ61Aに基板PAを載置し後、検査ステージ61B、61Bで基板PB、PCを検査している状態を示している。なお、各基板PはX軸である矢印B方向に搬送されている。また、以下の説明では符号を記す全体を表すときは、添え字A〜Dを省略する。   FIG. 5 shows a state in which the substrate PB and PC are inspected by the inspection stages 61B and 61B after the substrate of the unload stage 61D has already been unloaded and the substrate PA is placed on the load stage 61A. Each substrate P is transported in the direction of arrow B, which is the X axis. Further, in the following description, the suffixes A to D are omitted when the whole reference numerals are represented.

第2の実施形態200が第1の実施形態と異なる点は搬送装置50である。第2の実施形態の搬送装置50は、基板Pをエア浮上させて搬送するエア浮上方式を採用している点である。
搬送装置50は、各ステージ61A〜61Dを構成するエア浮上ステージ51と基板Pを把持し浮かしながら隣接ステージ61間を移動する駆動部52とを具備する搬送部53と、エア浮上ステージ51に圧搾エアを供給する圧搾エア供給源54Aと空気を吸気する真空供給源54Bとを具備するエア供給吸気部54とを有する。
A difference of the second embodiment 200 from the first embodiment is a transport device 50. The transport apparatus 50 of the second embodiment is that an air levitation method is employed in which the substrate P is transported by air levitation.
The transfer device 50 squeezes the air levitation stage 51 and the air levitation stage 51 that include the air levitation stage 51 that constitutes each of the stages 61 </ b> A to 61 </ b> D and the drive unit 52 that moves between the adjacent stages 61 while holding and floating the substrate P. The air supply / intake unit 54 includes a compressed air supply source 54A for supplying air and a vacuum supply source 54B for intake of air.

図6は、図5の状態における検査ステージ61Bの搬送部53を上部から見た概略構成を示した図である。検査ステージ61のエア浮上ステージ51は、搬送(X)方向に複数配列された長方形の分割ステージ51Bを有する。分割ステージ51Bは、後述する検査するための検査領域Rの両端部に設けられた精密浮上ステージ51Sとその他の部分に設けられた高浮上部ステージ51Hとを有する。   FIG. 6 is a diagram showing a schematic configuration of the transport unit 53 of the inspection stage 61B in the state shown in FIG. 5 as viewed from above. The air levitation stage 51 of the inspection stage 61 has rectangular divided stages 51B arranged in a plurality in the transport (X) direction. The division stage 51B includes a precision levitation stage 51S provided at both ends of an inspection region R for inspection described later, and a high levitation stage 51H provided at other portions.

駆動部52は、エア浮上ステージ51の搬送(X)方向に沿ってけられた設けられたリニアガイド52aと、リニアガイド52aに沿って走行するリニアアクチュエータ52bと、リニアアクチュエータ52bに固定され基板Pを把持するグリッパ52cと、リニアアクチュエータ52bのリニアガイド52a上(搬送(X)方向)の位置を検出するリニアスケール52dを有する。駆動部52の反対側にはグリッパ52cと共に基板Pを安定して保持する図4(b)に示す支持ユニットと同一構造を有する基板保持ユニット45を設けている。   The driving unit 52 includes a linear guide 52a provided along the conveyance (X) direction of the air levitation stage 51, a linear actuator 52b that travels along the linear guide 52a, and a substrate P that is fixed to the linear actuator 52b. A gripper 52c for gripping and a linear scale 52d for detecting the position of the linear actuator 52b on the linear guide 52a (conveyance (X) direction) are provided. A substrate holding unit 45 having the same structure as the support unit shown in FIG. 4B is provided on the opposite side of the drive unit 52 together with the gripper 52c to stably hold the substrate P.

制御装置30は、リニアスケール52dの位置情報を読み込み、搬送速度やグリッパ52cを制御する。   The control device 30 reads the position information of the linear scale 52d and controls the conveyance speed and the gripper 52c.

図7(a)は精密浮上ステージ51Sの構成を、図7(b)は高浮上部ステージ51Hの構成を示した図である。前述したように、検査は隣接する分割ステージ51B間の幅40mm程度の検査領域R(図6参照)で行われる。従って、精密浮上ステージ51Sは、検査領域Rを挟んで基板Pの平坦度を保つように基板Pを浮上させる。そのために、精密浮上ステージ51Hは、図7(a)に示すように、基板Pを浮上させるために圧搾エアを噴出す噴出口PE(白丸)とエアを吸引し基板を吸着させる吸引口PV(黒丸)と交互に配置している。そして、圧搾エア供給源54Aと真空供給源54Bとを制御し、基板Pの平坦度を得るように両者のバランスを取っている。一方、高浮上部ステージ51Hは、図7(b)に示すように、基板Pを浮上させる圧搾エアを噴出す噴出口PEのみを有し、基板Pを安定して浮上し搬送速度を低下させる負荷とならないようにしている。   FIG. 7A shows the configuration of the precision levitation stage 51S, and FIG. 7B shows the configuration of the high levitation upper stage 51H. As described above, the inspection is performed in the inspection region R (see FIG. 6) having a width of about 40 mm between the adjacent divided stages 51B. Accordingly, the precision levitation stage 51S levitates the substrate P so as to maintain the flatness of the substrate P across the inspection region R. For this purpose, as shown in FIG. 7 (a), the precision levitation stage 51H has a spout PE (white circle) that blows out compressed air to levitate the substrate P and a suction port PV ( Alternating with black circles). Then, the compressed air supply source 54A and the vacuum supply source 54B are controlled to balance the both so as to obtain the flatness of the substrate P. On the other hand, as shown in FIG. 7B, the high floating stage 51 </ b> H has only the ejection port PE that ejects the compressed air that floats the substrate P, stably floats the substrate P, and reduces the conveyance speed. I try not to become a load.

なお、検査ステージ61Cの搬送部53は検査ステージ61Bと基本的には同じ構成を有する。また、ロードステージ61A及びアンロードステージ61dの搬送部53は、高浮上部ステージ51Hのみで構成される。   The conveyance unit 53 of the inspection stage 61C has basically the same configuration as the inspection stage 61B. In addition, the transfer unit 53 of the load stage 61A and the unload stage 61d is configured by only the high floating stage 51H.

図8は、第2の実施形態における光学式検査装置8B、8Cの光学ユニット10の含めた図6における断面B−Bから見た図である。光学ユニット10はガラス基板Pの傷や汚れを検査する第1光学ユニット10Aと、気泡、異物または汚れを検査する第2光学ユニット10Bと有する。   FIG. 8 is a view as seen from a cross section BB in FIG. 6 including the optical unit 10 of the optical inspection apparatuses 8B and 8C in the second embodiment. The optical unit 10 includes a first optical unit 10A that inspects scratches and dirt on the glass substrate P, and a second optical unit 10B that inspects bubbles, foreign matter, and dirt.

第1光学ユニット10Aは、光源ユニット16Aと撮像ユニット11Aとに分かれる。光源ユニット16Aは、10μm程度の傷を検出するために、線状光源を形成できるレーザ光源17Aと、レーザ光を斜方照射するためのミラー18Aと、安定した線状光を形成するシリンドリカルレンズ19Aとを有する。一方、撮像ユニット11Aは、ガラス基板Pの表面または裏面から散乱光を受光するレンズ13Aと、受光レンズから散乱光をP偏光光、S偏光光に分離する偏光ビームスプリッタ14Aと、ガラス基板Pの搬送に伴いガラス基板の所定幅を撮像するラインCCD12A1、12A2とを有する。   The first optical unit 10A is divided into a light source unit 16A and an imaging unit 11A. The light source unit 16A includes a laser light source 17A capable of forming a linear light source, a mirror 18A for obliquely irradiating laser light, and a cylindrical lens 19A for forming stable linear light in order to detect a scratch of about 10 μm. And have. On the other hand, the imaging unit 11A includes a lens 13A that receives scattered light from the front or back surface of the glass substrate P, a polarization beam splitter 14A that separates the scattered light from the light receiving lens into P-polarized light and S-polarized light, and a glass substrate P. Line CCDs 12A1 and 12A2 for imaging a predetermined width of the glass substrate as it is conveyed.

一方、第2光学ユニット10Bは、撮像ユニット11Bによる撮像結果の輝度ムラにより気泡、異物または汚れを検出する。そのために、光源16Bとして広範囲に照射できるLEDや蛍光灯を用い、ガラス基板Pから透過光を検出する。撮像ユニット11Bは撮像手段12Bと透過光を受光するレンズ13Bとを有する。また、撮像手段12Bはガラス基板Pに移動に伴い所定幅を効率よく撮像するために、第1光学ユニット10Aと同様にラインCCD12Bを用いる。   On the other hand, the second optical unit 10B detects bubbles, foreign matter, or dirt based on luminance unevenness of the imaging result obtained by the imaging unit 11B. Therefore, the transmitted light is detected from the glass substrate P by using an LED or a fluorescent lamp that can irradiate in a wide range as the light source 16B. The imaging unit 11B includes an imaging unit 12B and a lens 13B that receives transmitted light. In addition, the imaging unit 12B uses the line CCD 12B in the same manner as the first optical unit 10A in order to efficiently image a predetermined width as the glass substrate P moves.

図9は、第1光学ユニット10Bを含む本実施形態の特徴である精密ステージ51Sを図8に示す検査領域Rを含む断面を断面C−Cから見た図である。   FIG. 9 is a cross-sectional view of the precision stage 51S including the first optical unit 10B including the inspection region R shown in FIG.

図9に示すように、精密浮上ステージ51Sは湾曲形状の搬送路を形成し、精密浮上ステージ51Sの両端側にはグリッパ52cと検査ステージ61B,61Cに図4(b)に示す基板保持ユニット45が設けられている。基板Pはグリッパ52cで搬送方向の片側を固定され、反対側を基板保持ユニット45に保持(支持)されながら搬送される。グリッパ52cと基板保持ユニット45の傾斜角度は、図4(b)に示す実施例3と同様に、精密浮上ステージ51Sは湾曲形状に合った角度を有する。この結果、基板Pは強制的に精密浮上ステージ51Sの湾曲形状に矯正される。
なお、搬送路は精密浮上ステージ51Sと高浮上部ステージ51Hとで構成されるので、高浮上部ステージ51Hも湾曲形状の搬送路を形成する。
As shown in FIG. 9, the precision levitation stage 51S forms a curved conveyance path, and the gripper 52c and the inspection stages 61B and 61C are provided at both ends of the precision levitation stage 51S. The substrate holding unit 45 shown in FIG. Is provided. The substrate P is transported while the gripper 52c fixes one side in the transport direction and the other side is held (supported) by the substrate holding unit 45. The inclination angle of the gripper 52c and the substrate holding unit 45 has an angle suitable for the curved shape as in the third embodiment shown in FIG. 4B. As a result, the substrate P is forcibly corrected to the curved shape of the precision levitation stage 51S.
In addition, since the conveyance path is composed of the precision levitation stage 51S and the high floating stage 51H, the high floating stage 51H also forms a curved conveyance path.

以上説明したように、本実施形態での基板湾曲形状形成手段は、湾曲形状搬送路を有する浮上ステージ51と、基板を湾曲形状に保持するグリッパ52cと基板保持ユニット45とを具備する湾曲形状保持手段とを有する。また、湾曲形状保持手段である基板保持ユニット45の代わりに、図3又は図4(a)に示した側部搬送ローラを用いることができる。   As described above, the substrate curved shape forming means in this embodiment is a curved shape holding device that includes the floating stage 51 having the curved shape conveyance path, the gripper 52c that holds the substrate in a curved shape, and the substrate holding unit 45. Means. Further, instead of the substrate holding unit 45 which is a curved shape holding means, a side conveyance roller shown in FIG. 3 or FIG. 4A can be used.

さらに、本実施形態では、撮像ユニット11BをY方向に6箇所に、そのうちの2箇所の撮像ユニット11Bの光源手段である光源16BをY方向3に3箇所にそれぞれ設けている。そして、各撮像ユニット11Ba〜11Bfおよび光源16Ba〜16cは、撮像歪を可能な限り低減するために、湾曲形状に対して垂直になるように設けている。垂直に設ける本方法は第1の実施形態にも適用可能である。なお、図9において矢印はエアの流れを示す。
図9においては第2光学ユニット10Bを例に示したが、第2光学ユニット10Aにおいても同様である。
また、第1に実施形態同様に、光学式検査装置8の基板Pを検査する領域で安定した湾曲形状を形成する必要である。そのために、本実施形態ではグリッパ52cが基板の所定を保持しているので、基板Pが湾曲形状を有するロードステージ61Aに載置され、湾曲形状を有するアンロードステージ61Dで搬出される場合が望ましい。そして、検査ステージに設けられた基板保持ユニット45については第1の実施形態の実施例3と同様な工夫を行う。
Furthermore, in this embodiment, the imaging units 11B are provided in six locations in the Y direction, and light sources 16B that are light source means of the imaging units 11B in two locations are provided in three locations in the Y direction. And each imaging unit 11Ba-11Bf and light source 16Ba-16c are provided so that it may become perpendicular | vertical with respect to a curved shape, in order to reduce imaging distortion as much as possible. This method of providing vertically is also applicable to the first embodiment. In FIG. 9, arrows indicate the air flow.
Although FIG. 9 shows the second optical unit 10B as an example, the same applies to the second optical unit 10A.
First, similarly to the embodiment, it is necessary to form a stable curved shape in the region where the substrate P of the optical inspection apparatus 8 is inspected. Therefore, in this embodiment, since the gripper 52c holds the predetermined substrate, it is desirable that the substrate P is placed on the load stage 61A having a curved shape and carried out by the unload stage 61D having a curved shape. . And about the board | substrate holding | maintenance unit 45 provided in the test | inspection stage, the device similar to Example 3 of 1st Embodiment is performed.

以上説明したように、第2の実施形態においても、強制的に基板Pの形状を湾曲形状に矯正することによって、基板Pが有する歪量によらず安定した湾曲姿勢を維持することができ、基板を精度よく検査できる。   As described above, also in the second embodiment, by forcibly correcting the shape of the substrate P into a curved shape, a stable curved posture can be maintained regardless of the amount of strain that the substrate P has, The board can be inspected with high accuracy.

以上説明したガラス基板欠陥検査システムの第1及び第2の実施形態では、複数(実施形態では2)台の光学式検査装置を設けた。これは、1台の光学式検査装置では基板の全領域を検査できない場合に、複数台の光学式検査装置で領域を分担して検査して処理時間を短くし、スループットを向上させるためである。   In the first and second embodiments of the glass substrate defect inspection system described above, a plurality (2 in the embodiment) of optical inspection apparatuses are provided. This is because when a single optical inspection apparatus cannot inspect the entire area of the substrate, a plurality of optical inspection apparatuses divide and inspect the area to shorten the processing time and improve the throughput. .

また、以上説明したガラス基板欠陥検査システムの第1及び第2実施形態は、処理ユニットとして2台の光学式検査装置を有していたが、処理ユニットの数は2台に限らないことは勿論であり、処理ユニットの構成も少なくとも1台の光学式検査装置と他の処理をする処理ユニットとの組合せる構成としてもよい。   Further, the first and second embodiments of the glass substrate defect inspection system described above have two optical inspection apparatuses as processing units. However, the number of processing units is not limited to two. The configuration of the processing unit may be a combination of at least one optical inspection apparatus and a processing unit that performs other processing.

8B、8C:光学式検査装置 9、10:光学ユニット
11B、11Ba〜11Bf:撮像ユニット
16、16a〜16c:光源 30:制御装置
40:第1の実施形態における搬送装置 41A〜41D:搬送部
41K:搬送駆動部 42、42a〜42e:基板面搬送ローラ
43、43a〜43d:側部搬送ローラ
44、44a〜42c:湾曲形成搬送ローラ部
45:基板保持ユニット 50:第2の実施形態における搬送装置
51:エア浮上ステージ 51B:分割ステージ
51S:精密浮上ステージ 51H:高浮上部ステージ
52:駆動部 52c:グリッパ
53:搬送部 54:エア供給吸気部
54A:圧搾エア供給源 54B:真空供給源
61A〜61D:ステージ
100:第1の実施形態のガラス基板欠陥検査システム
200:第2の実施形態のガラス基板欠陥検査システム
P、PAからPB:基板 PE:圧搾エアの噴出口
PV:エアの吸引口 R:検査領域。
8B, 8C: Optical inspection device 9, 10: Optical unit 11B, 11Ba-11Bf: Imaging unit 16, 16a-16c: Light source 30: Control device 40: Transport device 41A-41D in the first embodiment: Transport unit 41K : Transport drive units 42, 42a to 42e: Substrate surface transport rollers 43, 43a to 43d: Side transport rollers 44, 44a to 42c: Curve forming transport roller unit 45: Substrate holding unit 50: Transport device in the second embodiment 51: Air levitation stage 51B: Split stage 51S: Precision levitation stage 51H: High levitation stage 52: Drive unit 52c: Gripper 53: Transfer unit 54: Air supply intake unit 54A: Compressed air supply source 54B: Vacuum supply source 61A- 61D: Stage 100: Glass substrate defect inspection system 200 of the first embodiment 200: Glass substrate defect inspection system P, PA to PB: Substrate PE: Squeeze air outlet PV: Air suction port R: Inspection region.

Claims (17)

基板を載置し前記基板を検査する検査領域に搬送する搬送装置と、前記検査領域に検査光を照射して前記基板を撮像し前記基板の欠陥を検査する光学ユニットを具備する光学式検査装置とを有する基板欠陥検査システムにおいて、
前記搬送装置は、前記搬送する方向(搬送方向)と垂直方向に湾曲形状を有する湾曲形状搬送路と、前記湾曲形状搬送路に沿って前記基板を湾曲形状に保持する湾曲形状保持手段と、を有することを特徴とする基板欠陥検査システム。
An optical inspection apparatus comprising: a transport device that mounts a substrate and conveys the substrate to an inspection region that inspects the substrate; and an optical unit that irradiates the inspection region with inspection light to image the substrate and inspect the substrate for defects. In a substrate defect inspection system having
The transport device includes a curved transport path having a curved shape in a direction perpendicular to the transport direction (transport direction), and a curved shape holding unit that holds the substrate in a curved shape along the curved transport path. A substrate defect inspection system comprising:
前記湾曲形状搬送路は、前記基板の面に接し前記垂直方向の形状が湾曲形状を有し、前記基板をエア浮上させるエア浮上ステージで構成され、前記湾曲形状保持手段は、前記浮上された前記基板を前記湾曲形状に保持し、前記搬送装置は前記基板を把持し搬送する駆動部を有することを特徴とする請求項1に記載の基板欠陥検査システム。   The curved shape conveying path is formed of an air levitation stage that is in contact with the surface of the substrate and has a curved shape in the vertical direction, and causes the substrate to air levitate, and the curved shape holding means is The substrate defect inspection system according to claim 1, wherein the substrate is held in the curved shape, and the transport device includes a drive unit that grips and transports the substrate. 前記湾曲形状保持手段は、前記基板の搬送方向の端部を前記湾曲形状の傾斜にあった角度で前記基板を把持する把持手段と、前記基板の搬送方向の他の端部を前記湾曲形状の傾斜にあった角度で前記基板を保持する保持把持手段とを有することを特徴とする請求項2に記載の基板欠陥検査システム。   The curved shape holding means includes a gripping means for gripping the substrate at an angle corresponding to the inclination of the curved shape and an end portion of the substrate in the transport direction, and another end portion of the substrate in the transport direction of the curved shape. The substrate defect inspection system according to claim 2, further comprising holding and gripping means for holding the substrate at an angle corresponding to an inclination. 前記保持手段は、前記傾斜にあった角度を持つ開口部を具備し、前記基板が前記開口部内を移動する基板保持ユニットを有することを特徴とする請求項3に記載の基板欠陥検査システム。   4. The substrate defect inspection system according to claim 3, wherein the holding unit includes an opening having an angle corresponding to the inclination, and the substrate has a substrate holding unit that moves in the opening. 前記保持手段は、前記他の端部で基板に接し、前記端部を前記エア浮上ステージ側に押さえ込む側部搬送ローラを有することを特徴とする請求項3に記載の基板欠陥検査システム。   4. The substrate defect inspection system according to claim 3, wherein the holding unit includes a side conveyance roller that contacts the substrate at the other end and presses the end toward the air levitation stage. 前記湾曲形状搬送路は、前記基板の面に接し前記垂直方向に複数配置された基板面搬送ローラを前記搬送方向に複数組設けて形成され、前記湾曲形状保持手段は、前記基板を前記基板面搬送ローラ上で前記湾曲形状に保持することを特徴とする請求項1に記載の基板欠陥検査システム。   The curved shape conveying path is formed by providing a plurality of sets of substrate surface conveying rollers arranged in the vertical direction in contact with the surface of the substrate in the conveying direction, and the curved shape holding means is configured to place the substrate on the substrate surface. The substrate defect inspection system according to claim 1, wherein the curved shape is held on a conveyance roller. 前記湾曲形状保持手段は、前記基板の搬送方向の端部で基板に接し、前記端部を前記基板面搬送ローラの側に押さえ込む側部搬送ローラを有することを特徴とする請求項6に記載の基板欠陥検査システム。   The said curved shape holding means has a side part conveyance roller which touches a board | substrate in the edge part of the conveyance direction of the said board | substrate, and presses down the said edge part to the said board | substrate surface conveyance roller side. Substrate defect inspection system. 前記湾曲形状保持手段は、前記基板の搬送方向の側部で前記基板に接し、前記基板の両側を挟み込む側部搬送ローラを有することを特徴とする請求項6に記載の基板欠陥検査システム。   The substrate defect inspection system according to claim 6, wherein the curved shape holding unit includes a side conveyance roller that contacts the substrate at a side portion in a conveyance direction of the substrate and sandwiches both sides of the substrate. 前記湾曲形状保持手段は、前記側部搬送ローラを駆動する手段を有することを特徴とする請求項7または8に記載の基板欠陥検査システム。   9. The substrate defect inspection system according to claim 7, wherein the curved shape holding unit includes a unit that drives the side conveyance roller. 前記湾曲形状保持手段は、前記基板の搬送方向の両端部における前記湾曲形状の傾斜にあった傾斜角を持つ開口部を具備し、前記基板が前記開口部内を移動する基板保持ユニットを有することを特徴とすること請求項6に記載の基板欠陥検査システム。   The curved shape holding means includes an opening having an inclination angle corresponding to the inclination of the curved shape at both ends of the substrate in the transport direction, and the substrate has a substrate holding unit that moves in the opening. The substrate defect inspection system according to claim 6. 前記光学検査ユニットを複数設け、前記複数の光学検査ユニットを前記湾曲形状に沿って配置することを特徴とする請求項2または6に記載の基板欠陥検査システム。   The substrate defect inspection system according to claim 2, wherein a plurality of the optical inspection units are provided, and the plurality of optical inspection units are arranged along the curved shape. 前記光学式検査装置とは別の処理を行う処理装置を有することを特徴とする請求項2または6に記載の基板欠陥検査システム。   The substrate defect inspection system according to claim 2, further comprising a processing device that performs processing different from the optical inspection device. 基板を載置し前記基板を検査する検査領域に搬送し、前記検査領域に検査光を照射して前記基板を撮像し前記基板の欠陥を検査する基板欠陥検査方法において、
前記基板を湾曲形状に矯正し、前記湾曲形状に沿って配置され複数の光学検査ユニットで前記検査を行うことを特徴する基板欠陥検査方法。
In the substrate defect inspection method for mounting the substrate and transporting it to the inspection region for inspecting the substrate, irradiating the inspection region with inspection light, imaging the substrate, and inspecting the substrate for defects,
A substrate defect inspection method, wherein the substrate is corrected to a curved shape, and the inspection is performed by a plurality of optical inspection units arranged along the curved shape.
前記検査領域に向って前記基板の状態を平面から前記湾曲形状に移行し、検査後は前記基板の状態を前記湾曲形状から前記平面に移行することを特徴とする請求項13に記載の基板欠陥検査方法。   14. The substrate defect according to claim 13, wherein the state of the substrate is shifted from a flat surface to the curved shape toward the inspection region, and the state of the substrate is transferred from the curved shape to the flat surface after inspection. Inspection method. 基板を搬送する方向(搬送方向)と垂直方向に湾曲形状を有する湾曲形状搬送路と、前記湾曲形状搬送路に沿って前記基板を湾曲形状に保持する湾曲形状保持手段と、前記基板を前記湾曲形状搬送路上で搬送させる駆動手段を有することを特徴とする搬送装置。   A curved conveying path having a curved shape in a direction perpendicular to a direction (conveying direction) for conveying a substrate, curved shape holding means for holding the substrate in a curved shape along the curved conveying path, and bending the substrate A conveying device comprising a driving means for conveying on a shape conveying path. 前記湾曲形状搬送路は、前記基板の面に接し前記垂直方向に複数配置された基板面搬送ローラを前記搬送方向に複数組設けて形成され、前記湾曲形状保持手段は、前記基板を前記基板面搬送ローラ上で前記湾曲形状に保持する側部搬送ローラを有し、前記駆動手段は前記基板面搬送ローラを回転させることを特徴とする請求項15に記載の搬送装置。   The curved shape conveying path is formed by providing a plurality of sets of substrate surface conveying rollers arranged in the vertical direction in contact with the surface of the substrate in the conveying direction, and the curved shape holding means is configured to place the substrate on the substrate surface. The transport apparatus according to claim 15, further comprising a side transport roller that holds the curved shape on the transport roller, wherein the driving unit rotates the substrate surface transport roller. 前記湾曲形状搬送路は、前記基板の面に接し前記垂直方向の形状が湾曲形状を有し、前記基板をエア浮上させるエア浮上ステージで構成され、前記湾曲形状を保持する湾曲形状保持手段を具備し、前記湾曲形状保持手段は、前記基板の搬送方向の端部を前記湾曲形状の傾斜にあった角度で把持する把持手段と、前記基板の搬送方向の他の端部を前記湾曲形状の傾斜にあった角度で保持する保持手段とを有し、前記駆動手段は、前記把持手段を前記基板の搬送方向に移動させる駆動部を有することを特徴とする請求項15に記載の搬送装置。   The curved shape conveying path is formed of an air levitation stage that is in contact with the surface of the substrate and has a curved shape in the vertical direction and levitates the substrate, and has curved shape holding means for holding the curved shape. The curved shape holding means includes a gripping means for gripping an end portion of the substrate in the transport direction at an angle suitable for the inclination of the curved shape, and another end portion of the substrate in the transport direction. The transport apparatus according to claim 15, further comprising a holding unit configured to hold at an angle suitable for the driving unit, wherein the driving unit includes a driving unit that moves the gripping unit in the transport direction of the substrate.
JP2010278014A 2010-12-14 2010-12-14 Substrate defect checkup system and substrate defect checkup method, and conveying apparatus Pending JP2012127738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278014A JP2012127738A (en) 2010-12-14 2010-12-14 Substrate defect checkup system and substrate defect checkup method, and conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278014A JP2012127738A (en) 2010-12-14 2010-12-14 Substrate defect checkup system and substrate defect checkup method, and conveying apparatus

Publications (1)

Publication Number Publication Date
JP2012127738A true JP2012127738A (en) 2012-07-05

Family

ID=46644958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278014A Pending JP2012127738A (en) 2010-12-14 2010-12-14 Substrate defect checkup system and substrate defect checkup method, and conveying apparatus

Country Status (1)

Country Link
JP (1) JP2012127738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505498B1 (en) 2013-09-16 2015-03-24 주식회사 엠티엠 Cover-glass Analysis Apparatus
CN106226327A (en) * 2016-08-30 2016-12-14 凌云光技术集团有限责任公司 A kind of cambered surface external surface of objects defect inspection method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156590A (en) * 1991-12-03 1993-06-22 Toshiba Corp Device for controlling bending degree of expander roll
JP2000193604A (en) * 1998-12-25 2000-07-14 Takano Co Ltd Automatic inspection device for substrate
JP2006105816A (en) * 2004-10-06 2006-04-20 Kokusai Gijutsu Kaihatsu Co Ltd Article inspecting device and article inspection method
JP2009271001A (en) * 2008-05-09 2009-11-19 Hitachi Plasma Display Ltd Substrate surface defect inspection method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156590A (en) * 1991-12-03 1993-06-22 Toshiba Corp Device for controlling bending degree of expander roll
JP2000193604A (en) * 1998-12-25 2000-07-14 Takano Co Ltd Automatic inspection device for substrate
JP2006105816A (en) * 2004-10-06 2006-04-20 Kokusai Gijutsu Kaihatsu Co Ltd Article inspecting device and article inspection method
JP2009271001A (en) * 2008-05-09 2009-11-19 Hitachi Plasma Display Ltd Substrate surface defect inspection method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505498B1 (en) 2013-09-16 2015-03-24 주식회사 엠티엠 Cover-glass Analysis Apparatus
CN106226327A (en) * 2016-08-30 2016-12-14 凌云光技术集团有限责任公司 A kind of cambered surface external surface of objects defect inspection method and system
CN106226327B (en) * 2016-08-30 2018-11-02 凌云光技术集团有限责任公司 A kind of cambered surface external surface of objects defect inspection method and system

Similar Documents

Publication Publication Date Title
TWI490477B (en) Electronic component inspection method and device used therein
KR101146722B1 (en) Inspecting apparatus of pannel for display
KR20030093956A (en) Method for inspecting polarizing film and apparatus for the method
TWI498545B (en) Optical inspection machine
KR101697216B1 (en) Plate glass inspection unit and manufacturing facility
US9291577B2 (en) Apparatus for inspecting glass substrate
JP2012073036A (en) Glass substrate defect checkup device and glass substrate defect checkup method
TW201334090A (en) Stripping device and fabricating method of electronic components
TW202211298A (en) Substrate bonding device and substrate bonding method
CN110741245B (en) Apparatus and method for detecting defect of optical film
JP2007248291A (en) Substrate inspecting apparatus
JP5344598B2 (en) Substrate holding device, defect inspection device, and defect correction device
CN212207144U (en) Apparatus for detecting surface defects on glass sheets
JP2012127738A (en) Substrate defect checkup system and substrate defect checkup method, and conveying apparatus
KR100975645B1 (en) Appartus for inspecting substrate and method using the same
KR20160117815A (en) Optical Inspection Apparatus
JP2003263627A (en) Image taking-in device
JP2012096920A (en) Glass substrate defect inspection device and glass substrate defect inspection method and glass substrate defect inspection system
JP2012163370A (en) In-line substrate inspection method and device
KR101543875B1 (en) Apparatus for transferring substrate and apparatus for inspecting substrate including the same
KR102304880B1 (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2012127761A (en) Substrate inspection device
JP2010127909A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
JP2009022823A (en) Inspection apparatus and substrate treatment system
JP2004238133A (en) Thin plate gripping device, thin plate conveying device, and thin plate inspecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527