JP2012117406A - Catalyst abnormality determination method for internal combustion engine - Google Patents

Catalyst abnormality determination method for internal combustion engine Download PDF

Info

Publication number
JP2012117406A
JP2012117406A JP2010266128A JP2010266128A JP2012117406A JP 2012117406 A JP2012117406 A JP 2012117406A JP 2010266128 A JP2010266128 A JP 2010266128A JP 2010266128 A JP2010266128 A JP 2010266128A JP 2012117406 A JP2012117406 A JP 2012117406A
Authority
JP
Japan
Prior art keywords
catalyst
air
fuel ratio
output
storage capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010266128A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
博之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010266128A priority Critical patent/JP2012117406A/en
Publication of JP2012117406A publication Critical patent/JP2012117406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of diagnosis for degradation in an exhaust gas cleaning catalyst required for an internal combustion engine loaded on a vehicle.SOLUTION: The diagnosis for estimating an oxygen occlusion capacity of the exhaust gas cleaning catalyst mounted on an exhaust passage of an internal combustion engine is performed by referring to the output of air-fuel ratio sensors respectively provided upstream and downstream with respect to the exhaust gas cleaning catalyst and estimating the oxygen amount occluded in the catalyst through the measurement of elapsed time from the time when output of the upstream side sensor varies to the time when output of the downstream side sensor varies. In the diagnosis, when the diagnosis is performed in an acceleration period, it is determined whether the catalyst is abnormal or not after the degradation determination threshold value is corrected lower as the degree of the acceleration is larger.

Description

本発明は、排気ガスを浄化する触媒の異常判定を行う方法に関する。   The present invention relates to a method for determining abnormality of a catalyst that purifies exhaust gas.

一般に、車両の排気通路には、排気ガス中に含まれるHC及びCOを酸化、NOxを還元して無害化する三元触媒が装着されている。 Generally, the exhaust passage of the vehicle, oxidizes HC and CO contained in the exhaust gas, three-way catalyst to harmless by reducing NO x is mounted.

触媒の酸素吸蔵能力(OSC:O2 Storage Capacity)は、経年劣化により減退する。触媒による排気ガスの浄化率は、触媒内に吸着できる酸素量に依存する。触媒の劣化が進行すると、排気ガスに含まれる有害物質の量も増大する。一方で、触媒の劣化は、車両自体の運転性能にはほとんど影響を与えない。それ故、異常な排出ガス車が長期間、無意識に使用され続けるおそれがある。 The oxygen storage capacity (OSC: O 2 Storage Capacity) of the catalyst decreases due to aging. The exhaust gas purification rate by the catalyst depends on the amount of oxygen that can be adsorbed in the catalyst. As the catalyst deteriorates, the amount of harmful substances contained in the exhaust gas also increases. On the other hand, deterioration of the catalyst hardly affects the driving performance of the vehicle itself. Therefore, there is a risk that an abnormal exhaust vehicle will continue to be used unconsciously for a long time.

このような事象に対処するべく、近時では、触媒の経年劣化の度合いを自己診断するダイアグノーシス機能を車両に実装することが通例となっている(例えば、下記特許文献を参照)。既に知られている通り、触媒から酸素が完全に放出された状況の下で、触媒に流入するガスの空燃比を強制的にリッチからリーンへと操作し、触媒下流の空燃比センサの出力信号がリーンに切り替わるまでの経過時間を計測することにより、現在触媒に吸蔵している酸素量を推算することができる。下流側センサ出力がリーンに反転した瞬間の酸素吸蔵量が、当該触媒の最大酸素吸蔵能力の推計値となる。   Recently, in order to cope with such an event, it has become common to install a diagnosis function in a vehicle for self-diagnosis of the degree of aging of the catalyst (see, for example, the following patent document). As already known, in a situation where oxygen is completely released from the catalyst, the air-fuel ratio of the gas flowing into the catalyst is forcibly changed from rich to lean, and the output signal of the air-fuel ratio sensor downstream of the catalyst By measuring the elapsed time until the gas is switched to lean, the amount of oxygen currently stored in the catalyst can be estimated. The oxygen storage amount at the moment when the downstream sensor output reverses lean is an estimated value of the maximum oxygen storage capacity of the catalyst.

特開平05−133264号公報JP 05-133264 A

触媒のダイアグノーシスは、定常走行時、加速走行時を問わず実行され得る。そして、加速の最中にダイアグノーシス処理が発生した場合には、未だ必要十分な性能を有している触媒であってもこれを劣化したものと判定してしまうケースがあった。   The diagnosis of the catalyst can be executed regardless of whether it is steady running or accelerated running. When a diagnosis process occurs during acceleration, there is a case where even if the catalyst still has the necessary and sufficient performance, it is determined that it has deteriorated.

本発明は、上記の問題に初めて着目してなされたものであって、触媒の劣化診断の精度を一層高めることを所期の目的としている。   The present invention has been made by paying attention to the above-mentioned problem for the first time, and an object thereof is to further improve the accuracy of catalyst deterioration diagnosis.

本発明では、内燃機関の排気通路に装着される排気ガス浄化用の触媒の下流に設けられた空燃比センサの出力を参照して、触媒に流入するガスの空燃比を強制的に変動させたときの触媒の酸素吸蔵能力を推計し、推計した酸素吸蔵能力値が閾値を下回ったときに触媒が異常であると判定するダイアグノーシスを実施する触媒異常判定において、前記酸素吸蔵能力の推計が加速期に行われた場合には、加速の度合いが大きいほど閾値を低く補正し、または推計した酸素吸蔵能力値を高く補正した上で、触媒の異常の有無を判定することとした。   In the present invention, the air-fuel ratio of the gas flowing into the catalyst is forcibly changed with reference to the output of the air-fuel ratio sensor provided downstream of the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine. The oxygen storage capacity of the catalyst is estimated, and when the estimated oxygen storage capacity value falls below a threshold value, a diagnosis is performed to determine that the catalyst is abnormal. In the case where it is performed in the period, the threshold value is corrected to be lower as the degree of acceleration is larger, or the estimated oxygen storage capacity value is corrected to be higher, and then the presence or absence of abnormality of the catalyst is determined.

本発明によれば、触媒の劣化診断の精度を一層高めることができる。   According to the present invention, the accuracy of catalyst deterioration diagnosis can be further increased.

本発明の一実施形態における触媒異常判定装置の構成要素を説明する図。The figure explaining the component of the catalyst abnormality determination apparatus in one Embodiment of this invention. 同触媒異常判定装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the catalyst abnormality determination apparatus. ダイアグノーシスのためのアクティブ制御の内容を説明するタイミングチャート。The timing chart explaining the content of the active control for diagnosis. 同触媒異常判定装置が実行する処理の手順例を示すフローチャート。The flowchart which shows the example of a procedure of the process which the same catalyst abnormality determination apparatus performs.

本発明の一実施形態を、図面を参照して説明する。本実施形態における触媒異常判定装置0は、内燃機関で燃料を燃焼させることにより発生する有害物質HC、CO、NOxを無害化する触媒52の経年劣化の度合いを診断するものであって、図1に示すように、触媒52の上流側における空燃比または酸素濃度に応じた出力信号を出力する第一の空燃比センサ53と、触媒52の下流側における空燃比または酸素濃度に応じた出力信号を出力する第二の空燃比センサ54と、両空燃比センサ53、54の出力信号を参照して触媒52の異常判定を行う判定部4とを具備する。 An embodiment of the present invention will be described with reference to the drawings. The catalyst abnormality determination device 0 in the present embodiment diagnoses the degree of aging of the catalyst 52 that renders harmful substances HC, CO, and NO x produced by burning fuel in an internal combustion engine harmless. 1, a first air-fuel ratio sensor 53 that outputs an output signal corresponding to the air-fuel ratio or oxygen concentration upstream of the catalyst 52, and an output signal that corresponds to the air-fuel ratio or oxygen concentration downstream of the catalyst 52 And a determination unit 4 that determines abnormality of the catalyst 52 with reference to the output signals of both the air-fuel ratio sensors 53 and 54.

図2に、ハードウェア構成の概要を示す。図2に一気筒の構成を概略的に示した火花点火式内燃機関は、例えば自動車に搭載されるものである。内燃機関の吸気系1には、アクセルペダルの踏込量に応じて開閉するスロットルバルブ11を設けており、スロットルバルブ11の下流にはサージタンク13を一体に有する吸気マニホルド12を取り付けている。サージタンク13には、吸気管内圧力(または、吸気負圧)を検出する圧力センサ71を配している。   FIG. 2 shows an outline of the hardware configuration. The spark ignition internal combustion engine schematically showing the configuration of one cylinder in FIG. 2 is mounted on, for example, an automobile. The intake system 1 of the internal combustion engine is provided with a throttle valve 11 that opens and closes according to the amount of depression of the accelerator pedal, and an intake manifold 12 that integrally has a surge tank 13 is attached downstream of the throttle valve 11. The surge tank 13 is provided with a pressure sensor 71 for detecting the intake pipe pressure (or intake negative pressure).

排気系5には、排気マニホルド51を取り付け、排出ガス浄化用の三元触媒52を装着している。そして、触媒52の上流に第一の空燃比センサとしてフロントO2センサ53を、下流に第二の空燃比センサとしてリアO2センサ54を、それぞれ配している。O2センサ53、54は、排出ガスに接触して反応することにより、排出ガス中の酸素濃度に応じた電圧信号を出力する。但し、空燃比センサ53、54は、排気ガスの空燃比に比例した線形な出力特性を有するリニアA/Fセンサであってもよい。さらに、第一の空燃比センサ35は、省くことが許される。 An exhaust manifold 51 is attached to the exhaust system 5 and a three-way catalyst 52 for exhaust gas purification is attached. A front O 2 sensor 53 is disposed upstream of the catalyst 52 as a first air-fuel ratio sensor, and a rear O 2 sensor 54 is disposed downstream as a second air-fuel ratio sensor. The O 2 sensors 53 and 54 output a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas. However, the air-fuel ratio sensors 53 and 54 may be linear A / F sensors having linear output characteristics proportional to the air-fuel ratio of the exhaust gas. Further, the first air-fuel ratio sensor 35 is allowed to be omitted.

吸気系1と排気系5との間には、EGR装置6を介設していることがある。EGR装置6は、始端が排気マニホルド51に連通し終端がサージタンク13に連通する外部EGR通路61と、EGR通路61上に設けた外部EGRバルブ62とを要素としてなる。EGRバルブ62を開放すれば、排出ガスを排気系5から吸気系1へと還流して吸気に混合する外部EGRを実現できる。   An EGR device 6 may be interposed between the intake system 1 and the exhaust system 5. The EGR device 6 includes an external EGR passage 61 having a start end communicating with the exhaust manifold 51 and a terminal end communicating with the surge tank 13, and an external EGR valve 62 provided on the EGR passage 61. If the EGR valve 62 is opened, an external EGR that recirculates the exhaust gas from the exhaust system 5 to the intake system 1 and mixes it with the intake air can be realized.

気筒2上部に形成される燃焼室の天井部(シリンダヘッド)には、吸気バルブ21、排気バルブ22、インジェクタ3及び点火プラグ23を設ける。   An intake valve 21, an exhaust valve 22, an injector 3, and a spark plug 23 are provided on the ceiling portion (cylinder head) of the combustion chamber formed in the upper part of the cylinder 2.

内燃機関の運転制御を司る電子制御装置(Electronic Control Unit)4は、中央演算装置41、記憶装置42、入力インタフェース43、出力インタフェース44等を有するマイクロコンピュータシステムである。   An electronic control unit 4 that controls operation of the internal combustion engine is a microcomputer system including a central processing unit 41, a storage device 42, an input interface 43, an output interface 44, and the like.

入力インタフェース43には、吸気管内圧力を検出する圧力センサ71から出力される吸気圧信号a、エンジン回転数を検出する回転数センサ72から出力される回転数信号b、車速を検出する車速センサ73から出力される車速信号c、スロットルバルブ11の開度(または、アクセルペダルの踏込量)を検出するスロットルポジションセンサ74から出力されるスロットル開度信号d、シフトポジションスイッチ75から出力されるシフトポジション信号e、冷却水の温度を検出する水温センサ76から出力される水温信号f、吸気カムシャフト91の端部にあるタイミングセンサ93から出力されるクランク角度信号及び気筒判別用信号g、排気カムシャフト92の端部にあるタイミングセンサ94から240°CA(クランク角度)回転毎に出力される排気カム信号h、フロントO2センサ53から出力される上流側空燃比信号i、リアO2センサ54から出力される下流側空燃比信号j、エアコンや照明その他の電気負荷のON/OFFの切り替えを行うスイッチ77から出力されるON/OFF信号k等が出力される。エンジン回転数センサ72は、クランクシャフトとともに回転する円板の外周に10°CA毎に間欠的に形成した歯の通過を感知することでクランクシャフトの回転速度を知得するものである。 The input interface 43 includes an intake pressure signal a output from the pressure sensor 71 that detects the pressure in the intake pipe, a rotation speed signal b output from the rotation speed sensor 72 that detects the engine speed, and a vehicle speed sensor 73 that detects the vehicle speed. A vehicle speed signal c output from the throttle valve 11, a throttle position signal d output from the throttle position sensor 74 that detects the opening degree of the throttle valve 11 (or the accelerator pedal depression amount), and a shift position output from the shift position switch 75. Signal e, water temperature signal f output from the water temperature sensor 76 for detecting the temperature of the cooling water, crank angle signal output from the timing sensor 93 at the end of the intake camshaft 91, cylinder discrimination signal g, exhaust camshaft 240 ° CA (crank angle) from the timing sensor 94 at the end of 92 Exhaust cam signal h is outputted for each rotation, the front O 2 upstream air-fuel ratio signal i output from the sensor 53, the downstream-side air-fuel ratio signal j outputted from the rear O 2 sensor 54, air-conditioning, lighting and other electrical loads An ON / OFF signal k and the like output from the switch 77 that performs ON / OFF switching are output. The engine rotation speed sensor 72 detects the rotation speed of the crankshaft by sensing the passage of teeth formed intermittently every 10 ° CA on the outer periphery of the disk rotating together with the crankshaft.

出力インタフェース44からは、インジェクタ3に対して燃料噴射信号n、点火プラグ8に対して点火信号m、EGRバルブ62に対してEGRバルブ開度信号o等を出力する。   From the output interface 44, a fuel injection signal n is output to the injector 3, an ignition signal m is output to the spark plug 8, an EGR valve opening signal o is output to the EGR valve 62, and the like.

中央演算装置41は、記憶装置42に予め格納しているプログラムを解釈、実行して、内燃機関の燃料噴射量や点火時期、気筒2に充填される吸気のEGR率(EGRガスの還流量)等の制御を遂行する。   The central processing unit 41 interprets and executes a program stored in the storage device 42 in advance, and performs fuel injection amount and ignition timing of the internal combustion engine, EGR rate of intake air filled in the cylinder 2 (EGR gas recirculation amount). Perform control of etc.

内燃機関の運転制御において、ECU4は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、h、i、j、kを入力インタフェース43を介して取得し、さらに現状の吸気量及び当該吸気のEGR率を推定して、それらに基づいて制御入力である燃料噴射量、燃料噴射時期、点火時期、EGRバルブ62の開度(EGRステップ数)等を演算する。特に、要求燃料噴射量は、エンジン冷却水温等の環境条件に応じた環境補正や、空燃比フィードバック制御による補正等を加えて最終的に決定する。そして、演算した制御入力に対応した制御信号m、n、oを、出力インタフェース44を介して印加する。上記制御入力の算定手法は、既知の内燃機関の運転制御と同様とすることができるので、ここでは説明を割愛する。   In the operation control of the internal combustion engine, the ECU 4 acquires various information a, b, c, d, e, f, g, h, i, j, k required for the operation control of the internal combustion engine via the input interface 43. Further, the current intake air amount and the EGR rate of the intake air are estimated, and based on these, the fuel injection amount, the fuel injection timing, the ignition timing, the opening degree of the EGR valve 62 (EGR step number), etc. are calculated. To do. In particular, the required fuel injection amount is finally determined by adding environmental correction according to environmental conditions such as engine coolant temperature, correction by air-fuel ratio feedback control, and the like. Then, control signals m, n, and o corresponding to the calculated control input are applied via the output interface 44. Since the calculation method of the control input can be the same as the known operation control of the internal combustion engine, the description is omitted here.

本実施形態における判定部たるECU4は、プログラムに従い、触媒52の最大酸素吸蔵能力を推算するとともに、推算した最大酸素吸蔵能力値を劣化判定閾値と比較して、触媒52が正常であるか異常であるかを判定する。   In accordance with the program, the ECU 4 serving as the determination unit in the present embodiment estimates the maximum oxygen storage capacity of the catalyst 52 and compares the estimated maximum oxygen storage capacity value with the deterioration determination threshold value to determine whether the catalyst 52 is normal or abnormal. Determine if there is.

触媒52の酸素吸蔵能力は、既知の任意の手法を採用して推算することができる。ここでは、その一典型例を示す。内燃機関の気筒に空燃比リーンの混合気を供給して触媒52の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒に供給する混合気を意図的に空燃比リッチに操作する。すると、第一の空燃比センサ53の出力信号は即座に空燃比リッチを示す。これに対し、第二の空燃比センサ54の出力信号は、第一の空燃比センサ53の出力信号に遅れて空燃比リッチを示す。第一の空燃比センサ53の出力信号が空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)第二の空燃比センサ54の出力信号が空燃比リッチを示すまでの間、触媒52に吸蔵していた酸素が放出されて酸素の不足が補われるためである。   The oxygen storage capacity of the catalyst 52 can be estimated by adopting any known method. Here, one typical example is shown. From the state in which the air-fuel ratio lean air-fuel mixture is supplied to the cylinder of the internal combustion engine and oxygen is stored to the full capacity of the oxygen storage capacity of the catalyst 52, the air-fuel mixture supplied to the cylinder is intentionally operated to be rich in the air-fuel ratio. Then, the output signal of the first air-fuel ratio sensor 53 immediately shows the air-fuel ratio rich. On the other hand, the output signal of the second air-fuel ratio sensor 54 shows the rich air-fuel ratio behind the output signal of the first air-fuel ratio sensor 53. Until the output signal of the second air-fuel ratio sensor 54 indicates rich air-fuel ratio after the output signal of the first air-fuel ratio sensor 53 indicates air-fuel ratio rich (or after the air-fuel mixture is manipulated to rich air-fuel ratio) This is because the oxygen occluded in the catalyst 52 is released during this period to compensate for the lack of oxygen.

第一の空燃比センサ53の出力信号が空燃比リッチを示してから、第二の空燃比センサ54の出力信号が空燃比リッチを示すまでの間に経過した時間をTRとおき、このTRの間に供給した燃料の総重量をGF、理論空燃比とリッチ時の空燃比との差分をΔA/FRとおくと、TRの間に触媒52中で不足した酸素量は、
(α・ΔA/FR・GF
となる。αは、空気中に占める酸素の重量割合(≒0.23)である。
From the output signal of the first air-fuel ratio sensor 53 indicates a rich air-fuel ratio, the time elapsed until the output signal of the second air-fuel ratio sensor 54 indicates a rich air-fuel ratio T R Distant, this T the total weight of the fuel has been supplied between the R G F, when the difference between the air-fuel ratio during the stoichiometric air-fuel ratio and rich put a .DELTA.A / F R, the amount of oxygen is insufficient in the catalyst 52 during the T R is
(Α ・ ΔA / F R・ G F )
It becomes. α is a weight ratio (≈0.23) of oxygen in the air.

上式は、TRの時点までに触媒52が放出した酸素の量を表している。供給した燃料の総重量GFは、ECU4において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリッチな(14.6よりも小さい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数(エンジン回転数に比例)を乗じれば、単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TRを乗じれば、供給した燃料の総重量GFとなる。要するに、第二の空燃比センサ54の出力信号が空燃比リッチを示した時点での経過時間TRに基づいて、触媒52の最大酸素放出能力を算出することが可能である。この最大酸素放出能力は、最大酸素吸蔵能力と同義である。 The above equation, the catalyst 52 represents the amount of oxygen released by the time of T R. Total weight G F of the supplied fuel can be calculated in ECU 4. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for making the air-fuel ratio a predetermined value richer than the stoichiometric air-fuel ratio (smaller than 14.6). Multiplying the number of per-expansion strokes (proportional to the engine speed) gives the fuel supply amount per unit time. Then, when multiplied by the elapsed time T R to a fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, based on the elapsed time T R at the time that the output signal of the second air-fuel ratio sensor 54 indicates a rich air-fuel ratio, it is possible to calculate the maximum oxygen release capacity of the catalyst 52. This maximum oxygen release capacity is synonymous with the maximum oxygen storage capacity.

あるいは、内燃機関の気筒に空燃比リッチの混合気を供給して触媒52に酸素を全く吸蔵していない状態から、気筒に供給する混合気を意図的に空燃比リーンに操作する。すると、第一の空燃比センサ53の出力信号は即座に空燃比リーンを示す。これに対し、第二の空燃比センサ54の出力信号は、第一の空燃比センサ53の出力信号に遅れて空燃比リーンを示す。第一の空燃比センサ53の出力信号が空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)第二の空燃比センサ54の出力信号が空燃比リーンを示すまでの間、過剰な酸素が触媒52に吸着するためである。   Alternatively, the air-fuel ratio rich mixture is supplied to the cylinder of the internal combustion engine and oxygen is not occluded in the catalyst 52, so that the air-fuel mixture supplied to the cylinder is intentionally operated to the air-fuel ratio lean. Then, the output signal of the first air-fuel ratio sensor 53 immediately shows the air-fuel ratio lean. On the other hand, the output signal of the second air-fuel ratio sensor 54 shows the air-fuel ratio lean behind the output signal of the first air-fuel ratio sensor 53. Until the output signal of the second air-fuel ratio sensor 54 indicates the air-fuel ratio lean after the output signal of the first air-fuel ratio sensor 53 indicates the air-fuel ratio lean (or after the mixture is operated to the air-fuel ratio lean) This is because excess oxygen is adsorbed on the catalyst 52 during the period.

第一の空燃比センサ53の出力信号が空燃比リーンを示してから、第二の空燃比センサ54の出力信号が空燃比リーンを示すまでの間に経過した時間をTLとおき、このTLの間に供給した燃料の総重量をGF、リーン時の空燃比と理論空燃比との差分をΔA/FLとおくと、TLの間に触媒52中で過剰となった酸素量は、
(α・ΔA/FL・GF
となる。
The time elapsed from when the output signal of the first air-fuel ratio sensor 53 indicates air-fuel ratio lean until the output signal of the second air-fuel ratio sensor 54 indicates air-fuel ratio lean is set as T L. If the total weight of the fuel supplied during L is G F , and the difference between the lean air-fuel ratio and the stoichiometric air-fuel ratio is ΔA / F L , the amount of oxygen excess in the catalyst 52 during T L Is
(Α ・ ΔA / F L・ G F )
It becomes.

上式は、TLの時点で触媒52が吸蔵している酸素の量を表している。供給した燃料の総重量GFはやはり、ECU4において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリーンな(14.6よりも大きい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数を乗じれば単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TLを乗じれば、供給した燃料の総重量GFとなる。要するに、第二の空燃比センサ54の出力信号が空燃比リーンを示した時点での経過時間TLに基づいて、触媒52の最大酸素吸蔵能力を算出することが可能である。 The above formula represents the amount of oxygen stored in the catalyst 52 at the time point T L. Total weight G F of the supplied fuel again, it can be calculated in ECU 4. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for setting the air-fuel ratio to a predetermined value leaner than the stoichiometric air-fuel ratio (greater than 14.6). Multiply by the number of expansion strokes per unit, the fuel supply amount per unit time is obtained. Then, when multiplied by the elapsed time T L in the fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, it is possible to calculate the maximum oxygen storage capacity of the catalyst 52 based on the elapsed time T L when the output signal of the second air-fuel ratio sensor 54 shows the air-fuel ratio lean.

実際には、アイドリング時、定常走行時、加速走行時、その他特定の運転状態(燃料カットが発生する減速走行時を除く)にあるときに、理論空燃比へのフィードバック制御を一時停止し、混合気の空燃比を意図的に振動させる「アクティブ制御」に移行してダイアグノーシスを実施する。   Actually, the feedback control to the stoichiometric air-fuel ratio is paused and mixed during idling, steady running, accelerated running, and other specific operating conditions (except during deceleration running where fuel cut occurs) Shift to “active control” that intentionally oscillates the air-fuel ratio of the gas and performs diagnosis.

図3に示しているように、アクティブ制御では、第二の空燃比センサ54の出力電圧が所定のリッチ判定値に到達した、即ち第二空燃比センサ54の出力がリーンからリッチへと切り替わったタイミングで、制御目標空燃比をリーン側の所定空燃比に設定し、第一の空燃比センサ53の出力電圧が当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒52に流入するガスの空燃比を強制的にリーン化する。そして、第一の空燃比センサ53の出力電圧が前記制御目標に対応した値に到達してから、第二の空燃比センサ54の出力電圧が所定のリーン判定値に到達するまでの間の経過時間TL、即ち第二の空燃比センサ54の出力が再度リーンへと切り替わるまでの経過時間TLを計測する。リッチ判定値とリーン判定値とは、相異なる値であってもよく、同一の値であってもよい。 As shown in FIG. 3, in the active control, the output voltage of the second air-fuel ratio sensor 54 has reached a predetermined rich determination value, that is, the output of the second air-fuel ratio sensor 54 has been switched from lean to rich. At the timing, the control target air-fuel ratio is set to a predetermined lean air-fuel ratio, and the fuel injection amount is corrected so that the output voltage of the first air-fuel ratio sensor 53 takes a value corresponding to the control target. As a result, the air-fuel ratio of the gas flowing into the catalyst 52 is forcibly made lean. Then, the time from when the output voltage of the first air-fuel ratio sensor 53 reaches a value corresponding to the control target until the output voltage of the second air-fuel ratio sensor 54 reaches a predetermined lean determination value. The time T L , that is, the elapsed time T L until the output of the second air-fuel ratio sensor 54 switches to lean again is measured. The rich determination value and the lean determination value may be different values or the same value.

並びに、第二の空燃比センサ54の出力がリッチからリーンへと切り替わったタイミングで、制御目標空燃比をリッチ側の所定空燃比に設定し、第一の空燃比センサ53の出力電圧が当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒52に流入するガスの空燃比を強制的にリッチ化する。そして、第一の空燃比センサ53の出力電圧が前記制御目標に対応した値に到達してから、第二の空燃比センサ54の出力電圧が所定のリーン判定値に到達するまでの間の経過時間TR、即ち第二の空燃比センサ54の出力が再度リッチへと切り替わるまでの経過時間TRを計測する。 In addition, at the timing when the output of the second air-fuel ratio sensor 54 is switched from rich to lean, the control target air-fuel ratio is set to a predetermined air-fuel ratio on the rich side, and the output voltage of the first air-fuel ratio sensor 53 is controlled. The fuel injection amount is corrected so as to take a value corresponding to the target. As a result, the air-fuel ratio of the gas flowing into the catalyst 52 is forcibly enriched. Then, the time from when the output voltage of the first air-fuel ratio sensor 53 reaches a value corresponding to the control target until the output voltage of the second air-fuel ratio sensor 54 reaches a predetermined lean determination value. The time T R , that is, the elapsed time T R until the output of the second air-fuel ratio sensor 54 switches to rich again is measured.

しかして、酸素吸蔵能力一杯まで酸素を吸蔵していた触媒52がその酸素の全てを放出するのに要した時間TR、及び、酸素を吸蔵していない触媒52が酸素吸蔵能力一杯まで酸素を吸蔵するのに要した時間TLをそれぞれ一回以上計測し、計測したTR、TLを基に最大酸素吸蔵能力(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を算出して、それらの平均値を求める。 Therefore, the time T R required for the catalyst 52 that has stored oxygen to the full oxygen storage capacity to release all of the oxygen, and the catalyst 52 that has not stored oxygen absorbs the oxygen to the maximum oxygen storage capacity. the time T L taken to storage measured more than once each, the measured T R, the maximum oxygen storage capacity based on T L (α · ΔA / F R · G F), (α · ΔA / F L Calculate G F ) and find the average of them.

上記の最大酸素吸蔵能力の平均値を劣化判定閾値と比較し、その値が劣化判定閾値を下回っているならば、触媒52が異常である旨の情報を記憶装置42に書き込み記録するとともに、運転者の視覚または聴覚に訴えかける態様で報知して触媒52の交換を促す。報知は、例えば、ECU4が出力インタフェース44を介して電気信号を出力し、コックピット内で発光デバイスを点灯または点滅させることにより行う。   The average value of the maximum oxygen storage capacity is compared with the deterioration determination threshold value. If the average value is below the deterioration determination threshold value, information indicating that the catalyst 52 is abnormal is written and recorded in the storage device 42 and the operation is performed. Notification is made in a manner appealing to the visual or auditory sense of the person, and the replacement of the catalyst 52 is encouraged. The notification is performed, for example, when the ECU 4 outputs an electrical signal via the output interface 44 and turns on or blinks the light emitting device in the cockpit.

このような触媒52の劣化判定において、アクティブ制御及び最大酸素吸蔵能力の推算が加速時に行われた場合には、その加速の度合いが大きいほど、劣化判定閾値を低く補正した上で触媒の異常の有無を判定することとしている。   In such deterioration determination of the catalyst 52, when the active control and the estimation of the maximum oxygen storage capacity are performed at the time of acceleration, the deterioration determination threshold value is corrected to be lower as the degree of acceleration is larger, and the abnormality of the catalyst is detected. The presence or absence is determined.

エンジン回転数が上昇する加速過渡期にあっては、気筒2から排出され触媒52内を流通する排気ガスの流速が上がる。よって、アクティブ制御中に、空燃比リーンに操作した排気ガスに含まれる酸素が触媒52に吸着されないままこの排気ガスが触媒52の下流に到達する、あるいは、空燃比リッチに操作した排気ガスに触媒52が吸蔵していた酸素が放出されないままこの排気ガスが触媒52の下流に到達することが起こる。さすれば、触媒52が最大酸素吸蔵能力まで酸素を吸蔵していないにもかかわらず空燃比センサ54の出力がリッチからリーンへと切り替わり(時間TLが本来よりも短くなる)、あるいは、触媒52が吸蔵していた酸素を完全に放出しきっていないにもかかわらず空燃比センサ54の出力がリーンからリッチへと切り替わってしまう(時間TRが本来よりも短くなる)。つまり、触媒52の最大酸素吸蔵能力を少なく見積もってしまう。結果、未だ必要十分な性能を有している触媒52であったとしても、これを劣化したものと判定してしまうおそれがある。 In the acceleration transition period in which the engine speed increases, the flow rate of the exhaust gas discharged from the cylinder 2 and flowing through the catalyst 52 increases. Therefore, during active control, the oxygen contained in the exhaust gas operated to lean air-fuel ratio reaches the downstream of the catalyst 52 without being adsorbed by the catalyst 52, or the exhaust gas operated rich in the air-fuel ratio is catalyzed. The exhaust gas reaches the downstream of the catalyst 52 without releasing the oxygen stored in the valve 52. Then, the output of the air-fuel ratio sensor 54 switches from rich to lean (the time T L becomes shorter than the original) even though the catalyst 52 does not store oxygen to the maximum oxygen storage capacity, or the catalyst 52 52 may switch the output of the occlusion to not completely completely releases oxygen was despite the air-fuel ratio sensor 54 and from lean to rich (shorter than the original time T R). That is, the maximum oxygen storage capacity of the catalyst 52 is estimated to be small. As a result, even if the catalyst 52 still has the necessary and sufficient performance, it may be determined that the catalyst 52 has deteriorated.

さらに、加速の初期段階では、触媒52の温度が低いことがある。触媒52の温度が低いと、その酸素吸蔵能力が十分に発揮されず、本来の性能よりも低い推算値が求められてしまうという事情もある。   Furthermore, in the initial stage of acceleration, the temperature of the catalyst 52 may be low. If the temperature of the catalyst 52 is low, its oxygen storage capacity is not sufficiently exhibited, and an estimated value lower than the original performance is required.

上記の問題に鑑みて、本実施形態では、アクティブ制御中の加速の度合いに応じて劣化判定閾値を上下させることとしている。即ち、定常走行時に想定される吸気管内圧力と、センサ71を介して計測した実測の吸気管内圧力との差分を求め、この差分が大きいほど加速の度合いが大きいものとして劣化判定閾値を引き下げる。ECU4の記憶装置42には予め、運転領域、特にエンジン回転数及び要求負荷に応じた定常走行時の予想吸気管内圧力の値がマップデータとして記憶されている。ECU4は、アクティブ制御中のエンジン回転数及び要求負荷をキーとしてマップデータを検索し、定常走行時の予想吸気管内圧力を得る。そして、この予想吸気管内圧力値を実測吸気管内圧力値から減じて両者の差分を算出し、この差分が大きいほど劣化判定閾値を引き下げる補正量量を大きく定める。例えば、記憶装置42に予め記憶している、前記差分と前記補正量との関係を規定したマップデータを参照して補正量を知得し、この補正量を劣化判定閾値の基本値から減じて、触媒52の最大酸素吸蔵能力の推算値と比較するべき劣化判定閾値を最終決定する。   In view of the above problem, in the present embodiment, the deterioration determination threshold is raised or lowered according to the degree of acceleration during active control. That is, the difference between the intake pipe pressure assumed during steady running and the actually measured intake pipe pressure measured via the sensor 71 is obtained, and the deterioration determination threshold is lowered as the degree of acceleration increases as the difference increases. The storage device 42 of the ECU 4 stores in advance the expected intake pipe pressure value during steady running according to the operating region, particularly the engine speed and the required load, as map data. The ECU 4 searches the map data using the engine speed and the required load during active control as keys, and obtains an expected intake pipe pressure during steady running. Then, the estimated intake pipe pressure value is subtracted from the actually measured intake pipe pressure value to calculate the difference between the two, and the larger the difference, the larger the correction amount for lowering the deterioration determination threshold. For example, the correction amount is obtained by referring to map data preliminarily stored in the storage device 42 and defining the relationship between the difference and the correction amount, and the correction amount is subtracted from the basic value of the deterioration determination threshold value. The deterioration determination threshold value to be compared with the estimated value of the maximum oxygen storage capacity of the catalyst 52 is finally determined.

図4に、触媒52のダイアグノーシスの手順例を示す。触媒52の酸素吸蔵能力の推定では、ECU4が、内燃機関の気筒2に供給する混合気の空燃比をリーンからリッチへ、またはリッチからリーンへと強制的に反転操作し(ステップS1)、第一の空燃比センサ53の出力が反転してから第二の空燃比センサ54の出力が反転するまでの経過時間TR、TLを計測して(ステップS2)、経過時間TR、TLを基に触媒52が吸蔵している酸素量を演算する(ステップS3)。第二の空燃比センサ54の出力信号がリッチからリーンへ、またはリーンからリッチへと反転したならば(ステップS4)、その反転時点における酸素吸蔵量を触媒52の最大酸素吸蔵能力の推算値として、これを記憶装置42に一時記憶する(ステップS5)。しかる後、混合気の空燃比を強制的に再反転させ、最大酸素吸蔵能力の算出処理を繰り返す。最大酸素吸蔵能力の値を複数回推算したら(ステップS6)、アクティブ制御を停止するとともに(ステップS7)、複数回推算した最大酸素吸蔵能力の平均値を演算し(ステップS8)する。 FIG. 4 shows a procedure example of the diagnosis of the catalyst 52. In the estimation of the oxygen storage capacity of the catalyst 52, the ECU 4 forcibly reverses the air-fuel ratio of the air-fuel mixture supplied to the cylinder 2 of the internal combustion engine from lean to rich or from rich to lean (step S1). by measuring the elapsed time T R, T L from the output of one air-fuel ratio sensor 53 is inverted until the output of the second air-fuel ratio sensor 54 is reversed (step S2), the elapsed time T R, T L Based on the above, the amount of oxygen stored in the catalyst 52 is calculated (step S3). If the output signal of the second air-fuel ratio sensor 54 is inverted from rich to lean or from lean to rich (step S4), the oxygen storage amount at the time of the inversion is estimated as the maximum oxygen storage capacity of the catalyst 52. This is temporarily stored in the storage device 42 (step S5). Thereafter, the air-fuel ratio of the air-fuel mixture is forcibly re-inverted, and the process for calculating the maximum oxygen storage capacity is repeated. When the value of the maximum oxygen storage capacity is estimated a plurality of times (step S6), the active control is stopped (step S7), and the average value of the maximum oxygen storage capacity estimated a plurality of times is calculated (step S8).

並びに、アクティブ制御中の吸気管内圧力の実測値と、アクティブ制御中の運転領域に応じた(定常走行時に実現されるであろう)吸気管内圧力の想定値との差分を求め(ステップS9)、その差分の多寡に応じて劣化判定閾値を決定する(ステップS10)。そして、ステップS8で得た最大酸素吸蔵能力の推算値と、ステップS10で得た劣化判定閾値とを比較する(ステップS11)。   In addition, a difference between the actually measured value of the intake pipe pressure during active control and the assumed value of the intake pipe pressure corresponding to the operation region during active control (which will be realized during steady running) is obtained (step S9). A deterioration determination threshold is determined according to the difference (step S10). Then, the estimated value of the maximum oxygen storage capacity obtained in step S8 is compared with the deterioration determination threshold value obtained in step S10 (step S11).

最大酸素吸蔵能力(の平均値)が劣化判定閾値以上であるならば、触媒52が正常である旨の判定を下したという情報を履歴として記憶装置42に記憶する(ステップS12)。逆に、最大酸素吸蔵能力が劣化判定閾値を下回っているならば、触媒52が異常である旨の判定を下したという情報を記録する(ステップS13)。加えて、触媒52の劣化異常を運転者の視覚または聴覚に訴えかける態様で報知し(ステップS14)、触媒52の交換を促す。   If the maximum oxygen storage capacity (average value thereof) is equal to or greater than the deterioration determination threshold value, information indicating that the catalyst 52 is determined to be normal is stored in the storage device 42 as a history (step S12). Conversely, if the maximum oxygen storage capacity is below the deterioration determination threshold, information indicating that the determination that the catalyst 52 is abnormal is made (step S13). In addition, the deterioration of the catalyst 52 is notified in a manner that appeals to the driver's vision or hearing (step S14), and the replacement of the catalyst 52 is urged.

本実施形態によれば、内燃機関の排気通路に装着される排気ガス浄化用の触媒52の下流に設けられた空燃比センサ54の出力を参照し、下流側センサ出力が変動するまでの間の経過時間TR、TLを計測することを通じて、触媒52に吸蔵された酸素量を推算し、触媒52の劣化診断を行うダイアグノーシスにおいて、触媒52の酸素吸蔵能力の推計が加速期に行われた場合には、加速の度合いが大きいほど劣化判定閾値を低く補正し、その上で触媒52の異常の有無を判定することとしたため、加速の最中であっても的確に触媒52の劣化の度合いを診断可能である。即ち、未だ必要十分な性能を有している触媒52を劣化したものであると誤判定するおそれが小さくなる。加速期に触媒52の劣化診断を実施することが許容される、つまりダイアグノーシスの機会を増すことができるので、劣化した異常触媒52が使用され続けることを予防でき、排気ガスの浄化能率の維持、環境性能の向上を達成できる。 According to the present embodiment, the output of the air-fuel ratio sensor 54 provided downstream of the exhaust gas purification catalyst 52 mounted in the exhaust passage of the internal combustion engine is referred to until the downstream sensor output fluctuates. By measuring the elapsed times T R and T L , the amount of oxygen occluded in the catalyst 52 is estimated, and in the diagnosis for diagnosing deterioration of the catalyst 52, the oxygen occlusion capacity of the catalyst 52 is estimated in the acceleration period. In this case, since the deterioration determination threshold value is corrected to be lower as the degree of acceleration is larger and the presence / absence of abnormality of the catalyst 52 is then determined, the deterioration of the catalyst 52 can be accurately determined even during acceleration. The degree can be diagnosed. That is, the possibility of misjudging that the catalyst 52 still having the necessary and sufficient performance is deteriorated is reduced. Diagnosis of the deterioration of the catalyst 52 is allowed during the acceleration period, that is, the chance of diagnosis can be increased, so that the deteriorated abnormal catalyst 52 can be prevented from being used continuously, and the exhaust gas purification efficiency can be maintained. , Can improve the environmental performance.

なお、本発明は以上に詳述した実施形態に限定されるものではない。上記実施形態では、触媒52の異常判定に際し、加速の度合いに応じて劣化判定閾値を引き下げていたが、替わりに、加速の度合いに応じて最大酸素吸蔵能力の推算値を引き上げるものとしても、同様の効果を奏し得る。即ち、加速の度合いが大きいほど、推計した酸素吸蔵能力値を高く補正し、その上で(補正を施さない)劣化判定閾値と比較することができる。   In addition, this invention is not limited to embodiment described in full detail above. In the above-described embodiment, the deterioration determination threshold value is lowered according to the degree of acceleration when determining the abnormality of the catalyst 52. The effect of can be produced. That is, the greater the degree of acceleration, the higher the estimated oxygen storage capacity value can be corrected, and then compared with the deterioration determination threshold value (without correction).

また、アクティブ制御中の加速の度合いは、吸気管内圧力以外の指標を参照して知得してもよい。例えば、エンジン回転数の単位時間当たり変化量や、スロットルバルブ11の開度またはアクセルペダルの踏込量の単位時間当たり変化量、車速の単位時間当たり変化量等を以て、加速の度合いとすることも考えられる。   Further, the degree of acceleration during active control may be obtained by referring to an index other than the intake pipe pressure. For example, the degree of acceleration may be determined by a change amount per unit time of the engine speed, a change amount per unit time of the opening degree of the throttle valve 11 or the depression amount of the accelerator pedal, a change amount per unit time of the vehicle speed, or the like. It is done.

その他、各部の具体的構成や具体的な処理の手順は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit and the specific processing procedure can be variously modified without departing from the spirit of the present invention.

本発明は、車両に搭載される内燃機関に付帯する排気ガス浄化用の触媒の劣化診断に適用することができる。   The present invention can be applied to deterioration diagnosis of an exhaust gas purifying catalyst incidental to an internal combustion engine mounted on a vehicle.

0…触媒異常判定装置
4…判定部(電子制御装置)
52…触媒
53…第一の空燃比センサ
54…第二の空燃比センサ
0 ... Catalyst abnormality determination device 4 ... Determination unit (electronic control device)
52 ... Catalyst 53 ... First air-fuel ratio sensor 54 ... Second air-fuel ratio sensor

Claims (1)

内燃機関の排気通路に装着される排気ガス浄化用の触媒の下流に設けられた空燃比センサの出力を参照して、触媒に流入するガスの空燃比を強制的に変動させたときの触媒の酸素吸蔵能力を推計し、推計した酸素吸蔵能力値が閾値を下回ったときに触媒が異常であると判定するダイアグノーシスを実施するものにおいて、
前記酸素吸蔵能力の推計が加速期に行われた場合には、加速の度合いが大きいほど閾値を低く補正しまたは推計した酸素吸蔵能力値を高く補正し、その上で触媒の異常の有無を判定する
ことを特徴とする触媒異常判定方法。
Referring to the output of the air-fuel ratio sensor provided downstream of the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine, the catalyst when the air-fuel ratio of the gas flowing into the catalyst is forcibly changed In the oxygen storage capacity is estimated, and the diagnosis is performed to determine that the catalyst is abnormal when the estimated oxygen storage capacity value falls below a threshold value,
When the estimation of the oxygen storage capacity is performed during the acceleration period, the greater the degree of acceleration, the lower the threshold value is corrected, or the estimated oxygen storage capacity value is corrected higher, and then the presence or absence of catalyst abnormality is determined. A catalyst abnormality determination method characterized by:
JP2010266128A 2010-11-30 2010-11-30 Catalyst abnormality determination method for internal combustion engine Pending JP2012117406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266128A JP2012117406A (en) 2010-11-30 2010-11-30 Catalyst abnormality determination method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266128A JP2012117406A (en) 2010-11-30 2010-11-30 Catalyst abnormality determination method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012117406A true JP2012117406A (en) 2012-06-21

Family

ID=46500547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266128A Pending JP2012117406A (en) 2010-11-30 2010-11-30 Catalyst abnormality determination method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012117406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017168580A1 (en) * 2016-03-29 2019-02-14 本田技研工業株式会社 Catalyst diagnostic device
DE102020100717A1 (en) * 2019-02-18 2020-08-20 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detection device, catalyst deterioration detection system, data analysis device, control device for internal combustion engine and method for providing state information of a used vehicle
US11338793B2 (en) 2017-12-26 2022-05-24 Subaru Corporation Vehicle control apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136848A (en) * 1997-07-23 1999-02-09 Toyota Motor Corp Catalyst deterioration determination device of internal combustion engine
JP2003120266A (en) * 2001-10-11 2003-04-23 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2011208559A (en) * 2010-03-29 2011-10-20 Daihatsu Motor Co Ltd Method for determining abnormal condition of catalyst
JP2011226347A (en) * 2010-04-19 2011-11-10 Daihatsu Motor Co Ltd Method for detection of catalyst failure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136848A (en) * 1997-07-23 1999-02-09 Toyota Motor Corp Catalyst deterioration determination device of internal combustion engine
JP2003120266A (en) * 2001-10-11 2003-04-23 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2011208559A (en) * 2010-03-29 2011-10-20 Daihatsu Motor Co Ltd Method for determining abnormal condition of catalyst
JP2011226347A (en) * 2010-04-19 2011-11-10 Daihatsu Motor Co Ltd Method for detection of catalyst failure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017168580A1 (en) * 2016-03-29 2019-02-14 本田技研工業株式会社 Catalyst diagnostic device
US10774767B2 (en) 2016-03-29 2020-09-15 Honda Motor Co., Ltd. Catalyst diagnosis device
US11338793B2 (en) 2017-12-26 2022-05-24 Subaru Corporation Vehicle control apparatus
DE102020100717A1 (en) * 2019-02-18 2020-08-20 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detection device, catalyst deterioration detection system, data analysis device, control device for internal combustion engine and method for providing state information of a used vehicle
US11149618B2 (en) 2019-02-18 2021-10-19 TOYOTA JIDOSHA KABUSHtKI KAISHA Catalyst deterioration detection device, catalyst deterioration detection system, data analysis device, control device of internal combustion engine, and method for providing sate information of used vehicle
US11473477B2 (en) 2019-02-18 2022-10-18 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detection device, catalyst deterioration detection system, data analysis device, control device of internal combustion engine, and method for providing state information of used vehicle

Similar Documents

Publication Publication Date Title
JP5346989B2 (en) Air-fuel ratio sensor abnormality determination device
EP2052137B1 (en) Catalyst monitoring system and method
US11492952B2 (en) Catalyst degradation detection apparatus
AU2011368598A1 (en) Air-fuel ratio control device for internal combustion engine
JP5533471B2 (en) Catalyst deterioration diagnosis device
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP4693896B2 (en) Internal combustion engine control device
JP2006125279A (en) Internal combustion engine control device
JP2007177629A (en) Diagnostic device and diagnostic method for internal combustion engine
JP2012026306A (en) Diagnosis control method of internal combustion engine
JP2012002070A (en) Diagnosis control method of internal combustion engine
JP4352651B2 (en) Abnormality determination device for internal combustion engine
JP2012140869A (en) Method for determining catalyst failure in internal combustion engine
JP6166646B2 (en) Control device for internal combustion engine
JP5404262B2 (en) Air-fuel ratio control device
JP4779814B2 (en) Catalyst representative temperature acquisition device for internal combustion engine
JP2008138562A (en) Deterioration diagnostic system of exhaust emission control device of internal combustion engine
JP2013181486A (en) Control device for internal combustion engine
JP2018173005A (en) Control device for internal combustion engine
JP4154589B2 (en) Combustion control device for internal combustion engine
JP2011001833A (en) Catalyst abnormality diagnostic device
JP2015121191A (en) Control device for internal combustion engine
JP6238729B2 (en) Control device for internal combustion engine
JP2011226347A (en) Method for detection of catalyst failure
JP5723747B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224