JP2018145614A - Reinforcing structure for bedrock slope with long-term durability and construction method thereof - Google Patents

Reinforcing structure for bedrock slope with long-term durability and construction method thereof Download PDF

Info

Publication number
JP2018145614A
JP2018145614A JP2017039014A JP2017039014A JP2018145614A JP 2018145614 A JP2018145614 A JP 2018145614A JP 2017039014 A JP2017039014 A JP 2017039014A JP 2017039014 A JP2017039014 A JP 2017039014A JP 2018145614 A JP2018145614 A JP 2018145614A
Authority
JP
Japan
Prior art keywords
rock
reinforcing
slope
reinforcing material
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039014A
Other languages
Japanese (ja)
Other versions
JP6872231B2 (en
Inventor
和朗 三田
Kazuro Mita
和朗 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOJU HOKYODO CO Ltd
Original Assignee
CHOJU HOKYODO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOJU HOKYODO CO Ltd filed Critical CHOJU HOKYODO CO Ltd
Priority to JP2017039014A priority Critical patent/JP6872231B2/en
Publication of JP2018145614A publication Critical patent/JP2018145614A/en
Application granted granted Critical
Publication of JP6872231B2 publication Critical patent/JP6872231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing structure and a construction method thereof capable of not only ensuring a long-term durability by preventing toppling failures of a bedrock slope and landslides of a bedrock but reducing construction cost as using pressure plates is not needed.SOLUTION: A reinforcing structure is constructed by: arranging one or a plurality of reinforcing members 2 through one hole 1 or a plurality of holes 1 drilled across from a slope S to a moving bedrock region Gand immovable bedrock region G, each of which is longer than 5 m and equal to or less than 100 m; filling grout material 7 around the reinforcing member 2 in the drilled hole 1; and forming an anchoring zone for the reinforcing member 2 in both of the regions by curing the grout material 7.SELECTED DRAWING: Figure 1

Description

本発明は、岩盤斜面に適用する補強構造とその施工方法に関するものである。   The present invention relates to a reinforcing structure applied to a rock slope and a construction method thereof.

クリープ(時間の経過とともに岩盤の変形が増大する現象)した岩盤斜面が傾動して崩壊する現象は、たわみ性トップリングとかトップリング崩壊と呼ばれる。この崩壊の抑止工法としては、PC鋼線の先端3m〜10mを不動岩盤に挿入しかつ周囲にセメントミルクを注入して固定し(定着部)、移動地盤中は、PC鋼線の周囲にシースを設けて、シースの内部でPC鋼線が伸び縮みできる自由長部(引張り部)と呼ばれる構造とし、地表に受圧板と呼ばれるコンクリートや鋼製の板状構造物を設け、PC鋼線を介して定着部と受圧板の間に引張力を導入し、受圧板が移動土塊の地表部を押さえることで対応していた。   The phenomenon that a rock slope that has creeped (a phenomenon in which the deformation of the rock increases with time) tilts and collapses is called a flexible top ring or top ring collapse. As a method of preventing this collapse, insert the tip 3m to 10m of the PC steel wire into the immobile rock, inject cement milk around it (fixing part), and fix the sheath around the PC steel wire in the moving ground. Is provided with a structure called a free length part (tensile part) in which the PC steel wire can expand and contract inside the sheath, and a concrete plate or steel plate structure called a pressure plate is provided on the ground surface. In response to this, a tensile force was introduced between the fixing portion and the pressure receiving plate, and the pressure receiving plate pressed down the surface portion of the moving soil block.

ところが、PC鋼線と受圧板との結合部に鉄製品が使用されることが多く、100年以上の社会資本の耐久性を望む場合には、維持管理と補修費用が多額となる。さらに、PC鋼線や受圧板が重いため、足場が悪い斜面においてはその施工性に課題があった。このような課題に対応して、例えば特開2016−79777号公報のように、受圧板を格子状に構成して軽量化を図った方法が提案されている。   However, steel products are often used at the joint between the PC steel wire and the pressure plate, and maintenance and repair costs are high when the durability of social capital over 100 years is desired. Furthermore, since the PC steel wire and the pressure receiving plate are heavy, there is a problem in workability on slopes with poor scaffolding. In response to such a problem, a method has been proposed in which the pressure receiving plate is configured in a lattice shape to reduce the weight as disclosed in, for example, JP-A-2006-79777.

特開2016−79777号公報Japanese Patent Laid-Open No. 2006-79777

しかしながら、上記特許文献1の方法は、受圧板の製造費がアンカー工事の大きなコストを占め、また、PC鋼線の頭部と受圧板との結合部の耐久性については、100年を超えるような長期補強の観点からは不足するという課題がある。   However, in the method of Patent Document 1, the manufacturing cost of the pressure plate occupies a large cost for anchor construction, and the durability of the joint between the PC steel wire head and the pressure plate exceeds 100 years. There is a problem that it is insufficient from the viewpoint of long-term reinforcement.

さらに、上に述べたトップリング崩壊に対しては、アンカー工により斜面の表層を抑えることで移動土塊の崩壊を二次的に抑止できるものの、トップリング崩壊の場合に起きる岩盤内部で進行する岩盤の傾動そのものを一次的に抑止することはできないという課題があった。   Furthermore, for the top ring collapse described above, the rock mass that progresses inside the bedrock that occurs in the case of the top ring collapse, although the collapse of the moving mass can be secondarily suppressed by suppressing the surface layer of the slope by anchor work. There was a problem that the tilting itself could not be temporarily suppressed.

そこで、本発明は、岩盤斜面のトップリング崩壊を抑止して長期耐久性を確保することが可能な補強構造とその施工方法を提供すること、また、受圧板を不要として施工コストの低減を図ることが可能な補強構造とその施工方法を提供することを目的とする。   Therefore, the present invention provides a reinforcing structure capable of preventing the top ring collapse on the rock slope and ensuring long-term durability and its construction method, and reduces the construction cost by eliminating the need for a pressure receiving plate. An object of the present invention is to provide a reinforced structure that can be used and a method for the construction thereof.

上記課題を解決するため、本発明に係る岩盤斜面の補強構造は、
斜面から移動岩盤区域および不動岩盤区域にかけて穿孔した1または複数の穴に両区域に跨る長さ5m超100m以下の長尺な補強材を配置し、当該補強材の周囲で前記穿孔した穴にグラウト材を充填し、当該グラウト材の硬化により、両方の区域に補強材の定着部を形成したことを第1の特徴とする。
In order to solve the above problems, the rock slope reinforcement structure according to the present invention is:
A long reinforcing material with a length of more than 5m and less than 100m straddling both areas is placed in one or a plurality of holes drilled from the slope to the moving rock area and the immovable rock area, and grouted in the drilled hole around the reinforcing material The first feature is that the fixing portion of the reinforcing material is formed in both areas by filling the material and curing the grout material.

ここで、移動岩盤区域はトップリングや岩盤の地すべりが発生する区域を指し、不動岩盤区域は深部でトップリングや岩盤の地すべりが発生しない区域を指す。但し、両区域の境界は厳密ではなく、移動岩盤区域の不動岩盤区域寄りにはトップリングや岩盤の地すべりが発生しない部分領域が存在し得るし、また、不動岩盤区域の移動岩盤区域寄りにはトップリングや岩盤の地すべりが部分的に発生する領域が存在し得る。   Here, the moving bedrock area refers to the area where the top ring or rock landslide occurs, and the immovable rock area refers to the area where the top ring or rock landslide does not occur in the deep part. However, the boundary between the two areas is not strict, and there may be a partial area near the stationary rock area in the moving bed area where no top ring or landslide occurs, and near the moving bed area in the fixed bed area. There may be areas where top rings and rock landslides partially occur.

本発明によると、岩盤斜面のトップリング崩壊は、岩盤内に並行して分布する多くの割れ目群が開口しずれることにより発生するが、トップリング等が発生する移動岩盤区域とトップリング等が発生しない深部の不動岩盤区域に炭素繊維ケーブルなどの補強材を配置し、両区域のそれぞれの周囲にグラウトして岩盤と補強体を固定することで、岩盤と補強材を一体化させることができる。なお、補強材の長さは10m以上であることが望ましい。   According to the present invention, the top ring collapse on the rock slope occurs when many cracks distributed in parallel in the rock are opened and shifted, but the moving rock area where the top ring is generated and the top ring are generated. By placing reinforcing materials such as carbon fiber cables in the immovable bedrock area that is not deep, and grouting around each area to fix the bedrock and reinforcing body, the bedrock and reinforcing material can be integrated. The length of the reinforcing material is desirably 10 m or more.

このため、補強材が定着部と共に両区間に跨って配置された岩盤は鉄筋が配置された鉄筋コンクリートのように一つの塊として挙動し、岩盤内の割れ目でずれが発生することはない。このため、岩盤斜面でのトップリング崩壊や岩盤の地すべりが進行することはない。   For this reason, the rock mass in which the reinforcing material is disposed across the two sections together with the fixing portion behaves as one lump like the reinforced concrete in which the reinforcing bars are disposed, and there is no occurrence of deviation in the cracks in the rock mass. For this reason, the top ring collapse on the rock slope and the landslide of the rock never progress.

本発明に係る岩盤斜面の補強構造は、
補強材の定着部の間に補強材とグラウト材を縁切りした自由長部区間を形成したことを第2の特徴とする。
The rock slope reinforcement structure according to the present invention is:
A second feature is that a free length section is formed by cutting the reinforcing material and the grout material between the fixing portions of the reinforcing material.

本発明に係る岩盤斜面の補強構造は、
複数本の補強材を束状にして前記穿孔した穴に配置し、補強材ごとに両方の区域に形成した定着部を互いに分散させたことを第3の特徴とする。
The rock slope reinforcement structure according to the present invention is:
A third feature is that a plurality of reinforcing materials are bundled and arranged in the perforated holes, and fixing portions formed in both areas are dispersed for each reinforcing material.

補強材の定着部が分散されるので、定着部にかかる応力が分散され、岩盤に掛かる局所荷重が低減される(地盤破壊が起こりにくい)。これにより、トップリングの進行抑止や岩盤地すべりの進行抑止に寄与する。   Since the fixing portion of the reinforcing material is dispersed, the stress applied to the fixing portion is dispersed, and the local load applied to the rock is reduced (the ground is not easily broken). This contributes to the suppression of the progress of the top ring and the progress of the rock landslide.

本発明に係る岩盤斜面の補強構造は、
前記穿孔した穴に補強材を被覆する袋体を補強材と共に配置し、前記グラウト材を前記袋体の内部に充填し、袋体の内部に充填したグラウト材と袋体の内部から袋体の外部に漏出したグラウト材の硬化により、両グラウト材を介して補強材および両区域の岩盤を一体化してなることを第4の特徴とする。
The rock slope reinforcement structure according to the present invention is:
A bag body covering the perforated hole with a reinforcing material is disposed together with the reinforcing material, the grout material is filled into the bag body, and the grout material filled inside the bag body and the bag body from the inside of the bag body A fourth feature is that the reinforcing material and the rock in both areas are integrated through the both grout materials by hardening of the grout material leaked to the outside.

本発明に係る岩盤斜面の補強構造の施工方法は、
斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材を配置する工程と、当該補強材の周囲で前記穿孔した穴にグラウト材を充填する工程と、充填したグラウト材の硬化により、両方の区域に補強材の定着部を形成する工程を備えることを第1の特徴とする。
The construction method of the rock slope reinforcement structure according to the present invention,
A step of drilling one or a plurality of holes from the slope to the moving rock zone and the immovable bedrock zone, a step of arranging a long reinforcing material having a length of more than 5 m and not more than 100 m across the zone, and the reinforcing material It is a first feature that a step of filling a grout material around the perforated hole and a step of forming a fixing portion of the reinforcing material in both areas by curing the filled grout material.

本発明に係る岩盤斜面の補強構造の施工方法は、
斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材を多数本束状にして配置する工程と、前記穿孔した穴にグラウト材を充填する工程と、充填したグラウト材の硬化により、両方の区域に補強材の定着部を形成する工程と、補強材の定着部の間に補強材とグラウト材を縁切りして自由長部区間を形成する工程を備えることを第2の特徴とする。
The construction method of the rock slope reinforcement structure according to the present invention,
A step of drilling one or a plurality of holes from the slope to the moving rock area and the immovable rock area, and a plurality of long reinforcing materials having a length of more than 5 m and less than 100 m across the both holes are arranged in a bundle. A step of filling the pierced hole with a grout material, a step of forming a fixing portion of the reinforcing material in both areas by hardening of the filled grout material, and a reinforcing material between the fixing portion of the reinforcing material, A second feature is that it includes a step of cutting the grout material to form a free length section.

本発明に係る岩盤斜面の補強構造の施工方法は、
斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材と当該補強材を被覆する袋体を配置する工程と、当該袋体の内部にグラウト材を充填する工程と、袋体の内部に充填したグラウト材と袋体の内部から袋体の外部に漏出したグラウト材の硬化により、両グラウト材を介して補強材および両区間の岩盤を一体化させる工程を備えることを第3の特徴とする。
The construction method of the rock slope reinforcement structure according to the present invention,
A step of drilling one or a plurality of holes from the slope to the moving rock area and the immovable rock area, a long reinforcing material having a length of more than 5 m and not more than 100 m straddling both the holes, and a bag body covering the reinforcing material Both the grout material by filling the grout material inside the bag body, the grout material filled inside the bag body, and the grout material leaking from the inside of the bag body to the outside of the bag body. A third feature is that a step of integrating the reinforcing material and the rock in both sections through the material is provided.

以上説明したように、本発明によると、トップリング崩壊の進行や岩盤の地すべりの進行を抑止することができ、岩盤斜面の安定化と長期耐久性の確保を図ることができる。   As described above, according to the present invention, the progress of the top ring collapse and the landslide of the rock mass can be suppressed, and the rock slope can be stabilized and the long-term durability can be ensured.

また、岩盤斜面に設置する受圧板が不要となるので、施工コストの縮減を図ることができる。   In addition, since a pressure receiving plate installed on the rock slope is not necessary, the construction cost can be reduced.

さらに、従来は、アンカー頭部と受圧板の取り付け部が、金属の発錆により長期的には耐久性が不足する懸念があったが、本発明によると、アンカー頭部と受圧板の取り付け部そのものがないので、かかる耐久性上の懸念がなくなった。   Furthermore, in the past, there was a concern that the anchor head and the pressure receiving plate mounting portion would not be durable in the long term due to metal rusting, but according to the present invention, the anchor head and pressure receiving plate mounting portion Since there is no such thing, this concern about durability has been eliminated.

しかも、コンクリート製や金属製の重い受圧板がないため、景観が向上するとともに、軽量の素材を用いることで工事の施工性、作業性が向上するという効果もある。   In addition, since there is no heavy pressure plate made of concrete or metal, the scenery is improved, and there is an effect that workability and workability of the construction are improved by using a lightweight material.

本発明の第1の実施形態である岩盤斜面の補強構造を示す全体断面図、The whole sectional view showing the reinforcement structure of the rock slope which is the 1st embodiment of the present invention, 図1の補強構造を施工する途中を示す説明図、Explanatory drawing which shows the middle of constructing the reinforcement structure of FIG. 図1の部分拡大図、FIG. 1 is a partially enlarged view of FIG. 図1のA−A線矢視断面図、FIG. 1 is a cross-sectional view taken along line AA in FIG. 補強材にシース管を被せて定着部と自由長部区間を形成する説明図、Explanatory drawing which forms a fixing part and a free length section by covering a reinforcing material with a sheath tube, 本発明の第2の実施形態である岩盤斜面の補強構造を示す全体概略断面図、Overall schematic sectional view showing a reinforcement structure of a rock slope according to a second embodiment of the present invention, 本発明の第3の実施形態である岩盤斜面の補強構造を示す要部断面図である。It is principal part sectional drawing which shows the reinforcement structure of the rock slope which is the 3rd Embodiment of this invention.

以下、本発明を実施するための形態について図面を参照しながら説明する。図1ないし図4は本発明の第1の実施形態を示すもので、図1は岩盤斜面に対し本発明に係る補強構造を適用した断面図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 4 show a first embodiment of the present invention, and FIG. 1 is a sectional view in which a reinforcing structure according to the present invention is applied to a rock slope.

本発明に使用される補強材は、炭素繊維ケーブルなど劣化し難い軽量素材が良いが、エポキシ樹脂やポリエチレン等の合成樹脂で被覆された防食性能の高いPC鋼線などのケーブルあるいはアラミド樹脂の棒状体でも良い。本実施形態は複数本(図示例は3本)のケーブルを使用した例であるが、ケーブルの本数は1本から10本程度まで適用できる。   The reinforcing material used in the present invention is preferably a light-weight material that does not easily deteriorate such as a carbon fiber cable, but is a cable such as a PC steel wire that is coated with a synthetic resin such as an epoxy resin or polyethylene, or a rod shape of an aramid resin. The body may be good. Although the present embodiment is an example using a plurality of cables (three in the illustrated example), the number of cables can be applied from 1 to about 10.

本発明の実施形態を、施工手順に従って以下に説明する。   Embodiment of this invention is described below according to a construction procedure.

図2を参照して、最初に、クリープした岩盤Gに斜面Sからロータリーパッカッションなどの機材(削孔機)を用いて、長さ5m超〜50m、穴径65〜200mmの穴1を削孔し、穴1の内部にケーブル(補強材)2を挿入する。穴1はトップリング等が発生する移動岩盤部Gからトップリング等が発生しない深部の不動岩盤部Gにかけて削孔する。 Referring to FIG. 2, first, hole 1 having a length of more than 5 m to 50 m and a hole diameter of 65 to 200 mm is cut from the slope S to the creeped rock G using equipment such as a rotary passion (hole drilling machine). The cable (reinforcing material) 2 is inserted into the hole 1. Hole 1 is drilled toward immovable rock unit G 2 deep from the mobile rock unit G 1 top ring or the like is not generated top ring or the like occurs.

ケーブル2には、穴1の中で適切な位置にケーブル2を配置するスペーサー3と、穴1にセメントミルク(グラウト材)を注入するグラウト注入管4が結束バンド5で固定され、ケーブル2と付属品(スペーサ3、グラウト注入管4、結束バンド5)の全体が、注入したセメントミルクの削孔部からの漏逸を避けるための布製のパッカー(袋体)6内に収容配置されている。   In the cable 2, a spacer 3 for arranging the cable 2 at an appropriate position in the hole 1 and a grout injection pipe 4 for injecting cement milk (grouting material) into the hole 1 are fixed by a binding band 5. All of the accessories (spacer 3, grout injection tube 4, binding band 5) are accommodated in a cloth packer (bag body) 6 for avoiding leakage of the injected cement milk from the hole drilling portion. .

穴1の内部にケーブル1がパッカー6ごと挿入された後、セメントミルク7をグラウト注入管4から注入する。パッカー6の内部にセメントミルク7が充填されると、パッカー6が膨張し、セメントミルク7がパッカー6の素材(アラミド繊維や合成樹脂繊維などアルカリ性に強い素材の布製で膨張すると網目が拡大する)から滲み出し、図3および図4に示すように、周囲の岩盤とパッカー6との間の隙間にも充填され、時間とともにセメントの硬化が進行する。   After the cable 1 is inserted into the hole 1 together with the packer 6, cement milk 7 is injected from the grout injection tube 4. When the cement milk 7 is filled inside the packer 6, the packer 6 expands, and the cement milk 7 is made of the material of the packer 6 (if it is made of a cloth having a strong alkalinity such as aramid fiber or synthetic resin fiber, the mesh expands) As shown in FIG. 3 and FIG. 4, the gap between the surrounding rock mass and the packer 6 is filled, and hardening of the cement proceeds with time.

セメントミルク7が固化すると、ケーブル2と移動岩盤区域Gの岩盤、ケーブル2と不動岩盤区域Gの岩盤がそれぞれ一体化する。グラウト注入管4は図1に示すように穴1に残して表面からの露出部分のみ除去する。 When the cement milk 7 is solidified, rock moving cable 2 rock zone G 1, rock cable 2 and immovable rock zone G 2 are integrated, respectively. As shown in FIG. 1, the grout injection tube 4 is left in the hole 1 and only the exposed portion from the surface is removed.

本実施形態の補強構造によると、ケーブル2が移動岩盤区域Gの岩盤および不動岩盤区域Gの岩盤と強固に一体化されるから、移動岩盤区域Gのトップリング崩壊が十分抑止される。移動岩盤区域Gの岩盤が豪雨などによる地下水位上昇で不安定化し、すべり面を形成して地すべり的に崩壊しようとするときも、すべり面の深部の不動岩盤区域Gの岩盤と移動岩盤区域Gの岩盤がケーブル2で繋がれているので、移動岩盤区域Gの岩盤は地すべり(滑動)を生じさせない。 According to the reinforcing structure of the present embodiment, since the cable 2 is firmly integrated with rock and immobile rock zone G 2 rock moving rock zone G 1, the top ring decay is sufficiently suppressed mobile rock zone G 1 . Rock movement rock zone G 1 is unstable in the groundwater level rises due to heavy rain, even when attempting to landslide collapse to form a sliding surface, moving rock and rock immovable rock zone G 2 deep slip surface since rock zone G 1 is being connected by a cable 2, rock moving rock zone G 1 does not cause a landslide (sliding).

パッカーを用いるのは、トップリングを起こす岩盤に亀裂が発達して亀裂からセメントミルクが漏逸するのを避けるためでもあり、セメントミルクが漏逸する割れ目が少ない岩盤の場合はパッカーを使用することなく繊維を混入したセメントミルクを用いることで漏脱の問題を解決することができる。   The use of the packer is also to avoid cracks developing in the bedrock that causes the top ring and the leakage of cement milk from the cracks. Use the packer for rocks with few cracks from which the cement milk leaks. The problem of leakage can be solved by using cement milk mixed with fibers.

本実施形態によると、ケーブル2の耐久性が高く、定着部区間が全体に亘るので、非常に長期に亘って斜面の安定を保つことができる。従来工法の場合は、岩盤内部で起きるトップリング現象そのものを止めることはできなかったが、本工法ではトップリングの進行そのものを止めることができる。岩盤内部に応じてケーブル2の長さは50m超〜100mの範囲で適宜設定できる。   According to this embodiment, since the cable 2 has high durability and the fixing section extends over the entire surface, the slope can be kept stable for a very long time. In the case of the conventional method, the top ring phenomenon itself that occurs inside the bedrock could not be stopped, but in this method, the progress of the top ring itself can be stopped. The length of the cable 2 can be appropriately set in the range of more than 50 m to 100 m depending on the inside of the bedrock.

また、重い金属性の受圧板が無いため、斜面での工事の作業性が向上するとともに、経済性が向上する。   In addition, since there is no heavy metallic pressure receiving plate, workability on the slope is improved and economic efficiency is improved.

図1に示すケーブル2は全体にわたり定着部区間を形成したが、図5に示すように1または複数のシース管8(全長はケーブル2の全長よりも短い)をケーブル2の途中に被せて配置し、これによりケーブル2とセメントの付着を縁切りして定着部区間T1の間に自由長部区間T2を形成してよい。シース管8を利用することで複数の定着部を形成し、それぞれを移動岩盤区域Gと不動岩盤区域Gに配置することができる。シース管の替りにケーブル2の途中にブチルゴムを巻いたり、PC鋼線の場合はシース管の内部に防錆油を充填し、防錆油が漏れないようにシース管の両端をブチルゴムとテープなどでシールして、セメントとの付着を縁切りしてもよい。 The cable 2 shown in FIG. 1 forms a fixing section throughout, but as shown in FIG. 5, one or a plurality of sheath tubes 8 (the overall length is shorter than the overall length of the cable 2) are placed in the middle of the cable 2. Accordingly, the cable 2 and the cement may be separated from each other to form a free length section T2 between the fixing section T1. Forming a plurality of fixing portions by utilizing sheath tube 8 may be disposed respectively on the moving rock zone G 1 and immovable rock zone G 2. Instead of the sheath tube, butyl rubber is wrapped in the middle of the cable 2, or in the case of PC steel wire, the sheath tube is filled with rust-preventive oil, and both ends of the sheath tube are sealed with butyl rubber and tape so that the rust-preventive oil does not leak It is possible to cut off the adhesion with cement by sealing with.

図6は本発明の第2の実施形態を示すもので、複数本のケーブル2A〜2Cについて移動岩盤区域Gと不動岩盤区域Gに形成される定着部(定着部区間)T1をそれぞれ分散させた例である。なお、図5では理解を容易にするために穿孔穴やパッカー等の付属品は省略している。 Figure 6 shows a second embodiment of the present invention, dispersion fixing portion formed in the moving rock zone G 1 and immovable rock zone G 2 for a plurality of cables 2A~2C the (fixing unit period) T1, respectively This is an example. In FIG. 5, accessories such as a hole and a packer are omitted for easy understanding.

複数本のケーブル2A〜2C(図1に示す3本のケーブル2)に対し図5に示すシース管8を前後の位置が互いにずれるように配置し、他の付属品とともに穴内に挿入し、シース管の周囲で穴内にセメントミルクを充填し、充填したセメントミルクの硬化により、シース管のない区間に定着部(定着部区間)T1が形成される(シース管で覆われた区間は自由長部が形成される)。   The sheath tube 8 shown in FIG. 5 is arranged with respect to a plurality of cables 2A to 2C (three cables 2 shown in FIG. 1) so that the front and rear positions are shifted from each other, and inserted into the hole together with other accessories, and the sheath Cement milk is filled in the hole around the tube, and by fixing the filled cement milk, a fixing portion (fixing portion section) T1 is formed in a section without the sheath pipe (the section covered with the sheath pipe is a free length section) Is formed).

ケーブルが複数本の場合は、定着部をケーブルの本数に応じて増やすことができる。このため、定着部を穴の全長ではなく、一部の岩盤に限定し、定着部に作用する応力を数か所に分散することができる。図6に示すように、ケーブルの定着部を異なる位置に分散させることで、応力が集中すると地盤破壊が起きそうな場合でも、地盤破壊を起こさず、長期的な耐久性を確保することができる。   When there are a plurality of cables, the fixing unit can be increased according to the number of cables. For this reason, the fixing portion is limited to a part of the bedrock, not the entire length of the hole, and the stress acting on the fixing portion can be dispersed in several places. As shown in FIG. 6, by dispersing the fixing portions of the cable at different positions, even if ground breakdown is likely to occur when stress is concentrated, long-term durability can be ensured without causing ground breakdown. .

図7は本発明の第3の実施形態を示すもので、斜面表層部が軟質な崩積土からなる場合は、ごく表層の崩壊を防止するために、モルタル吹付面10を形成して斜面を補強するようにした例である。   FIG. 7 shows a third embodiment of the present invention. When the slope surface layer portion is made of soft collapsed soil, the mortar spraying surface 10 is formed to prevent the slope surface from collapsing. This is an example of reinforcement.

同図に示すように、本実施形態では、斜面に金網11を配置し、図1に示す複数のケーブル2のうち斜面から突出する1本のケーブル2の上端部に金網11の上から板状の座金(角座金)12を介してナット(高ナット)13をエポキシ樹脂硬化剤等で固定し、その上にモルタル吹付面10を形成するようにする。   As shown in the figure, in this embodiment, a wire mesh 11 is arranged on a slope, and a plate-like shape is formed on the top of the wire mesh 11 at the upper end of one cable 2 protruding from the slope among the plurality of cables 2 shown in FIG. A nut (high nut) 13 is fixed with an epoxy resin curing agent or the like through a washer (square washer) 12 and a mortar spraying surface 10 is formed thereon.

本実施形態によると、表面が軟質な崩積土であっても、表面を適切に保護しかつ岩盤内部で起きるトップリング現象の進行を止めることができる。   According to this embodiment, even if the surface is soft collapse, it is possible to appropriately protect the surface and stop the progress of the top ring phenomenon occurring inside the rock.

本発明は、岩盤の補強構造およびその施工方法として幅広く利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used as a rock reinforcement structure and its construction method.

1 穴
2 ケーブル(補強材)
3 スペーサー
4 グラウト注入管
5 結束バンド
6 パッカー
7 セメントミルク
8 シース管
10 モルタル吹付面
11 金網
12 座金
13 ナット
G 岩盤
移動岩盤区域
不動岩盤区域
S 斜面
T1 定着部区間(定着部)
T2 自由長部区間(自由長部)
1 hole 2 cable (reinforcing material)
3 spacer 4 grout injection pipe 5 binding band 6 packer 7 cement milk 8 sheath pipe 10 mortar spraying surface 11 wire net 12 washer 13 nut G bedrock G 1 moving bedrock area G 2 fixed bedrock area S slope T1 fixing section (fixing section)
T2 Free length section (Free length section)

Claims (7)

斜面から移動岩盤区域および不動岩盤区域にかけて穿孔された1または複数の穴に両区域に跨る長さ5m超100m以下の長尺な補強材が配置され、当該補強材の周囲で前記穿孔された穴にグラウト材が充填され、当該グラウト材の硬化により、両方の区域に補強材の定着部が形成されていることを特徴とする岩盤斜面の補強構造。   A long reinforcing material having a length of more than 5 m and not more than 100 m straddling both areas is arranged in one or a plurality of holes drilled from the slope to the moving rock area and the immovable rock area, and the holes drilled around the reinforcing material A rock slope reinforcement structure characterized in that a grout material is filled in and a fixing portion of the reinforcement material is formed in both areas by hardening of the grout material. 補強材の定着部区間の間に補強材とグラウト材が縁切りされた自由長部区間が形成されていることを特徴とする請求項1記載の岩盤斜面の補強構造。   2. The rock slope reinforcing structure according to claim 1, wherein a free length section in which a reinforcing material and a grout material are cut off is formed between fixing section sections of the reinforcing material. 複数本の補強材が束状になって前記穿孔された穴に配置されており、補強材ごとに両方の区域に形成された定着部が互いに分散されていることを特徴とする請求項1または請求項2記載の岩盤斜面の補強構造。   The plurality of reinforcing members are bundled and arranged in the perforated hole, and fixing portions formed in both areas for each reinforcing member are dispersed with each other. The reinforcement structure of the rock slope according to claim 2. 前記穿孔された穴に補強材を被覆する袋体が補強材と共に配置され、前記グラウト材が前記袋体の内部に充填され、袋体の内部に充填されたグラウト材と袋体の内部から袋体の外部に漏出されたグラウト材の硬化により、両グラウト材を介して補強材および両区域の岩盤が一体化されることを特徴とする請求項1ないし請求項3のいずれか一項に記載の岩盤斜面の補強構造。   A bag body covering the perforated hole with a reinforcing material is disposed together with the reinforcing material, the grout material is filled inside the bag body, and the grout material filled inside the bag body and the bag from the inside of the bag body The reinforcing material and the rock mass in both areas are integrated through the both grout materials by hardening of the grout material leaked to the outside of the body. Reinforcement structure of rock slopes. 斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材を配置する工程と、当該補強材の周囲で前記穿孔した穴にグラウト材を充填する工程と、充填したグラウト材の硬化により、両方の区域に補強材の定着部を形成する工程を備えることを特徴とする岩盤斜面の補強構造の施工方法。   A step of drilling one or a plurality of holes from the slope to the moving rock zone and the immovable bedrock zone, a step of arranging a long reinforcing material having a length of more than 5 m and not more than 100 m across the zone, and the reinforcing material A rock slope reinforcing structure comprising: a step of filling a grout material around the perforated hole, and a step of forming a fixing portion of the reinforcing material in both areas by hardening of the filled grout material. Construction method. 斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材を多数本束状にして配置する工程と、前記穿孔した穴にグラウト材を充填する工程と、充填したグラウト材の硬化により、両方の区域に補強材の定着部を形成する工程と、補強材の定着部の間に補強材とグラウト材を縁切りして自由長部区間を形成する工程を備えることを特徴とする岩盤斜面の補強構造の施工方法。   A step of drilling one or a plurality of holes from the slope to the moving rock area and the immovable rock area, and a plurality of long reinforcing materials having a length of more than 5 m and less than 100 m across the both holes are arranged in a bundle. A step of filling the pierced hole with a grout material, a step of forming a fixing portion of the reinforcing material in both areas by hardening of the filled grout material, and a reinforcing material between the fixing portion of the reinforcing material, A method of constructing a rock slope reinforcement structure comprising a step of cutting a grout material to form a free length section. 斜面から移動岩盤区域および不動岩盤区域にかけて1又は複数の穴を穿孔する工程と、穿孔した穴に両区域に跨る長さ5m超100m以下の長尺な補強材と当該補強材を被覆する袋体を配置する工程と、当該袋体の内部にグラウト材を充填する工程と、袋体の内部に充填したグラウト材と袋体の内部から袋体の外部に漏出したグラウト材の硬化により、両グラウト材を介して補強材および両区間の岩盤を一体化させる工程を備えることを特徴とする岩盤斜面の補強構造の施工方法。   A step of drilling one or a plurality of holes from the slope to the moving rock area and the immovable rock area, a long reinforcing material having a length of more than 5 m and not more than 100 m straddling both the holes, and a bag body covering the reinforcing material Both the grout material by filling the grout material inside the bag body, the grout material filled inside the bag body, and the grout material leaking from the inside of the bag body to the outside of the bag body. A method for constructing a reinforcement structure for a rock slope, comprising a step of integrating the reinforcing material and the rock in both sections through a material.
JP2017039014A 2017-03-02 2017-03-02 Reinforcement structure of rock slope with long-term durability and its construction method Active JP6872231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039014A JP6872231B2 (en) 2017-03-02 2017-03-02 Reinforcement structure of rock slope with long-term durability and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039014A JP6872231B2 (en) 2017-03-02 2017-03-02 Reinforcement structure of rock slope with long-term durability and its construction method

Publications (2)

Publication Number Publication Date
JP2018145614A true JP2018145614A (en) 2018-09-20
JP6872231B2 JP6872231B2 (en) 2021-05-19

Family

ID=63589695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039014A Active JP6872231B2 (en) 2017-03-02 2017-03-02 Reinforcement structure of rock slope with long-term durability and its construction method

Country Status (1)

Country Link
JP (1) JP6872231B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469075A (en) * 2018-10-26 2019-03-15 中铁二院成都勘察设计研究院有限责任公司 A kind of landslide control method
CN115125937A (en) * 2022-06-27 2022-09-30 中建五局华东建设有限公司 Protection measure for pile head reinforcing steel bar
CN115354678A (en) * 2022-09-30 2022-11-18 紫金(长沙)工程技术有限公司 Method and device for treating dangerous rock on high and steep slope of mine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173422A (en) * 1983-03-18 1984-10-01 Kensetsu Kiso Eng Kk Bedrock anchor
JPH0533338A (en) * 1991-07-30 1993-02-09 Kensetsu Kiso Eng Co Ltd Anchor
JPH10338936A (en) * 1997-04-11 1998-12-22 S Ii:Kk Anchor of board receiving no pressure and anchoring method thereof
JP2002180464A (en) * 2000-12-14 2002-06-26 Ground Engineering Kk Anchor tendon structure of permanent anchor and packer member thereof
JP2004190252A (en) * 2002-12-09 2004-07-08 Shin Gijutsu Koei Kk Landslide prevention structure
US20060201100A1 (en) * 2005-03-10 2006-09-14 Dywidag-Systems International Gmbh Method and arrangement for stressing a staggered anchorage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173422A (en) * 1983-03-18 1984-10-01 Kensetsu Kiso Eng Kk Bedrock anchor
JPH0533338A (en) * 1991-07-30 1993-02-09 Kensetsu Kiso Eng Co Ltd Anchor
JPH10338936A (en) * 1997-04-11 1998-12-22 S Ii:Kk Anchor of board receiving no pressure and anchoring method thereof
JP2002180464A (en) * 2000-12-14 2002-06-26 Ground Engineering Kk Anchor tendon structure of permanent anchor and packer member thereof
JP2004190252A (en) * 2002-12-09 2004-07-08 Shin Gijutsu Koei Kk Landslide prevention structure
US20060201100A1 (en) * 2005-03-10 2006-09-14 Dywidag-Systems International Gmbh Method and arrangement for stressing a staggered anchorage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469075A (en) * 2018-10-26 2019-03-15 中铁二院成都勘察设计研究院有限责任公司 A kind of landslide control method
CN115125937A (en) * 2022-06-27 2022-09-30 中建五局华东建设有限公司 Protection measure for pile head reinforcing steel bar
CN115354678A (en) * 2022-09-30 2022-11-18 紫金(长沙)工程技术有限公司 Method and device for treating dangerous rock on high and steep slope of mine
CN115354678B (en) * 2022-09-30 2023-09-26 紫金(长沙)工程技术有限公司 Mine high-steep side slope dangerous rock treatment method and device

Also Published As

Publication number Publication date
JP6872231B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP4659513B2 (en) A method for reinforcing a hollow columnar object.
KR100913569B1 (en) Phc pile for retaining wall
JP2018145614A (en) Reinforcing structure for bedrock slope with long-term durability and construction method thereof
EP1880059B1 (en) Method to increase the load capability of a soil
CN105804076A (en) Pre-stressed anchor cable and foundation pit supporting pre-stressed anchor cable construction method
KR100914158B1 (en) Process of blocking water penetration and blocking earth collapsing by using impermeable wall without strut
CN110004927A (en) Prestressing force miniature pile construction method
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP2876056B2 (en) New material ground permanent anchor
JP2013170378A (en) Anchor body, reinforcement structure of existing building, installation method of anchor body, construction method of anchor body, and drilling machine
US4126001A (en) Method for constructing a soil structure
KR102109487B1 (en) Reinforcement pile with fiber sheet for ground improvement and earthquake-proof
JP2012167473A (en) Reinforcement structure and reinforcement method of columnar structure
JP5423134B2 (en) Foundation structure
KR100746593B1 (en) Method for Supporting Temporary Retaining Wall Using Support-line and Pre-loading Strut
KR101853185B1 (en) Pile grouting device for enhanced friction of skin
JP5504951B2 (en) Seismic reinforcement method for structures and seismic reinforcement structure for structures
JP5758512B2 (en) Method for reinforcing rock fall protection fence and rock fall protection fence
JP6220602B2 (en) Ground anchor and ground anchor method
KR100941438B1 (en) Upper girder part waterproof method for 2 arch tunnel
KR101125615B1 (en) The bar anchors for stabilizing ground and it's procedure of installation
KR100869369B1 (en) The ground reinforcement apparatus and method grouting type using bundle steel pipe
CN110714786A (en) High polymer grouting method for shield tunnel and shield tunnel
KR20200101636A (en) A concrete complex pile for building wall with easy Verticality and horizontality of connection
JP2016035177A (en) Wall structure and construction method for wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6872231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150