JP2012127118A - Method and structure for earthquake strengthening - Google Patents

Method and structure for earthquake strengthening Download PDF

Info

Publication number
JP2012127118A
JP2012127118A JP2010279762A JP2010279762A JP2012127118A JP 2012127118 A JP2012127118 A JP 2012127118A JP 2010279762 A JP2010279762 A JP 2010279762A JP 2010279762 A JP2010279762 A JP 2010279762A JP 2012127118 A JP2012127118 A JP 2012127118A
Authority
JP
Japan
Prior art keywords
ground
anchor
earthquake
foundation
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010279762A
Other languages
Japanese (ja)
Inventor
Tadashi Kaneko
正 金子
Toshimi Sudo
敏己 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010279762A priority Critical patent/JP2012127118A/en
Publication of JP2012127118A publication Critical patent/JP2012127118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a structure for earthquake strengthening in which restraining a construction cost, shortening a construction period and improving aseismic capacity of a structure supported by the ground are possible.SOLUTION: In a method for earthquake strengthening an anchor 20 is fixed to both a new foundation 12 constructed in the ground 2 and a bearing layer 5 which is an anchor ground of the anchor 20. The anchor 20 is fixed to the new foundation 12 as well as the bearing layer 5 with its PC steel strand wires tightened by tensioning force T1 which is enough to keep the PC steel strand wires from going slack and smaller than design tensioning force T0 at a time of an earthquake.

Description

本発明は、耐震補強方法及び構造に関する。   The present invention relates to a seismic reinforcement method and structure.

既存建物の耐震補強方法として、アンカーを、一端がアンカーの定着地盤に定着され、他端が既存建物の基礎に定着されるように打設する方法が知られている(例えば、特許文献1参照)。この既存建物の耐震補強方法では、アンカーを、予め緊張力を与えた状態で定着地盤と基礎とに定着させるか、あるいは、緊張力を与えない状態で定着地盤と基礎とに定着させる。   As a seismic reinforcement method for an existing building, a method is known in which an anchor is placed so that one end is fixed to the anchoring ground of the anchor and the other end is fixed to the foundation of the existing building (for example, see Patent Document 1). ). In this seismic reinforcement method for existing buildings, anchors are fixed to the fixing ground and the foundation in a state where tension is applied in advance, or are fixed to the fixing ground and the foundation in a state where tension is not applied.

特開2008―223430号公報JP 2008-223430 A

上記の既存建物の耐震補強方法において、アンカーに予め緊張力を与えておく場合は、基礎と定着地盤との間の地盤に、鉛直方向荷重に対する十分な耐力が要求される。このため、当該地盤が軟弱地盤である場合には地盤改良を要しており、施工コストが増大し、工期が長期化していた。また、アンカーに初期緊張力を与えない場合は、地震発生時のアンカーの伸長量が長くなり、耐震性能が低下する。   In the above-mentioned seismic reinforcement method for existing buildings, when tension is given to the anchor in advance, the ground between the foundation and the fixed ground is required to have sufficient strength against vertical loads. For this reason, when the said ground is soft ground, the ground improvement is required, construction cost increased, and the construction period was prolonged. In addition, when initial tension is not applied to the anchor, the amount of extension of the anchor at the time of the occurrence of an earthquake becomes long, and the seismic performance decreases.

本発明は、上記事情に鑑みてなされたものであり、施工コストを抑制し、工期を短縮できると共に、地盤に構築された構造物の耐震性能を向上させることができる耐震補強方法及び構造を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and provides a seismic reinforcement method and structure capable of suppressing construction costs, shortening the construction period, and improving the seismic performance of a structure built on the ground. It is an object to do.

上記課題を解決するために、本発明に係る耐震補強方法は、アンカーを、地盤に構築された構造体と前記アンカーの定着地盤とに定着させることにより行う耐震補強方法であって、前記アンカーの緊張材に、当該緊張材が弛まない程度の大きさの緊張力で、且つ、地震発生時の設計上の緊張力よりも小さい緊張力を与えた状態で、前記アンカーを前記構造体と前記定着地盤とに定着させることを特徴とする。   In order to solve the above-mentioned problem, the seismic reinforcement method according to the present invention is a seismic reinforcement method performed by fixing an anchor on a structure built on the ground and the anchoring ground of the anchor, The anchor is fixed to the structure body and the anchor in a state in which the tension material has a tension force that is large enough to prevent the tension material from loosening and is smaller than the design tension force when an earthquake occurs. It is characterized by being fixed to the ground.

上記耐震補強方法において、前記緊張材の前記構造体内の部分を、伸縮自在に構成し、前記緊張材の前記構造体よりも前記定着地盤側の部分を、伸縮が拘束されるように構成してもよい。   In the seismic reinforcement method, the portion of the tension member in the structure is configured to be stretchable, and the portion of the tension material on the fixing ground side with respect to the structure is configured so that expansion and contraction is restricted. Also good.

上記耐震補強方法において、前記構造体は、地盤上の構造物を支持する基礎、又は、地盤上の構造物に連結された耐震架構を支持する基礎であってもよい。   In the seismic reinforcement method, the structure may be a foundation that supports a structure on the ground or a foundation that supports a seismic frame connected to the structure on the ground.

上記課題を解決するために、本発明に係る耐震補強構造は、アンカーを、地盤に構築された構造体と前記アンカーの定着地盤とに定着させてなる耐震補強構造であって、前記アンカーの緊張材を、当該緊張材が弛まない程度の大きさの緊張力で、且つ、地震発生時の設計上の緊張力よりも小さい緊張力を与えた状態で、前記アンカーを前記構造体と前記定着地盤とに定着させてなることを特徴とする。   In order to solve the above problems, the seismic reinforcement structure according to the present invention is an earthquake resistance reinforcement structure in which an anchor is fixed to a structure constructed on the ground and the anchoring ground of the anchor, and the tension of the anchor The anchor is attached to the structure and the fixing ground in a state in which a tension force of a magnitude that does not cause the tension material to loosen and a tension force smaller than a design tension force at the time of occurrence of an earthquake is applied to the anchor. It is characterized by being fixed to.

上記耐震補強構造において、前記緊張材の前記構造体内の部分を、伸縮自在に構成し、前記緊張材の前記構造体よりも前記定着地盤側の部分を、伸縮が拘束されるように構成してもよい。   In the seismic reinforcement structure, a portion of the tension member in the structure is configured to be stretchable and a portion of the tension material closer to the fixing ground than the structure is configured so that expansion and contraction is restricted. Also good.

上記耐震補強構造において、前記構造体は、地盤上の構造物を支持する基礎、又は、地盤上の構造物に連結された耐震架構を支持する基礎であってもよい。   In the seismic reinforcement structure, the structure may be a foundation that supports a structure on the ground or a foundation that supports an earthquake-resistant frame connected to the structure on the ground.

本発明によれば、施工コストを抑制し、工期を短縮できると共に、地盤に構築された構造物の耐震性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to suppress construction cost and to shorten a construction period, the seismic performance of the structure built in the ground can be improved.

一実施形態に係る既存建物の耐震補強構造を示す立面断面図である。It is an elevational sectional view showing the earthquake-proof reinforcement structure of the existing building concerning one embodiment. アンカーを示す立面断面図である。It is an elevational sectional view showing an anchor. 既存建物の耐震補強方法を説明するための図である。It is a figure for demonstrating the earthquake-proof reinforcement method of the existing building. 既存建物の耐震補強方法を説明するための図である。It is a figure for demonstrating the earthquake-proof reinforcement method of the existing building. (A)、(B)は、既存建物の耐震補強方法を説明するための図である。(A), (B) is a figure for demonstrating the earthquake-proof reinforcement method of the existing building. 既存建物の耐震補強方法を説明するための図である。It is a figure for demonstrating the earthquake-proof reinforcement method of the existing building. (A)、(B)は、既存建物の耐震補強構造の作用を説明するための立面断面図である。(A), (B) is elevation sectional drawing for demonstrating the effect | action of the earthquake-proof reinforcement structure of the existing building. 他の実施形態に係る既存建物の耐震補強構造を示す立面断面図である。It is an elevational sectional view showing a seismic reinforcement structure of an existing building according to another embodiment. 耐震架構を示す斜視図である。It is a perspective view which shows an earthquake-resistant frame. 他の実施形態に係る既存建物の耐震補強構造を示す立面断面図である。It is an elevational sectional view showing a seismic reinforcement structure of an existing building according to another embodiment.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係る既存建物1の耐震補強構造10を示す立面断面図である。この図に示すように、地盤2には既存基礎3が存在し、この既存基礎3の上には耐震補強の対象の既存建物1が存在する。また、地盤2の上層には軟弱地盤4が存在し、この軟弱地盤4の下層には支持層(定着地盤)5が存在する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an elevational sectional view showing a seismic reinforcement structure 10 of an existing building 1 according to an embodiment. As shown in the figure, an existing foundation 3 exists on the ground 2, and an existing building 1 to be subjected to seismic reinforcement is present on the existing foundation 3. In addition, a soft ground 4 exists in the upper layer of the ground 2, and a support layer (fixed ground) 5 exists in the lower layer of the soft ground 4.

耐震補強構造10は、既存基礎3と一体化された新設基礎12と、一端を支持層5に定着され他端を新設基礎12に定着されたアンカー20とを備えている。ここで、既存基礎3及び新設基礎12と支持層5との間には、地盤改良された層や杭等は設けられておらず、軟弱地盤4の補強工事は実施されていない。   The seismic reinforcement structure 10 includes a new foundation 12 integrated with the existing foundation 3 and an anchor 20 having one end fixed to the support layer 5 and the other end fixed to the new foundation 12. Here, between the existing foundation 3 and the newly established foundation 12 and the support layer 5, ground-improved layers, piles, and the like are not provided, and reinforcement work for the soft ground 4 is not performed.

図2は、アンカー20を示す立面断面図である。この図に示すように、アンカー20は、合成樹脂製のシース管22と、シース管22に挿通された複数本のPC鋼より線24と、シース管22に挿通された注入パイプ26、27と、アンカー20の上端に設けられた定着機構40とを備える。地盤2には、新設基礎12及び軟弱地盤4を貫通し、支持層5まで延びる孔14が、形成されており、シース管22は、孔14に挿通されて、新設基礎12から支持層5まで延びている。   FIG. 2 is an elevational sectional view showing the anchor 20. As shown in this figure, the anchor 20 includes a synthetic resin sheath tube 22, a plurality of PC steel strands 24 inserted through the sheath tube 22, and injection pipes 26 and 27 inserted through the sheath tube 22. A fixing mechanism 40 provided at the upper end of the anchor 20. The ground 2 is formed with a hole 14 that penetrates the new foundation 12 and the soft ground 4 and extends to the support layer 5, and the sheath tube 22 is inserted into the hole 14 and extends from the new foundation 12 to the support layer 5. It extends.

定着機構40には保護キャップ28が取り付けられている。また、シース管22の中間部には複数のスペーサ32が設けられており、このスペーサ32により、複数本のPC鋼より線24と注入パイプ26、27とが位置決めされている。   A protective cap 28 is attached to the fixing mechanism 40. In addition, a plurality of spacers 32 are provided in the intermediate portion of the sheath tube 22, and the plurality of PC steel strands 24 and the injection pipes 26 and 27 are positioned by the spacers 32.

PC鋼より線24は、支持層5から新設基礎12の上側まで延びている。また、シース管22の下部には止水材34が詰められており、注入パイプ26は、シース管22の上部から止水材34の上側まで延び、注入パイプ27は、シース管22の上部から止水材34の下側まで延びている。   The PC steel strand 24 extends from the support layer 5 to the upper side of the new foundation 12. In addition, a waterproof material 34 is packed in the lower portion of the sheath tube 22, the injection pipe 26 extends from the upper portion of the sheath tube 22 to the upper side of the waterproof material 34, and the injection pipe 27 extends from the upper portion of the sheath tube 22. It extends to the lower side of the water stop material 34.

また、シース管22内の止水材34から軟弱地盤4と新設基礎12との境界部までの間には、インナーグラウト16が充填されており、PC鋼より線24がインナーグラウト16でシース管22に固着されている。また、シース管22と孔14との間には、アウターグラウト18が充填されており、シース管22はアウターグラウト18で孔14の内壁に固着されている。ここで、止水材34は、支持層5内に配され、インナーグラウト16は、支持層5内にまで充填されており、従って、PC鋼より線24の下端は、支持層5に定着されている。また、PC鋼より線24は、軟弱地盤4と一体化されており、軟弱地盤4から伸縮や変形を拘束されている。   An inner grout 16 is filled between the water stop material 34 in the sheath tube 22 and the boundary portion between the soft ground 4 and the new foundation 12, and the PC steel strand 24 is connected to the sheath tube by the inner grout 16. 22 is fixed. An outer grout 18 is filled between the sheath tube 22 and the hole 14, and the sheath tube 22 is fixed to the inner wall of the hole 14 with the outer grout 18. Here, the water stop material 34 is disposed in the support layer 5, and the inner grout 16 is filled up to the support layer 5, and therefore, the lower end of the PC steel strand 24 is fixed to the support layer 5. ing. Further, the PC steel stranded wire 24 is integrated with the soft ground 4 and is restrained from expansion and contraction and deformation from the soft ground 4.

ここで、軟弱地盤4と新設基礎12との境界部より下側では、PC鋼より線24が露出しているのに対し、軟弱地盤4と新設基礎12との境界部より上側では、PC鋼より線24が被覆材36で被覆されている。また、PC鋼より線24と被覆材36との間には、グリース等の潤滑剤が充填されている。このため、軟弱地盤4と新設基礎12との境界部より下側では、PC鋼より線24がインナーグラウト16でシース管22に固着されているのに対し、軟弱地盤4と新設基礎12との境界部より上側では、PC鋼より線24がシース管22に固着されておらず、伸縮できる。   Here, the wire 24 is exposed from the PC steel below the boundary between the soft ground 4 and the new foundation 12, whereas the PC steel is exposed above the boundary between the soft ground 4 and the new foundation 12. The stranded wire 24 is covered with a covering material 36. Further, a lubricant such as grease is filled between the PC steel stranded wire 24 and the covering material 36. For this reason, the PC steel strand 24 is fixed to the sheath tube 22 by the inner grout 16 below the boundary between the soft ground 4 and the new foundation 12, whereas the soft ground 4 and the new foundation 12 Above the boundary, the PC steel strand 24 is not fixed to the sheath tube 22 and can be expanded and contracted.

定着機構40は、PC鋼より線24を挿通する孔が形成された支圧板42と、支圧板42上に載置され各PC鋼より線24が挿通される複数の孔44Aが形成されたアンカーヘッド44と、各孔44Aに対応して設けられたグリッパー46とを備えている。アンカーヘッド44の各孔44Aは、上側から下側へかけて縮径するテーパ孔であり、グリッパー46はこの孔44Aに挿入される楔部材である。   The fixing mechanism 40 is an anchor having a support plate 42 formed with a hole through which the wire 24 is inserted from the PC steel, and a plurality of holes 44A placed on the support plate 42 and through which the wire 24 is inserted from each PC steel. A head 44 and a gripper 46 provided corresponding to each hole 44A are provided. Each hole 44A of the anchor head 44 is a tapered hole having a diameter reduced from the upper side to the lower side, and the gripper 46 is a wedge member inserted into the hole 44A.

PC鋼より線24の上端は、被覆材36で被覆されることなく露出しており、このPC鋼より線24の上端が、アンカーヘッド44の孔44Aに挿通され、楔作用により孔44Aとグリッパー46と摩擦係合した状態になっている。これにより、PC鋼より線24の上端がアンカーヘッド44に定着されている。   The upper end of the stranded wire 24 of the PC steel is exposed without being covered with the covering material 36, and the upper end of the stranded wire 24 of the PC steel is inserted into the hole 44A of the anchor head 44, and the hole 44A and the gripper are moved by the wedge action. 46 is in frictional engagement. Thereby, the upper end of the stranded wire 24 is fixed to the anchor head 44.

ここで、PC鋼より線24のアンカーヘッド44に対する定着位置を調整することにより、PC鋼より線24の緊張力を調整できるところ、本実施形態では、当該緊張力が所定値T1(例えば、0<T<100kN)に設定されている。ここで、所定値T1は、アンカー20の地震発生時の設計上の緊張力(以下、最大値という)T0と比して格段に小さく(例えば、最大値T0を1000kN、所定値T1をT0の10%未満)、PC鋼より線24の弛みを取るのに十分な大きさである。   Here, by adjusting the fixing position of the PC steel strand 24 to the anchor head 44, the tension force of the PC steel strand 24 can be adjusted. In this embodiment, the tension force is a predetermined value T1 (for example, 0). <T <100 kN). Here, the predetermined value T1 is much smaller than the design tension (hereinafter referred to as the maximum value) T0 when the anchor 20 is quake (for example, the maximum value T0 is 1000 kN and the predetermined value T1 is T0). (Less than 10%), which is large enough to remove the slack of the wire 24 from the PC steel.

図3〜図6は、既存建物1の耐震補強方法を説明するための図である。図3に示すように、まず、新設基礎12を構築する工程を実施し、次に削孔工程を実施する。新設基礎12は、既存基礎14に隣接して既存基礎14と一体となるように構築する。そして、掘削工程では、ケーシング19を使用しながら孔14を新設基礎12から支持層5まで掘削する。   3-6 is a figure for demonstrating the earthquake-proof reinforcement method of the existing building 1. FIG. As shown in FIG. 3, first, the process of constructing the new foundation 12 is performed, and then the drilling process is performed. The new foundation 12 is constructed adjacent to the existing foundation 14 and integrated with the existing foundation 14. In the excavation process, the hole 14 is excavated from the new foundation 12 to the support layer 5 while using the casing 19.

図4に示すように、次に、アンカー挿入工程を実施する。当該工程では、予め組み立てておいたアンカー40を、シース管22及びPC鋼より線24の先端が支持層5内まで到達し、PC鋼より線24の後端が新設基礎12から上側に突出するように、孔14に挿入する。   Next, as shown in FIG. 4, an anchor insertion step is performed. In this step, the anchor 40 assembled in advance reaches the support layer 5 at the distal end of the sheath tube 22 and the PC steel strand 24, and the rear end of the PC steel strand 24 protrudes upward from the new foundation 12. As shown in FIG.

図5(A)に示すように、次に、インナーグラウト注入工程を実施し、その後、図5(B)に示すように、アウターグラウト注入工程を実施する。インナーグラウト注入工程では、注入パイプ26を通してシース管22の内部にインナーグラウト16を注入する。注入パイプ26の下端は止水材34の上側に配されているため、インナーグラウト16は、止水材34で塞き止められてシース管22内で堆積する。また、アウターグラウト注入工程では、注入パイプ27を通してアウターグラウト18を注入する。注入パイプ27の下端は、止水材34の下側に配されているため、シース管22から流出して孔14の底部で塞き止められて孔14内で堆積する。次に、ケーシング引抜き工程を実施する。当該工程では、孔14内にグラウト材を加圧注入しながらケーシング19を孔14内から引き抜く。   Next, as shown in FIG. 5A, an inner grout injection step is performed, and then an outer grout injection step is performed as shown in FIG. 5B. In the inner grout injection process, the inner grout 16 is injected into the sheath tube 22 through the injection pipe 26. Since the lower end of the injection pipe 26 is disposed on the upper side of the water blocking material 34, the inner grout 16 is blocked by the water blocking material 34 and accumulated in the sheath tube 22. In the outer grout injection process, the outer grout 18 is injected through the injection pipe 27. Since the lower end of the injection pipe 27 is disposed below the water blocking material 34, it flows out from the sheath tube 22, is blocked at the bottom of the hole 14, and accumulates in the hole 14. Next, a casing drawing process is performed. In this step, the casing 19 is pulled out from the hole 14 while a grout material is injected into the hole 14 under pressure.

図6に示すように、次に、緊張・頭部処理工程を実施する。当該工程では、インナーグラウト16及びアウターグラウト18が硬化した後、油圧ジャッキを利用してPC鋼より線24をアンカーヘッド44に定着させ、保護キャップ28を定着機構40に取り付ける。この際、PC鋼より線24に上述の所定値T1の緊張力が付与されるように、PC鋼より線24のアンカーヘッド44に対する定着位置を調整する。   Next, as shown in FIG. 6, a tension / head treatment process is performed. In this process, after the inner grout 16 and the outer grout 18 are cured, the PC steel strand 24 is fixed to the anchor head 44 using a hydraulic jack, and the protective cap 28 is attached to the fixing mechanism 40. At this time, the fixing position of the PC steel strand 24 to the anchor head 44 is adjusted so that the tension force of the predetermined value T1 is applied to the PC steel strand 24.

図7(A)、(B)は、耐震補強構造10の作用を説明するための立面断面図である。図7(A)に示すように、アンカー20のPC鋼より線24は、常時、最大値T0と比して格段に小さい所定値T1の緊張力を与えられており、弛みを取ることを目的として緊張されている。ここで、新設基礎12と支持層5との間の軟弱地盤4に作用する鉛直方向の荷重は、最大値T0と比して格段に小さい所定値T1である。   7A and 7B are elevational cross-sectional views for explaining the operation of the seismic reinforcement structure 10. As shown in FIG. 7 (A), the PC steel stranded wire 24 of the anchor 20 is always given a tension of a predetermined value T1 that is much smaller than the maximum value T0, and is intended to remove slack. As being nervous. Here, the load in the vertical direction acting on the soft ground 4 between the new foundation 12 and the support layer 5 is a predetermined value T1 that is significantly smaller than the maximum value T0.

そして、図7(B)に示すように、大地震が発生して既存建物1に水平力Pが作用した場合には、既存建物1の片側(図中左側)では地盤2に押し込み力が発生し、その反対側(図中右側)では地盤2に引抜き力が発生するところ、引抜き力が発生する側のアンカー20のPC鋼より線24は、最大値T0の緊張力を発生し、引抜き抵抗力T0を発揮する。これにより、大地震発生時に、既存建物1の片側での地盤2の沈下やその反対側での地盤2の浮上りが抑制される。   As shown in FIG. 7B, when a large earthquake occurs and a horizontal force P acts on the existing building 1, a pushing force is generated on the ground 2 on one side of the existing building 1 (left side in the figure). On the opposite side (the right side in the figure), when a pulling force is generated in the ground 2, the PC steel strand 24 of the anchor 20 on the side where the pulling force is generated generates a tension force having a maximum value T0, and the pulling resistance Demonstrate force T0. Thereby, when a large earthquake occurs, the settlement of the ground 2 on one side of the existing building 1 and the rising of the ground 2 on the opposite side are suppressed.

なお、最大値T0は、中地震が発生して既存建物1に水平力が作用した場合を想定して設定してもよい。ここで、大地震とは、耐用年限中に一度発生する可能性がある程度の地震であり、その地震力は、気象庁震度階級で震度6強〜7程度、及び地動の最大加速度で300〜400gal程度である。また、中地震とは、建物の耐用年限中に数度は発生する程度の地震であり、その地震力は、気象庁震度階級で震度5強程度、及び、地動の最大加速度で80〜100gal程度である(建築物の構造規定、日本建築センター(1997年版)、16〜19頁参照)。   The maximum value T0 may be set on the assumption that a middle earthquake occurs and a horizontal force acts on the existing building 1. Here, a major earthquake is an earthquake that has a possibility of occurring once during its useful life, and its seismic force is about 6 to 7 in the JMA seismic intensity class and about 300 to 400 gal in the maximum acceleration of ground motion. It is. Medium earthquakes are earthquakes that occur several times during the useful life of a building. The seismic force is about 5 or more in the Japan Meteorological Agency seismic intensity class, and about 80 to 100 gal at the maximum acceleration of ground motion. Yes (see Structure Regulations of Buildings, Japan Architecture Center (1997), pages 16-19).

以上、本実施形態に係る耐震補強構造10及び耐震補強方法では、アンカー20を、地震が発生するまでの通常時は、地震発生時に最大値T0の引抜き抵抗力を発揮できるように、上記所定値T1の緊張力を与えられた状態で待機する待受けアンカーとしている。これにより、地震が発生するまでの通常時は、新設基礎12と支持層5との間の軟弱地盤4に作用する鉛直荷重を、最大値T0と比して格段に小さい所定値T1に抑えることができ、軟弱地盤4に要求される鉛直荷重に対する耐力を低減することができる。従って、新設基礎12と支持層5との間の地盤改良や杭の打設等による補強工事を、不要もしくは減らすことができ、施工コストを低減でき、また、工期を短縮できる。   As described above, in the seismic reinforcement structure 10 and the seismic strengthening method according to the present embodiment, the anchor 20 has the predetermined value so that the pullout resistance of the maximum value T0 can be exhibited at the time of the earthquake in a normal time until the earthquake occurs. It is a standby anchor that waits in a state where the tension of T1 is applied. As a result, during normal times before an earthquake occurs, the vertical load acting on the soft ground 4 between the new foundation 12 and the support layer 5 is suppressed to a predetermined value T1 that is significantly smaller than the maximum value T0. It is possible to reduce the yield strength against the vertical load required for the soft ground 4. Accordingly, it is possible to eliminate or reduce the reinforcement work by improving the ground between the new foundation 12 and the support layer 5 and placing the piles, reducing the construction cost and shortening the construction period.

また、地震が発生するまでの通常時に、PC鋼より線24に対して弛みを取ることを目的とする所定値T1を与えていることにより、地震発生時におけるPC鋼より線24の伸長量を短くすることができ、地震発生時における既存建物1の振動を効果的に抑制できる。   Further, by giving a predetermined value T1 for the purpose of removing slack from the PC steel wire 24 at a normal time before the occurrence of the earthquake, the elongation amount of the PC steel wire 24 at the time of the earthquake occurrence is reduced. The vibration of the existing building 1 when an earthquake occurs can be effectively suppressed.

また、本実施形態に係る耐震補強構造10及び耐震補強方法では、新設基礎12内においては、PC鋼より線24が、被覆材36によりインナーグラウト16から絶縁されていることで自由に伸縮できるのに対し、軟弱地盤4内及び支持層5内においては、PC鋼より線24が、インナーグラウト16に固着されていることで、伸縮を拘束されている。即ち、PC鋼より線24の自由に伸縮できる自由長部分は、新設基礎12内の部分に限られ、PC鋼より線24の支持層5内の部分は、伸縮を完全に拘束された非自由長部分、PC鋼より線24の軟弱地盤4内の部分は、非自由長部分と比して拘束力の弱い半自由長部分となっている。従って、地震発生時のPC鋼より線24の伸長量を短くすることができ、地震発生時における既存建物1の振動をより効果的に抑制できる。   Further, in the seismic reinforcing structure 10 and the seismic reinforcing method according to the present embodiment, the PC steel stranded wire 24 is insulated from the inner grout 16 by the covering material 36 in the new foundation 12 so that it can freely expand and contract. On the other hand, in the soft ground 4 and the support layer 5, the PC steel strand 24 is fixed to the inner grout 16, so that the expansion and contraction is restricted. That is, the free length portion of the PC steel wire 24 that can be freely expanded and contracted is limited to the portion in the new foundation 12, and the portion in the support layer 5 of the PC steel strand 24 is a non-free state whose expansion and contraction is completely restricted The long portion, the portion in the soft ground 4 of the PC steel strand 24, is a semi-free length portion with a weaker binding force than the non-free length portion. Therefore, the extension amount of the wire 24 can be shortened from the PC steel at the time of the earthquake occurrence, and the vibration of the existing building 1 at the time of the earthquake occurrence can be more effectively suppressed.

図8は、他の実施形態に係る既存建物1の耐震補強構造100を示す立面断面図である。この図に示すように、耐震補強構造100は、新設基礎102と、新設基礎102上に構築された耐震架構110と、一端を支持層5に定着され他端を新設基礎12に定着されたアンカー20とを備えている。新設基礎102は、既存基礎3と一体で構築してもよく、既存基礎3から離間させて構築してもよい。ここで、既存基礎3及び新設基礎12と支持層5との間には、地盤改良された層や杭等は設けられていない。   FIG. 8 is an elevational sectional view showing the seismic reinforcement structure 100 of the existing building 1 according to another embodiment. As shown in this figure, the seismic reinforcement structure 100 includes a new foundation 102, a seismic frame 110 constructed on the new foundation 102, and an anchor having one end fixed to the support layer 5 and the other end fixed to the new foundation 12. 20. The new foundation 102 may be constructed integrally with the existing foundation 3 or may be constructed separately from the existing foundation 3. Here, between the existing foundation 3 and the newly-founded foundation 12 and the support layer 5, no ground-improved layer or pile is provided.

図9は、耐震架構110を示す斜視図である。この図に示すように、耐震架構110は、既存建物1の外壁面に対して平行な柱112、梁114、ブレース116や、既存建物1の外壁面に対して垂直な梁118やブレース119等により構成された柱梁架構である。柱112、梁114、及びブレース116で構成される構造体が、梁118、及びブレース119で既存建物1の外壁面に連結されている。   FIG. 9 is a perspective view showing the earthquake-resistant frame 110. As shown in this figure, the seismic frame 110 includes columns 112, beams 114, braces 116 parallel to the outer wall surface of the existing building 1, beams 118, braces 119, etc. perpendicular to the outer wall surface of the existing building 1. It is a column beam frame composed of A structure including the pillar 112, the beam 114, and the brace 116 is connected to the outer wall surface of the existing building 1 by the beam 118 and the brace 119.

このような構成の耐震補強構造100では、地震発生時に、耐震架構110が水平力を負担する。これにより、地震発生時に地盤2に作用する引抜力を抑制でき、アンカー20が引抜き抵抗力を発揮することに相俟って、耐震性能をより効果的に向上させることができる。   In the seismic reinforcing structure 100 having such a configuration, the seismic frame 110 bears a horizontal force when an earthquake occurs. Thereby, the pulling-out force which acts on the ground 2 at the time of the occurrence of an earthquake can be suppressed, and coupled with the fact that the anchor 20 exhibits the pulling-out resistance, the seismic performance can be improved more effectively.

なお、上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。例えば、上述の各実施形態では、アンカー20を新設基礎12、102に定着させたが、図10に示すように、既存基礎3に定着させてもよい。また、アンカー20を鉛直に設けることは必須ではなく、アンカー20を傾斜させて設けてもよい。   In addition, the above-mentioned embodiment is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof. For example, in each of the above-described embodiments, the anchor 20 is fixed to the new foundations 12 and 102, but may be fixed to the existing foundation 3 as shown in FIG. Moreover, it is not essential to provide the anchor 20 vertically, and the anchor 20 may be provided to be inclined.

また、既存建物の耐震補強を例に挙げて本発明を説明したが、新設建物の耐震補強に本発明を適用してもよい。さらに、地上構造物の耐震補強を例に挙げて本発明を説明したが、地下構造物の耐震補強に本発明を適用してもよい。   Further, although the present invention has been described by taking the seismic reinforcement of an existing building as an example, the present invention may be applied to the seismic reinforcement of a new building. Furthermore, although the present invention has been described by taking the seismic reinforcement of the ground structure as an example, the present invention may be applied to the seismic reinforcement of the underground structure.

1 既存建物(構造物)、2 地盤、3 既存基礎(構造体)、4 軟弱地盤、5 支持層(定着地盤)、10 耐震補強構造、12 新設基礎(構造体)、14 孔、16 インナーグラウト、18 アウターグラウト、20 アンカー、22 シース管、24 PC鋼より線(緊張材)、26、27 注入パイプ、28 保護キャップ、32 スペーサ、34 止水材、36 被覆材、40 定着機構、42 支圧板、44 アンカーヘッド、44A 孔、46 グリッパー、100 耐震補強構造、102 新設基礎(構造体)、110 耐震架構、112 柱、114 梁、116 ブレース、118 梁、119 ブレース 1 existing building (structure), 2 ground, 3 existing foundation (structure), 4 soft ground, 5 support layer (fixed ground), 10 seismic reinforcement structure, 12 newly installed foundation (structure), 14 holes, 16 inner grout , 18 Outer grout, 20 Anchor, 22 Sheath tube, 24 PC steel stranded wire (tension material), 26, 27 Injection pipe, 28 Protective cap, 32 Spacer, 34 Water stop material, 36 Coating material, 40 Fixing mechanism, 42 Support Platen, 44 Anchor head, 44A hole, 46 Gripper, 100 Seismic reinforcement structure, 102 New foundation (structure), 110 Seismic frame, 112 columns, 114 beams, 116 braces, 118 beams, 119 braces

Claims (6)

アンカーを、地盤に構築された構造体と前記アンカーの定着地盤とに定着させることにより行う耐震補強方法であって、
前記アンカーの緊張材に、当該緊張材が弛まない程度の大きさの緊張力で、且つ、地震発生時の設計上の緊張力よりも小さい緊張力を与えた状態で、前記アンカーを前記構造体と前記定着地盤とに定着させることを特徴とする耐震補強方法。
A method for seismic reinforcement performed by anchoring an anchor to a structure built on the ground and the anchoring ground of the anchor,
The anchor is attached to the structure in a state in which the tension of the anchor is such that the tension does not loosen and is smaller than the designed tension when an earthquake occurs. And a seismic reinforcement method comprising fixing to the fixing ground.
前記緊張材の前記構造体内の部分を、伸縮自在に構成し、前記緊張材の前記構造体よりも前記定着地盤側の部分を、伸縮が拘束されるように構成することを特徴とする請求項1に記載の耐震補強方法。   The portion of the tendon in the structure is configured to be stretchable, and the portion of the tendon that is closer to the fixing ground than the structure is configured to be constrained to stretch. The earthquake-proof reinforcement method according to 1. 前記構造体は、地盤上の構造物を支持する基礎、又は、地盤上の構造物に連結された耐震架構を支持する基礎であることを特徴とする請求項1又は請求項2に記載の耐震工法。   The earthquake-resistant structure according to claim 1 or 2, wherein the structure is a foundation that supports a structure on the ground or a foundation that supports an earthquake-resistant frame connected to the structure on the ground. Construction method. アンカーを、地盤に構築された構造体と前記アンカーの定着地盤とに定着させてなる耐震補強構造であって、
前記アンカーの緊張材を、当該緊張材が弛まない程度の大きさの緊張力で、且つ、地震発生時の設計上の緊張力よりも小さい緊張力を与えた状態で、前記アンカーを前記構造体と前記定着地盤とに定着させてなることを特徴とする耐震構造。
A seismic reinforcement structure in which the anchor is fixed to the structure built on the ground and the anchoring ground of the anchor,
In the state in which the tension material of the anchor is applied with a tension force that is large enough to prevent the tension material from loosening and smaller than the designed tension force at the time of the occurrence of an earthquake, the anchor And an earthquake-resistant structure characterized by being fixed to the fixing ground.
前記緊張材の前記構造体内の部分を、伸縮自在に構成し、前記緊張材の前記構造体よりも前記定着地盤側の部分を、伸縮が拘束されるように構成してなることを特徴とする請求項4に記載の耐震構造。   A portion of the tendon in the structure is configured to be stretchable and a portion of the tendon that is closer to the fixing ground than the structure is configured so that expansion and contraction is restricted. The earthquake-resistant structure according to claim 4. 前記構造体は、地盤上の構造物を支持する基礎、又は、地盤上の構造物に連結された耐震架構を支持する基礎であることを特徴とする請求項4又は請求項5に記載の耐震構造。   The earthquake-resistant structure according to claim 4 or 5, wherein the structure is a foundation that supports a structure on the ground or a foundation that supports an earthquake-resistant frame connected to the structure on the ground. Construction.
JP2010279762A 2010-12-15 2010-12-15 Method and structure for earthquake strengthening Pending JP2012127118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279762A JP2012127118A (en) 2010-12-15 2010-12-15 Method and structure for earthquake strengthening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279762A JP2012127118A (en) 2010-12-15 2010-12-15 Method and structure for earthquake strengthening

Publications (1)

Publication Number Publication Date
JP2012127118A true JP2012127118A (en) 2012-07-05

Family

ID=46644450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279762A Pending JP2012127118A (en) 2010-12-15 2010-12-15 Method and structure for earthquake strengthening

Country Status (1)

Country Link
JP (1) JP2012127118A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228531A (en) * 1986-03-28 1987-10-07 Kajima Corp Earth anchor for underground structure
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure
JP2007247308A (en) * 2006-03-17 2007-09-27 Takenaka Komuten Co Ltd Pulling-out bearing strength reinforcing for pile group comprised of inclined piles and structure constructed according to the same
JP2008223430A (en) * 2007-03-15 2008-09-25 Ohbayashi Corp Reinforcement method for existing building and reinforcement structure of existing building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228531A (en) * 1986-03-28 1987-10-07 Kajima Corp Earth anchor for underground structure
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure
JP2007247308A (en) * 2006-03-17 2007-09-27 Takenaka Komuten Co Ltd Pulling-out bearing strength reinforcing for pile group comprised of inclined piles and structure constructed according to the same
JP2008223430A (en) * 2007-03-15 2008-09-25 Ohbayashi Corp Reinforcement method for existing building and reinforcement structure of existing building

Similar Documents

Publication Publication Date Title
KR101877971B1 (en) Installation structure of earthquake resistant file with the moving function in all directions for building and the construction method thereof
JP4235661B2 (en) Ground anchor and ground anchor method
CN110761292A (en) Prestressed anchor cable structure and prestressed anchor cable construction method
CN211735381U (en) Pressure type shock attenuation energy dissipation prestressed anchorage pole structure
JP4852450B2 (en) Reinforcing method of existing building and reinforcing structure of existing building
JP5977177B2 (en) Seismic reinforcement method for retaining wall
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP5145738B2 (en) Seismic construction method for structures, seismic structure for structures
CN211816221U (en) Pressure type shock attenuation energy dissipation prestressed anchorage cable structure
JP2876056B2 (en) New material ground permanent anchor
JP4181192B2 (en) Ground anchor and ground anchor method
JP2018145614A (en) Reinforcing structure for bedrock slope with long-term durability and construction method thereof
JP2012127120A (en) Anchor fixing structure and seismic strengthening structure
JP5509374B1 (en) Seismic strengthening structure and seismic strengthening method for existing buildings
JP2011169070A (en) Building using perpendicular vibration control pc structural member to which vibration control prestress has been applied
JP6621243B2 (en) Yamadome frame and its construction method
CN114775659B (en) Creeping type flexible anchor cable, earthquake-resistant anchoring structure and slope earthquake-resistant reinforcing method
JP2006016893A (en) Shearing reinforcing method of existing structure
JP2012127118A (en) Method and structure for earthquake strengthening
JP5504951B2 (en) Seismic reinforcement method for structures and seismic reinforcement structure for structures
JPH07238540A (en) Ground anchor with removable tensile steel material
JP2012127119A (en) Pile reinforcement method and structure
JP5468818B2 (en) Ground anchor and its construction method
KR20110108589A (en) Shock absorber for ground anchor
JP5684069B2 (en) Pile structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602