〈第1実施形態〉
この発明の実施形態について図を参照して説明する。図1は、この実施形態の回転センサの主要構成をブロックで示す説明図である。図2は、図1に示すセンサチップの使用状態の一例を示す説明図であり、(a)はセンサチップおよび永久磁石の縦断面図、(b)は(a)に示す永久磁石の平面図である。図3は、図2(a)に示す永久磁石が180°回転した状態を示す縦断面図である。
[主要構成]
この実施形態の回転センサの主要構成について説明する。図1に示すように、この実施形態の回転センサ1は、センサチップ5と、このセンサチップ5と電気的に接続された検出回路50とを備える。センサチップ5は、磁気抵抗素子から成る2つの異方性磁気抵抗センサ(以下、AMRセンサという)M1,M2と、2つのホール素子H1,H2とを備える。
図2(a)に示すように、センサチップ5は、検出対象の永久磁石(磁気発生部)2の径に沿った回転面2cと対向する位置に配置される。また、センサチップ5は、支持部材(図示せず)によって支持されており、配置位置が変化しないように固定されている。
図2(b)に示すように、永久磁石2は、円板形状を成しており、径方向で同じ大きさに2分された一方がN極の永久磁石2aに、他方がS極の永久磁石2bになっている。図2(a)に示すように、永久磁石2は、回転シャフト3の先端に取付けられており、矢印F1で示す方向に回転する。
また、永久磁石2は、N極の永久磁石2aからS極の永久磁石2bに向けて磁界を発生し、そのうち、センサチップ5の表面5aに平行な磁界B1を発生する。図示の例では、磁界B1はホール素子H1からホール素子H2を貫通している。永久磁石2が図2(a)に示す状態から図3に示すように180°回転すると、磁界B1の向きが180°変化する。図示の例では、磁界B1はホール素子H2からH1を貫通している。
図1に示すように、検出回路50は、増幅部51,52と、初期値決定部53と、角度演算部60と、出力部70とを備える。増幅部51は、AMRセンサM1,M2から出力される出力信号を増幅する。角度演算部60は、増幅部51から出力される増幅信号を用い、永久磁石2の相対回転角度θを演算する。
増幅部52は、ホール素子H1,H2から出力される出力信号を増幅する。初期値決定部53は、増幅部52から出力された各増幅信号を閾値と比較し、その各比較結果に基いて永久磁石2の相対回転角度θの初期値θ0が、何度から何度までの角度範囲に存在するかを判定し、その判定した角度範囲に対応する演算角度φの初期値φ0を決定する。
出力部70は、角度演算部60により演算された演算角度φを入力し、演算角度φに対応する電圧Voを有するリニアな特性の信号を、永久磁石2が1回転する間に1周期で出力する。
[センサチップの構造]
センサチップ5の構造について説明する。図4は、センサチップの構造を模式的に示す説明図であり、(a)は平面図、(b)は(a)のA−A矢視断面図である。図5(a)は、磁気抵抗素子領域E1およびホール素子領域E2の平面図であり、(b)は、ホール素子H1,H2の配置角度を示す説明図である。なお、各図では、ホール素子H1,H2の配置状態を分かり易くするため、実際の寸法よりも大きく描いてある。また、磁気抵抗素子の形状も、素子の形成方向を分かり易くするため、実際の寸法よりも大きく描いてある。
図4に示すように、センサチップ5は、シリコン基板10と、このシリコン基板10の表面に形成された絶縁膜90と、この絶縁膜90の表面に形成されたAMRセンサM1,M2(磁電変換素子)と、シリコン基板10に作り込まれたホール素子H1,H2(検出素子)とを備える。AMRセンサM1は、磁気抵抗素子R1〜R4を備えており、AMRセンサM2は、磁気抵抗素子R5〜R8を備える。ホール素子H1,H2は、絶縁膜90を介して磁気抵抗素子R1〜R8の下方に重ねて配置されている。
図5(b)に示すように、ホール素子H1,H2は、各磁気検出部HPの磁気検出面HP1,HP2の成す角度が90°となるように配置されている。つまり、ホール素子H1,H2は、出力信号間の位相差が90°となるように配置されている。センサチップ5の相対回転中心P1から磁気抵抗素子R2の方へ水平に延ばした線を基準線L3とし、ホール素子H1の磁気検出面HP1と平行な線をL4とし、基準線L3の位置を基準角度0°とすると、ホール素子H1は、自身の磁気検出面HP1と基準線L3とが成す角度αが90°となるように配置されている。
また、ホール素子H2は、自身の磁気検出面HP2と基準線L3とが平行となるように配置されている。また、ホール素子H1の磁気検出面HP1と、基準角度0°に配置された磁気抵抗素子R2の磁化容易軸とが90°の角度を成している。つまり、ホール素子H1は、相対回転角度θに対して同相のsinθ信号を出力し、ホール素子H2は、ホール素子H1に対して位相が90°異なるcosθ信号を出力する。sinθ信号およびcos信号は、永久磁石2が1回転する間に、それぞれ磁界の強度に応じて信号レベルが2周期で変化する。
ここで、磁気抵抗素子R1〜R8が配置された領域を磁気抵抗素子領域E1とし、ホール素子H1,H2が配置された領域をホール素子領域E2とする。図5(a)は、図4(a)に基づいて作成したものである。磁気抵抗素子領域E1は、四角形を呈しており、その面積は、磁気抵抗素子R1〜R8を配置するために必要な最小面積に略等しい。また、ホール素子領域E2は、T字形を呈しており、その面積は、ホール素子H1,H2を配置するために必要な最小面積に略等しい。
図示のように、ホール素子領域E2の全部が磁気抵抗素子領域E1の下方に重ねられており、ホール素子領域E2の一部も磁気抵抗素子領域E1の端部から、はみ出ていない。また、磁気抵抗素子領域E1の対角線L1,L2の交点がセンサチップ5の相対回転中心P1と一致している。
つまり、センサチップ5の相対回転中心P1は、永久磁石2の相対回転軸C1(図2(a))の延長線上に位置しており、センサチップ5の相対回転中心P1および永久磁石2の相対回転中心は同軸上に存在する。このため、永久磁石2が回転していない状態においてセンサチップ5を相対回転中心P1を中心にして相対回転させた場合でも、永久磁石2に対するセンサチップ5の相対回転角度を検出することができる。
センサチップ5は、上記の構造であるため、AMRセンサおよびホール素子を半導体基板の基板面方向に配置した従来の回転センサと比較して、センサチップ5の基板面方向の大きさ(横幅)を小さくすることができる。
また、AMRセンサM1,M2およびホール素子領域H1,H2は、永久磁石2の相対回転軸C1(図2(a))に対応する方向に重ねられている。
したがって、センサチップ5を永久磁石2の相対回転中心方向に縮小することができるため、永久磁石2の回転面2cと対向する空間を有効活用することができる。
(AMRセンサの構造)
次に、AMRセンサM1,M2の構造について説明する。図6は、AMRセンサM1の構造を模式的に示す平面図である。図7は、AMRセンサM2の構造を模式的に示す平面図である。図8は、AMRセンサM1の等価回路であり、図9は、AMRセンサM2の等価回路である。図10は、AMRセンサM1,M2およびホール素子H1,H2の各出力信号を示す説明図である。
磁気抵抗素子R1〜R8は、帯状領域を複数回折り返した形状、つまり、メアンダ状(蛇行状)に形成されている。磁気抵抗素子R1〜R8は、主としてシリコン基板10の表面に平行な磁界の強度および向きにより抵抗値が変化し、抵抗値に応じたレベルの信号を出力する。つまり、磁気抵抗素子R1〜R8は、異方性磁気抵抗効果を発生する素子である。
この実施形態では、磁気抵抗素子R1〜R8は、強磁性体の金属薄膜により形成されている。強磁性体としては、NiFe(パーマロイ)やNiCoなどを用いることができる。また、強磁性体の金属薄膜は、スパッタ法や蒸着法により成膜することができる。
図6に示すように、AMRセンサM1は、4つの磁気抵抗素子R1〜R4を備える。磁気抵抗素子R1〜R4は、相互に隣接する磁気抵抗素子において帯状素子の延設方向の成す角度が90°になるように配置されている。換言すると、磁気抵抗素子R1〜R4は、隣り合う磁気抵抗素子の電流の方向(磁化容易軸)が90°の角度を成すように配置されている。つまり、磁気抵抗素子R1,R4およびR2,R3の各組は、各組において出力信号間の位相が90°異なるように配置されている。
図8に示すように、磁気抵抗素子R1およびR4は電気的に直列接続されており、ハーフブリッジ回路を構成している。このハーフブリッジ回路の中点には、中点出力Vout1を取出すための出力端子31が電気的に接続されている。磁気抵抗素子R2およびR3も電気的に直列接続されており、ハーフブリッジ回路を構成している。このハーフブリッジ回路の中点には、中点出力Vout2を取出すための出力端子32が電気的に接続されている。
そして、両ハーフブリッジ回路は並列接続され、cos2θ信号を出力するフルブリッジ回路が構成されている。このフルブリッジ回路には、電源Vccを供給するための電源供給端子30と、グランドG1と電気的に接続するための端子33とが電気的に接続されている。このフルブリッジ回路において相対向する磁気抵抗素子R1およびR2は、(R0−ΔRcos2θ)信号を出力し、磁気抵抗素子R3およびR4は、(R0+ΔRcos2θ)信号を出力する。ここで、R0は、無磁界中における磁気抵抗素子の抵抗値であり、ΔRは、抵抗値変化量である。
各中点出力Vout1,Vout2は、それぞれVcc/2を中心に振動するため、環境温度の変化などに起因する出力波形のオフセットを抑制することができる。
また、出力端子31,32は、差動増幅回路(図12において符号51aで示す)に接続され、中点出力Vout1,Vout2が差動増幅される。このため、AMRセンサM1を1つのハーフブリッジ回路によって構成する場合と比較して、AMRセンサM1の出力振幅を2倍にすることができるため、磁気の検出感度を高めることができる。
図7に示すように、AMRセンサM2は、4つの磁気抵抗素子R5〜R8を備える。磁気抵抗素子R5〜R8は、相互に隣接する磁気抵抗素子において帯状素子の延設方向の成す角度が90°になるように配置されている。換言すると、磁気抵抗素子R5〜R8は、隣り合う磁気抵抗素子の電流の方向(磁化容易軸)が90°の角度を成すように配置されている。つまり、磁気抵抗素子R5,R7およびR8,R6の各組は、各組において出力信号間の位相が90°異なるように配置されている。
図9に示すように、磁気抵抗素子R5およびR7は電気的に直列接続されており、ハーフブリッジ回路を構成している。このハーフブリッジ回路の中点には、中点出力Vout3を取出すための出力端子37が電気的に接続されている。磁気抵抗素子R8およびR6も電気的に直列接続されており、ハーフブリッジ回路を構成している。このハーフブリッジ回路の中点には、中点出力Vout4を取出すための出力端子38が電気的に接続されている。
そして、両ハーフブリッジ回路は並列接続され、sin2θ信号を出力するフルブリッジ回路が構成されている。このフルブリッジ回路には、電源Vccを供給するための電源供給端子36と、グランドG2と電気的に接続するための端子39とが電気的に接続されている。このフルブリッジ回路において相対向する磁気抵抗素子R5およびR6は、(R0+ΔRsin2θ)信号を出力し、磁気抵抗素子R7およびR8は、(R0−ΔRsin2θ)信号を出力する。
各中点出力Vout3,Vout4は、それぞれVcc/2を中心に振動するため、環境温度の変化などに起因する出力波形のオフセットを抑制することができる。
また、出力端子37,38は、差動増幅回路(図12において符号51bで示す)に接続され、中点出力Vout3,Vout4が差動増幅される。このため、AMRセンサM2を1つのハーフブリッジ回路によって構成する場合と比較して、AMRセンサM2の出力振幅を2倍にすることができるため、磁気の検出感度を高めることができる。
図4(a)に示すように、AMRセンサM1,M2の各磁気抵抗素子は同心円状に交互に配置されており、隣り合うAMRセンサM1の磁気抵抗素子R1〜R4と、AMRセンサM2の磁気抵抗素子R5〜R8とが、電流の方向(磁化容易軸)が45°の角度を成すように配置されている。異方性磁気抵抗素子の電気抵抗の変化量ΔRは、自身の金属薄膜に流れる電流の方向(磁化容易軸)と、磁界の方向との成す角度が90°および270°のときに最大になり、0°および180°のときに最小になる。
したがって、図10に示すように、AMRセンサM1は、1波長が電気角180°のsin信号を出力し、AMRセンサM2は、AMRセンサM1との位相差が45°で、1波長が電気角180°のcos信号を出力する。
図4(b)に示すように、AMRセンサM1,M2を構成する磁気抵抗素子R1〜R8は、絶縁膜90を解してシリコン基板10の表層部に配置されている。AMRセンサM1,M2は、磁気抵抗素子領域E1、つまり、シリコン基板10に対して平行な磁界B1の磁束密度の変化を主として検出する。ホール素子H1,H2は、シリコン基板10に作り込まれており、絶縁膜90を解して磁気抵抗素子R1〜R8の下方に重ねて配置されている。この実施形態では、ホール素子H1,H2は、それぞれCMOS(Complementary Metal Oxide Semiconductor)構造の縦型ホール素子である。また、絶縁膜90はシリコン酸化膜である。
ホール素子H1,H2は、出力信号間の位相差が90°となるように配置されている。このため、図9に示すように、永久磁石2が360°回転すると、ホール素子H1は、1波長が電気角360°のsin信号を出力し、ホール素子H2は、1波長が電気角360°のcos信号を出力する。なお、永久磁石2が2回転以上する場合は、360°および0°は連続しているものとして扱う。
(ホール素子の構造)
次に、ホール素子H1,H2の構造について説明する。なお、ホール素子H1,H2は同一の構造であるため、ここでは、ホール素子H2を例に挙げて説明する。図11は、ホール素子H2の説明図であり、(a)はホール素子H2およびその周辺の一部を示す平面図、(b)は(a)のA−A矢視断面図、(c)は(a)のB−B矢視断面図である。
ホール素子H2は、高耐圧CMOSトランジスタ(HVCMOS)構造を有する。ホール素子H2は、P型(第1導電型)のシリコン基板(P−sub)10と、このシリコン基板10の表層部から深さ方向に形成されたN型(第2導電型)の半導体領域(Nwell)91と、この半導体領域91の全周を囲むP型(第1導電型)の拡散層(Pwell)92と、シリコン基板10の表層部から深さ方向に形成され、半導体領域91の表層部から所定深さまでの領域を3つの半導体領域91a,91b,91cに分割するP型(第1導電型)の拡散層(Pwell)93,99と、半導体領域91a,91b,91cの各表層部に形成されたコンタクト領域(N+拡散層(不純物拡散領域))94〜98とを備える。
コンタクト領域94〜98には、配線を介して端子S,V1,V2,G3,G4が電気的に接続されている。端子S,G3,G4は、駆動電流を供給するための端子であり、端子V1,V2は、ホール電圧信号を取出すための端子である。つまり、コンタクト領域97,98が電流供給対であり、コンタクト領域95,96が電圧出力対である。したがって、図4(a)に示したホール素子H1,H2は、電流供給対を結ぶ線が直交するように配置されていることになる。また、電圧出力対を結ぶ線が直交するように配置されていることになる。
図11(c)に示すように、コンタクト領域95,96によって挟まれる領域が、磁気検出部(ホールプレート)HPとなる。また、その磁気検出部HPのうち、コンタクト領域95,96を結ぶラインと平行な両面がそれぞれ磁気検出面HP2となる。つまり、ホール素子H2は、その磁気検出面HP2から磁気検出部HPに印加される磁界に対応するホール電圧信号を端子V1,V2から出力する。
図11(b)に示すように、端子Sから端子G3へ、さらに、端子Sから端子G4へそれぞれ一定の駆動電流iを流すと、その駆動電流iは、コンタクト領域94から磁気検出部HP、そして拡散層93,98の下方の半導体領域91を通じてコンタクト領域97,98へとそれぞれ流れる。
つまり、磁気検出部HPには、基板表面(センサチップ表面)に垂直な成分を含む駆動電流が流れる。このため、その駆動電流を流した状態において、基板表面(センサチップ表面)に平行な成分を含む磁界(たとえば、図11(c)において矢印B1で示す磁界)が磁気検出部HPに印加されると、ホール効果によって端子V1,V2間にその磁界に対応するホール電圧VHが発生する。ホール電圧VHは、磁気検出面HP2と磁界の方向とが成す角度、つまり、磁気検出面HP2に対する磁界の入射角度に応じて変化する。
図2(a),図3に示したように、ホール素子H1,H2は、各磁気検出面HP1,HP2がシリコン基板10の表面に対して垂直となるように配置されているため、永久磁石2から発生し、シリコン基板10の表面に平行な磁界B1が各磁気検出面HP1,HP2を垂直に貫通する。図示の状態では、磁界B1は、ホール素子H2の磁気検出面HP2に垂直に貫通しているが、永久磁石2が図示の位置から90°回転すると、磁界B1は、ホール素子H1の磁気検出面HP1に垂直に貫通する。つまり、ホール素子H1,H2は、シリコン基板10の表面に平行な磁界B1の磁束密度の変化を主として検出する。
N型の半導体領域91は、低耐圧CMOSトランジスタ構造におけるN型の半導体領域よりも深く形成されており、それに伴い、P型の拡散層92,93,98も、低耐圧CMOSトランジスタ構造におけるP型の拡散層よりも深く形成されている。この実施形態では、P型の拡散層92,93,98は、それぞれN型の半導体領域91の略半分の深さに形成されている。
このようにホール素子H1は、N型の半導体領域91を深く形成しているため、キャリア移動度が高くなり、ホール効果を大きくすることができるため、ホール電圧VHを高くすることができるので、磁界に対する検出感度を高めることができる。
また、ホール素子H1は、CMOS工程で製造するため、バイポーラ工程で製造する縦型ホール素子よりもコスト的に有利である。
[電気的構成]
次に、回転センサ1の主な電気的構成について説明する。図12は、回転センサ1の主な電気的構成をブロックで示す説明図であり、図1に対応する図である。図13は、図12に示す各ブロック間の信号の流れを示す説明図である。図14は、図12に示す初期値テーブル54bの構成を示す説明図である。図15は、ホール素子などの出力波形を示す説明図であり、(a)はホール素子H1の出力波形、(b)は比較回路53aの出力波形、(c)はホール素子H2の出力波形、(d)は比較回路53bの出力波形、(e)は出力部70の出力波形である。
(増幅部52および初期値決定部53)
増幅部52は、増幅回路52aおよび52bを備える。増幅回路52aは、ホール素子H1から出力される検出信号sinθを増幅し、増幅回路52bは、ホール素子H2から出力される検出信号cosθを増幅する。初期値決定部53は、比較回路53aおよび53bと、初期値読出し部53cと、初期値テーブル53dとを備える。
比較回路53aは、増幅回路52aから出力される検出信号(図15(a))の信号レベルVH1と閾値(0V)とを比較し、その比較結果に対応するパルス信号(図15(b))を出力する。比較回路53bは、増幅回路52bから出力される検出信号(図15(c))の信号レベルVH2と閾値(0V)とを比較し、その比較結果に対応するパルス信号(図15(d))を出力する。
初期値決定部53は、ホール素子H1,H2から出力された各検出信号の各信号レベルVH1,VH2と、閾値(0V)との各比較結果、つまり、比較回路53aおよび53bの出力を用い、相対回転角度θの初期値θ0が含まれる角度範囲を判定する。そして、その判定した角度範囲の中で発生し得る相対回転角度θの初期値θ0と演算角度φの初期値φ0との差の絶対値が90°未満(|θ0−φ0|<90°)となるような演算角度φの初期値φ0を、初期値テーブル53dを用いて決定する。
図15(b)に示すように、比較回路53aからは、入力角度θが0〜180°の間はハイレベル(H)を維持し、入力角度θが180〜360°の間はローレベル(L)を維持するパルス信号が出力される。また、図15(d)に示すように、比較回路53bからは、入力角度θが90〜270°の間はハイレベル(H)を維持し、入力角度θが270〜90°の間はローレベル(L)を維持するパルス信号が出力される。
したがって、永久磁石2が回転していない初期状態において、比較回路53aから出力されたパルス信号の信号レベルがHであり、比較回路53bから出力されたパルス信号の信号レベルがLであった場合は、永久磁石2の相対回転角度θの初期値θ0は、第1象限(0°≦θ<90°)に存在すると判定することができる。また、比較回路53aから出力されたパルス信号の信号レベルがHであり、比較回路53bから出力されたパルス信号の信号レベルもHであった場合は、永久磁石2の相対回転角度θの初期値θ0は、第2象限(90°≦θ<180°)に存在すると判定することができる。
また、比較回路53aから出力されたパルス信号の信号レベルがLであり、比較回路53bから出力されたパルス信号の信号レベルがHであった場合は、永久磁石2の相対回転角度θの初期値θ0は、第3象限(180°≦θ<270°)に存在すると判定することができる。さらに、比較回路53aから出力されたパルス信号の信号レベルがLであり、比較回路53bから出力されたパルス信号の信号レベルもLであった場合は、永久磁石2の相対回転角度θの初期値θ0は、第4象限(270°≦θ<360°)に存在すると判定することができる。
つまり、比較回路53aおよび53bから出力される各パルス信号の信号レベルの組合せを用いることにより、永久磁石2の相対回転角度θの初期値θ0が存在する象限(角度範囲)を判定することができる。
この実施形態では、初期値θ0が含まれる角度範囲は、相対回転角度θの0〜360°をホール素子H1,H2の出力信号間の位相差90°で除した値4で除することにより、4個の角度範囲が設定されている。つまり、図14に示すように、第1象限(0°≦θ0<90°)と、第2象限(90°≦θ0<180°)と、第3象限(180°≦θ0<270°)および第4象限(270°≦θ0<360°)から成る4つの象限が角度範囲として設定されている。
また、図14に示すように、初期値テーブル53dは、比較回路53aから出力されるパルス信号の信号レベルVH1(HまたはL)と、比較回路53bから出力されるパルス信号の信号レベルVH2(HまたはL)と、演算角度φの初期値φ0とを対応付けて構成されている。この実施形態では、信号レベルVH1,VH2の組合せH,Lと初期値45°が、信号レベルVH1,VH2の組合せH,Hと初期値135°が、信号レベルVH1,VH2の組合せL,Hと初期値225°が、信号レベルVH1,VH2の組合せL,Lと初期値315°がそれぞれ対応付けられており、信号レベルVH1,VH2の組合せが各象限において総て異なるように構成されている。
各初期値は、デジタル角度であり、後述する角度演算部60を構成するアップダウンカウンタ64によるカウント値であり、そのカウント値が初期値として初期値テーブル53dに格納されている。初期値テーブル53dは、ROMやフラッシュROMなどの格納媒体に格納しておくことができる。
初期値読出し部53c(図12)は、初期値テーブル53dを参照し、比較回路53aおよび53bから出力される各パルス信号の信号レベルVH1,VH2の組合せに対応付けられている初期値φ0を読出す。たとえば、初期値読出し部53cは、比較回路53aおよび53bから出力される各パルス信号の信号レベルVH1,VH2の組合せがH,Lであった場合は、初期値テーブル53dから初期値φ0として45°を読出す。
(増幅部51および角度演算部60)
本実施形態では、相対回転する永久磁石(磁気発生部)2の磁界中に磁電変換素子に相当するAMRセンサM1,M2が配置されている。そして、AMRセンサM1,M2は、永久磁石2が1回転する間に磁界の強度に応じ、永久磁石2に対する相対回転角度をθとし且つNを自然数とするsinNθ信号及びcosNθ信号を出力するようになっている。なお、本実施形態の例では、永久磁石2が1回転する間に、AMRセンサM1,M2は磁界の強度に応じて信号レベルが2周期で変化するsin2θ信号及びcos2θ信号を出力しているため、N=2である。
増幅部51は、差動増幅回路51aおよび51bを備える。差動増幅回路51aは、AMRセンサM1の出力信号sin2θ(第1信号)を差動増幅し、差動増幅回路51bは、AMRセンサM2の出力信号cos2θ(第2信号)を差動増幅する。角度演算部60は、トラッキングループ型デジタル角度変換回路であり、信号作成部61と、偏差算出部62と、正負判定部63と、アップダウンカウンタ(U/Dカウンタ)64とを備える。
角度演算部60は、AMRセンサM1,M2から出力される信号(sin2θ信号及びcos2θ信号)を用い、永久磁石2に対する相対回転角度θと演算により求めた演算角度φとの偏差が所定値に収束するようにフィードバック制御を行って相対回転角度θを演算する。また、角度演算部60は、相対回転角度θの演算を開始するときの演算角度φの初期値φ0として初期値決定部53により決定された初期値φ0を用いる。
また、角度演算部60では、AMRセンサM1,M2から出力される信号(sin2θ信号及びcos2θ信号)に対して予め設定されたずれ量αが反映されたAsin(2θ+α)信号及びAsin(2θ−α)信号を生成しており、これらAsin(2θ+α)信号及びAsin(2θ−α)信号に対して、ずれ量αに応じた補正値を用いて補正を行うことでsin(2θ−2φ)信号を生成し、且つsin(2θ−2φ)信号に基づく偏差(2θ−2φ)が所定値になるようにフィードバック制御を行って相対回転角度θを演算している。
具体的には、まず、信号作成部61が、差動増幅回路51aから出力される信号Asin(2θ+α)と、差動増幅回路51bから出力される信号Asin(2θ−α)とを用い、信号2Asin(2θ−2φ)を作成する。ここで、Aは振幅であり、αは位相差である。即ち、差動増幅回路51a,51bから出力される信号は、装置毎に異なる位相のずれ量αが反映された信号となっている。この実施形態では、振幅A=1とし、位相差αは、例えば45°とする。偏差算出部62は、信号作成部61から出力される信号2Asin(2θ−2φ)を用いて偏差(2θ−2φ)を算出する。正負判定部63は、偏差算出部により算出された偏差(2θ−2φ)が正の値であるか負の値であるかを判定する。アップダウンカウンタ64は、正負判定部63の判定結果に応じてカウント値を加算(カウントアップ)または減算(カウントダウン)する。
(信号作成部61が実行する処理内容)
信号作成部61が実行する処理内容について図13を参照して説明する。図13において符号61a〜61kで示す各ブロックは、信号作成部61が実行する処理の内容、または、その処理によって発生する信号、又は、データ、又はデータを記憶する記憶部を示す。
信号作成部61は、信号Asin(2θ+α)と信号Asin(2θ−α)とを加算して信号2Asin2θcosαを作成する(61c)。この加算は、公知の加算回路を用いて行うことができる。また、信号作成部61は、信号Asin(2θ+α)から信号Asin(2θ−α)を減算して信号2Acos2θsinαを作成する(61d)。この減算は、公知の減算回路を用いて行うことができる。
続いて、信号作成部61は、信号Asin2θcosαに信号cos2φおよび(1/cosα)を乗算し、信号2Asin2θcos2φを作成する(61c,61i,61g)。また、信号作成部61は、信号2Acos2θsinαに信号sin2φおよび(1/sinα)を乗算し、信号2Acos2θsin2φを作成する(61d,61j,61h)。これらの乗算は、それぞれ公知の乗算回路を用いて行うことができる。
(1/cosα)および(1/sinα)は変化しない係数であり、本実施形態では、装置固有の値αに基づく補正値として記憶部に記憶されている。符号61g,61hはそれぞれ(1/cosα)のデータ及び(1/sinα)のデータを記憶する記憶部を示し、この記憶部は、例えば検出回路50の内部において、角度演算部60の内部又は外部に読み出し可能に設けられている。なお、(1/cosα)及び(1/sinα)を記憶する記憶部61g,61hは、共通の記憶部(EPROM、EEPROM等の半導体メモリ)によって構成することができる。また、この記憶部は、検出回路50の外部に設けたり、回転センサ1の外部に設けるようにしてもよい。また、位相ずれ量αは、例えば工場出荷時、或いは他のメンテナンス時において、検査装置によって装置固有の値として測定しておくことができ、このときの測定値αに基づいて、(1/cosα)及び(1/sinα)を記憶部61g,61hに記憶しておくことができる。また、測定値αは、製品毎に測定するのではなく、ロット毎に代表値を測定してこれを用いるようにしてもよい。
また、cos2φ(61i)およびsin2φ(61j)の各φは、アップダウンカウンタ64のカウント値により変化する変数である。永久磁石2が回転を開始する前、つまり、回転センサ1が相対回転角度θの検出を行う前は、初期値読出し部53cが初期値テーブル53dから読出した初期値φ0を演算角度φとして用いる。
続いて、信号作成部61は、信号2Asin2θcos2φから信号2Acos2θsin2φを減算し、信号2Asin(2θ−2φ)、つまり、偏差(2θ−2φ)を変数とするsin信号を作成する(61k)。この減算は、公知の減算回路を用いて行うことができる。
次に、偏差算出部62は、信号作成部61が作成した信号2Asin(2θ−2φ)を逆正弦演算(アークサイン演算)し、偏差(2θ−2φ)を求める(62)。次に、正負判定部63は、偏差算出部62が求めた偏差(2θ−2φ)が正の値であるか負の値であるかを判定する。また、偏差(2θ−2φ)は、信号2Asin(2θ−2φ)が0よりも大きいときは正であると判定し、0よりも小さいときは負であると判定する手法を用いることもできる。この手法を用いれば、信号2Asin(2θ−2φ)を逆正弦演算する必要がない。
次に、アップダウンカウンタ64は、正負判定部63の判定結果が正であった場合は、カウンタの最下位ビット(LSB)に1を加算してカウント値を加算し、正負判定部63の判定結果が負であった場合は、カウンタの最下位ビットから1を減算する。このアップダウンカウンタ64のカウント値がデジタル角度、つまり演算角度φである(65)。
また、信号作成部61は、アップダウンカウンタ64から出力される演算角度φ(カウント値)を用い、信号cos2φおよびsin2φを作成する(61i,61j)。これらの信号の作成は、たとえば、演算角度φ(カウント値)と、データcos2φおよびsin2φとを対応付けたテーブルを用い、演算角度φに対応付けられているデータcos2φおよびsin2φを読出し、その読出したデータをアナログ信号に変換する手法によって行うことができる。
そして、信号作成部61は、再度、信号2Asin2θcosαに信号cos2φおよび(1/cosα)を乗算し、信号2Asin2θcos2φを作成する。また、再度、信号2Acos2θsinαに信号sin2φおよび(1/sinα)を乗算し、信号2Acos2θsin2φを作成する。つまり、偏差(2θ−2φ)が、信号cos2φおよびsin2φにフィードバックされ、信号2Asin(2θ−2φ)が変化する。このフィードバックは、偏差(2θ−2φ)が0に収束するまで繰り返す。
(出力部70)
次に、出力部70は、アップダウンカウンタ64から出力される演算角度φをアナログ値に変換した信号を出力する。詳しくは、出力部70は、アップダウンカウンタ64から出力される演算角度φをラッチし、偏差(2θ−2φ)が0になったときにラッチした演算角度φをアナログ電圧Voに変換し、演算角度φの0〜360°に対応して電圧(Vo)がリニアに上昇する特性を有する角度信号を作成して出力する(図15(e))。
[初期値φ0を決定しない場合の問題点]
ここで、この実施形態のように、相対回転角度θの初期値θ0が属する角度範囲に基づいて決定した演算角度φの初期値φ0を用いるのではなく、演算角度φの初期値φ0を決定しないで0°を初期値φ0として用いる場合の問題点について図を参照して説明する。
図16,17は、演算角度φの初期値φ0が相対回転角度θの初期値θ0に追従する過程を示す説明図である。図16,17において「up」で示す矢印は、アップダウンカウンタ64が加算(カウントアップ)することを示し、「down」で示す矢印は、減算(カウントダウン)することを示す。なお、各図において演算角度φの初期値φ0は0°であるとする。また、各図では、分かり易くするため、偏差をカウント値ではなく角度で表す。
(例1)相対回転角度θの初期値θ0が45°の場合(図16(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×45°−2×0°)=90°となる。また、演算角度φが相対回転角度θに対して追従する方向、つまり、演算角度φがカウントアップされるかカウントダウンされるかは、偏差(2θ−2φ)の正負によって決定される。演算角度φは、偏差が正の場合にカウントアップされ、偏差が負の場合にカウントダウンされる。
この例では、初期値の偏差(2θ0−2φ0)=90°であるから、2sin(2θ0−2φ0)=2となるので、sin(2θ0−2φ0)=1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=90°になる。偏差は90°>0であるため、演算角度φはカウントアップされる。したがって、演算角度φは、初期値0°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°→1°→・・・→44°→45°と増加し、偏差(2θ−2φ)は、90°→88°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは45°になり、相対回転角度θの初期値θ0=45°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例2)相対回転角度θの初期値θ0が89°の場合(図16(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×89°−2×0°)=178°となる。したがって、2sin(2θ0−2φ0)≒0.07となるので、sin(2θ0−2φ0)=0.035となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=2°になる。偏差は2°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値0°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°→1°→・・・→88°→89°と増加し、偏差(2θ−2φ)は、178°→176°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは89°になり、相対回転角度θの初期値θ0=89°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例3)相対回転角度θの初期値θ0が91°の場合(図16(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×91°−2×0°)=182°となる。したがって、2sin(2θ0−2φ0)≒−0.07となるので、sin(2θ0−2φ0)=−0.035となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−2°になる。偏差は−2°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値0°(360°)から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°(360°)→359°→・・・→272°→271°と減少し、偏差(2θ−2φ)は、−178°→−176°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは271°になり、演算角度φは、初期値φ0=0°に近い271°の方向への追従を選択する。このため、演算角度φの相対回転角度θに対する偏差は、常に180°(=271°−91°)存在し、演算角度φは相対回転角度θに正しく追従しない。
(例4)相対回転角度θの初期値θ0が135°の場合(図17(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×135°−2×0°)=270°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値0°(360°)から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°(360°)→359°→・・・→316°→315°と減少し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは315°になり、演算角度φは、初期値φ0=0°に近い315°の方向への追従を選択する。このため、演算角度φの相対回転角度θに対する偏差は、常に180°(=315°−135°)存在し、演算角度φは相対回転角度θに正しく追従しない。
(例5)相対回転角度θの初期値θ0が225°の場合(図17(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×225°−2×0°)=450°となる。したがって、2sin(2θ0−2φ0)=2となるので、sin(2θ0−2φ0)=1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=90°になる。偏差は90°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値0°(360°)から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°→1°→・・・→44°→45°と増加し、偏差(2θ−2φ)は、90°→88°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは45°になり、演算角度φは、初期値φ0=0°に近い45°の方向への追従を選択する。このため、演算角度φの相対回転角度θに対する偏差は、常に180°(=225°−45°)存在し、演算角度φは相対回転角度θに正しく追従しない。
(例6)相対回転角度θの初期値θ0が315°の場合(図17(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×315°−2×0°)=630°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値0°(360°)から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、0°(360°)→359°→・・・→316°→315°と増加し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは315°になり、相対回転角度θの初期値θ0=315°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
上記のように、演算角度φの初期値φ0が0°であると、相対回転角度θの初期値θ0の値によっては、演算角度φが相対回転角度θに正しく追従しない場合が発生する。これは、2倍値の偏差(2θ−2φ)から1倍値の演算角度φを求めるため、演算角度φの解候補Xが2つ(X、X+180°)になることが原因である。つまり、演算角度φの初期値φ0を決定しないで0°を初期値φ0として用いると、相対回転角度θを正確に検出することができない場合がある。
[初期値φ0を決定する場合の効果]
ここで、この実施形態のように、初期値φ0を決定する場合の効果について図を参照して説明する。図18ないし図21は、演算角度φの初期値φ0が相対回転角度θの初期値θ0に追従する過程を示す説明図である。前述したように、初期値φ0は、相対回転角度θの初期値θ0が属する角度範囲に基づいて決定する。
(φ0=45°の場合)
(例1)相対回転角度θの初期値θ0が0°の場合(図18(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×0°−2×45°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値45°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、45°→44°→・・・→1°→0°と減少し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φも0°になり、相対回転角度θの初期値θ0=0°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例2)相対回転角度θの初期値θ0が30°の場合(図18(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×30°−2×45°)=−30°となる。したがって、2sin(2θ0−2φ0)=−1となるので、sin(2θ0−2φ0)=−0.5となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−30°になる。偏差は−30°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値45°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、45°→44°→・・・→31°→30°と減少し、偏差(2θ−2φ)は、−30°→−28°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは30°になり、相対回転角度θの初期値θ0=30°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例3)相対回転角度θの初期値θ0が80°の場合(図18(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×80°−2×45°)=70°となる。したがって、2sin(2θ0−2φ0)≒1.88となるので、sin(2θ0−2φ0)≒0.94となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=70°になる。偏差は70°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値45°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、45°→46°→・・・→79°→80°と増加し、偏差(2θ−2φ)は、70°→68°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは80°になり、相対回転角度θの初期値θ0=80°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(φ0=135°の場合)
(例1)相対回転角度θの初期値θ0が90°の場合(図19(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×90°−2×135°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値135°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、135°→134°→・・・→89°→90°と減少し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは90°になり、相対回転角度θの初期値θ0=90°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例2)相対回転角度θの初期値θ0が150°の場合(図19(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×150°−2×135°)=30°となる。したがって、2sin(2θ0−2φ0)=1となるので、sin(2θ0−2φ0)=0.5となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=30°になる。偏差は30°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値135°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ加算される。つまり、演算角度φは、135°→136°→・・・→149°→150°と増加し、偏差(2θ−2φ)は、30°→28°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは150°になり、相対回転角度θの初期値θ0=150°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例3)相対回転角度θの初期値θ0が180°の場合(図19(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×180°−2×135°)=90°となる。したがって、2sin(2θ0−2φ0)=2となるので、sin(2θ0−2φ0)=1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=90°になる。偏差は90°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値135°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、135°→136°→・・・→179°→180°と増加し、偏差(2θ−2φ)は、90°→88°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは180°になり、相対回転角度θの初期値θ0=180°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(φ0=225°の場合)
(例1)相対回転角度θの初期値θ0が180°の場合(図20(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×180°−2×225°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値225°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、225°→224°→・・・→181°→180°と増加し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは180°になり、相対回転角度θの初期値θ0=180°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例2)相対回転角度θの初期値θ0が240°の場合(図20(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×240°−2×225°)=30°となる。したがって、2sin(2θ0−2φ0)=1となるので、sin(2θ0−2φ0)=0.5となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=30°になる。偏差は30°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値225°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、225°→226°→・・・→239°→240°と増加し、偏差(2θ−2φ)は、30°→28°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは240°になり、相対回転角度θの初期値θ0=240°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例3)相対回転角度θの初期値θ0が270°の場合(図20(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×270°−2×225°)=90°となる。したがって、2sin(2θ0−2φ0)=2となるので、sin(2θ0−2φ0)=1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=90°になる。偏差は90°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値225°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、225°→226°→・・・→269°→270°と増加し、偏差(2θ−2φ)は、90°→88°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは270°になり、相対回転角度θの初期値θ0=270°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(φ0=315°の場合)
(例1)相対回転角度θの初期値θ0が270°の場合(図21(a))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×270°−2×315°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値315°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、315°→314°→・・・→271°→270°と増加し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは270°になり、相対回転角度θの初期値θ0=270°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例2)相対回転角度θの初期値θ0が330°の場合(図21(b))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×330°−2×315°)=30°となる。したがって、2sin(2θ0−2φ0)=1となるので、sin(2θ0−2φ0)=0.5となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=30°になる。偏差は30°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値315°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、315°→316°→・・・→329°→330°と増加し、偏差(2θ−2φ)は、30°→28°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは240°になり、相対回転角度θの初期値θ0=330°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(例3)相対回転角度θの初期値θ0が360°の場合(図21(c))
偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×360°−2×315°)=90°となる。したがって、2sin(2θ0−2φ0)=2となるので、sin(2θ0−2φ0)=1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=90°になる。偏差は90°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値315°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減算される。つまり、演算角度φは、315°→316°→・・・→359°→360°と増加し、偏差(2θ−2φ)は、90°→88°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは270°になり、相対回転角度θの初期値θ0=360°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
[第1実施形態の効果]
(1)以上のように、この実施形態の回転センサ1は、相対回転角度θの初期値θ0と、演算角度φの初期値φ0との間で、|θ0−φ0|<90°の条件を満たせば、演算角度φは相対回転角度θを正確に追従することができる。また、永久磁石2が相対回転する前に演算角度φの初期値φ0が相対回転角度θの初期値θ0に追従して等しくなり、その後、永久磁石2の回転中は、演算角度φが相対回転角度θに正確に追従することができる。
したがって、永久磁石2が相対回転する前に、相対回転角度θの初期値θ0が存在する象限の判定を行えば良く、相対回転中は象限の判定を行う必要がない。
つまり、永久磁石2が相対回転しているときの相対回転角度θの演算時間を短縮することができるし、検出回路50の処理負荷および消費電力を軽減することもできる。
(2)また、ホール素子H1,H2の各出力信号は、相対回転角度θの初期値θ0が存在する角度範囲を判定するためにのみ用いるため、ホール素子H1,H2およびAMRセンサM1,M2の各出力位相を一致させる必要がない。したがって、ホール素子H1,H2およびAMRセンサM1,M2の相対的な配置位置の精度を高める必要がないので、回転センサ1の製造歩留まりを高めることができる。
(3)また、ホール素子H1,H2は、各検出信号間に90°の位相差が出るように配置されているため、相対回転角度θが90°変化する毎に、各ホール素子の信号レベルの組合せを変えることができる。
したがって、初期値決定部53は、検出信号の信号レベルの組合せを用いることにより、相対回転角度θの初期値θ0が存在する角度範囲を90°単位で判定することができる。
(4)また、AMRセンサM1,M2は、各信号間に45°の位相差が出るように配置されているため、AMRセンサの一方から正弦波信号(sin信号)を出力し、その正弦波信号から位相が45°遅れた余弦波信号(cos信号)を他方から出力することができる。
したがって、上記の正弦波信号および余弦波信号を用いて相対回転角度を演算することができる。
(5)また、ホール素子H1,H2の各検出信号の各信号レベルと閾値との各比較結果の組合せが第1ないし第4象限において総て異なるため、初期値決定部53による象限の判定精度を高めることができる。
(6)また、AMRセンサM1,M2から出力されるsin2θ信号およびcos2θ信号を用いて偏差(2θ−2φ)が0になるようにフィードバック制御を行って相対回転角度θを演算するため、相対回転角度θを高精度で演算することができる。
(7)また、AMRセンサM1,M2から出力されるsin2θ信号およびcos2θ信号と、sin2φ信号およびcos2φ信号と、信号を乗算する回路と、信号を減算する回路とを用いることにより、偏差(2θ−2φ)を演算することができる。
(8)さらに、ホール素子H1,H2およびAMRセンサM1,M2は、シリコン基板10に作り込むことができるため、回転センサ1を小型化することができる。
[初期値φ0に対応する初期値θ0の余裕度]
次に、演算角度φの初期値φ0に対応する相対回転角度θの初期値θ0の余裕度について図を参照して説明する。図22は、初期値φ0に対応する初期値θ0の余裕度を示す説明図である。
演算角度φの初期値φ0と、相対回転角度θの初期値θ0との間において、|θ0−φ0|<90°の条件が満足されていれば、演算角度φは相対回転角度θを正確に追従することができる。図22において、「正」で示す範囲は、初期値φ0が初期値θ0を正確に追従することのできる初期値θ0の範囲を示し、「誤」で示す範囲は、初期値φ0が正確に追従することのできない初期値θ0の範囲を示す。図示のように、各初期値φ0が追従可能な初期値θ0の範囲は、各初期値φ0の対応する象限(図14参照)よりも広くなっている。以下、各初期値φ0が追従可能な初期値θ0の範囲について各初期値φ0毎に説明する。
(初期値φ0=45°の場合)
初期値φ0が45°の場合、追従可能な初期値θ0の範囲は、(45°−90°)<θ0<(45°+90°)、つまり、−45°<θ0<135°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<135°および315°<θ0≦360°になる。
たとえば、初期値θ0が134°のときに初期値φ0として45°を選択したとする。偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×134°−2×45°)=178°となる。したがって、2sin(2θ0−2φ0)≒0.07となるので、sin(2θ0−2φ0)≒0.035となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)≒2°になる。偏差は2°>0であるため、演算角度φはカウントアップされる。
したがって、演算角度φは、初期値45°から1°ずつカウントアップされ、偏差(2θ−2φ)は、演算角度φが1°カウントアップされる毎に2φ(=2×1°)ずつ減少する。つまり、演算角度φは、45°→46°→・・・→133°→134°と増加し、偏差(2θ−2φ)は、178°→176°→・・・→2°→0°と減少する。偏差が0°に収束したとき、演算角度φは134°になり、相対回転角度θの初期値θ0=134°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
以上のように、相対回転角度θの初期値θ0が、演算角度φの初期値φ0=45°に対応する第1象限の範囲(0°≦θ0<90°)外であっても、|θ0−φ0|<90°の条件を満足すれば、演算角度φは相対回転角度θを正確に追従することができる。
(初期値φ0=135°の場合)
初期値φ0が135°の場合、追従可能な初期値θ0の範囲は、(135°−90°)<θ0<(135°+90°)、つまり、45°<θ0<225°である。
たとえば、初期値θ0が90°のときに初期値φ0として135°を選択したとする。偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×90°−2×135°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値135°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減少する。つまり、演算角度φは、135°→134°→・・・→91°→90°と減少し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは90°になり、相対回転角度θの初期値θ0=90°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(初期値φ0=225°の場合)
初期値φ0が225°の場合、追従可能な初期値θ0の範囲は、(225°−90°)<θ0<(225°+90°)、つまり、135°<θ0<315°である。
たとえば、初期値θ0が150°のときに初期値φ0として225°を選択したとする。偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×150°−2×225°)=−150°となる。したがって、2sin(2θ0−2φ0)=−1となるので、sin(2θ0−2φ0)=−0.5となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−150°になる。偏差は−150°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値225°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減少する。つまり、演算角度φは、225°→224°→・・・→151°→150°と減少し、偏差(2θ−2φ)は、−150°→−148°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは150°になり、相対回転角度θの初期値θ0=150°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
(初期値φ0=315°の場合)
初期値φ0が315°の場合、追従可能な初期値θ0の範囲は、(315°−90°)<θ0<(315°+90°)、つまり、225°<θ0<405°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<45°および225°<θ0≦360°になる。
たとえば、初期値θ0が270°のときに初期値φ0として315°を選択したとする。偏差(2θ−2φ)の初期値は、(2θ0−2φ0)=(2×270°−2×315°)=−90°となる。したがって、2sin(2θ0−2φ0)=−2となるので、sin(2θ0−2φ0)=−1となる。これをアークサイン演算すると、初期値の偏差(2θ0−2φ0)=−90°になる。偏差は−90°<0であるため、演算角度φはカウントダウンされる。
したがって、演算角度φは、初期値315°から1°ずつカウントダウンされ、偏差(2θ−2φ)は、演算角度φが1°カウントダウンされる毎に2φ(=2×1°)ずつ減少する。つまり、演算角度φは、315°→314°→・・・→271°→270°と減少し、偏差(2θ−2φ)は、−90°→−88°→・・・→−2°→0°と減少する。偏差が0°に収束したとき、演算角度φは270°になり、相対回転角度θの初期値θ0=270°と等しくなるため、演算角度φは相対回転角度θに正しく追従する。
以上のように、この実施形態の回転センサ1は、相対回転角度θの初期値θ0と、演算角度φの初期値φ0との間で、|θ0−φ0|<90°の条件を満たせば、初期値テーブル53dから選択した初期値θ0が、初期値φ0に対応する象限の範囲外であっても、演算角度φは相対回転角度θを正確に追従することができる。
たとえば、初期値φ0として45°を選択したときの初期値θ0が、実際は45°であるが誤って90°と検出された場合でも、初期値φ0=45°は、初期値θ0=90°もカバーしているため、演算角度φは相対回転角度θを正確に追従することができる。
また、逆に、図22において、初期値θ0=90°は、初期値φ0=45°および135°のどちらにも対応しているため、初期値θ0が90°のときに初期値φ0として135°を選択するところを誤って45°を選択した場合でも、演算角度φは相対回転角度θを正確に追従することができる。
したがって、たとえば、外来ノイズや外来磁界の影響を受けて、初期値θ0または初期値φ0が変化した場合であっても、演算角度φは相対回転角度θを正確に追従することができる。つまり、外来ノイズや外来磁界の影響を受けても検出精度が低下し難い回転センサを実現することができる。
[変更例]
演算角度φの初期値φ0は、永久磁石2が相対回転する前と、相対回転を開始した後の予め定めされた時間とにおいてそれぞれ決定するように構成することもできる。この構成を用いれば、永久磁石2の相対回転中に相対回転角度θに対する演算角度φの追従ルートが外れ、演算角度φに誤差が発生している場合であっても、新たに初期値φ0を決定し、その初期値φ0を用いて相対回転角度θを演算することができるため、追従ルートを元の正確な追従ルートに戻すことができるので、演算角度φの誤差を補正することができる。
〈第2実施形態〉
次に、この発明の第2実施形態について説明する。図23は、この実施形態の回転センサに備えられたセンサチップの構造を模式的に示す説明図である。図24は、AMRセンサM1,M2およびホール素子H1,H2の各出力信号を示す説明図である。図25は、初期値テーブル54bの構成を示す説明図である。図26は、初期値φ0に対応する初期値θ0の余裕度を示す説明図である。
この実施形態の回転センサは、ホール素子H1,H2の各出力信号の位相差を45°としたことを特徴とする。図23に示すように、ホール素子H1,H2は、各磁気検出面(ホールプレート面)が45°を成すように配置されている。このため、図24に示すように、ホール素子H1,H2の出力信号間には45°の位相差が存在し、本例では、ホール素子H1の出力信号がローレベル(L)からハイレベル(H)に変化したタイミングから45°遅れてホール素子H2の出力信号がローレベル(L)からハイレベル(H)に変化している。
図24に示すホール素子H1,H2の出力信号のレベルに基づいて、相対回転角度θの初期値θ0の0〜360°を分割すると、図25に示すように、第1ないし第4範囲の計4個に分割することができる。図示のように、第1範囲は、0°≦θ0<45°であり、第2範囲は、45°≦θ0<180°であり、第3範囲は、180°≦θ0<225°であり、第4範囲は、225°≦θ0<360°である。また、演算角度φの初期値φ0は、初期値テーブル53dにおいて各範囲の中央値に設定されており、第1範囲に対して22.5°が、第2範囲に対して120°が、第3範囲に対して202.5°が、第4範囲に対して300°がそれぞれ設定されている。
たとえば、ホール素子H1の信号レベルVH1がハイレベル(H)であり、ホール素子H2の信号レベルVH2がローレベル(L)であった場合は、初期値テーブル53dから初期値φ0として22.5°が選択される。
また、図26に示すように、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1ないし第4範囲を超えており、余裕がある。第1実施形態と比較すると、初期値φ0が異なるが、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1実施形態と同様に、|θ0−φ0|<90°の条件を満たすように決めることができる。
初期値φ0=22.5°が追従可能な初期値θ0の範囲は、(22.5°−90°)<θ0<(22.5°+90°)、つまり、−67.5°<θ0<112.5°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<112.5°および292.5°<θ0≦360°になる。
また、初期値φ0=120°が追従可能な初期値θ0の範囲は、(120°−90°)<θ0<(120°+90°)、つまり、30°<θ0<210°である。また、初期値φ0=202.5°が追従可能な初期値θ0の範囲は、(202.5°−90°)<θ0<(202.5°+90°)、つまり、112.5°<θ0<292.5°である。さらに、初期値φ0=300°が追従可能な初期値θ0の範囲は、(300°−90°)<θ0<(300°+90°)、つまり、210°<θ0<390°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<30°および210°<θ0≦360°になる。
上述したように、第2実施形態の回転センサは、ホール素子H1,H2の出力信号間に45°の位相差が存在する以外は、第1実施形態の回転センサと同じ構成であるため、第1実施形態の回転センサと同じ効果を奏することができる。
〈第3実施形態〉
次に、この発明の第3実施形態について説明する。図27は、この実施形態の回転センサに備えられたセンサチップの構造を模式的に示す説明図である。図28は、AMRセンサM1,M2およびホール素子H1〜H3の各出力信号を示す説明図である。図29は、初期値テーブル54bの構成を示す説明図である。図30は、初期値φ0に対応する初期値θ0の余裕度を示す説明図である。
この実施形態の回転センサは、H1,H2,H3の3個のホール素子を備えており、各ホール素子の出力信号間の位相差を60°としたことを特徴とする。図27に示すように、ホール素子H1,H2,H3は、各磁気検出面(ホールプレート面)が60°を成すように配置されている。このため、図28に示すように、ホール素子H1,H2,H3の出力信号間には60°の位相差が存在し、本例では、ホール素子H1の出力信号がローレベル(L)からハイレベル(H)に変化したタイミングから60°遅れてホール素子H2の出力信号がローレベル(L)からハイレベル(H)に変化し、さらに、ホール素子H2の出力信号がローレベル(L)からハイレベル(H)に変化したタイミングから60°遅れてホール素子H3の出力信号がローレベル(L)からハイレベル(H)に変化している。
図28に示すホール素子H1,H2,H3の出力信号のレベルに基づいて、相対回転角度θの初期値θ0の0〜360°を分割すると、図29に示すように、60°単位の第1ないし第6範囲の6個に分割することができる。また、演算角度φの初期値φ0は、初期値テーブル53dにおいて各範囲の中央値に設定されている。
たとえば、ホール素子H1の信号レベルVH1がハイレベル(H)であり、ホール素子H2の信号レベルVH2がローレベル(L)であり、ホール素子H3の信号レベルVH3がローレベル(L)であった場合は、初期値テーブル53dから初期値φ0として30°が選択される。
また、図30に示すように、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1ないし第6範囲を超えており、余裕がある。第1実施形態と比較すると、初期値φ0が異なるが、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1実施形態と同様に、|θ0−φ0|<90°の条件を満たすように決めることができる。
初期値φ0=30°が追従可能な初期値θ0の範囲は、(30°−90°)<θ0<(30°+90°)、つまり、−60°<θ0<120°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<120°および300°<θ0≦360°になる。
また、初期値φ0=90°が追従可能な初期値θ0の範囲は、(90°−90°)<θ0<(90°+90°)、つまり、0°<θ0<180°である。また、初期値φ0=150°が追従可能な初期値θ0の範囲は、(150°−90°)<θ0<(150°+90°)、つまり、60°<θ0<240°である。また、初期値φ0=210°が追従可能な初期値θ0の範囲は、(210°−90°)<θ0<(210°+90°)、つまり、120°<θ0<300°である。また、初期値φ0=270°が追従可能な初期値θ0の範囲は、(270°−90°)<θ0<(270°+90°)、つまり、180°<θ0<360°である。さらに、初期値φ0=330°が追従可能な初期値θ0の範囲は、(330°−90°)<θ0<(330°+90°)、つまり、240°<θ0<420°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<60°および<θ0≦360°になる。
上述したように、第3実施形態の回転センサは、ホール素子H1,H2,H3の出力信号間に60°の位相差が存在する以外は、第1実施形態の回転センサと同じ構成であるため、第1実施形態の回転センサと同じ効果を奏することができる。しかも、初期値θ0が存在する角度範囲の数が第1ないし第6範囲と6個であり、第1実施形態の4個よりも2個多いため、その分、初期値θ0が存在する角度範囲を狭い範囲に絞り込むことができるので、演算角度φが初期値θ0に追従し、初期値θ0に収束するまでに要する時間を短縮することができる。
〈第4実施形態〉
次に、この発明の第4実施形態について説明する。図31は、初期値テーブル54bの構成を示す説明図である。図32は、初期値φ0に対応する初期値θ0の余裕度を示す説明図である。
この実施形態の回転センサは、H1〜H4の4個のホール素子を備えており、各ホール素子の出力信号間の位相差を45°としたことを特徴とする。ホール素子H1〜H4は、各磁気検出面(ホールプレート面)が45°を成すように配置されている。このため、ホール素子H1〜H4の出力信号間には45°の位相差が存在し、本例では、出力信号がローレベル(L)からハイレベル(H)に変化したタイミングが、ホール素子H1からH4へ順に45°ずつ遅れている。
ホール素子H1〜H4の出力信号のレベルに基づいて、相対回転角度θの初期値θ0の0〜360°を分割すると、図31に示すように、45°単位の第1ないし第8範囲の計8個に分割することができる。また、演算角度φの初期値φ0は、初期値テーブル53dにおいて各範囲の中央値に設定されている。
たとえば、ホール素子H1〜H4の各信号レベルVH1〜VH4が、順にハイレベル(H)、ローレベル(L)、ローレベル(L)、ローレベル(L)であった場合は、初期値テーブル53dから初期値φ0として22.5°が選択される。
また、図32に示すように、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1ないし第8範囲を超えており、余裕がある。第1実施形態と比較すると、初期値φ0が異なるが、初期値φ0が正確に追従可能な初期値θ0の範囲は、第1実施形態と同様に、|θ0−φ0|<90°の条件を満たすように決めることができる。
初期値φ0=22.5°が追従可能な初期値θ0の範囲は、(22.5°−90°)<θ0<(22.5°+90°)、つまり、−67.5°<θ0<112.5°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<112.5°および292.5°<θ0≦360°になる。
また、初期値φ0=67.5°が追従可能な初期値θ0の範囲は、(67.5°−90°)<θ0<(67.5°+90°)、つまり、−22.5°<θ0<157.5°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<157.5°および337.5°<θ0≦360°になる。また、初期値φ0=112.5°が追従可能な初期値θ0の範囲は、(112.5°−90°)<θ0<(112.5°+90°)、つまり、22.5°<θ0<202.5°である。また、初期値φ0=157.5°が追従可能な初期値θ0の範囲は、(157.5°−90°)<θ0<(157.5°+90°)、つまり、67.5°<θ0<247.5°である。
また、初期値φ0=202.5°が追従可能な初期値θ0の範囲は、(202.5°−90°)<θ0<(202.5°+90°)、つまり、112.5°<θ0<292.5°である。また、初期値φ0=247.5°が追従可能な初期値θ0の範囲は、(247.5°−90°)<θ0<(247.5°+90°)、つまり、157.5°<θ0<337.5°である。また、初期値φ0=292.5°が追従可能な初期値θ0の範囲は、(292.5°−90°)<θ0<(292.5°+90°)、つまり、202.5°<θ0<382.5°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<22.5°および202.5°<θ0≦360°になる。さらに、初期値φ0=337.5°が追従可能な初期値θ0の範囲は、(337.5°−90°)<θ0<(337.5°+90°)、つまり、247.5°<θ0<427.5°である。これをφ0=0°(360°)を基準にすると、0°≦θ0<67.5°および247.5°<θ0≦360°になる。
上述したように、第4実施形態の回転センサは、ホール素子H1〜H4の各出力信号間にそれぞれ45°の位相差が存在する以外は、第1実施形態の回転センサと同じ構成であるため、第1実施形態の回転センサと同じ効果を奏することができる。しかも、初期値θ0が存在する角度範囲の数が第1ないし第8範囲と8個であり、第3実施形態の6個よりも2個多いため、その分、初期値θ0が存在する角度範囲をより一層狭い範囲に絞り込むことができるので、演算角度φが初期値θ0に追従し、初期値θ0に収束するまでに要する時間をより一層短縮することができる。
〈第5実施形態〉
次に、この発明の第5実施形態について説明する。図33は、第5実施形態に係る回転センサにおける各ブロック間の信号の流れを示す説明図である。
第5実施形態では、第1実施形態の構成からホール素子H1、H2を省略し、図1の増幅部52や初期値決定部53を省略した点が第1実施形態と異なっている。なお、それ以外のハード構成は、第1実施形態で説明した図1〜図12の構成と同様となっている。従って、適宜図1〜図12を参照し、これらからホール素子H1、H2、増幅部52、初期値決定部53が省略されているものとして説明する。また、AMRセンサM1,M2の出力波形については図10の例と同様となっている。
第5実施形態の回転センサでも、相対回転する永久磁石(磁気発生部)2の磁界中に磁電変換素子に相当するAMRセンサM1,M2が配置されている。そして、AMRセンサM1,M2は、永久磁石2が1回転する間に磁界の強度に応じ、永久磁石2に対する相対回転角度をθとし且つNを自然数とするsinNθ信号及びcosNθ信号を出力するようになっている。なお、本実施形態の例でも、永久磁石2が1回転する間に、AMRセンサM1,M2は磁界の強度に応じて信号レベルが2周期で変化するsin2θ信号及びcos2θ信号を出力しているため、N=2である。
増幅部51、角度演算部60の機能は基本的に第1実施形態と同様であり、図12に示す差動増幅回路51aが、AMRセンサM1の出力信号sin2θ(第1信号)を差動増幅し、差動増幅回路51bが、AMRセンサM2の出力信号cos2θ(第2信号)を差動増幅するようになっている。角度演算部60は、AMRセンサM1,M2から出力される信号(sin2θ信号及びcos2θ信号)を用い、永久磁石2に対する相対回転角度θと演算により求めた演算角度φとの偏差が所定値に収束するようにフィードバック制御を行って相対回転角度θを演算する。なお、本実施形態では、第1実施形態のような初期値決定部53が設けられいないため、例えば、予め定められた所定の設定値が初期値φ0として用いられる。角度演算部60は、この初期値φ0を相対回転角度θの演算を開始するときの演算角度φの初期値φとして用いている。
この例でも、角度演算部60は、AMRセンサM1,M2から出力される信号(sin2θ信号及びcos2θ信号)に対して予め設定されたずれ量αが反映されたAsin(2θ+α)信号及びAsin(2θ−α)信号を生成しており、これらAsin(2θ+α)信号及びAsin(2θ−α)信号に対して、ずれ量αに応じた補正値を用いて補正を行うことでsin(2θ−2φ)信号を生成し、且つsin(2θ−2φ)信号に基づく偏差(2θ−2φ)が所定値になるようにフィードバック制御を行って相対回転角度θを演算している。
本実施形態でも、まず、信号作成部61が、差動増幅回路51aから出力される信号Asin(2θ+α)と、差動増幅回路51bから出力される信号Asin(2θ−α)とを用い、信号2Asin(2θ−2φ)を作成する。ここで、Aは振幅であり、αは位相差である。即ち、差動増幅回路51a,51bから出力される信号は、装置毎に異なる位相のずれ量αが反映された信号となっている。この実施形態では、振幅A=1とし、位相差αは、例えば45°とする。偏差算出部62は、信号作成部61から出力される信号2Asin(2θ−2φ)を用いて偏差(2θ−2φ)を算出する。正負判定部63は、偏差算出部により算出された偏差(2θ−2φ)が正の値であるか負の値であるかを判定する。アップダウンカウンタ64は、正負判定部63の判定結果に応じてカウント値を加算(カウントアップ)または減算(カウントダウン)する。
信号作成部61が実行する処理内容については、図33を参照して説明する。図33において符号61a〜61kで示す各ブロックは、信号作成部61が実行する処理の内容、または、その処理によって発生する信号、又は、データ、又はデータを記憶する記憶部を示す。
信号作成部61は、信号Asin(2θ+α)と信号Asin(2θ−α)とを加算して信号2Asin2θcosαを作成する(61c)。この加算は、公知の加算回路を用いて行うことができる。また、信号作成部61は、信号Asin(2θ+α)から信号Asin(2θ−α)を減算して信号2Acos2θsinαを作成する(61d)。この減算は、公知の減算回路を用いて行うことができる。
続いて、信号作成部61は、信号Asin2θcosαに信号cos2φおよび(1/cosα)を乗算し、信号2Asin2θcos2φを作成する(61c,61i,61g)。また、信号作成部61は、信号2Acos2θsinαに信号sin2φおよび(1/sinα)を乗算し、信号2Acos2θsin2φを作成する(61d,61j,61h)。これらの乗算は、それぞれ公知の乗算回路を用いて行うことができる。
本実施形態でも、(1/cosα)および(1/sinα)は変化しない係数とされており、装置固有の値αに基づく補正値として記憶部に記憶されている。符号61g,61hはそれぞれ(1/cosα)のデータ及び(1/sinα)のデータを記憶する記憶部を示し、この記憶部は、例えば検出回路50の内部において、角度演算部60の内部又は外部に読み出し可能に設けられている。なお、(1/cosα)及び(1/sinα)を記憶する記憶部61g,61hは、共通の記憶部(EPROM、EEPROM等の半導体メモリ)によって構成することができる。また、この記憶部は、検出回路50の外部に設けたり、回転センサ1の外部に設けるようにしてもよい。また、本実施形態でも、位相ずれ量αは、例えば工場出荷時、或いは他のメンテナンス時において、検査装置によって装置固有の値として測定しておくことができ、このときの測定値αに基づいて、(1/cosα)及び(1/sinα)を記憶部61g,61hに記憶しておくことができる。また、測定値αは、製品毎に測定するのではなく、ロット毎に代表値を測定してこれを用いるようにしてもよい。
また、cos2φ(61i)およびsin2φ(61j)の各φは、アップダウンカウンタ64のカウント値により変化する変数である。永久磁石2が回転を開始する前、つまり、回転センサ1が相対回転角度θの検出を行う前は、例えば、所定の記憶部に記憶される初期値φ0を演算角度φとして用いる。
続いて、信号作成部61は、信号2Asin2θcos2φから信号2Acos2θsin2φを減算し、信号2Asin(2θ−2φ)、つまり、偏差(2θ−2φ)を変数とするsin信号を作成する(61k)。この減算は、公知の減算回路を用いて行うことができる。
次に、偏差算出部62は、信号作成部61が作成した信号2Asin(2θ−2φ)を逆正弦演算(アークサイン演算)し、偏差(2θ−2φ)を求める(62)。次に、正負判定部63は、偏差算出部62が求めた偏差(2θ−2φ)が正の値であるか負の値であるかを判定する。また、偏差(2θ−2φ)は、信号2Asin(2θ−2φ)が0よりも大きいときは正であると判定し、0よりも小さいときは負であると判定する手法を用いることもできる。この手法を用いれば、信号2Asin(2θ−2φ)を逆正弦演算する必要がない。
次に、アップダウンカウンタ64は、正負判定部63の判定結果が正であった場合は、カウンタの最下位ビット(LSB)に1を加算してカウント値を加算し、正負判定部63の判定結果が負であった場合は、カウンタの最下位ビットから1を減算する。このアップダウンカウンタ64のカウント値がデジタル角度、つまり演算角度φである(65)。
また、信号作成部61は、アップダウンカウンタ64から出力される演算角度φ(カウント値)を用い、信号cos2φおよびsin2φを作成する(61i,61j)。これらの信号の作成は、たとえば、演算角度φ(カウント値)と、データcos2φおよびsin2φとを対応付けたテーブルを用い、演算角度φに対応付けられているデータcos2φおよびsin2φを読出し、その読出したデータをアナログ信号に変換する手法によって行うことができる。
そして、信号作成部61は、再度、信号2Asin2θcosαに信号cos2φおよび(1/cosα)を乗算し、信号2Asin2θcos2φを作成する。また、再度、信号2Acos2θsinαに信号sin2φおよび(1/sinα)を乗算し、信号2Acos2θsin2φを作成する。つまり、偏差(2θ−2φ)が、信号cos2φおよびsin2φにフィードバックされ、信号2Asin(2θ−2φ)が変化する。このフィードバックは、偏差(2θ−2φ)が0に収束するまで繰り返す。
次に、出力部70は、アップダウンカウンタ64から出力される演算角度φをアナログ値に変換した信号を出力する。詳しくは、出力部70は、アップダウンカウンタ64から出力される演算角度φをラッチし、偏差(2θ−2φ)が0になったときにラッチした演算角度φをアナログ電圧Voに変換し、演算角度φの0〜360°に対応して電圧(Vo)がリニアに上昇する特性を有する角度信号を作成して出力する(図15(e))。
なお、本実施形態に係る構成では、第1実施形態の図16〜図22等を参照して示したように、「初期値φ0を決定しない場合の問題点」を考慮する必要があるが、検出角度範囲を所定角度範囲に絞ることで問題点を解消することができる。例えば、本実施形態に係る回転センサを、0≦θ≦180°の範囲のみを検出するセンサとして用いるようにすれば、上記問題点を生じさせないセンサとすることができる。
〈第6実施形態〉
次に、この発明の第6施形態について説明する。図34は、第6施形態に係る回転センサにおける各ブロック間の信号の流れを示す説明図である。
第6実施形態では、第1実施形態のAMRセンサM1,M2を省略し、ホール素子H1,H2からの信号を増幅部51に入力する信号として用いており、更に、図1の増幅部52や初期値決定部53を省略した点が第1実施形態と異なっている。なお、それ以外のハード構成は、第1実施形態で説明した図1〜図12の構成と同様となっている。従って、適宜図1〜図12を参照し、これらからAMRセンサM1,M2、増幅部52、初期値決定部53が省略されているものとして説明する。
第6実施形態の回転センサでは、相対回転する永久磁石(磁気発生部)2の磁界中にホール素子H1,H2が配置されており、これらホール素子H1,H2が磁電変換素子に相当している。そして、ホール素子H1,H2は、永久磁石2が1回転する間に磁界の強度に応じ、永久磁石2に対する相対回転角度をθとし且つNを自然数とするsinNθ信号及びcosNθ信号を出力するようになっている。なお、本実施形態の例では、永久磁石2が1回転する間に、ホール素子H1,H2は磁界の強度に応じて信号レベルが1周期で変化するsinθ信号及びcosθ信号を出力しているため、N=1である。
増幅部51、角度演算部60の機能は基本的に第1実施形態と同様であり、差動増幅回路51aは、ホール素子H1の出力信号sinθ(第1信号)を差動増幅し、差動増幅回路51bは、ホール素子H2の出力信号cosθ(第2信号)を差動増幅する。角度演算部60は、ホール素子H1,H2から出力される信号(sinθ信号及びcosθ信号)を用い、永久磁石2に対する相対回転角度θと演算により求めた演算角度φとの偏差が所定値に収束するようにフィードバック制御を行って相対回転角度θを演算する。なお、本実施形態でも、第1実施形態のような初期値決定部53が設けられいないため、予め定められた所定の設定値が初期値φ0として用いられるようになっている。角度演算部60は、この初期値φ0を相対回転角度θの演算を開始するときの演算角度φの初期値φとして用いている。
この例でも、角度演算部60は、ホール素子H1,H2から出力される信号(sinθ信号及びcosθ信号)に対して予め設定されたずれ量αが反映されたAsin(θ+α)信号及びAsin(θ−α)信号を生成しており、これらAsin(θ+α)信号及びAsin(θ−α)信号に対して、ずれ量αに応じた補正値を用いて補正を行うことでsin(θ−φ)信号を生成し、且つsin(θ−φ)信号に基づく偏差(θ−φ)が所定値になるようにフィードバック制御を行って相対回転角度θを演算している。
具体的には、まず、信号作成部61が、差動増幅回路51aから出力される信号Asin(θ+α)と、差動増幅回路51bから出力される信号Asin(θ−α)とを用い、信号2Asin(θ−φ)を作成する。ここで、Aは振幅であり、αは位相差である。即ち、差動増幅回路51a,51bから出力される信号は、装置毎に異なる位相のずれ量αが反映された信号となっている。この実施形態では、振幅A=1とし、位相差αは、例えば45°とする。偏差算出部62は、信号作成部61から出力される信号2Asin(θ−φ)を用いて偏差(θ−φ)を算出する。正負判定部63は、偏差算出部により算出された偏差(θ−φ)が正の値であるか負の値であるかを判定する。アップダウンカウンタ64は、正負判定部63の判定結果に応じてカウント値を加算(カウントアップ)または減算(カウントダウン)する。
信号作成部61が実行する処理内容について図34を参照して説明する。図34において符号61a〜61kで示す各ブロックは、信号作成部61が実行する処理の内容、または、その処理によって発生する信号、又は、データ、又はデータを記憶する記憶部を示す。
信号作成部61は、信号Asin(θ+α)と信号Asin(θ−α)とを加算して信号2Asinθcosαを作成する(61c)。この加算は、公知の加算回路を用いて行うことができる。また、信号作成部61は、信号Asin(θ+α)から信号Asin(θ−α)を減算して信号2Acosθsinαを作成する(61d)。この減算は、公知の減算回路を用いて行うことができる。
続いて、信号作成部61は、信号Asinθcosαに信号cosφおよび(1/cosα)を乗算し、信号2Asinθcosφを作成する(61c,61i,61g)。また、信号作成部61は、信号2Acosθsinαに信号sinφおよび(1/sinα)を乗算し、信号2Acosθsinφを作成する(61d,61j,61h)。これらの乗算は、それぞれ公知の乗算回路を用いて行うことができる。
(1/cosα)および(1/sinα)は変化しない係数であり、本実施形態では、装置固有の値αに基づく補正値として記憶部に記憶されている。符号61g,61hはそれぞれ(1/cosα)のデータ及び(1/sinα)のデータを記憶する記憶部を示し、この記憶部は、例えば検出回路50の内部において、角度演算部60の内部又は外部に読み出し可能に設けられている。なお、(1/cosα)及び(1/sinα)を記憶する記憶部61g,61hは、共通の記憶部(EPROM、EEPROM等の半導体メモリ)によって構成することができる。また、この記憶部は、検出回路50の外部に設けたり、回転センサ1の外部に設けるようにしてもよい。また、位相ずれ量αは、例えば工場出荷時、或いは他のメンテナンス時において、検査装置によって装置固有の値として測定しておくことができ、このときの測定値αに基づいて、(1/cosα)及び(1/sinα)を記憶部61g,61hに記憶しておくことができる。また、測定値αは、製品毎に測定するのではなく、ロット毎に代表値を測定してこれを用いるようにしてもよい。
また、cosφ(61i)およびsinφ(61j)の各φは、アップダウンカウンタ64のカウント値により変化する変数である。永久磁石2が回転を開始する前、つまり、回転センサ1が相対回転角度θの検出を行う前は、所定の記憶部に記憶された初期値φ0(デフォルト値)を演算角度φとして用いる。
続いて、信号作成部61は、信号2Asinθcosφから信号2Acosθsinφを減算し、信号2Asin(θ−φ)、つまり、偏差(θ−φ)を変数とするsin信号を作成する(61k)。この減算は、公知の減算回路を用いて行うことができる。
次に、偏差算出部62は、信号作成部61が作成した信号2Asin(θ−φ)を逆正弦演算(アークサイン演算)し、偏差(θ−φ)を求める(62)。次に、正負判定部63は、偏差算出部62が求めた偏差(θ−φ)が正の値であるか負の値であるかを判定する。また、偏差(θ−φ)は、信号2Asin(θ−φ)が0よりも大きいときは正であると判定し、0よりも小さいときは負であると判定する手法を用いることもできる。この手法を用いれば、信号2Asin(θ−φ)を逆正弦演算する必要がない。
次に、アップダウンカウンタ64は、正負判定部63の判定結果が正であった場合は、カウンタの最下位ビット(LSB)に1を加算してカウント値を加算し、正負判定部63の判定結果が負であった場合は、カウンタの最下位ビットから1を減算する。このアップダウンカウンタ64のカウント値がデジタル角度、つまり演算角度φである(65)。
また、信号作成部61は、アップダウンカウンタ64から出力される演算角度φ(カウント値)を用い、信号cosφおよびsinφを作成する(61i,61j)。これらの信号の作成は、たとえば、演算角度φ(カウント値)と、データcosφおよびsinφとを対応付けたテーブルを用い、演算角度φに対応付けられているデータcosφおよびsinφを読出し、その読出したデータをアナログ信号に変換する手法によって行うことができる。
そして、信号作成部61は、再度、信号2Asinθcosαに信号cosφおよび(1/cosα)を乗算し、信号2Asinθcosφを作成する。また、再度、信号2Acosθsinαに信号sinφおよび(1/sinα)を乗算し、信号2Acosθsinφを作成する。つまり、偏差(θ−φ)が、信号cosφおよびsinφにフィードバックされ、信号2Asin(θ−φ)が変化する。このフィードバックは、偏差(θ−φ)が0に収束するまで繰り返す。
次に、出力部70は、アップダウンカウンタ64から出力される演算角度φをアナログ値に変換した信号を出力する。詳しくは、出力部70は、アップダウンカウンタ64から出力される演算角度φをラッチし、偏差(θ−φ)が0になったときにラッチした演算角度φをアナログ電圧Voに変換し、演算角度φの0〜360°に対応して電圧(Vo)がリニアに上昇する特性を有する角度信号を作成して出力する(図15(e)と同様)。
〈他の実施形態〉
(1)第1〜第4、第6実施形態に係る構成では、ホール素子H1,H2の各出力信号間の位相差は、90°、60°および45°以外でも良い。つまり、ホール素子H1,H2の各出力信号間の位相差が0°を超えていれば、演算角度φは相対回転角度θを正確に追従することができる。したがって、ホール素子の磁気検出面間が成す角度の選択範囲が非常に広いため、ホール素子の配置位置に関する自由度を高くすることができる。
(2)第1〜第4、第6実施形態に係る構成では、永久磁石2が1回転する間、つまり、相対回転角度θが1周期変化する間に出力信号の信号レベルが1周期変化する素子であれば、ホール素子以外の素子を用いることもできる。たとえば、GMR(Giant Magneto-Resistive effect:巨大磁気抵抗効果)型素子またはTMR(Tunnel Magneto-Resistive effect:トンネル磁気抵抗効果)型素子などの磁気検出素子もしくはコイルなどのスイッチを用いることができる。
(3))第1〜第5実施形態に係る構成では、永久磁石2が1回転する間、つまり、相対回転角度θが1周期変化する間に出力信号の信号レベルが2周期変化する素子であれば、AMRセンサ以外のセンサを用いることもできる。
(4)上記実施形態に係る構成では、増幅部51から出力されるsin2θ信号およびcos2θ信号の振幅差、オフセットおよび初期位相誤差を補正する補正部を設けることもできる。この構成を設けた回転センサを用いれば、相対回転角度θの検出精度をより一層高めることができる。
(5)上記実施形態に係る構成では、増幅部52から出力されるsinθ信号およびcosθ信号の振幅差、オフセットおよび初期位相誤差を補正する補正部を設けることもできる。この構成を設けた回転センサを用いれば、相対回転角度θの検出精度をより一層高めることができる。
(6)上記実施形態に係る構成では、角度演算部60、初期値決定部53および出力部70は、ディスクリート回路などのハードウエアによって実現することができる他、マイクロコンピュータを用いたソフトウエアによって実現することもできる。
(7)第1〜第4、第6実施形態に係る構成では、ホール素子H1またはH2のパルス出力の数をカウントし、多回転(360°以上)を検出することもできる。
(8)第1〜第4実施形態に係る構成では、初期値決定部53が行う内容は、出力部70が行うようにしても良い。
(9)上記実施形態に係る構成では、出力部70が演算角度をアナログ信号に変換しないでデジタル値の状態で出力するように構成することもできる。
(9)上記実施形態に係る構成では、検出回路50をシリコン基板10に形成し、センサチップ5および検出回路50を一体化することもできる。
(10)上記実施形態に係る構成では、シリコン基板10に代えてGaAs、InAs、InSbなどの化合物半導体により形成された基板を用いることもできる。
(11)上記実施形態に係る構成では、永久磁石に代えて、磁気インクを塗布した部材を用いることもできる。また、導電性部材の表面に着磁した部材を用いることもできる。
(12)第1〜第4、第6実施形態に係る構成では、縦型ホール素子に代えて横型ホール素子を用いることもできる。また、横型ホール素子を磁気検出部が磁気抵抗素子に対して垂直になるように、磁気抵抗素子領域に重ねて配置して用いることもできる。