JP2012118219A - Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus - Google Patents

Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus Download PDF

Info

Publication number
JP2012118219A
JP2012118219A JP2010266851A JP2010266851A JP2012118219A JP 2012118219 A JP2012118219 A JP 2012118219A JP 2010266851 A JP2010266851 A JP 2010266851A JP 2010266851 A JP2010266851 A JP 2010266851A JP 2012118219 A JP2012118219 A JP 2012118219A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
light shielding
sealing member
crystal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010266851A
Other languages
Japanese (ja)
Inventor
Kosuke Fukui
甲祐 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010266851A priority Critical patent/JP2012118219A/en
Publication of JP2012118219A publication Critical patent/JP2012118219A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal device capable of sufficiently hardening a sealing member while suppressing deterioration of liquid crystal caused by light hardening the sealing member, and further to provide a manufacturing method of the liquid crystal device.SOLUTION: A liquid crystal device comprises: a pair of substrates 10 and 20 holding a liquid crystal layer 50 therebetween and being disposed opposite to each other; a frame-shaped seal member having an injection port for liquid crystal constituting the liquid crystal layer 50 and surrounding the liquid crystal layer 50 held between the pair of substrates; a sealing member 54 made of photocurable resin for sealing the injection port; and a light shielding member 60 disposed at a position opposite to the sealing member 54 of at least one substrate 20 of the pair of substrates 10 and 20. The substrate 20 provided with the light shielding member 60 has a light transmissivity for transmitting light, which hardens the sealing member 54. A light transmittance of the light shielding member 60 for transmitting the light disposed at the position opposite to the sealing member 54 is gradually decreased as closer to the liquid crystal layer 50.

Description

本発明は、液晶装置、液晶装置の製造方法、及び電子機器に関するものである。   The present invention relates to a liquid crystal device, a method for manufacturing a liquid crystal device, and an electronic apparatus.

従来、液晶装置の製造方法として、真空注入方式が広く用いられている。真空注入方式は、先ず、一対の基板のうちの一方の基板上に液晶の注入口を有する枠状のシール部材を描画し、一対の基板を貼り合わせる。次に、真空中で容器に溜めた液晶に一対の基板の液晶注入口側の端面を浸け、一対の基板とシール部材とに囲まれた領域に液晶を注入し、液晶注入口を封止部材により封止する。このような工程により、真空注入方式における液晶装置が製造される。   Conventionally, a vacuum injection method has been widely used as a method of manufacturing a liquid crystal device. In the vacuum injection method, first, a frame-like seal member having a liquid crystal injection port is drawn on one of a pair of substrates, and the pair of substrates are bonded to each other. Next, the end face on the liquid crystal inlet side of the pair of substrates is immersed in the liquid crystal stored in the container in vacuum, the liquid crystal is injected into a region surrounded by the pair of substrates and the seal member, and the liquid crystal inlet is sealed. Seal with. By such a process, a liquid crystal device in a vacuum injection method is manufactured.

液晶注入口の封止作業は、封止部材として紫外線硬化性樹脂を用い、この封止部材に紫外線を照射して硬化させることにより行われる。紫外線の照射は基板の外側に遮光マスクを設けることで行われるが、遮光マスクの縁部から回り込んだ紫外線が液晶に照射されることがある。液晶に紫外線が照射されると、液晶が劣化し、焼き付きや表示ムラが発生してしまう。そのため、特許文献1の液晶表示装置の製造方法では、一対の基板の一方の基板に、樹脂部の硬化に必要な紫外線の特定波長域を比較的よく透過し、それ以外の波長域(液晶の劣化の原因となる紫外線の波長域)を遮断するバンドパスフィルターを形成し、このバンドパスフィルターが形成された基板の外側から紫外線を照射することにより樹脂部を硬化している。   The sealing operation of the liquid crystal injection port is performed by using an ultraviolet curable resin as a sealing member and irradiating the sealing member with ultraviolet rays to cure. Irradiation of ultraviolet rays is performed by providing a light shielding mask on the outside of the substrate, but the liquid crystal may be irradiated with ultraviolet rays that wrap around from the edge of the light shielding mask. When the liquid crystal is irradiated with ultraviolet rays, the liquid crystal deteriorates, and image sticking or display unevenness occurs. Therefore, in the manufacturing method of the liquid crystal display device of Patent Document 1, a specific wavelength region of ultraviolet rays necessary for curing the resin portion is relatively well transmitted to one of the pair of substrates, and the other wavelength region (the liquid crystal region) A band-pass filter that cuts off the wavelength region of ultraviolet rays that causes deterioration is formed, and the resin portion is cured by irradiating ultraviolet rays from the outside of the substrate on which the band-pass filter is formed.

特開平10−221700号公報JP-A-10-221700

特許文献1の液晶表示装置の製造方法では、樹脂部の一部をバンドパスフィルターと重ねて配置することで紫外線の照射による液晶の劣化を抑制している。ここで、樹脂部のバンドパスフィルターと重なる部分では紫外線の透過率が大きく変化する。例えば、バンドパスフィルターの厚みを厚くして紫外線の透過率を小さくすると、液晶の劣化は抑制できるものの樹脂部の硬化が不十分となる。一方、バンドパスフィルターの厚みを薄くして紫外線の透過率を大きくすると、樹脂部を十分に硬化できるものの液晶の劣化を抑制することが困難となる。   In the method of manufacturing a liquid crystal display device disclosed in Patent Document 1, deterioration of liquid crystal due to ultraviolet irradiation is suppressed by arranging a part of the resin portion so as to overlap the band pass filter. Here, in the part which overlaps the band pass filter of the resin part, the transmittance | permeability of an ultraviolet-ray changes a lot. For example, if the thickness of the bandpass filter is increased to reduce the ultraviolet transmittance, the deterioration of the liquid crystal can be suppressed, but the resin portion is not sufficiently cured. On the other hand, if the thickness of the bandpass filter is reduced and the transmittance of ultraviolet rays is increased, the resin portion can be sufficiently cured, but it becomes difficult to suppress deterioration of the liquid crystal.

本発明はこのような事情に鑑みてなされたものであって、封止部材を硬化させる光による液晶の劣化を抑制するとともに、封止部材を十分に硬化させることが可能な液晶装置、液晶装置の製造方法を提供することを目的とする。また、前記液晶装置を備えた、表示品質が高く、信頼性に優れた電子機器を提供することを目的とする。   The present invention has been made in view of such circumstances, and a liquid crystal device and a liquid crystal device capable of suppressing deterioration of liquid crystal due to light for curing the sealing member and sufficiently curing the sealing member It aims at providing the manufacturing method of. It is another object of the present invention to provide an electronic device that includes the liquid crystal device and has high display quality and excellent reliability.

上記の課題を解決するため、本発明の液晶装置は、液晶層を挟持して対向配置された一対の基板と、前記液晶層を構成する液晶の注入口を有し、前記一対の基板間に挟持された前記液晶層を取り囲む枠状のシール部材と、前記注入口を封止する、光硬化性樹脂からなる封止部材と、前記一対の基板の少なくとも一方の基板の前記封止部材に対向する位置に配置された遮光部材と、を備え、前記遮光部材が配置された基板は、前記封止部材を硬化させる光を透過する光透過性を有しており、前記封止部材に対向する位置に配置された前記遮光部材は、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなっていることを特徴とする。   In order to solve the above-described problems, a liquid crystal device of the present invention includes a pair of substrates disposed to face each other with a liquid crystal layer interposed therebetween, and a liquid crystal injection port constituting the liquid crystal layer, and the liquid crystal device is interposed between the pair of substrates. A frame-shaped sealing member surrounding the sandwiched liquid crystal layer, a sealing member made of a photocurable resin that seals the injection port, and the sealing member of at least one of the pair of substrates facing the sealing member A light-shielding member disposed at a position where the light-shielding member is disposed, and the substrate on which the light-shielding member is disposed has a light-transmitting property that transmits light that cures the sealing member, and faces the sealing member. The light-shielding member arranged at a position has a light transmittance that transmits the light gradually decreasing as it approaches the liquid crystal layer.

この液晶装置によれば、遮光部材が封止部材を硬化させる光を透過する光透過率が液晶層に近づくに従って徐々に小さくなっているので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶に近い部分に入射する光の量を小さくしつつ、封止部材の液晶から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。したがって、封止部材を硬化させる光による液晶の劣化を抑制するとともに、封止部材を十分に硬化させることが可能な液晶装置を提供することができる。   According to this liquid crystal device, the light transmittance at which the light shielding member transmits the light that cures the sealing member gradually decreases as it approaches the liquid crystal layer. Therefore, the light that passes through the light shielding member and enters the sealing member The amount gradually decreases as the liquid crystal layer is approached. Therefore, it is possible to sufficiently cure the sealing member by increasing the amount of light incident on the portion of the sealing member remote from the liquid crystal while reducing the amount of light incident on the portion of the sealing member close to the liquid crystal. . Therefore, it is possible to provide a liquid crystal device capable of suppressing deterioration of the liquid crystal due to light for curing the sealing member and sufficiently curing the sealing member.

前記液晶装置において、前記光透過率が徐々に小さくされている前記遮光部材は、前記封止部材と対向した位置と、該封止部材に隣接する前記液晶層と対向した位置との双方に渉った範囲の領域に設けられていてもよい。   In the liquid crystal device, the light-shielding member whose light transmittance is gradually reduced interferes with both a position facing the sealing member and a position facing the liquid crystal layer adjacent to the sealing member. It may be provided in the area of the range.

この液晶装置によれば、製造誤差によって封止部材と遮光部材の位置が若干ずれても、確実に封止部材に光を照射することができる。よって、封止部材をより確実に硬化させることができる。   According to this liquid crystal device, even if the sealing member and the light shielding member are slightly displaced due to a manufacturing error, the sealing member can be reliably irradiated with light. Therefore, the sealing member can be cured more reliably.

前記液晶装置において、前記光透過率が徐々に小さくされている前記遮光部材は、前記基板の上面の法線方向から視て、前記封止部材の前記液晶層と反対側の端部と重ならないように配置されていてもよい。   In the liquid crystal device, the light shielding member whose light transmittance is gradually reduced does not overlap an end portion of the sealing member opposite to the liquid crystal layer when viewed from the normal direction of the upper surface of the substrate. It may be arranged as follows.

この液晶装置によれば、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層と反対側の端部に遮光部材を介さずに光を入射させることができる。よって、液晶の劣化を抑制するとともに、封止部材の液晶層と反対側の端部に入射する光の量を大きくして封止部材をより確実に硬化させることができる。   According to this liquid crystal device, the amount of light incident on the portion of the sealing member close to the liquid crystal layer is reduced, and light is incident on the end of the sealing member opposite to the liquid crystal layer without the light shielding member. be able to. Therefore, while suppressing deterioration of a liquid crystal, the amount of light which injects into the edge part on the opposite side to the liquid-crystal layer of a sealing member can be enlarged, and a sealing member can be hardened more reliably.

前記液晶装置において、前記光透過率が徐々に小さくされている前記遮光部材は、前記封止部材と対向した位置と、該封止部材に隣接する前記シール部材と対向した位置との双方に渉った範囲の領域に設けられていてもよい。   In the liquid crystal device, the light-shielding member whose light transmittance is gradually reduced interferes with both a position facing the sealing member and a position facing the sealing member adjacent to the sealing member. It may be provided in the area of the range.

この液晶装置によれば、製造誤差によって封止部材と遮光部材の位置が若干ずれても、確実に封止部材に光を照射することができる。よって、封止部材をより確実に硬化させることができる。   According to this liquid crystal device, even if the sealing member and the light shielding member are slightly displaced due to a manufacturing error, the sealing member can be reliably irradiated with light. Therefore, the sealing member can be cured more reliably.

前記液晶装置において、前記遮光部材は、金属膜に複数の開口部が形成されてなり、前記複数の開口部の密度が前記液晶層に近づくに従って徐々に小さくなるよう構成されていてもよい。   In the liquid crystal device, the light blocking member may be configured such that a plurality of openings are formed in a metal film, and the density of the plurality of openings gradually decreases as the liquid crystal layer is approached.

この液晶装置によれば、金属膜の複数の開口部の密度が液晶層に近づくに従って徐々に小さくなるので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。   According to this liquid crystal device, since the density of the plurality of openings in the metal film gradually decreases as it approaches the liquid crystal layer, the amount of light that passes through the light shielding member and enters the sealing member gradually increases as it approaches the liquid crystal layer. Becomes smaller. Therefore, the amount of light incident on the portion of the sealing member near the liquid crystal layer is reduced, while the amount of light incident on the portion of the sealing member far from the liquid crystal layer is increased to sufficiently cure the sealing member. Can do.

前記液晶装置において、前記遮光部材は、金属膜からなり、前記金属膜の厚みが前記液晶層に近づくに従って徐々に厚くなるよう構成されており、これにより、前記光透過率が前記液晶層に近づくに従って徐々に小さくなっていてもよい。   In the liquid crystal device, the light shielding member is made of a metal film, and is configured such that the thickness of the metal film gradually increases as it approaches the liquid crystal layer, whereby the light transmittance approaches the liquid crystal layer. It may be gradually smaller according to.

この液晶装置によれば、金属膜の厚みが液晶層に近づくに従って徐々に厚くなるので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。   According to this liquid crystal device, since the thickness of the metal film gradually increases as it approaches the liquid crystal layer, the amount of light that passes through the light shielding member and enters the sealing member gradually decreases as it approaches the liquid crystal layer. Therefore, the amount of light incident on the portion of the sealing member near the liquid crystal layer is reduced, while the amount of light incident on the portion of the sealing member far from the liquid crystal layer is increased to sufficiently cure the sealing member. Can do.

前記液晶装置において、前記封止部材は、前記基板の上面の法線方向から視て、前記液晶層と反対側の端部が前記一方の基板の端縁から露出するよう配置されていてもよい。   In the liquid crystal device, the sealing member may be arranged such that an end portion on the side opposite to the liquid crystal layer is exposed from an edge of the one substrate when viewed from the normal direction of the upper surface of the substrate. .

この液晶装置によれば、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層と反対側の端部に基板を介さずに光を入射させることができる。よって、液晶の劣化を抑制するとともに、封止部材の液晶層と反対側の端部に入射する光の量を大きくして封止部材をより確実に硬化させることができる。   According to this liquid crystal device, the amount of light incident on the portion of the sealing member close to the liquid crystal layer is reduced, and light is incident on the end of the sealing member opposite to the liquid crystal layer without passing through the substrate. Can do. Therefore, while suppressing deterioration of a liquid crystal, the amount of light which injects into the edge part on the opposite side to the liquid-crystal layer of a sealing member can be enlarged, and a sealing member can be hardened more reliably.

前記液晶装置において、前記光硬化性樹脂は、紫外線硬化性樹脂であってもよい。   In the liquid crystal device, the photocurable resin may be an ultraviolet curable resin.

紫外線硬化性樹脂は、接着強度が高く、秒単位で硬化するという生産性に優れた特徴を有することが知られている。よって、光硬化性樹脂が紫外線硬化性樹脂であることで、封止部材を短時間で確実に硬化させることが可能となる。   It is known that the ultraviolet curable resin has a high adhesive strength and an excellent productivity that cures in seconds. Therefore, since the photocurable resin is an ultraviolet curable resin, the sealing member can be reliably cured in a short time.

本発明の液晶装置の製造方法は、一対の基板間に液晶層を挟持してなる液晶装置の製造方法であって、前記一対の基板の一方の基板または他方の基板に前記液晶層を構成する液晶の注入口を有する、前記基板の上面の法線方向から視て枠状のシール部材を形成する工程と、前記一方の基板と前記他方の基板とを、前記シール部材を介して対向させて貼り合わせる工程と、前記一対の基板と前記シール部材とに囲まれた領域に前記注入口から前記液晶を注入し、前記注入口を光硬化性樹脂からなる封止部材により封止する工程と、前記一対の基板の少なくとも一方の、前記封止部材を硬化させる光を透過する光透過性を有する基板の前記封止部材に対向する位置に、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなる遮光部材を配置する工程と、前記遮光部材が配置された基板の外側から前記遮光部材を介して前記封止部材に向けて前記光を照射する工程と、を有することを特徴とする。   The method for manufacturing a liquid crystal device according to the present invention is a method for manufacturing a liquid crystal device in which a liquid crystal layer is sandwiched between a pair of substrates, and the liquid crystal layer is formed on one or the other of the pair of substrates. A step of forming a frame-shaped sealing member as viewed from the normal direction of the upper surface of the substrate having a liquid crystal inlet, and the one substrate and the other substrate are opposed to each other with the sealing member interposed therebetween. A step of bonding, a step of injecting the liquid crystal from the injection port into a region surrounded by the pair of substrates and the sealing member, and sealing the injection port with a sealing member made of a photocurable resin; At least one of the pair of substrates has a light transmittance that transmits the light in the liquid crystal layer at a position facing the sealing member of a substrate that transmits light that cures the sealing member. Shielding that gradually decreases as it approaches Disposing a member, characterized in that it and a step of irradiating the light toward the sealing member from the outside of the substrate on which the light blocking member is disposed through said light blocking member.

この製造方法によれば、封止部材を硬化させる光を透過する光透過率が液晶層に近づくに従って徐々に小さくなる遮光部材が配置されるので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。したがって、封止部材を硬化させる光による液晶の劣化を抑制するとともに、封止部材を十分に硬化させることが可能となる。   According to this manufacturing method, the light shielding member that gradually decreases as the light transmittance for transmitting the light for curing the sealing member approaches the liquid crystal layer is disposed, so that the light is transmitted through the light shielding member and enters the sealing member. The amount of light gradually decreases as it approaches the liquid crystal layer. Therefore, the amount of light incident on the portion of the sealing member near the liquid crystal layer is reduced, while the amount of light incident on the portion of the sealing member far from the liquid crystal layer is increased to sufficiently cure the sealing member. Can do. Therefore, deterioration of the liquid crystal due to light for curing the sealing member can be suppressed, and the sealing member can be sufficiently cured.

前記液晶装置の製造方法において、前記遮光部材は、金属膜に複数の開口部が形成されてなり、前記複数の開口部の密度が前記液晶層に近づくに従って徐々に小さくなるよう構成されていてもよい。   In the method for manufacturing the liquid crystal device, the light shielding member may be configured such that a plurality of openings are formed in a metal film, and the density of the plurality of openings gradually decreases as the liquid crystal layer is approached. Good.

この製造方法によれば、金属膜の複数の開口部の密度が液晶層に近づくに従って徐々に小さくなるので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。   According to this manufacturing method, since the density of the plurality of openings in the metal film gradually decreases as it approaches the liquid crystal layer, the amount of light that passes through the light shielding member and enters the sealing member gradually increases as it approaches the liquid crystal layer. Becomes smaller. Therefore, the amount of light incident on the portion of the sealing member near the liquid crystal layer is reduced, while the amount of light incident on the portion of the sealing member far from the liquid crystal layer is increased to sufficiently cure the sealing member. Can do.

前記液晶装置の製造方法において、前記遮光部材は、金属膜からなり、前記金属膜の厚みが前記液晶層に近づくに従って徐々に厚くなるよう構成されており、これにより、前記光透過率が前記液晶層に近づくに従って徐々に小さくなっていてもよい。   In the method for manufacturing the liquid crystal device, the light shielding member is made of a metal film, and the thickness of the metal film gradually increases as the thickness of the metal film approaches the liquid crystal layer. It may gradually become smaller as it approaches the layer.

この製造方法によれば、金属膜の厚みが液晶層に近づくに従って徐々に厚くなるので、遮光部材を透過して封止部材に入射する光の量は液晶層に近づくに従って徐々に小さくなる。そのため、封止部材の液晶層に近い部分に入射する光の量を小さくしつつ、封止部材の液晶層から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。   According to this manufacturing method, since the thickness of the metal film gradually increases as it approaches the liquid crystal layer, the amount of light that passes through the light shielding member and enters the sealing member gradually decreases as it approaches the liquid crystal layer. Therefore, the amount of light incident on the portion of the sealing member near the liquid crystal layer is reduced, while the amount of light incident on the portion of the sealing member far from the liquid crystal layer is increased to sufficiently cure the sealing member. Can do.

前記液晶装置の製造方法において、前記遮光部材は、前記一対の基板の少なくとも一方の基板と一体に形成されていてもよい。   In the method for manufacturing the liquid crystal device, the light shielding member may be formed integrally with at least one of the pair of substrates.

この製造方法によれば、遮光部材を液晶装置の製造工程で基板と一体に形成することができる。よって、製造効率が向上する。   According to this manufacturing method, the light shielding member can be formed integrally with the substrate in the manufacturing process of the liquid crystal device. Therefore, manufacturing efficiency is improved.

前記液晶装置の製造方法において、前記光を透過する開口部が形成された遮光マスクを配置する工程を有し、前記遮光マスクの前記開口部と前記遮光部材とが重なる領域の面積は、前記遮光部材の面積以下の大きさとなっており、前記遮光部材は、前記領域において、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなっていてもよい。   In the method of manufacturing the liquid crystal device, the method includes a step of arranging a light shielding mask in which an opening that transmits the light is formed, and an area of the region where the opening of the light shielding mask and the light shielding member overlap with each other is The size of the light shielding member may be smaller than the area of the member, and the light transmittance of the light shielding member may gradually decrease in the region as the light transmittance approaches the liquid crystal layer.

この製造方法によれば、遮光マスクのアライメントずれを許容することができる。例えば、遮光部材に遮光マスクを介して封止部材を硬化させる光を照射する場合を考える。遮光マスクが狙った位置に配置されていないと遮光マスクで遮光される対象部分が変化する。遮光マスクの配置位置が狙った位置から大きくずれると、遮光マスクで遮光すべき部分が遮光マスクにおさまらず露出してしまうことがある。この構成によれば、遮光マスクの開口部と遮光部材とが重なる領域の面積が遮光部材の面積以下の大きさとなっているので、遮光部材によって遮光マスクのアライメントずれを許容し、漏れ光が生じることを抑制することができる。   According to this manufacturing method, the alignment deviation of the light shielding mask can be allowed. For example, consider a case where the light shielding member is irradiated with light for curing the sealing member via a light shielding mask. If the light shielding mask is not disposed at the target position, the target portion that is shielded by the light shielding mask changes. If the arrangement position of the light shielding mask is greatly deviated from the target position, a portion to be shielded by the light shielding mask may be exposed without being covered by the light shielding mask. According to this configuration, since the area of the region where the opening of the light shielding mask and the light shielding member overlap is smaller than the area of the light shielding member, the light shielding member allows the misalignment of the light shielding mask and leaks light. This can be suppressed.

前記液晶装置の製造方法において、前記遮光部材は、前記一対の基板の少なくとも一方の基板と別体に且つ近接して配置されていてもよい。   In the method for manufacturing a liquid crystal device, the light shielding member may be disposed separately from and in close proximity to at least one of the pair of substrates.

この製造方法によれば、遮光部材を液晶装置とは別部品とすることができる。よって、液晶装置の構成が簡単になる。   According to this manufacturing method, the light shielding member can be a separate component from the liquid crystal device. Therefore, the configuration of the liquid crystal device is simplified.

前記液晶装置の製造方法において、前記光を透過する開口部が形成された遮光マスクを配置する工程を有し、前記遮光マスクの前記開口部には前記遮光部材が配置されていてもよい。   The method for manufacturing the liquid crystal device may include a step of arranging a light shielding mask having an opening through which the light is transmitted, and the light shielding member may be disposed in the opening of the light shielding mask.

この製造方法によれば、遮光部材を遮光マスクの一部分とすることができる。よって、液晶装置の構成が簡単になる。   According to this manufacturing method, the light shielding member can be a part of the light shielding mask. Therefore, the configuration of the liquid crystal device is simplified.

本発明の電子機器は、上述した液晶装置を備えていることを特徴とする。   An electronic apparatus according to the present invention includes the above-described liquid crystal device.

この電子機器によれば、上述した液晶装置を備えているので、表示品質が高く、信頼性に優れた電子機器を提供することができる。   According to this electronic apparatus, since the liquid crystal device described above is provided, an electronic apparatus with high display quality and excellent reliability can be provided.

本発明に係る液晶装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the liquid crystal device which concerns on this invention. 第1実施形態に係る遮光部材の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the light shielding member which concerns on 1st Embodiment. 同実施形態に係る遮光マスクの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the light shielding mask which concerns on the same embodiment. 同実施形態に係る遮光部材と遮光マスクの位置関係を示す図である。It is a figure which shows the positional relationship of the light shielding member and light shielding mask which concern on the embodiment. 同実施形態に係る遮光部材及び遮光マスクに対する光の照射位置と光透過率との関係を示す図である。It is a figure which shows the relationship between the light irradiation position with respect to the light shielding member and light shielding mask which concern on the embodiment, and light transmittance. 同実施形態に係る液晶装置の製造プロセスを示すフローチャートである。4 is a flowchart showing a manufacturing process of the liquid crystal device according to the embodiment. 第2実施形態に係る遮光部材の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the light shielding member which concerns on 2nd Embodiment. 第3実施形態に係る遮光マスクの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the light shielding mask which concerns on 3rd Embodiment. 同実施形態に係る遮光マスクの配置状態を示す図である。It is a figure which shows the arrangement | positioning state of the light shielding mask which concerns on the same embodiment. 同実施形態に係る遮光マスクに対する光の照射位置と光透過率との関係を示す図である。It is a figure which shows the relationship between the irradiation position of the light with respect to the light shielding mask which concerns on the same embodiment, and light transmittance. 電子機器としてプロジェクターの一例を示す模式図である。It is a schematic diagram which shows an example of a projector as an electronic device.

以下、図面を参照して、本発明の実施の形態について説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。   Embodiments of the present invention will be described below with reference to the drawings. This embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, an actual structure and a scale, a number, and the like in each structure are different.

(第1実施形態)
図1は、液晶装置100の概略構成を示す模式図である。図1(a)は液晶装置100の平面図であり、図1(b)は図1(a)のH−H’線に沿う断面図である。なお、本実施形態では、VA(Vertical Alignment)モードの液晶装置を例に挙げて説明する。
(First embodiment)
FIG. 1 is a schematic diagram illustrating a schematic configuration of the liquid crystal device 100. FIG. 1A is a plan view of the liquid crystal device 100, and FIG. 1B is a cross-sectional view taken along the line HH ′ of FIG. In the present embodiment, a liquid crystal device in a VA (Vertical Alignment) mode will be described as an example.

液晶装置100は、素子基板10と対向基板20とを備えている。素子基板10と対向基板20とは、平面視略矩形枠状のシール部材52を介して貼り合わされている。シール部材52には、液晶を注入するための注入口55(液晶注入口)が形成されており、該注入口55が封止部材54により封止されている。   The liquid crystal device 100 includes an element substrate 10 and a counter substrate 20. The element substrate 10 and the counter substrate 20 are bonded together via a sealing member 52 having a substantially rectangular frame shape in plan view. The seal member 52 is formed with an injection port 55 (liquid crystal injection port) for injecting liquid crystal, and the injection port 55 is sealed with a sealing member 54.

封止部材54は、紫外線硬化性樹脂などの光硬化性樹脂からなる。本実施形態では、封止部材54の形成材料として紫外線硬化性樹脂を用いる。シール部材52及び封止部材54に囲まれた領域内には、液晶層50が封入されている。シール部材52及び封止部材54の内周側に沿って平面視矩形枠状の額縁53が形成されており、額縁53の内側の領域が表示領域11となっている。対向基板20は、封止部材54を硬化させる光(紫外線)を透過する光透過性を有している。対向基板20の封止部材54に対向する位置には、遮光部材60が配置されている。遮光部材60は、光を透過する光透過率が液晶層50に近づくに従って徐々に小さくなっている。   The sealing member 54 is made of a photocurable resin such as an ultraviolet curable resin. In the present embodiment, an ultraviolet curable resin is used as a forming material of the sealing member 54. A liquid crystal layer 50 is sealed in a region surrounded by the sealing member 52 and the sealing member 54. A frame 53 having a rectangular frame shape in plan view is formed along the inner peripheral side of the sealing member 52 and the sealing member 54, and a region inside the frame 53 is a display region 11. The counter substrate 20 has a light transmission property that transmits light (ultraviolet rays) for curing the sealing member 54. A light shielding member 60 is disposed at a position facing the sealing member 54 of the counter substrate 20. The light shielding member 60 gradually decreases as the light transmittance for transmitting light approaches the liquid crystal layer 50.

表示領域11の内側には、複数の画素12がマトリクス状に設けられている。画素12は、表示領域11の最小表示単位を構成している。シール部材52の外側の領域には、素子基板10の1辺(図示下辺)に沿って、データ線駆動回路101および外部回路実装端子102が形成されており、この1辺に隣接する2辺に沿ってそれぞれ走査線駆動回路104が形成されて周辺回路を構成している。   A plurality of pixels 12 are provided in a matrix in the display area 11. The pixel 12 constitutes the minimum display unit of the display area 11. A data line driving circuit 101 and an external circuit mounting terminal 102 are formed along one side (the lower side in the drawing) of the element substrate 10 in a region outside the seal member 52, and two sides adjacent to the one side are formed. A scanning line driving circuit 104 is formed along each of them to form a peripheral circuit.

素子基板10の残る1辺(図示上辺)には、表示領域11の両側の走査線駆動回路104間を接続する複数の配線105が設けられている。また、対向基板20の各角部においては、素子基板10と対向基板20との間の電気的導通をとるための基板間導通材106が配設されている。   On the remaining one side (illustrated upper side) of the element substrate 10, a plurality of wirings 105 are provided to connect between the scanning line driving circuits 104 on both sides of the display area 11. In addition, an inter-substrate conductive material 106 for providing electrical continuity between the element substrate 10 and the counter substrate 20 is disposed at each corner of the counter substrate 20.

素子基板10の液晶層50側には、複数の画素電極9が配列形成されている。画素電極9は、画素12ごとに設けられている。素子基板10には、複数のスイッチング素子(図示略)が設けられている。スイッチング素子は、例えば薄膜トランジスターにより構成され、画素12ごとに設けられている。スイッチング素子のソース領域は、図示略のデータ線を介してデータ線駆動回路101と電気的に接続されている。スイッチング素子のゲート電極は、図示略の走査線を介して走査線駆動回路104と電気的に接続されている。スイッチング素子のドレイン領域は、画素電極9と電気的に接続されている。   A plurality of pixel electrodes 9 are arranged on the element substrate 10 on the liquid crystal layer 50 side. The pixel electrode 9 is provided for each pixel 12. The element substrate 10 is provided with a plurality of switching elements (not shown). The switching element is formed of, for example, a thin film transistor, and is provided for each pixel 12. The source region of the switching element is electrically connected to the data line driving circuit 101 via a data line (not shown). The gate electrode of the switching element is electrically connected to the scanning line driving circuit 104 via a scanning line (not shown). The drain region of the switching element is electrically connected to the pixel electrode 9.

画素電極9上には、第1配向膜16が形成されている。対向基板20の液晶層50側に、額縁53および遮光膜(図示略)が形成されている。額縁53および遮光膜(図示略)の上に表示領域11の全面を覆う共通電極21が形成されている。共通電極21上には、第2配向膜22が形成されている。液晶層50に電界が印加されていない状態の液晶層50の配向状態は、第1配向膜16および第2配向膜22により制御されている。   A first alignment film 16 is formed on the pixel electrode 9. A frame 53 and a light shielding film (not shown) are formed on the counter substrate 20 on the liquid crystal layer 50 side. A common electrode 21 that covers the entire surface of the display region 11 is formed on the frame 53 and a light shielding film (not shown). A second alignment film 22 is formed on the common electrode 21. The alignment state of the liquid crystal layer 50 in a state where no electric field is applied to the liquid crystal layer 50 is controlled by the first alignment film 16 and the second alignment film 22.

液晶装置100は、反射型の液晶装置として構成されている。画素電極9は、アルミニウム(Al)や銀(Ag)等の高反射率の金属材料からなる反射電極として構成されている。共通電極21は、インジウム錫酸化物(以下、ITOという)等の透明導電性材料からなる透明電極として構成されている。   The liquid crystal device 100 is configured as a reflective liquid crystal device. The pixel electrode 9 is configured as a reflective electrode made of a highly reflective metal material such as aluminum (Al) or silver (Ag). The common electrode 21 is configured as a transparent electrode made of a transparent conductive material such as indium tin oxide (hereinafter referred to as ITO).

表示すべき画像の画像信号は、液晶装置100の外部から外部回路実装端子102を介して供給される。データ線駆動回路101は、画像信号に含まれる画素ごとの階調値を示す画像データに基づいて、液晶層50を駆動する駆動電圧波形をスイッチング素子に出力する。走査線駆動回路104は、画像信号に含まれる画素の表示タイミングを示すデータに基づいて、スイッチング素子のゲート電極に電圧を印加し、スイッチング素子のオンオフを制御する。   An image signal of an image to be displayed is supplied from the outside of the liquid crystal device 100 via the external circuit mounting terminal 102. The data line driving circuit 101 outputs a driving voltage waveform for driving the liquid crystal layer 50 to the switching element based on the image data indicating the gradation value for each pixel included in the image signal. The scanning line driving circuit 104 applies a voltage to the gate electrode of the switching element based on data indicating the display timing of the pixel included in the image signal, and controls on / off of the switching element.

スイッチング素子がオンになると、上記の駆動電圧波形が画素電極9に供給され、画素電極9に電圧が印加される。共通電極21の電位は、例えば複数の画素12で共通の共通電位に保持されている。液晶層50には、画素電極9と共通電極21との間の電位差に相当する電圧が印加される。この電圧により生じる電界によって、液晶層50の配向状態が変化する。液晶層50に入射した光は、液晶層50の配向状態に応じて画素12ごとに偏光状態が変化する。液晶層50から射出された光を偏光板(図示略)に通すことにより、画像データに応じた階調値の光が偏光板から射出される。このようにして、画像データに対応する画像を表示することが可能になっている。   When the switching element is turned on, the above driving voltage waveform is supplied to the pixel electrode 9 and a voltage is applied to the pixel electrode 9. For example, the potential of the common electrode 21 is held at a common potential common to the plurality of pixels 12. A voltage corresponding to the potential difference between the pixel electrode 9 and the common electrode 21 is applied to the liquid crystal layer 50. The alignment state of the liquid crystal layer 50 is changed by the electric field generated by this voltage. The light incident on the liquid crystal layer 50 changes its polarization state for each pixel 12 according to the alignment state of the liquid crystal layer 50. By passing the light emitted from the liquid crystal layer 50 through a polarizing plate (not shown), light having a gradation value corresponding to the image data is emitted from the polarizing plate. In this way, an image corresponding to the image data can be displayed.

図2は、第1実施形態に係る遮光部材の概略構成を示す模式図である。図2(a)は遮光部材の平面図であり、図2(b)は遮光部材の断面図である。   FIG. 2 is a schematic diagram illustrating a schematic configuration of the light shielding member according to the first embodiment. 2A is a plan view of the light shielding member, and FIG. 2B is a cross-sectional view of the light shielding member.

図2(a)に示すように、遮光部材60は、金属膜61に複数の開口部62が形成された遮光膜である。金属膜61は、例えば、アルミニウム(Al)やクロム(Cr)などの金属材料からなる膜である。遮光部材60において、各開口部62の直径は略同じ大きさになっている。複数の開口部62の密度は液晶層50に近づくにつれて徐々に小さくなっている。これにより、遮光部材60は、封止部材54を硬化させる光(UV)を透過する光透過率(UV透過率)が液晶層50に近づくに従って徐々に小さくなっている。   As shown in FIG. 2A, the light shielding member 60 is a light shielding film in which a plurality of openings 62 are formed in a metal film 61. The metal film 61 is a film made of a metal material such as aluminum (Al) or chromium (Cr), for example. In the light shielding member 60, the diameters of the openings 62 are substantially the same. The density of the plurality of openings 62 gradually decreases as the liquid crystal layer 50 is approached. Thereby, the light shielding member 60 gradually decreases in light transmittance (UV transmittance) that transmits light (UV) for curing the sealing member 54 as it approaches the liquid crystal layer 50.

図2(b)に示すように、遮光部材60の厚みは全体的に均一な大きさになっている。遮光部材60の厚みは、液晶層50に近い部分と液晶層50から遠い部分とで同じ大きさになっている。   As shown in FIG. 2 (b), the thickness of the light shielding member 60 is uniform throughout. The thickness of the light shielding member 60 is the same for a portion near the liquid crystal layer 50 and a portion far from the liquid crystal layer 50.

図3は、液晶装置の製造方法に用いられる、第1実施形態に係る遮光マスク70の概略構成を示す斜視図である。
図3に示すように、遮光マスク70は、平面視長方形状であり、遮光マスク本体となる遮光板71の一部に、封止部材54を硬化させるUVを透過する開口部72が形成された構成となっている。遮光板71は、例えば、ガラス基板にAlやCrなどの金属材料からなる膜を成膜したものである。開口部72が形成される位置は、対向基板20の封止部材54に対向する位置に配置された遮光部材60の位置に対応している。
FIG. 3 is a perspective view illustrating a schematic configuration of the light shielding mask 70 according to the first embodiment, which is used in the method of manufacturing the liquid crystal device.
As shown in FIG. 3, the light shielding mask 70 has a rectangular shape in plan view, and an opening 72 that transmits UV for curing the sealing member 54 is formed in a part of the light shielding plate 71 serving as the light shielding mask body. It has a configuration. For example, the light shielding plate 71 is formed by forming a film made of a metal material such as Al or Cr on a glass substrate. The position where the opening 72 is formed corresponds to the position of the light shielding member 60 disposed at a position facing the sealing member 54 of the counter substrate 20.

図4は、第1実施形態に係る遮光部材60と遮光マスク70の位置関係を示す図である。なお、図4においては、便宜上、遮光マスク70の開口部72を示し、遮光マスク本体の遮光板71の図示を省略している。   FIG. 4 is a diagram illustrating a positional relationship between the light shielding member 60 and the light shielding mask 70 according to the first embodiment. In FIG. 4, for the sake of convenience, the opening 72 of the light shielding mask 70 is shown, and the illustration of the light shielding plate 71 of the light shielding mask body is omitted.

図4に示すように、遮光部材60は、平面視長方形状であり、対向基板20の封止部材54に対向する位置に配置されている。遮光部材60は、対向基板20の液晶層50側の面に形成されている。本実施形態において、遮光部材60は、対向基板20と一体に形成されている(図5参照)。   As shown in FIG. 4, the light shielding member 60 has a rectangular shape in plan view, and is disposed at a position facing the sealing member 54 of the counter substrate 20. The light shielding member 60 is formed on the surface of the counter substrate 20 on the liquid crystal layer 50 side. In the present embodiment, the light shielding member 60 is formed integrally with the counter substrate 20 (see FIG. 5).

光透過率が徐々に小さくされている遮光部材60は、封止部材54と対向した位置と、封止部材54に隣接する液晶層50と対向した位置との双方に渉った範囲の領域に設けられている。光透過率が徐々に小さくされている遮光部材60の形成部分は、封止部材54の形成部分と、これに隣接した液晶層50の部分とを含んでいる。つまり、光透過率が徐々に小さくされている遮光部材60は、封止部材54の形成部分を超えて、これに隣接する液晶層50の部分にまで形成されている。言い換えると、遮光部材60は、対向基板20において、基板上面の法線方向から視て(平面視)、液晶層50と封止部材54の境界部を挟んで、液晶層50と封止部材54の双方に跨って形成されている。遮光部材60が封止部材54を跨ぐ部分の面積と遮光部材60が液晶層50を跨ぐ部分との面積は、略同じ大きさになっている。なお、遮光部材60が封止部材54を跨ぐ部分の面積と遮光部材60が液晶層50を跨ぐ部分の面積については、例えばUV照射による封止部材54の硬化度合いや液晶層50の劣化度合いなどを考慮して、任意に変更可能である。   The light-shielding member 60 whose light transmittance is gradually reduced is in a region in a range between the position facing the sealing member 54 and the position facing the liquid crystal layer 50 adjacent to the sealing member 54. Is provided. The formation part of the light shielding member 60 whose light transmittance is gradually reduced includes the formation part of the sealing member 54 and the part of the liquid crystal layer 50 adjacent thereto. That is, the light shielding member 60 whose light transmittance is gradually reduced is formed beyond the portion where the sealing member 54 is formed to the portion of the liquid crystal layer 50 adjacent thereto. In other words, the light shielding member 60 in the counter substrate 20 is viewed from the normal direction of the upper surface of the substrate (plan view), and the liquid crystal layer 50 and the sealing member 54 are sandwiched between the liquid crystal layer 50 and the sealing member 54. It is formed across both. The area of the portion where the light shielding member 60 straddles the sealing member 54 and the area of the portion where the light shielding member 60 straddles the liquid crystal layer 50 are substantially the same size. The area of the portion where the light shielding member 60 straddles the sealing member 54 and the area of the portion where the light shielding member 60 straddles the liquid crystal layer 50 are, for example, the degree of curing of the sealing member 54 due to UV irradiation, the degree of deterioration of the liquid crystal layer 50, and the like. Can be arbitrarily changed.

遮光部材60は、対向基板20において、基板上面の法線方向から視て(平面視)、封止部材54の液晶層50と反対側の端部と重ならないように形成されている。そのため、封止部材54は、液晶層50と反対側の部分が遮光部材60から露出している。また、封止部材54は、液晶層50と反対側の端部が対向基板20の端縁から露出するよう形成されている。   The light shielding member 60 is formed on the counter substrate 20 so as not to overlap the end of the sealing member 54 opposite to the liquid crystal layer 50 when viewed from the normal direction of the upper surface of the substrate (plan view). Therefore, the portion of the sealing member 54 opposite to the liquid crystal layer 50 is exposed from the light shielding member 60. Further, the sealing member 54 is formed so that the end portion on the opposite side to the liquid crystal layer 50 is exposed from the end edge of the counter substrate 20.

光透過率が徐々に小さくされている遮光部材60は、封止部材54と対向した位置と、封止部材54に隣接するシール部材52と対向した位置との双方に渉った範囲の領域に設けられている。光透過率が徐々に小さくされている遮光部材60の形成部分は、封止部材54の形成部分と、これに隣接したシール部材52の形成部分とを含んでいる。つまり、光透過率が徐々に小さくされている遮光部材60は、封止部材54の形成部分を超えて、これに隣接するシール部材52の形成部分にまで形成されている。言い換えると、遮光部材60は、対向基板20において、基板上面の法線方向から視て(平面視)、シール部材52と封止部材54の境界部を挟んで、シール部材52と封止部材54の双方に跨って形成されている。遮光部材60が封止部材54を跨ぐ部分の面積と遮光部材60がシール部材52を跨ぐ部分との面積については、例えば封止部材54の製造上の寸法誤差を考慮して、任意に変更可能である。   The light-shielding member 60 whose light transmittance is gradually reduced is in a region in a range between the position facing the sealing member 54 and the position facing the sealing member 52 adjacent to the sealing member 54. Is provided. The formation part of the light shielding member 60 whose light transmittance is gradually reduced includes the formation part of the sealing member 54 and the formation part of the seal member 52 adjacent thereto. That is, the light shielding member 60 whose light transmittance is gradually reduced is formed beyond the formation portion of the sealing member 54 and to the formation portion of the seal member 52 adjacent thereto. In other words, the light shielding member 60 in the counter substrate 20 is viewed from the normal direction of the upper surface of the substrate (plan view), and the sealing member 52 and the sealing member 54 are sandwiched between the boundary portions of the sealing member 52 and the sealing member 54. It is formed across both. The area of the portion where the light shielding member 60 straddles the sealing member 54 and the area of the portion where the light shielding member 60 straddles the sealing member 52 can be arbitrarily changed in consideration of a dimensional error in manufacturing the sealing member 54, for example. It is.

遮光マスク70の開口部72は、対向基板20に形成された遮光部材60に対向する位置に重なるように配置されている。遮光マスク70の開口部72と遮光部材60とが重なる領域の面積は、遮光部材60の面積以下の大きさとなっている。遮光部材60は、遮光マスク70の開口部72と遮光部材60とが重なる領域において、封止部材54を硬化させる光を透過する光透過率が液晶層50に近づくに従って徐々に小さくなっている。   The opening 72 of the light shielding mask 70 is disposed so as to overlap a position facing the light shielding member 60 formed on the counter substrate 20. The area of the area where the opening 72 of the light shielding mask 70 and the light shielding member 60 overlap is smaller than the area of the light shielding member 60. In the light shielding member 60, in the region where the opening 72 of the light shielding mask 70 and the light shielding member 60 overlap, the light transmittance that transmits light for curing the sealing member 54 gradually decreases as the liquid crystal layer 50 is approached.

図5は、第1実施形態に係る遮光部材及び遮光マスクに対する光(UV)の照射位置と光透過率との関係を示す図である。図5においては、液晶装置100において遮光部材60が形成された部分(遮光マスク70の開口部72が位置する部分)の断面を最上部に図示し、以下、上から順に、遮光マスク単体(遮光マスク70の開口部72)を光(UV)が透過する位置と光透過率(UV透過率)との関係、遮光部材単体をUVが透過する位置とUV透過率との関係、遮光マスク70及び遮光部材60をUVが透過する位置とUV透過率との関係を図示している。各関係図において、横軸はUVが透過する位置であり、縦軸はUV透過率である。   FIG. 5 is a diagram illustrating the relationship between the light (UV) irradiation position and the light transmittance on the light shielding member and the light shielding mask according to the first embodiment. In FIG. 5, the cross section of the portion where the light shielding member 60 is formed in the liquid crystal device 100 (the portion where the opening 72 of the light shielding mask 70 is located) is shown at the top, and the light shielding mask alone (light shielding) in order from the top below. The relationship between the position where light (UV) is transmitted through the opening 72) of the mask 70 and the light transmittance (UV transmittance), the relationship between the position where UV is transmitted through the light shielding member and the UV transmittance, the light shielding mask 70 and The relationship between the position where UV passes through the light shielding member 60 and the UV transmittance is illustrated. In each relationship diagram, the horizontal axis represents the position where UV is transmitted, and the vertical axis represents the UV transmittance.

図5に示すように、遮光マスク70の上方からUVを照射すると、UVは遮光マスク70の開口部72を通過する。遮光マスク70の開口部72を通過した光の一部の光は、対向基板20を透過して遮光部材60を介して封止部材54と液晶層50の封止部材54に近い部分とに照射される。残りの一部の光は、封止部材54の対向基板20の端縁から露出した部分に照射される。   As shown in FIG. 5, when UV is irradiated from above the light shielding mask 70, the UV passes through the opening 72 of the light shielding mask 70. A part of the light that has passed through the opening 72 of the light shielding mask 70 passes through the counter substrate 20 and irradiates the sealing member 54 and the portion of the liquid crystal layer 50 near the sealing member 54 through the light shielding member 60. Is done. The remaining part of the light is applied to the portion of the sealing member 54 exposed from the edge of the counter substrate 20.

遮光マスク単体(遮光マスク70の開口部72)をUVが透過する場合、UVは開口部72をそのまま通過するため、UVが透過する位置全体においてUV透過率は同じとなる。   When UV is transmitted through the light shielding mask alone (the opening 72 of the light shielding mask 70), since the UV passes through the opening 72 as it is, the UV transmittance is the same in the entire position where the UV is transmitted.

遮光部材単体をUVが透過する場合、遮光部材60をUVが透過する位置が液晶層50に近づくに従ってUV透過率が徐々に小さくなっている。遮光部材60をUVが透過する位置と当該位置におけるUV透過率との関係は線形関係となっている。   When UV passes through the light shielding member alone, the UV transmittance gradually decreases as the position where UV passes through the light shielding member 60 approaches the liquid crystal layer 50. The relationship between the position where UV passes through the light shielding member 60 and the UV transmittance at this position is a linear relationship.

これにより、遮光マスク70の開口部72を通過した光の一部の光は、封止部材54に漏れなく照射される。また、この一部の光は液晶層50の封止部材54に近い部分に照射されるものの、遮光部材60によって照射強度が減衰している。残りの一部の光は、封止部材54の対向基板20の端縁から露出した部分に漏れなく照射される。   Thereby, a part of the light that has passed through the opening 72 of the light shielding mask 70 is irradiated onto the sealing member 54 without leakage. In addition, the light intensity is attenuated by the light-shielding member 60, although this part of the light is applied to the portion of the liquid crystal layer 50 near the sealing member 54. The remaining part of the light is irradiated to the portion of the sealing member 54 exposed from the edge of the counter substrate 20 without omission.

(液晶装置の製造方法)
図6は、第1実施形態に係る液晶装置の製造プロセスのフローチャートである。
先ず、ガラス基板上にスイッチング素子や配線を形成し、さらに画素電極9及び配向膜16を形成して素子基板10(図1(b)参照)を作成する(図6中のステップS1)。一方、ガラス基板上に遮光膜、対向電極、配向膜を形成して対向基板20を作製する(図6中のステップS2)。
(Manufacturing method of liquid crystal device)
FIG. 6 is a flowchart of the manufacturing process of the liquid crystal device according to the first embodiment.
First, a switching element and wiring are formed on a glass substrate, and further, a pixel electrode 9 and an alignment film 16 are formed to produce an element substrate 10 (see FIG. 1B) (step S1 in FIG. 6). On the other hand, the light-shielding film, the counter electrode, and the alignment film are formed on the glass substrate to produce the counter substrate 20 (step S2 in FIG. 6).

次に、素子基板10の周縁部に、シール部材52の形成材料(以下、単にシール材と称することがある)を枠状に塗布する(図6中のステップS3)。このとき、シール部材52の形成材料は、一辺の略中央の一部に液晶の注入口55を有するように形成される(図1(a)参照)。注入口55は、液晶がスムーズにシール部材52に囲まれた領域に注入できる程度の大きさ(注入口幅)となるように設けられる。シール材の塗布方法としては、例えばディスペンス法、スクリーン印刷法を用いることができる   Next, a material for forming the seal member 52 (hereinafter sometimes simply referred to as a seal material) is applied in a frame shape to the peripheral portion of the element substrate 10 (step S3 in FIG. 6). At this time, the forming material of the sealing member 52 is formed so as to have a liquid crystal injection port 55 at a part of the substantially center of one side (see FIG. 1A). The injection port 55 is provided so as to have a size (injection port width) that allows liquid crystal to be smoothly injected into a region surrounded by the seal member 52. As a method for applying the sealing material, for example, a dispensing method or a screen printing method can be used.

一方、対向基板20の封止部材54に対向する位置には、金属膜61に複数の開口部62が形成されてなる遮光部材60(図2参照)を形成しておく(図6中のステップS4)。つまり、予め遮光部材60を対向基板20に一体に形成しておく。遮光部材60は、複数の開口部62の密度が液晶層50に近づくに従って徐々に小さくなるよう形成される。   On the other hand, a light shielding member 60 (see FIG. 2) in which a plurality of openings 62 are formed in the metal film 61 is formed at a position facing the sealing member 54 of the counter substrate 20 (step in FIG. 6). S4). That is, the light shielding member 60 is formed integrally with the counter substrate 20 in advance. The light shielding member 60 is formed so that the density of the plurality of openings 62 gradually decreases as the liquid crystal layer 50 is approached.

遮光部材60の形成方法としては、例えば、先ず、対向基板20上にAlやCr等の金属膜61を蒸着により形成し、次に、対向基板20上に形成された金属膜61に複数の開口部62の配列パターンに対応した開口パターンを有するマスクを配置し、その後、エッチング処理する方法がある。その他にも、先ず、対向基板20上に複数の開口部62の配列パターンに対応したドットパターンを有するマスクを配置し、その後、対向基板20のマスク上にAlやCr等の金属材料を蒸着により形成する方法がある。   As a method for forming the light shielding member 60, for example, first, a metal film 61 such as Al or Cr is formed on the counter substrate 20 by vapor deposition, and then a plurality of openings are formed in the metal film 61 formed on the counter substrate 20. There is a method in which a mask having an opening pattern corresponding to the arrangement pattern of the portions 62 is arranged, and then an etching process is performed. In addition, first, a mask having a dot pattern corresponding to the arrangement pattern of the plurality of openings 62 is disposed on the counter substrate 20, and then a metal material such as Al or Cr is deposited on the mask of the counter substrate 20 by vapor deposition. There is a method of forming.

次に、素子基板10と対向基板20とをシール材を介して貼り合わせる(図6中のステップS5)。このとき、素子基板10と対向基板20とに予め形成されたアライメントマーク(図示略)によって、素子基板10と対向基板20との相対位置のズレが許容範囲以内になるように粗位置決めする。   Next, the element substrate 10 and the counter substrate 20 are bonded together with a sealing material (step S5 in FIG. 6). At this time, rough positioning is performed by using an alignment mark (not shown) formed in advance on the element substrate 10 and the counter substrate 20 so that the deviation of the relative position between the element substrate 10 and the counter substrate 20 is within an allowable range.

次に、素子基板10と対向基板20とを加圧してシール材を押しつぶす。素子基板10と対向基板20とのセルギャップを所定の間隔にした後、精密アライメントにより、素子基板10と対向基板20との相対位置を正確に位置決めする。そして、UVランプによりUVを照射してシール材を硬化させる。もしくは、加熱によりシール材を硬化させる(図6中のステップS6)。これにより、一対の基板10,20がシール部材52を介して貼り合わされる。   Next, the element substrate 10 and the counter substrate 20 are pressurized to crush the sealing material. After the cell gap between the element substrate 10 and the counter substrate 20 is set to a predetermined interval, the relative position between the element substrate 10 and the counter substrate 20 is accurately determined by precision alignment. Then, the sealing material is cured by irradiating UV with a UV lamp. Alternatively, the sealing material is cured by heating (step S6 in FIG. 6). As a result, the pair of substrates 10 and 20 are bonded together via the seal member 52.

次に、貼り合わされた一対の基板10,20の間のシール部材52に囲まれた領域に、真空注入法を用いて、注入口55から液晶を注入し、注入口55を紫外線硬化性樹脂などの光硬化性樹脂からなる封止部材54によって封止する(図6中のステップS7)。封止部材54は、注入口55を確実に封止するように、シール部材52の延在する方向(図1に示す左右方向)に沿って、注入口幅よりも大きい幅で形成される。また、封止部材54は、貼り合わされた一対の基板10,20の輪郭よりも、外側に一部はみ出すように形成される。封止部材54の形成材料(以下、単に封止材と称することがある)の塗布方法としては、例えばディスペンス法を用いることができる。   Next, liquid crystal is injected from the injection port 55 into the region surrounded by the seal member 52 between the pair of bonded substrates 10 and 20 by using a vacuum injection method, and the injection port 55 is made of an ultraviolet curable resin or the like. It seals with the sealing member 54 which consists of this photocurable resin (step S7 in FIG. 6). The sealing member 54 is formed with a width larger than the inlet width along the direction in which the seal member 52 extends (the left-right direction shown in FIG. 1) so as to securely seal the inlet 55. Moreover, the sealing member 54 is formed so that a part protrudes outside the outline of the pair of substrates 10 and 20 bonded together. As a method for applying the forming material of the sealing member 54 (hereinafter sometimes simply referred to as a sealing material), for example, a dispensing method can be used.

次に、対向基板20の外側から遮光部材60を介して封止材に向けてUVを照射する(図6中のステップS6)。具体的には、対向基板20の外側に遮光マスク70(図3参照)を配置し、遮光マスク70の外側からUVランプによりUV(波長365nm程度)を照射して、遮光部材60を介して封止材を硬化させる。これにより、液晶の注入口55が封止部材54により封止される。次に、必要に応じて、液晶の封止された一対の基板10,20を洗浄する。   Next, UV is irradiated from the outside of the counter substrate 20 toward the sealing material through the light shielding member 60 (step S6 in FIG. 6). Specifically, a light shielding mask 70 (see FIG. 3) is arranged outside the counter substrate 20, and UV (wavelength of about 365 nm) is irradiated from the outside of the light shielding mask 70 by a UV lamp, and sealed through the light shielding member 60. Harden the stop material. As a result, the liquid crystal inlet 55 is sealed by the sealing member 54. Next, as necessary, the pair of substrates 10 and 20 sealed with liquid crystal is washed.

以上の工程を経ることにより、封止部材54が十分に硬化された液晶装置100が得られる。   Through the above steps, the liquid crystal device 100 in which the sealing member 54 is sufficiently cured is obtained.

本実施形態の液晶装置100によれば、遮光部材60が封止部材54を硬化させるUVを透過するUV透過率が液晶層50に近づくに従って徐々に小さくなっているので、遮光部材60を透過して封止部材54に入射するUVの量は液晶層50に近づくに従って徐々に小さくなる。そのため、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50から遠い部分に入射する光の量を大きくして封止部材54を十分に硬化させることができる。したがって、封止部材54を硬化させる光による液晶の劣化を抑制するとともに、封止部材54を十分に硬化させることが可能な液晶装置100を提供することができる。   According to the liquid crystal device 100 of the present embodiment, the UV transmittance of the light shielding member 60 that transmits the UV that cures the sealing member 54 gradually decreases as it approaches the liquid crystal layer 50. Thus, the amount of UV incident on the sealing member 54 gradually decreases as the liquid crystal layer 50 is approached. Therefore, while reducing the amount of light incident on the portion of the sealing member 54 close to the liquid crystal layer 50, the amount of light incident on the portion of the sealing member 54 far from the liquid crystal layer 50 is increased to increase the amount of light incident on the sealing member 54. It can be cured sufficiently. Therefore, it is possible to provide the liquid crystal device 100 that can suppress deterioration of the liquid crystal due to light that cures the sealing member 54 and can sufficiently cure the sealing member 54.

また、この構成によれば、遮光部材60が液晶層50と封止部材54の境界部を挟んで液晶層50と封止部材54の双方に跨って配置されているので、製造誤差によって封止部材54と遮光部材60の位置が若干ずれても、確実に封止部材54に光を照射することができる。よって、封止部材54をより確実に硬化させることができる。   Further, according to this configuration, since the light shielding member 60 is disposed across both the liquid crystal layer 50 and the sealing member 54 with the boundary portion between the liquid crystal layer 50 and the sealing member 54 interposed therebetween, the light shielding member 60 is sealed due to a manufacturing error. Even if the positions of the member 54 and the light shielding member 60 are slightly displaced, the sealing member 54 can be reliably irradiated with light. Therefore, the sealing member 54 can be hardened more reliably.

また、この構成によれば、遮光部材60が封止部材54の液晶層50と反対側の端部と重ならないように配置されているので、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50と反対側の端部に遮光部材を介さずに光を入射させることができる。よって、液晶の劣化を抑制するとともに、封止部材54の液晶層50と反対側の端部に入射する光の量を大きくして封止部材54をより確実に硬化させることができる。   Further, according to this configuration, since the light shielding member 60 is disposed so as not to overlap the end of the sealing member 54 on the side opposite to the liquid crystal layer 50, the light shielding member 60 is incident on the portion of the sealing member 54 close to the liquid crystal layer 50. It is possible to make light incident on the end of the sealing member 54 on the side opposite to the liquid crystal layer 50 without passing through the light shielding member, while reducing the amount of light to be transmitted. Therefore, it is possible to suppress the deterioration of the liquid crystal and increase the amount of light incident on the end of the sealing member 54 opposite to the liquid crystal layer 50 to cure the sealing member 54 more reliably.

また、この構成によれば、遮光部材60がシール部材52と封止部材54の境界部を挟んで、シール部材52と封止部材54の双方に跨って配置されているので、製造誤差によって封止部材54と遮光部材60の位置が若干ずれても、確実に封止部材54に光を照射することができる。よって、封止部材54をより確実に硬化させることができる。   Further, according to this configuration, since the light shielding member 60 is disposed across both the sealing member 52 and the sealing member 54 with the boundary between the sealing member 52 and the sealing member 54 interposed therebetween, the light shielding member 60 is sealed due to a manufacturing error. Even if the positions of the stop member 54 and the light shielding member 60 are slightly shifted, the sealing member 54 can be reliably irradiated with light. Therefore, the sealing member 54 can be hardened more reliably.

また、この構成によれば、遮光部材60が金属膜61に複数の開口部62が形成されて構成されており、複数の開口部62の密度が液晶層50に近づくに従って徐々に小さくなるので、遮光部材60を透過して封止部材54に入射する光の量は液晶層50に近づくに従って徐々に小さくなる。そのため、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50から遠い部分に入射する光の量を大きくして封止部材54を十分に硬化させることができる。   Further, according to this configuration, the light shielding member 60 is configured by forming a plurality of openings 62 in the metal film 61, and the density of the plurality of openings 62 gradually decreases as the liquid crystal layer 50 is approached. The amount of light that passes through the light shielding member 60 and enters the sealing member 54 gradually decreases as the liquid crystal layer 50 is approached. Therefore, while reducing the amount of light incident on the portion of the sealing member 54 close to the liquid crystal layer 50, the amount of light incident on the portion of the sealing member 54 far from the liquid crystal layer 50 is increased to increase the amount of light incident on the sealing member 54. It can be cured sufficiently.

また、この構成によれば、封止部材54における液晶層50と反対側の端部が対向基板20の端縁から露出するよう配置されているので、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50と反対側の端部に対向基板20を介さずに光を入射させることができる。よって、液晶の劣化を抑制するとともに、封止部材54の液晶層50と反対側の端部に入射する光の量を大きくして封止部材54をより確実に硬化させることができる。   Further, according to this configuration, since the end of the sealing member 54 opposite to the liquid crystal layer 50 is disposed so as to be exposed from the edge of the counter substrate 20, a portion close to the liquid crystal layer 50 of the sealing member 54 The light can be incident on the end of the sealing member 54 on the side opposite to the liquid crystal layer 50 without using the counter substrate 20 while reducing the amount of light incident on the liquid crystal layer 50. Therefore, it is possible to suppress the deterioration of the liquid crystal and increase the amount of light incident on the end of the sealing member 54 opposite to the liquid crystal layer 50 to cure the sealing member 54 more reliably.

また、この構成によれば、光硬化性樹脂として紫外線硬化性樹脂を用いている。紫外線硬化性樹脂は、接着強度が高く、秒単位で硬化するという生産性に優れた特徴を有することが知られている。よって、光硬化性樹脂が紫外線硬化性樹脂であることで、封止部材54を短時間で確実に硬化させることが可能となる。   Further, according to this configuration, an ultraviolet curable resin is used as the photocurable resin. It is known that the ultraviolet curable resin has a high adhesive strength and an excellent productivity that cures in seconds. Therefore, since the photocurable resin is an ultraviolet curable resin, the sealing member 54 can be reliably cured in a short time.

本実施形態の液晶装置の製造方法によれば、対向基板20において、封止部材54を硬化させるUVを透過するUV透過率が液晶層50に近づくに従って徐々に小さくなる遮光部材60が配置されるので、遮光部材60を透過して封止部材54に入射する光の量は液晶層50に近づくに従って徐々に小さくなる。そのため、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50から遠い部分に入射する光の量を大きくして封止部材を十分に硬化させることができる。したがって、封止部材54を硬化させる光による液晶の劣化を抑制するとともに、封止部材54を十分に硬化させることが可能となる。   According to the manufacturing method of the liquid crystal device of the present embodiment, the light shielding member 60 is disposed on the counter substrate 20 that gradually decreases as the UV transmittance that transmits UV that cures the sealing member 54 approaches the liquid crystal layer 50. Therefore, the amount of light that passes through the light shielding member 60 and enters the sealing member 54 gradually decreases as the liquid crystal layer 50 is approached. For this reason, the amount of light incident on the portion of the sealing member 54 near the liquid crystal layer 50 is reduced, while the amount of light incident on the portion of the sealing member 54 far from the liquid crystal layer 50 is increased, so that the sealing member is sufficient. Can be cured. Accordingly, it is possible to suppress deterioration of the liquid crystal due to light that cures the sealing member 54 and to sufficiently cure the sealing member 54.

また、この製造方法によれば、遮光部材60が金属膜61に複数の開口部62を形成することで成膜され、金属膜61の複数の開口部62の密度が液晶層50に近づくに従って徐々に小さくなるので、遮光部材60を透過して封止部材54に入射する光の量は液晶層50に近づくに従って徐々に小さくなる。そのため、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50から遠い部分に入射する光の量を大きくして封止部材54を十分に硬化させることができる。   Further, according to this manufacturing method, the light shielding member 60 is formed by forming the plurality of openings 62 in the metal film 61, and gradually as the density of the plurality of openings 62 in the metal film 61 approaches the liquid crystal layer 50. Therefore, the amount of light that passes through the light blocking member 60 and enters the sealing member 54 gradually decreases as the liquid crystal layer 50 is approached. Therefore, while reducing the amount of light incident on the portion of the sealing member 54 close to the liquid crystal layer 50, the amount of light incident on the portion of the sealing member 54 far from the liquid crystal layer 50 is increased to increase the amount of light incident on the sealing member 54. It can be cured sufficiently.

また、この製造方法によれば、遮光部材60を液晶装置の製造工程で対向基板20と一体に形成することができる。よって、製造効率が向上する。   Further, according to this manufacturing method, the light shielding member 60 can be formed integrally with the counter substrate 20 in the manufacturing process of the liquid crystal device. Therefore, manufacturing efficiency is improved.

また、この製造方法によれば、遮光マスク70のアライメントずれを許容することができる。例えば、遮光部材60に遮光マスク70を介して封止部材54を硬化させる光を照射する場合を考える。遮光マスク70が狙った位置に配置されていないと遮光マスク70で遮光される対象部分が変化する。遮光マスク70の配置位置が狙った位置から大きくずれると、遮光マスク70で遮光すべき部分が遮光マスク70におさまらず露出してしまうことがある。この構成によれば、遮光マスク70の開口部72と遮光部材60とが重なる領域の面積が遮光部材60の面積以下の大きさとなっているので、遮光部材60によって遮光マスク70のアライメントずれを許容し、漏れ光が生じることを抑制することができる。   Moreover, according to this manufacturing method, the alignment shift | offset | difference of the light shielding mask 70 can be accept | permitted. For example, consider a case where the light shielding member 60 is irradiated with light for curing the sealing member 54 via the light shielding mask 70. If the light shielding mask 70 is not arranged at the target position, the target portion that is shielded by the light shielding mask 70 changes. When the arrangement position of the light shielding mask 70 is largely deviated from the target position, a portion to be shielded by the light shielding mask 70 may be exposed without being covered by the light shielding mask 70. According to this configuration, since the area of the region where the opening 72 of the light shielding mask 70 and the light shielding member 60 overlap is not larger than the area of the light shielding member 60, the light shielding member 60 allows misalignment of the light shielding mask 70. And it can suppress that leak light arises.

なお、本実施形態の液晶装置100では、遮光部材60を対向基板20に形成しているが、これに限らない。例えば、遮光部材60を素子基板10に形成してもよい。この場合、素子基板10としては封止部材54を硬化させる光を透過する光透過性を有するものを用いる。また、遮光部材60を素子基板10と対向基板20の双方の基板に形成してもよい。すなわち、遮光部材60は一対の基板10,20の少なくとも一方の基板の封止部材54に対向する位置に配置されていればよい。   In the liquid crystal device 100 of the present embodiment, the light shielding member 60 is formed on the counter substrate 20, but is not limited thereto. For example, the light shielding member 60 may be formed on the element substrate 10. In this case, as the element substrate 10, a substrate having a light transmission property that transmits light for curing the sealing member 54 is used. Further, the light shielding member 60 may be formed on both the element substrate 10 and the counter substrate 20. That is, the light shielding member 60 may be disposed at a position facing the sealing member 54 of at least one of the pair of substrates 10 and 20.

なお、本実施形態の液晶装置100では、遮光部材60は、対向基板20の液晶層50側(内側)の面に形成されているが、これに限らない。例えば、遮光部材60は、対向基板20の液晶層50側と反対側(外側)の面に形成されていてもよいし、対向基板20の内部に形成されていてもよい。すなわち、遮光部材60は、一対の基板10,20の少なくとも一方の基板の封止部材54に対向する位置に配置されていればよい。   In the liquid crystal device 100 of the present embodiment, the light shielding member 60 is formed on the surface of the counter substrate 20 on the liquid crystal layer 50 side (inner side), but is not limited thereto. For example, the light shielding member 60 may be formed on the surface (opposite side) opposite to the liquid crystal layer 50 side of the counter substrate 20, or may be formed inside the counter substrate 20. That is, the light shielding member 60 may be disposed at a position facing the sealing member 54 of at least one of the pair of substrates 10 and 20.

また、本実施形態の液晶装置100では、封止部材54の形成材料として紫外線硬化性樹脂を用いているが、これに限らない。例えば、封止部材54の形成材料としては、電子線などの放射線により硬化する樹脂や可視光線で硬化する樹脂を用いることもできる。この場合は、封止材にそれぞれ電子線または可視光線を照射することで封止材を硬化させることができる。   Further, in the liquid crystal device 100 of the present embodiment, the ultraviolet curable resin is used as the forming material of the sealing member 54, but the invention is not limited thereto. For example, as the forming material of the sealing member 54, a resin curable by radiation such as an electron beam or a resin curable by visible light can be used. In this case, the sealing material can be cured by irradiating the sealing material with an electron beam or visible light, respectively.

また、本実施形態の液晶装置100では、遮光部材60をUVが透過する位置と当該位置におけるUV透過率との関係は線形関係となっているが、これに限らない。例えば、遮光部材60をUVが透過する位置と当該位置におけるUV透過率との関係は、UVが透過する位置が液晶層50に近づく従ってUV透過率が段階的に小さくなるような相関関係となっていてもよい。相関関係としては、一例として、UVが透過する位置が液晶層50から遠いときはUV透過率が緩やかに小さくなり、UVが透過する位置が液晶層50に近いときはUV透過率が急峻に小さくなる関係が挙げられる。   Further, in the liquid crystal device 100 of the present embodiment, the relationship between the position where the UV passes through the light shielding member 60 and the UV transmittance at the position is a linear relationship, but is not limited thereto. For example, the relationship between the position where the UV is transmitted through the light shielding member 60 and the UV transmittance at the position is such that the position where the UV is transmitted approaches the liquid crystal layer 50 so that the UV transmittance is gradually reduced. It may be. As an example of the correlation, when the position where the UV is transmitted is far from the liquid crystal layer 50, the UV transmittance is gradually decreased, and when the position where the UV is transmitted is close to the liquid crystal layer 50, the UV transmittance is steeply decreased. The relationship becomes.

また、本実施形態の液晶装置の製造方法では、対向基板20の封止部材54に対向する位置に、金属膜61に複数の開口部62が形成されてなる遮光部材60を、素子基板10と対向基板20とを貼り合わせる前に形成しているが、これに限らない。例えば、遮光部材60を、素子基板10と対向基板20を貼り合わせた後に、対向基板20の封止部材54に対向する位置に形成してもよい。   Further, in the method of manufacturing the liquid crystal device according to the present embodiment, the light shielding member 60 in which the plurality of openings 62 are formed in the metal film 61 at the position facing the sealing member 54 of the counter substrate 20 is connected to the element substrate 10. Although it forms before bonding with the opposing board | substrate 20, it is not restricted to this. For example, the light shielding member 60 may be formed at a position facing the sealing member 54 of the counter substrate 20 after the element substrate 10 and the counter substrate 20 are bonded together.

(第2実施形態)
図7は、図2に対応した、本発明の第2実施形態に係る液晶装置(図示略)を構成する遮光部材の概略構成を示す模式図である。図7(a)は遮光部材の平面図であり、図7(b)は遮光部材の断面図である。なお、図7(b)において、符号Tは遮光部材の厚みである。
(Second Embodiment)
FIG. 7 is a schematic diagram showing a schematic configuration of a light shielding member corresponding to FIG. 2 and constituting a liquid crystal device (not shown) according to the second embodiment of the present invention. FIG. 7A is a plan view of the light shielding member, and FIG. 7B is a cross-sectional view of the light shielding member. In FIG. 7B, the symbol T is the thickness of the light shielding member.

図7に示すように、本実施形態に係る液晶装置の遮光部材160は、開口部が形成されていない点、厚みTが液晶層50に近づくに従って徐々に厚くなるように構成されている点で、上述の第1実施形態に係る液晶装置100の遮光部材60と異なっている。すなわち、本実施形態に係る遮光部材160は、膜厚Tを変えることで光透過率が制御されている。その他の点は上述の液晶装置100の構成と同様であるので、図1と同様の要素には同一の符号を付し、詳細な説明は省略する。   As shown in FIG. 7, the light shielding member 160 of the liquid crystal device according to the present embodiment is configured such that an opening is not formed and the thickness T gradually increases as the liquid crystal layer 50 is approached. This is different from the light shielding member 60 of the liquid crystal device 100 according to the first embodiment described above. That is, the light transmittance of the light shielding member 160 according to the present embodiment is controlled by changing the film thickness T. Since the other points are the same as the configuration of the liquid crystal device 100 described above, the same elements as those in FIG.

図7(a)に示すように、遮光部材160は、平面視長方形状であり、対向基板20の封止部材54に対向する位置に配置される。遮光部材160は、対向基板20と一体に形成される(図5参照)。   As shown in FIG. 7A, the light shielding member 160 has a rectangular shape in plan view, and is disposed at a position facing the sealing member 54 of the counter substrate 20. The light shielding member 160 is formed integrally with the counter substrate 20 (see FIG. 5).

遮光部材160は、例えば、AlやクロムCrなどの金属材料からなる金属膜である。遮光部材160は、金属膜の厚みTが液晶層50に近づくに従って徐々に厚くなるように構成されている。これにより、遮光部材160は、封止部材54を硬化させる紫外線(UV)を透過する紫外線透過率(UV透過率)が液晶層50に近づくに従って徐々に小さくなっている。   The light shielding member 160 is a metal film made of a metal material such as Al or chromium Cr, for example. The light shielding member 160 is configured so that the thickness T of the metal film gradually increases as it approaches the liquid crystal layer 50. As a result, the light shielding member 160 gradually decreases as the ultraviolet light transmittance (UV transmittance) that transmits ultraviolet light (UV) that cures the sealing member 54 approaches the liquid crystal layer 50.

図7(b)に示すように、遮光部材160の厚みTは、液晶層50に近い部分と液晶層50から遠い部分とで異なる大きさになっている。遮光部材160は、上面が対向基板20の上面に対して斜めに傾斜して形成される。遮光部材160をUVが透過する位置(遮光部材160と液晶層50との間の距離)と当該位置における遮光部材160の厚みTの関係は線形関係となっている。遮光部材160の液晶層50から最も遠い部分の厚みは、UVをそのまま透過する程度の厚みとなっている。   As shown in FIG. 7B, the thickness T of the light shielding member 160 is different between a portion near the liquid crystal layer 50 and a portion far from the liquid crystal layer 50. The light shielding member 160 is formed such that the upper surface is inclined obliquely with respect to the upper surface of the counter substrate 20. The relationship between the position where UV passes through the light shielding member 160 (the distance between the light shielding member 160 and the liquid crystal layer 50) and the thickness T of the light shielding member 160 at this position is a linear relationship. The portion of the light shielding member 160 that is farthest from the liquid crystal layer 50 is thick enough to transmit UV as it is.

遮光部材160の形成方法としては、例えば、先ず、対向基板20上にAlやCr等の金属薄膜(第1の膜)を蒸着により形成し、次に、対向基板20上に形成された金属薄膜の一部にマスクを配置し、金属薄膜(第1の膜)のマスクから露出した部分に金属薄膜(第2の膜)を蒸着により形成し、その後、この工程を順次繰り返して複数の金属薄膜を積層して形成する方法がある。その他にも、先ず、対向基板20上に所定の厚みの金属膜を蒸着により形成し、次に、対向基板20上に形成された金属膜の上面にマスクを配置し、その後、マスクを液晶層側に向けてずらしながら金属膜のマスクから露出した部分にエッチングレートを変えてエッチング処理する方法がある。また、金属膜を機械的に切削加工して形成する方法がある。   As a method for forming the light shielding member 160, for example, a metal thin film (first film) such as Al or Cr is first formed on the counter substrate 20 by vapor deposition, and then a metal thin film formed on the counter substrate 20 is formed. A mask is arranged on a part of the metal thin film (first film), and a metal thin film (second film) is formed on the exposed part of the metal thin film (first film) by vapor deposition. There is a method of laminating and forming. In addition, first, a metal film having a predetermined thickness is formed on the counter substrate 20 by vapor deposition. Next, a mask is disposed on the upper surface of the metal film formed on the counter substrate 20, and then the mask is disposed on the liquid crystal layer. There is a method of performing an etching process by changing the etching rate to a portion exposed from the mask of the metal film while shifting toward the side. There is also a method of forming a metal film by mechanical cutting.

本実施形態の液晶装置、液晶装置の製造方法によれば、遮光部材160の厚みが液晶層に近づくに従って徐々に厚くなるので、遮光部材160を透過して封止部材54に入射する光の量は液晶層50に近づくに従って徐々に小さくなる。そのため、封止部材54の液晶層50に近い部分に入射する光の量を小さくしつつ、封止部材54の液晶層50から遠い部分に入射する光の量を大きくして封止部材54を十分に硬化させることができる。   According to the liquid crystal device and the manufacturing method of the liquid crystal device of the present embodiment, the thickness of the light shielding member 160 gradually increases as it approaches the liquid crystal layer, and thus the amount of light that passes through the light shielding member 160 and enters the sealing member 54 Gradually decreases as the liquid crystal layer 50 is approached. Therefore, while reducing the amount of light incident on the portion of the sealing member 54 close to the liquid crystal layer 50, the amount of light incident on the portion of the sealing member 54 far from the liquid crystal layer 50 is increased to increase the amount of light incident on the sealing member 54. It can be cured sufficiently.

なお、本実施形態の液晶装置では、遮光部材160の厚みが液晶層に近づくに従って徐々に厚くなっているが、これに限らない。例えば、さらに、遮光部材160に複数の開口部を形成してもよい。複数の開口部の密度は液晶層50に近づくに従って徐々に小さくなるよう形成される。これにより、遮光部材の厚みと複数の開口部の密度との双方を調整することによって遮光部材を透過する光の量を位置に応じて自由に変更することができる。   In the liquid crystal device according to the present embodiment, the thickness of the light shielding member 160 gradually increases as it approaches the liquid crystal layer. However, the present invention is not limited to this. For example, a plurality of openings may be formed in the light shielding member 160. The density of the plurality of openings is formed so as to gradually decrease as the liquid crystal layer 50 is approached. Accordingly, the amount of light transmitted through the light shielding member can be freely changed according to the position by adjusting both the thickness of the light shielding member and the density of the plurality of openings.

また、本実施形態の液晶装置では、遮光部材160をUVが透過する位置と当該位置における遮光部材160の厚みTの関係は線形関係となっているが、これに限らない。例えば、遮光部材160の厚みが液晶層に近づくに従って段階的に厚くなるような関係(段階的な関係)となっていてもよい。   Further, in the liquid crystal device of the present embodiment, the relationship between the position where the UV passes through the light shielding member 160 and the thickness T of the light shielding member 160 at this position is a linear relationship, but is not limited thereto. For example, the light shielding member 160 may have a relationship (step relationship) in which the thickness of the light shielding member 160 increases stepwise as it approaches the liquid crystal layer.

(第3実施形態)
図8は、液晶装置の製造方法に用いられる、本発明の第3実施形態に係る遮光マスクの概略構成を示す斜視図である。図8に示すように、本実施形態に係る遮光部材173は、遮光部材173が対向基板20と別体に配置されている点、遮光マスク本体の開口部172に遮光部材173が形成されている点で、上述の第1実施形態に係る液晶装置100の遮光部材60と異なっている。すなわち、本実施形態の液晶装置は、液晶装置の製造方法に用いられる遮光マスク170の開口部172に遮光部材173を配置し、対向基板20には遮光部材173を形成しない構成となっている。その他の点は上述の液晶装置100の構成と同様であるので、図1と同様の要素には同一の符号を付し、詳細な説明は省略する。
(Third embodiment)
FIG. 8 is a perspective view showing a schematic configuration of a light shielding mask according to the third embodiment of the present invention, which is used in the method for manufacturing a liquid crystal device. As shown in FIG. 8, the light shielding member 173 according to this embodiment has the light shielding member 173 formed in the opening 172 of the light shielding mask body, in that the light shielding member 173 is disposed separately from the counter substrate 20. This is different from the light shielding member 60 of the liquid crystal device 100 according to the first embodiment described above. That is, the liquid crystal device according to the present embodiment is configured such that the light shielding member 173 is disposed in the opening 172 of the light shielding mask 170 used in the method for manufacturing the liquid crystal device, and the light shielding member 173 is not formed on the counter substrate 20. Since the other points are the same as the configuration of the liquid crystal device 100 described above, the same elements as those in FIG.

図8に示すように、遮光マスク170は、平面視長方形状であり、遮光マスク本体となる遮光板171の一部に、封止部材54を硬化させるUVを透過する開口部172が形成され、この開口部172に遮光部材173が配設された構成となっている。遮光部材173としては、上述した遮光部材60,160のいずれをも適用することが可能である。遮光板171は、例えば、ガラス基板にAlやCrなどの金属材料からなる膜を成膜したものである。開口部172が形成される位置(遮光部材173が設けられる位置)は、対向基板20の封止部材54に対向する位置となる。   As shown in FIG. 8, the light shielding mask 170 has a rectangular shape in plan view, and an opening 172 that transmits UV for curing the sealing member 54 is formed in a part of the light shielding plate 171 serving as the light shielding mask body. A light shielding member 173 is disposed in the opening 172. As the light shielding member 173, any of the light shielding members 60 and 160 described above can be applied. The light shielding plate 171 is formed, for example, by forming a film made of a metal material such as Al or Cr on a glass substrate. A position where the opening 172 is formed (a position where the light shielding member 173 is provided) is a position facing the sealing member 54 of the counter substrate 20.

図9は、第3実施形態に係る遮光マスクの配置状態を示す図である。
なお、図9においては、便宜上、遮光マスクを構成する遮光部材173を示し、遮光マスク本体の遮光板171の図示を省略している。
FIG. 9 is a diagram illustrating an arrangement state of light shielding masks according to the third embodiment.
In FIG. 9, for the sake of convenience, the light shielding member 173 constituting the light shielding mask is shown, and the illustration of the light shielding plate 171 of the light shielding mask main body is omitted.

図9に示すように、遮光部材173は、対向基板20の封止部材54に対向する位置に重なるように配置されている。本実施形態において、遮光部材173は、対向基板20と別体に且つ近接して配置されている(図10参照)。   As shown in FIG. 9, the light shielding member 173 is disposed so as to overlap a position facing the sealing member 54 of the counter substrate 20. In the present embodiment, the light shielding member 173 is disposed separately from and in close proximity to the counter substrate 20 (see FIG. 10).

図10は、図5に対応した、第3実施形態に係る遮光マスク(遮光部材)170に対する光の照射位置と光透過率との関係を示す図である。図10は、液晶装置の製造工程において、遮光マスク170を配置した後に遮光マスク170の外側からUVを照射して封止材を硬化させる工程を示している。図10においては、遮光部材170において遮光部材173が形成された部分(遮光マスク170の開口部172が位置する部分)の断面を上方に図示し、下方に、遮光部材173をUVが透過する位置とUV透過率との関係を図示している。この関係図において、横軸はUVが透過する位置であり、縦軸はUV透過率である。   FIG. 10 is a diagram corresponding to FIG. 5 and showing the relationship between the light irradiation position and the light transmittance on the light shielding mask (light shielding member) 170 according to the third embodiment. FIG. 10 shows a process of curing the sealing material by irradiating UV from the outside of the light shielding mask 170 after arranging the light shielding mask 170 in the manufacturing process of the liquid crystal device. In FIG. 10, the cross section of the portion of the light shielding member 170 where the light shielding member 173 is formed (the portion where the opening 172 of the light shielding mask 170 is located) is shown upward, and the position where UV passes through the light shielding member 173 below. And the UV transmittance are illustrated. In this relationship diagram, the horizontal axis is the position where UV is transmitted, and the vertical axis is the UV transmittance.

図10に示すように、液晶装置の製造工程における封止材を硬化させる工程において、遮光マスク170の上方からUVを照射すると、UVは遮光マスク170の開口部172に配設された遮光部材173を通過する。遮光部材173を透過した光の一部の光は、対向基板20を透過して封止部材54と液晶層50の封止部材54に近い部分とに照射される。残りの一部の光は、封止部材54の対向基板20の端縁から露出した部分に照射される。   As shown in FIG. 10, when UV is irradiated from above the light shielding mask 170 in the step of curing the sealing material in the manufacturing process of the liquid crystal device, the UV is shielded from the light shielding member 173 disposed in the opening 172 of the light shielding mask 170. Pass through. A part of the light transmitted through the light shielding member 173 passes through the counter substrate 20 and is applied to the sealing member 54 and the portion of the liquid crystal layer 50 close to the sealing member 54. The remaining part of the light is applied to the portion of the sealing member 54 exposed from the edge of the counter substrate 20.

遮光部材173をUVが透過する場合、遮光部材173をUVが透過する位置が液晶層50に近づくに従ってUV透過率が徐々に小さくなっている。遮光部材173をUVが透過する位置と当該位置におけるUV透過率との関係は線形関係となっている。   When UV passes through the light blocking member 173, the UV transmittance gradually decreases as the position where the UV passes through the light blocking member 173 approaches the liquid crystal layer 50. The relationship between the position where UV passes through the light shielding member 173 and the UV transmittance at the position is a linear relationship.

これにより、遮光部材173を透過した光の一部の光は、封止部材54に漏れなく照射される。また、この一部の光は液晶層50の封止部材54に近い部分に照射されるものの、遮光部材173によって照射強度が減衰している。残りの一部の光は、封止部材54の対向基板20の端縁から露出した部分に漏れなく照射される。   Thereby, a part of the light transmitted through the light shielding member 173 is irradiated to the sealing member 54 without omission. In addition, the light intensity is attenuated by the light-shielding member 173, although a part of the light is irradiated on the portion of the liquid crystal layer 50 near the sealing member 54. The remaining part of the light is irradiated to the portion of the sealing member 54 exposed from the edge of the counter substrate 20 without omission.

本実施形態の液晶装置の製造方法によれば、遮光部材173を液晶装置とは別部品とすることができる。また、遮光部材173を遮光マスク170の一部分とすることができる。よって、液晶装置の構成が簡単になる。   According to the liquid crystal device manufacturing method of the present embodiment, the light shielding member 173 can be a separate component from the liquid crystal device. Further, the light shielding member 173 can be a part of the light shielding mask 170. Therefore, the configuration of the liquid crystal device is simplified.

(電子機器)
図11は、本発明に係る液晶装置を備えた、電子機器としてプロジェクターの一例を示す模式図である。
図11に示すように、プロジェクター800は、光源810、ダイクロイックミラー813、814、反射ミラー815、816、817、入射レンズ818、リレーレンズ819、射出レンズ820、光変調部822、823、824、クロスダイクロイックプリズム825、投射レンズ826、を有している。
(Electronics)
FIG. 11 is a schematic diagram illustrating an example of a projector as an electronic apparatus including the liquid crystal device according to the invention.
As shown in FIG. 11, the projector 800 includes a light source 810, dichroic mirrors 813 and 814, reflection mirrors 815, 816 and 817, an incident lens 818, a relay lens 819, an exit lens 820, light modulators 822, 823 and 824, a cross. A dichroic prism 825 and a projection lens 826 are provided.

光源810は、メタルハライド等のランプ811とランプの光を反射するリフレクタ812とからなる。なお、光源810としては、メタルハライド以外にも超高圧水銀ランプ、フラッシュ水銀ランプ、高圧水銀ランプ、Deep UVランプ、キセノンランプ、キセノンフラッシュランプ等を用いることも可能である。   The light source 810 includes a lamp 811 such as a metal halide and a reflector 812 that reflects the light of the lamp. As the light source 810, besides a metal halide, an ultrahigh pressure mercury lamp, a flash mercury lamp, a high pressure mercury lamp, a deep UV lamp, a xenon lamp, a xenon flash lamp, or the like can be used.

ダイクロイックミラー813は、光源810からの白色光に含まれる赤色光を透過させるとともに、青色光と緑色光とを反射する。透過した赤色光は反射ミラー817で反射されて、赤色光用の光変調部822に入射される。また、ダイクロイックミラー813で反射された青色光と緑色光のうち、緑色光は、ダイクロイックミラー814によって反射され、緑色光用光変調部823に入射される。青色光は、ダイクロイックミラー814を透過し、長い光路による光損失を防ぐために設けられた入射レンズ818、リレーレンズ819及び射出レンズ820を含むリレー光学系821を介して、青色光が光変調部824に入射される。   The dichroic mirror 813 transmits red light contained in white light from the light source 810 and reflects blue light and green light. The transmitted red light is reflected by the reflection mirror 817 and is incident on the light modulation unit 822 for red light. Of the blue light and green light reflected by the dichroic mirror 813, green light is reflected by the dichroic mirror 814 and is incident on the green light light modulation unit 823. The blue light is transmitted through the dichroic mirror 814, and the blue light is transmitted through the relay optical system 821 including the incident lens 818, the relay lens 819, and the emission lens 820 provided to prevent light loss due to a long optical path. Is incident on.

光変調部822〜824は、液晶ライトバルブ830を挟んで両側に、入射側偏光素子840と射出側偏光素子部850と、が配置されている。液晶ライトバルブ830には、上述した本発明の液晶装置を用いる。入射側偏光素子840と射出側偏光素子部850とは、互いの透過軸が直交して(クロスニコル配置)配置されている。   In the light modulators 822 to 824, an incident side polarization element 840 and an emission side polarization element part 850 are arranged on both sides of the liquid crystal light valve 830. The liquid crystal light valve 830 uses the above-described liquid crystal device of the present invention. The incident side polarizing element 840 and the exit side polarizing element unit 850 are arranged so that their transmission axes are orthogonal to each other (crossed Nicols arrangement).

入射側偏光素子840は反射型の偏光素子であり、透過軸と直交する振動方向の光を反射させる。   The incident side polarization element 840 is a reflection type polarization element, and reflects light in a vibration direction orthogonal to the transmission axis.

一方、射出側偏光素子部850は、第1偏光素子(プリ偏光板、プリポラライザー)852と、第2偏光素子854と、を有している。第1偏光素子852には、耐熱性が高い偏光素子を用いる。また、第2偏光素子854は、有機材料を形成材料とする偏光素子である。射出側偏光素子部850は、いずれも透過軸と直交する偏光方向の光を吸収する吸収型の偏光素子である。   On the other hand, the exit-side polarizing element unit 850 includes a first polarizing element (pre-polarizing plate, pre-polarizer) 852 and a second polarizing element 854. As the first polarizing element 852, a polarizing element with high heat resistance is used. The second polarizing element 854 is a polarizing element using an organic material as a forming material. The exit side polarization element section 850 is an absorption type polarization element that absorbs light in the polarization direction orthogonal to the transmission axis.

各光変調部822〜824により変調された3つの色光は、クロスダイクロイックプリズム825に入射する。このクロスダイクロイックプリズム825は4つの直角プリズムを貼り合わせたものであり、その界面には赤光を反射する誘電体多層膜と青光を反射する誘電体多層膜とがX字状に形成されている。これらの誘電体多層膜により3つの色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ826によってスクリーン827上に投射され、画像が拡大されて表示される。   The three color lights modulated by the respective light modulation units 822 to 824 are incident on the cross dichroic prism 825. The cross dichroic prism 825 is formed by bonding four right-angle prisms. A dielectric multilayer film that reflects red light and a dielectric multilayer film that reflects blue light are formed in an X shape at the interface. Yes. These dielectric multilayer films combine the three color lights to form light representing a color image. The synthesized light is projected onto a screen 827 by a projection lens 826 that is a projection optical system, and an image is enlarged and displayed.

以上のような構成のプロジェクター800は、液晶ライトバルブ830に、上述した本発明の液晶装置を備えているので、表示品質が高く、信頼性に優れたプロジェクター800を提供することができる。   Since the projector 800 having the above-described configuration includes the above-described liquid crystal device of the present invention in the liquid crystal light valve 830, the projector 800 with high display quality and excellent reliability can be provided.

本発明は、投写画像を観察する側から投写するフロント投写型プロジェクターに適用する場合にも、投写画像を観察する側とは反対の側から投写するリア投写型プロジェクターに適用する場合にも、適用することができる。   The present invention is applicable not only when applied to a front projection type projector that projects from the side that observes the projected image, but also when applied to a rear projection type projector that projects from the side opposite to the side that observes the projected image. can do.

上記各実施の形態の液晶装置は、上記プロジェクターの液晶ライトバルブに限らず、高温ポリシリコンTFT液晶(HTPS)、反射型高温ポリシリコンTFT液晶(R−HTPS)、LCOS(Liquid crystal on silicon)、デジタルサイネージ、EVF(Electronic View Finder)として用いることができる。また、携帯電話、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、テレビジョン受像機、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができ、かかる構成とすることで、表示品質が高く、信頼性に優れた表示部を備えた電子機器を提供できる。   The liquid crystal device of each of the embodiments is not limited to the liquid crystal light valve of the projector, but is a high-temperature polysilicon TFT liquid crystal (HTPS), a reflective high-temperature polysilicon TFT liquid crystal (R-HTPS), LCOS (Liquid crystal on silicon), It can be used as digital signage and EVF (Electronic View Finder). Mobile phones, electronic books, personal computers, digital still cameras, television receivers, viewfinder type or monitor direct-view type video tape recorders, car navigation devices, pagers, electronic notebooks, calculators, word processors, workstations, videophones It can be suitably used as an image display means for devices including a POS terminal, a touch panel, and the like. With such a configuration, an electronic device including a display unit with high display quality and excellent reliability can be provided.

本発明者は、本発明の液晶装置、液晶装置の製造方法の効果を実証する実験を行った。具体的には、本発明の遮光部材を有する液晶装置(本発明に係る遮光部材を用いて製造した液晶装置)について高温高湿試験を行い、液晶装置の表示部に表示ムラが視認されないことを実証するものである。以下、この実験結果について説明する。
液晶装置の第1実施例として、上述した第1実施形態に係る遮光部材60を有する液晶装置を用いた。また、第2実施例として、上述した第3実施形態に係る遮光部材170を用いて製造した液晶装置を用いた。
液晶装置の比較例として、本発明に係る遮光部材を有していない液晶装置(本発明に係る遮光部材を用いて製造していない液晶装置)を用いた。
高温高湿試験は、温度60℃、湿度90%、試験時間56時間の条件で行った。
これら3種類の液晶装置についての試験結果を表1に示す。
The inventor conducted experiments to verify the effects of the liquid crystal device and the method of manufacturing the liquid crystal device of the present invention. Specifically, a high-temperature and high-humidity test is performed on the liquid crystal device having the light-shielding member of the present invention (a liquid crystal device manufactured using the light-shielding member according to the present invention), and display unevenness is not visually recognized on the display unit of the liquid crystal device. It is a demonstration. Hereinafter, the experimental results will be described.
As a first example of the liquid crystal device, a liquid crystal device having the light shielding member 60 according to the first embodiment described above was used. Further, as a second example, a liquid crystal device manufactured using the light shielding member 170 according to the third embodiment described above was used.
As a comparative example of the liquid crystal device, a liquid crystal device not having the light shielding member according to the present invention (a liquid crystal device not manufactured using the light shielding member according to the present invention) was used.
The high temperature and high humidity test was performed under the conditions of a temperature of 60 ° C., a humidity of 90%, and a test time of 56 hours.
Table 1 shows the test results for these three types of liquid crystal devices.

Figure 2012118219
Figure 2012118219

表1から、第1実施例及び第2実施例の液晶装置においては、表示部に表示ムラが視認されなかった。これに対して、比較例の液晶装置においては、表示部に表示ムラが視認された。   From Table 1, in the liquid crystal devices of the first and second examples, display unevenness was not visually recognized on the display unit. On the other hand, in the liquid crystal device of the comparative example, display unevenness was visually recognized on the display unit.

すなわち、本発明の遮光部材を有する液晶装置(本発明に係る遮光部材を用いて製造した液晶装置)によれば、封止材の硬化工程において、紫外線の照射による液晶の劣化を抑制し、液晶装置の表示部に表示ムラが視認されることを抑制することができることが判明した。   That is, according to the liquid crystal device having the light shielding member of the present invention (the liquid crystal device manufactured using the light shielding member according to the present invention), in the curing process of the sealing material, the deterioration of the liquid crystal due to ultraviolet irradiation is suppressed, and the liquid crystal device It has been found that display unevenness can be suppressed from being visually recognized on the display unit of the apparatus.

10…素子基板、20…対向基板、50…液晶層、52…シール部材、54…封止部材、55…注入口、60,160,173…遮光部材、61…金属膜、62…開口部、70,170…遮光マスク、72…開口部、100…液晶装置、T…金属膜の厚み DESCRIPTION OF SYMBOLS 10 ... Element substrate, 20 ... Opposite substrate, 50 ... Liquid crystal layer, 52 ... Sealing member, 54 ... Sealing member, 55 ... Injection port, 60, 160, 173 ... Light shielding member, 61 ... Metal film, 62 ... Opening, 70, 170 ... light shielding mask, 72 ... opening, 100 ... liquid crystal device, T ... thickness of metal film

Claims (16)

液晶層を挟持して対向配置された一対の基板と、
前記液晶層を構成する液晶の注入口を有し、前記一対の基板間に挟持された前記液晶層を取り囲む枠状のシール部材と、
前記注入口を封止する、光硬化性樹脂からなる封止部材と、
前記一対の基板の少なくとも一方の基板の前記封止部材に対向する位置に配置された遮光部材と、を備え、
前記遮光部材が配置された基板は、前記封止部材を硬化させる光を透過する光透過性を有しており、
前記封止部材に対向する位置に配置された前記遮光部材は、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなっていることを特徴とする液晶装置。
A pair of substrates disposed opposite to each other with a liquid crystal layer interposed therebetween;
A frame-shaped sealing member having a liquid crystal injection port constituting the liquid crystal layer and surrounding the liquid crystal layer sandwiched between the pair of substrates;
A sealing member made of a photocurable resin for sealing the injection port;
A light shielding member disposed at a position facing the sealing member of at least one of the pair of substrates,
The substrate on which the light shielding member is disposed has a light transmission property that transmits light for curing the sealing member,
The liquid crystal device according to claim 1, wherein the light shielding member disposed at a position facing the sealing member has a light transmittance that transmits the light gradually decreases toward the liquid crystal layer.
前記光透過率が徐々に小さくされている前記遮光部材は、前記封止部材と対向した位置と、該封止部材に隣接する前記液晶層と対向した位置との双方に渉った範囲の領域に設けられていることを特徴とする請求項1に記載の液晶装置。   The light-shielding member whose light transmittance is gradually reduced is a region in a range between the position facing the sealing member and the position facing the liquid crystal layer adjacent to the sealing member. The liquid crystal device according to claim 1, wherein the liquid crystal device is provided. 前記光透過率が徐々に小さくされている前記遮光部材は、前記基板の上面の法線方向から視て、前記封止部材の前記液晶層と反対側の端部と重ならないように配置されていることを特徴とする請求項1または2に記載の液晶装置。   The light shielding member whose light transmittance is gradually reduced is disposed so as not to overlap an end portion of the sealing member opposite to the liquid crystal layer when viewed from the normal direction of the upper surface of the substrate. The liquid crystal device according to claim 1, wherein the liquid crystal device is a liquid crystal device. 前記光透過率が徐々に小さくされている前記遮光部材は、前記封止部材と対向した位置と、該封止部材に隣接する前記シール部材と対向した位置との双方に渉った範囲の領域に設けられていることを特徴とする請求項1〜3のいずれか一項に記載の液晶装置。   The light shielding member whose light transmittance is gradually reduced is a region in a range where both the position facing the sealing member and the position facing the sealing member adjacent to the sealing member The liquid crystal device according to claim 1, wherein the liquid crystal device is provided on the liquid crystal device. 前記遮光部材は、金属膜に複数の開口部が形成されてなり、前記複数の開口部の密度が前記液晶層に近づくに従って徐々に小さくなるよう構成されていることを特徴とする請求項1〜4のいずれか一項に記載の液晶装置。   The said light shielding member is comprised so that several opening part may be formed in a metal film, and it is comprised so that the density of these several opening part may become small gradually as it approaches the said liquid-crystal layer. 5. The liquid crystal device according to any one of 4. 前記遮光部材は、金属膜からなり、前記金属膜の厚みが前記液晶層に近づくに従って徐々に厚くなるよう構成されており、これにより、前記光透過率が前記液晶層に近づくに従って徐々に小さくなっていることを特徴とする請求項1〜5のいずれか一項に記載の液晶装置。   The light shielding member is made of a metal film, and is configured such that the thickness of the metal film gradually increases as it approaches the liquid crystal layer, whereby the light transmittance gradually decreases as it approaches the liquid crystal layer. The liquid crystal device according to claim 1, wherein the liquid crystal device is a liquid crystal device. 前記封止部材は、前記基板の上面の法線方向から視て、前記液晶層と反対側の端部が前記一方の基板の端縁から露出するよう配置されていることを特徴とする請求項1〜6のいずれか一項に記載の液晶装置。   The sealing member is arranged so that an end opposite to the liquid crystal layer is exposed from an edge of the one substrate when viewed from the normal direction of the upper surface of the substrate. The liquid crystal device according to any one of 1 to 6. 前記光硬化性樹脂は、紫外線硬化性樹脂であることを特徴とする請求項1〜7のいずれか一項に記載の液晶装置。   The liquid crystal device according to claim 1, wherein the photocurable resin is an ultraviolet curable resin. 一対の基板間に液晶層を挟持してなる液晶装置の製造方法であって、
前記一対の基板の一方の基板または他方の基板に前記液晶層を構成する液晶の注入口を有する、前記基板の上面の法線方向から視て枠状のシール部材を形成する工程と、
前記一方の基板と前記他方の基板とを、前記シール部材を介して対向させて貼り合わせる工程と、
前記一対の基板と前記シール部材とに囲まれた領域に前記注入口から前記液晶を注入し、前記注入口を光硬化性樹脂からなる封止部材により封止する工程と、
前記一対の基板の少なくとも一方の、前記封止部材を硬化させる光を透過する光透過性を有する基板の前記封止部材に対向する位置に、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなる遮光部材を配置する工程と、
前記遮光部材が配置された基板の外側から前記遮光部材を介して前記封止部材に向けて前記光を照射する工程と、
を有することを特徴とする液晶装置の製造方法。
A method of manufacturing a liquid crystal device in which a liquid crystal layer is sandwiched between a pair of substrates,
Forming a frame-shaped sealing member as viewed from the normal direction of the upper surface of the substrate, having a liquid crystal injection port constituting the liquid crystal layer on one or the other of the pair of substrates;
Bonding the one substrate and the other substrate so that they face each other with the seal member interposed therebetween;
Injecting the liquid crystal from the injection port into a region surrounded by the pair of substrates and the sealing member, and sealing the injection port with a sealing member made of a photocurable resin;
At least one of the pair of substrates has a light transmittance that transmits the light in the liquid crystal layer at a position facing the sealing member of a substrate that transmits light that cures the sealing member. A step of arranging a light shielding member that gradually decreases as it approaches,
Irradiating the light from the outside of the substrate on which the light shielding member is disposed toward the sealing member via the light shielding member;
A method for manufacturing a liquid crystal device, comprising:
前記遮光部材は、金属膜に複数の開口部が形成されてなり、前記複数の開口部の密度が前記液晶層に近づくに従って徐々に小さくなるよう構成されていることを特徴とする請求項9に記載の液晶装置の製造方法。   10. The light-shielding member is formed by forming a plurality of openings in a metal film, and the density of the plurality of openings is configured to gradually decrease as the liquid crystal layer is approached. A manufacturing method of the liquid crystal device according to the description. 前記遮光部材は、金属膜からなり、前記金属膜の厚みが前記液晶層に近づくに従って徐々に厚くなるよう構成されており、これにより、前記光透過率が前記液晶層に近づくに従って徐々に小さくなっていることを特徴とする請求項9または10に記載の液晶装置の製造方法。   The light shielding member is made of a metal film, and is configured such that the thickness of the metal film gradually increases as it approaches the liquid crystal layer, whereby the light transmittance gradually decreases as it approaches the liquid crystal layer. 11. The method for manufacturing a liquid crystal device according to claim 9, wherein the liquid crystal device is manufactured. 前記遮光部材は、前記一対の基板の少なくとも一方の基板と一体に形成されていることを特徴とする請求項9〜11のいずれか一項に記載の液晶装置の製造方法。   The method for manufacturing a liquid crystal device according to claim 9, wherein the light shielding member is formed integrally with at least one of the pair of substrates. 前記光を透過する開口部が形成された遮光マスクを配置する工程を有し、
前記遮光マスクの前記開口部と前記遮光部材とが重なる領域の面積は、前記遮光部材の面積以下の大きさとなっており、
前記遮光部材は、前記領域において、前記光を透過する光透過率が前記液晶層に近づくに従って徐々に小さくなっていることを特徴とする請求項12に記載の液晶装置の製造方法。
A step of arranging a light shielding mask in which an opening for transmitting the light is formed;
The area of the region where the opening of the light shielding mask and the light shielding member overlap is smaller than the area of the light shielding member,
The method of manufacturing a liquid crystal device according to claim 12, wherein the light shielding member has a light transmittance that transmits the light gradually decreases in the region as it approaches the liquid crystal layer.
前記遮光部材は、前記一対の基板の少なくとも一方の基板と別体に且つ近接して配置されていることを特徴とする請求項9〜11のいずれか一項に記載の液晶装置の製造方法。   12. The method of manufacturing a liquid crystal device according to claim 9, wherein the light shielding member is disposed separately from and in close proximity to at least one of the pair of substrates. 前記光を透過する開口部が形成された遮光マスクを配置する工程を有し、
前記遮光マスクの前記開口部には前記遮光部材が配置されていることを特徴とする請求項14に記載の液晶装置の製造方法。
A step of arranging a light shielding mask in which an opening for transmitting the light is formed;
The method of manufacturing a liquid crystal device according to claim 14, wherein the light shielding member is disposed in the opening of the light shielding mask.
請求項1〜8のいずれか一項に記載の液晶装置を備えていることを特徴とする電子機器。   An electronic apparatus comprising the liquid crystal device according to claim 1.
JP2010266851A 2010-11-30 2010-11-30 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus Pending JP2012118219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266851A JP2012118219A (en) 2010-11-30 2010-11-30 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266851A JP2012118219A (en) 2010-11-30 2010-11-30 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2012118219A true JP2012118219A (en) 2012-06-21

Family

ID=46501129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266851A Pending JP2012118219A (en) 2010-11-30 2010-11-30 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2012118219A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736323A (en) * 2012-06-25 2012-10-17 深圳市华星光电技术有限公司 Photomask capable of curing frame glue and method for manufacturing liquid crystal display panel
CN103941481A (en) * 2013-06-27 2014-07-23 上海中航光电子有限公司 Design of mask plate
US9097918B2 (en) 2012-06-25 2015-08-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mask for curing frame sealant and liquid crystal display panel manufacturing method
WO2019146439A1 (en) * 2018-01-25 2019-08-01 株式会社ジャパンディスプレイ Display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736323A (en) * 2012-06-25 2012-10-17 深圳市华星光电技术有限公司 Photomask capable of curing frame glue and method for manufacturing liquid crystal display panel
WO2014000316A1 (en) * 2012-06-25 2014-01-03 深圳市华星光电技术有限公司 Photomask for curing frame adhesive and method for manufacturing liquid crystal display panel
CN102736323B (en) * 2012-06-25 2014-12-17 深圳市华星光电技术有限公司 Photomask capable of curing frame glue and method for manufacturing liquid crystal display panel
US9097918B2 (en) 2012-06-25 2015-08-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mask for curing frame sealant and liquid crystal display panel manufacturing method
CN103941481A (en) * 2013-06-27 2014-07-23 上海中航光电子有限公司 Design of mask plate
EP2818925A1 (en) * 2013-06-27 2014-12-31 Shanghai Avic Optoelectronics Co. Ltd Mask
WO2019146439A1 (en) * 2018-01-25 2019-08-01 株式会社ジャパンディスプレイ Display device
US11187936B2 (en) 2018-01-25 2021-11-30 Japan Display Inc. Display apparatus having first and second light blocking films

Similar Documents

Publication Publication Date Title
JP4379507B2 (en) Liquid crystal display device and liquid crystal panel
US7916247B2 (en) Electro-optic device, and electronic apparatus including the same
JP6337604B2 (en) Electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2013080041A (en) Electro-optic device, and electronic apparatus
JP2012118219A (en) Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus
JP6123250B2 (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic apparatus
JP2012083517A (en) Liquid crystal device and projection display device
JP2006343530A (en) Liquid crystal display and liquid crystal panel
JP2007264249A (en) Method for manufacturing electro-optical device, electro-optical device, and electronic equipment
JP3702902B2 (en) Manufacturing method of electro-optical device
JP2012123144A (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic equipment
JP2017083678A (en) Electro-optical device and electronic apparatus
JP2018045018A (en) Liquid crystal device and electronic apparatus
US8421969B2 (en) Electrooptic device and electronic apparatus
JP5842456B2 (en) Electro-optical device and electronic apparatus
JP2014010210A (en) Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus
JP2019200372A (en) Liquid crystal device and electronic apparatus
JP2012208425A (en) Liquid crystal device and electronic apparatus
JP2010217481A (en) Electrooptical device and electronic apparatus
JP2019082524A (en) Electro-optic device and electronic apparatus
JP2013050590A (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic equipment
JP2013160975A (en) Liquid crystal device, manufacturing method of the same and electronic apparatus
JP2014026142A (en) Manufacturing method for liquid crystal device, liquid crystal device and electronic apparatus
JP4337777B2 (en) Electro-optical device and projection display device
JP2007219131A (en) Liquid crystal device, method of manufacturing liquid crystal device and electronic equipment