JP5404262B2 - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP5404262B2
JP5404262B2 JP2009205204A JP2009205204A JP5404262B2 JP 5404262 B2 JP5404262 B2 JP 5404262B2 JP 2009205204 A JP2009205204 A JP 2009205204A JP 2009205204 A JP2009205204 A JP 2009205204A JP 5404262 B2 JP5404262 B2 JP 5404262B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009205204A
Other languages
Japanese (ja)
Other versions
JP2011058364A (en
Inventor
康正 大西
伸二 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009205204A priority Critical patent/JP5404262B2/en
Publication of JP2011058364A publication Critical patent/JP2011058364A/en
Application granted granted Critical
Publication of JP5404262B2 publication Critical patent/JP5404262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、触媒による排気ガス浄化能率を高める目的で実施される空燃比の制御に関する。   The present invention relates to air-fuel ratio control performed for the purpose of increasing exhaust gas purification efficiency by a catalyst.

一般に、自動車等の排気通路には、内燃機関から排出される排気ガス中に含まれるHC、CO及びNOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO及びNOxの全てを効率よく浄化するには、空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収束させる必要がある。 Generally, the exhaust passage such as an automobile, HC contained in the exhaust gas discharged, the three-way catalyst to harmless by oxidation / reduction of CO and NO x are mounted from the internal combustion engine. In order to efficiently purify all of HC, CO, and NO x , it is necessary to make the air-fuel ratio converge to a certain range near the theoretical air-fuel ratio called a window.

そのために、触媒の上流及び下流にそれぞれ空燃比センサを配し、空燃比センサの出力を目標値に制御するフィードバック制御を行うことが通例となっている(例えば、下記特許文献を参照)。従来からある空燃比制御方法では、触媒下流の空燃比センサの出力がリッチであるかリーンであるかを判定し、その判定結果に応じて補正量を算定する。この補正量は、触媒上流の空燃比センサの出力を参照した空燃比フィードバック制御における制御中心をリーン側あるいはリッチ側に変位させ、触媒内でのガスの空燃比をウィンドウ内に維持する役割を果たす。   For this purpose, it is customary to provide an air-fuel ratio sensor upstream and downstream of the catalyst and perform feedback control to control the output of the air-fuel ratio sensor to a target value (see, for example, the following patent document). In the conventional air-fuel ratio control method, it is determined whether the output of the air-fuel ratio sensor downstream of the catalyst is rich or lean, and the correction amount is calculated according to the determination result. This correction amount serves to maintain the air-fuel ratio of the gas in the catalyst within the window by displacing the control center in the air-fuel ratio feedback control with reference to the output of the air-fuel ratio sensor upstream of the catalyst to the lean side or the rich side. .

近時では、強化された排気ガス規制に対応して、触媒の酸素吸蔵能(OSC)が大きくなる傾向にある。酸素吸蔵能が大きいと、触媒の上流で空燃比が変動したとしても、触媒下流の空燃比センサの出力信号にはすぐには変化が現れない。それ故、触媒下流の空燃比センサの出力がリーンからリッチへの遷移を示したときには、既に触媒内の酸素が不足してしまっており、HC及びCOの排出量が増加することがあり得た。逆に、触媒下流の空燃比センサの出力がリッチからリーンへの遷移を示したときには、既に触媒内が酸素過多であり、今度はNOxの排出量の増加を招いていた。 Recently, the oxygen storage capacity (OSC) of catalysts tends to increase in response to stricter exhaust gas regulations. If the oxygen storage capacity is large, even if the air-fuel ratio fluctuates upstream of the catalyst, the output signal of the air-fuel ratio sensor downstream of the catalyst does not change immediately. Therefore, when the output of the air-fuel ratio sensor downstream of the catalyst showed a transition from lean to rich, the oxygen in the catalyst was already insufficient, and the HC and CO emissions could increase. . On the contrary, when the output of the air-fuel ratio sensor downstream of the catalyst shows a transition from rich to lean, the inside of the catalyst is already excessive in oxygen, which in turn causes an increase in NO x emission.

特許第2790896号公報Japanese Patent No. 2790896 特許第2912478号公報Japanese Patent No. 2912478 特開2007−187119号公報JP 2007-187119 A 特開2008−248862号公報JP 2008-248862 A

以上に鑑みてなされた本発明は、触媒による排気ガス浄化能率を高く保ち、HC、CO及びNOxの排出量の一層の低減を図ることを所期の目的としている。 An object of the present invention made in view of the above is to keep the exhaust gas purification efficiency by the catalyst high and to further reduce the exhaust amount of HC, CO and NO x .

本発明では、内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられる第一の空燃比センサと、前記触媒の下流に設けられる第二の空燃比センサと、少なくとも前記第一の空燃比センサの出力を参照して空燃比のフィードバック制御を行う空燃比制御部とを具備する空燃比制御装置において、前記空燃比制御部が、前記触媒内に吸蔵した酸素量と当該触媒の酸素吸蔵能との比である酸素割合のモデル数式に則り、酸素割合をリアルタイムで推算してその酸素割合を目標値に制御する、または、触媒内に酸素吸蔵能まで酸素を吸蔵し酸素が充満した状態を基準としてこの状態から酸素を放出した量をリアルタイムで推算してその放出量を目標値に制御するものとした。本発明によれば、触媒下流にある第二の空燃比センサの出力信号の変動が触媒内の空燃比の変動に対して遅延する問題を有効に回避でき、触媒の排気ガス浄化能率を高く保つことが可能となる。加えて、触媒に使用する貴金属量の削減にも資する。   In the present invention, a first air-fuel ratio sensor provided upstream of an exhaust gas purifying catalyst mounted in an exhaust passage of an internal combustion engine, a second air-fuel ratio sensor provided downstream of the catalyst, and at least the first An air-fuel ratio control unit that performs air-fuel ratio feedback control with reference to an output of one air-fuel ratio sensor, wherein the air-fuel ratio control unit stores the amount of oxygen stored in the catalyst and the catalyst In accordance with a model formula for the oxygen ratio, which is the ratio to the oxygen storage capacity of the catalyst, the oxygen ratio is estimated in real time and the oxygen ratio is controlled to the target value, or oxygen is stored in the catalyst up to the oxygen storage capacity and oxygen is stored. Based on the full state, the amount of oxygen released from this state was estimated in real time, and the amount released was controlled to the target value. According to the present invention, the problem that the fluctuation of the output signal of the second air-fuel ratio sensor downstream of the catalyst is delayed with respect to the fluctuation of the air-fuel ratio in the catalyst can be effectively avoided, and the exhaust gas purification efficiency of the catalyst is kept high. It becomes possible. In addition, it contributes to reducing the amount of noble metals used in the catalyst.

前記モデル数式は、例えば、下式(数1)の形で表される。   The model formula is expressed, for example, in the form of the following formula (Equation 1).

Figure 0005404262
Figure 0005404262

触媒は、経時変化によって貴金属が粒成長し、酸素吸蔵能及び酸素放出能が徐々に低下する宿命にある。触媒の劣化は無論、酸素吸蔵速度、酸素放出速度にも影響を及ぼす。このような触媒の劣化に対処するには、モデルパラメータθiをオンライン同定する必要がある。 The catalyst is destined to cause noble metal grains to grow with the passage of time and gradually reduce the oxygen storage capacity and oxygen release capacity. The deterioration of the catalyst naturally affects the oxygen storage rate and oxygen release rate. In order to cope with such catalyst deterioration, it is necessary to identify the model parameter θ i online.

前記空燃比制御部は、前記内燃機関における燃料カットの実行開始から前記触媒内に酸素が充満するまでの時間を計測することを通じて、モデルパラメータθiをオンライン同定する。 The air-fuel ratio control unit identifies the model parameter θ i online by measuring the time from the start of fuel cut in the internal combustion engine until the catalyst is filled with oxygen.

本発明によれば、触媒の排気ガス浄化能率を高く保つことができ、HC、CO及びNOxの排出量の一層の低減を図り得る。 According to the present invention, the exhaust gas purification efficiency of the catalyst can be kept high, and the emission amount of HC, CO and NO x can be further reduced.

本発明の実施の形態の空燃比制御装置の構成要素を説明する図。The figure explaining the component of the air fuel ratio control apparatus of embodiment of this invention. 同空燃比制御装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the same air fuel ratio control apparatus. 燃料カット時のリア空燃比信号出力と酸素割合との関係を示す図。The figure which shows the relationship between the rear air fuel ratio signal output at the time of fuel cut, and an oxygen ratio. フロント空燃比信号出力とリア空燃比信号出力との関係を示す図。The figure which shows the relationship between a front air fuel ratio signal output and a rear air fuel ratio signal output. 酸素吸蔵時間と酸素放出時間との関係を示す図。The figure which shows the relationship between oxygen storage time and oxygen release time. 流入空気量と反応速度比との関係を示す図。The figure which shows the relationship between inflow air amount and reaction rate ratio. 流入空気量と反応速度比との関係を示す図。The figure which shows the relationship between inflow air amount and reaction rate ratio. 流入ガスの温度と酸素吸蔵能との関係を示す図。The figure which shows the relationship between the temperature of inflow gas, and oxygen storage capacity. 流入ガスの温度と酸素吸蔵能との関係を示す図。The figure which shows the relationship between the temperature of inflow gas, and oxygen storage capacity. 燃料カット終了後の酸素放出量の制御の態様を示す図。The figure which shows the aspect of control of the oxygen release amount after completion | finish of a fuel cut.

本発明の一実施形態を、図面を参照して説明する。本空燃比制御装置1は、内燃機関2で燃料を燃焼させることにより発生する有害物質HC、CO、NOxを無害化する触媒3における空燃比を制御するものであって、図1に示すように、触媒3の上流側における空燃比または酸素濃度に応じた出力信号を出力する第一の空燃比センサ11と、触媒3の下流側における空燃比または酸素濃度に応じた出力信号を出力する第二の空燃比センサ12と、両センサ11、12の出力信号を参照して空燃比制御を実施する空燃比制御部13とを具備する。 An embodiment of the present invention will be described with reference to the drawings. The present air-fuel ratio control system 1 is for controlling the air-fuel ratio in the catalyst 3 to detoxifying harmful substances HC, CO, NO x generated by burning fuel in an internal combustion engine 2, as shown in FIG. 1 In addition, a first air-fuel ratio sensor 11 that outputs an output signal corresponding to the air-fuel ratio or oxygen concentration on the upstream side of the catalyst 3 and a first output signal that corresponds to the air-fuel ratio or oxygen concentration on the downstream side of the catalyst 3 are output. A second air-fuel ratio sensor 12 and an air-fuel ratio control unit 13 that performs air-fuel ratio control with reference to the output signals of both sensors 11, 12.

図2に、ハードウェア構成の概要を示す。内燃機関2は、例えば自動車用の多気筒の燃料噴射式エンジンである。内燃機関2で生成された燃焼ガスは、排気ポートから排気マニホルド41、排気管42及び触媒3を通じて大気中に放出される。空燃比センサ11、12は、排気ガスに接触して反応することにより、排気ガス中の酸素濃度に応じた電圧信号を出力する。触媒3上流にある第一の空燃比センサ11は、排気ガスの空燃比に比例した信号を出力するリニアA/Fセンサとすることが好ましい。触媒3下流にある第二の空燃比センサ12は、リニアA/Fセンサであってもよく、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよい。 FIG. 2 shows an outline of the hardware configuration. The internal combustion engine 2 is, for example, a multi-cylinder fuel injection engine for automobiles. Combustion gas generated in the internal combustion engine 2 is released from the exhaust port into the atmosphere through the exhaust manifold 41, the exhaust pipe 42, and the catalyst 3. The air-fuel ratio sensors 11 and 12 output a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas. The first air-fuel ratio sensor 11 upstream of the catalyst 3 is preferably a linear A / F sensor that outputs a signal proportional to the air-fuel ratio of the exhaust gas. The second air-fuel ratio sensor 12 downstream of the catalyst 3 may be a linear A / F sensor or an O 2 sensor having non-linear output characteristics with respect to the air-fuel ratio of the exhaust gas.

第一の空燃比センサ11、第二の空燃比センサ12は、吸気負圧センサ、エンジン回転数センサ、車速センサ、冷却水温センサ、カムポジションセンサ、スロットルセンサ等の各種センサ(図示せず)とともに、電子制御装置(ECU)5に電気的に接続している。電子制御装置5は、プロセッサ51、RAM52、ROM(または、フラッシュメモリ)53、I/Oインタフェース54等を包有するマイクロコンピュータシステムである。I/Oインタフェース54は、各種センサの出力信号の受信や制御信号の送信を担うもので、A/D変換回路及び/またはD/A変換回路を含む。プロセッサ51が実行するべきプログラムはROM53に格納されており、その実行の際にROM53からRAM52へ読み込まれ、プロセッサ51によって解読される。しかして、電子制御装置5は、プログラムに従い、空燃比制御部13としての機能を発揮する。   The first air-fuel ratio sensor 11 and the second air-fuel ratio sensor 12 together with various sensors (not shown) such as an intake negative pressure sensor, an engine speed sensor, a vehicle speed sensor, a coolant temperature sensor, a cam position sensor, and a throttle sensor. The electronic control unit (ECU) 5 is electrically connected. The electronic control unit 5 is a microcomputer system including a processor 51, a RAM 52, a ROM (or flash memory) 53, an I / O interface 54, and the like. The I / O interface 54 is responsible for receiving output signals of various sensors and transmitting control signals, and includes an A / D conversion circuit and / or a D / A conversion circuit. A program to be executed by the processor 51 is stored in the ROM 53, and is read from the ROM 53 into the RAM 52 and decoded by the processor 51 at the time of execution. Therefore, the electronic control unit 5 exhibits the function as the air-fuel ratio control unit 13 according to the program.

空燃比制御部13たる電子制御装置5は、第一の空燃比センサ11、第二の空燃比センサ12やその他のセンサから出力される信号を、I/Oインタフェース54を介して受信する。そして、要求される燃料噴射量を算出し、この要求燃料噴射量に対応した制御信号をI/Oインタフェース54を介して燃料噴射弁21に入力、内燃機関2の燃料噴射を制御する。要求燃料噴射量は、吸気管内負圧及びエンジン回転数等を参照して基本噴射量を求め、その基本噴射量に、エンジン冷却水温等の環境条件に応じた環境補正、並びに下記フィードバック制御による補正を加えて、最終的に決定する。   The electronic control unit 5 as the air-fuel ratio control unit 13 receives signals output from the first air-fuel ratio sensor 11, the second air-fuel ratio sensor 12 and other sensors via the I / O interface 54. Then, the required fuel injection amount is calculated, and a control signal corresponding to the required fuel injection amount is input to the fuel injection valve 21 via the I / O interface 54 to control the fuel injection of the internal combustion engine 2. The required fuel injection amount is obtained by referring to the intake pipe negative pressure and the engine speed, etc., and the basic injection amount is corrected according to environmental conditions such as engine cooling water temperature and the following feedback control. And finally decide.

本実施形態では、空燃比の制御にあたり、第二の空燃比センサ12の出力信号を制御量(制御出力)とするのではなく、触媒3内に現在吸蔵している酸素の量と触媒3の酸素吸蔵能との比(触媒内酸素吸蔵量/酸素吸蔵能)である酸素割合を制御量として、この酸素割合を所要の目標値に到達させるフィードバック制御を実施する。   In the present embodiment, in controlling the air-fuel ratio, the output signal of the second air-fuel ratio sensor 12 is not set as a control amount (control output), but the amount of oxygen currently stored in the catalyst 3 and the catalyst 3 Using the oxygen ratio, which is a ratio to the oxygen storage capacity (in-catalyst oxygen storage capacity / oxygen storage capacity), as a control amount, feedback control is performed so that this oxygen ratio reaches a required target value.

触媒3に吸蔵した酸素量は、触媒3に流入する酸素の流量の時間積分に、反応速度係数を乗じたものと考えることができる。反応速度係数は、触媒3が酸素を吸蔵する速度を示す。反応速度係数と酸素吸蔵能との比(反応速度係数/酸素吸蔵能)をモデルパラメータθ1とおけば、酸素濃度Oのモデル数式を下式(数2)の如く規定することができる。 It can be considered that the amount of oxygen stored in the catalyst 3 is obtained by multiplying the time integral of the flow rate of oxygen flowing into the catalyst 3 by the reaction rate coefficient. The reaction rate coefficient indicates the rate at which the catalyst 3 occludes oxygen. If the ratio between the reaction rate coefficient and the oxygen storage capacity (reaction rate coefficient / oxygen storage capacity) is the model parameter θ 1 , the model formula for the oxygen concentration O can be defined as the following formula (Equation 2).

Figure 0005404262
Figure 0005404262

αは空気中に含まれる酸素の割合であり、Gaは触媒3に流入する空気の流量である。αの値は、例えば0.21とする。αは、モデルパラメータθ1に組み入れてしまっても構わない。その場合、θ1=α×(反応速度係数/酸素吸蔵能)となる。流入空気量Gaは、第一の空燃比センサ11を介して検出した流入ガスの空燃比に、電子制御装置5にて算出した要求燃料噴射量を乗じて算定する。このようにすれば、Gaを計測するために高価なエアフローセンサを使用せずに済む上、Gaの値の精度も向上する。尤も、吸気管内負圧及びエンジン回転数からGaを推測することを妨げるものではない。 α is the ratio of oxygen contained in the air, and G a is the flow rate of air flowing into the catalyst 3. The value of α is, for example, 0.21. α may be incorporated into the model parameter θ 1 . In that case, θ 1 = α × (reaction rate coefficient / oxygen storage capacity). Inflow air quantity G a is the air-fuel ratio of the inflowing gas detected through the first air-fuel ratio sensor 11, it is calculated by multiplying the demand fuel injection amount calculated in the electronic control unit 5. Thus, on the unnecessary to use an expensive air flow sensor for measuring the G a, also improves the accuracy of the values of G a. However, it does not prevent the estimation of G a from the intake pipe negative pressure and the engine speed.

λは、排気ガスの空燃比の目標空燃比からの乖離を示す空気過剰率である。空気過剰率λは、第一の空燃比センサ11を介して検出したガスの空燃比と、最終的に実現するべき目標空燃比との比(上流側実測空燃比/目標空燃比)である。目標空燃比は、通常は理論空燃比(ガソリンエンジンにあっては、14.7)であるが、リーンバーン運転している最中等、理論空燃比よりも増減することがある。   λ is an excess air ratio indicating a deviation of the air-fuel ratio of the exhaust gas from the target air-fuel ratio. The excess air ratio λ is the ratio of the gas air-fuel ratio detected via the first air-fuel ratio sensor 11 to the target air-fuel ratio to be finally realized (upstream measured air-fuel ratio / target air-fuel ratio). The target air-fuel ratio is normally the stoichiometric air-fuel ratio (14.7 for gasoline engines), but may increase or decrease from the stoichiometric air-fuel ratio during lean burn operation.

酸素割合Oの値は、当然ながら、0≦O≦1の範囲をとる。電子制御装置5は、酸素割合Oに適宜に目標値を設定し、モデル数式(数2)に則って推算した酸素割合Oをその目標値に収束させるフィードバック制御を実施する。即ち、推算した現在の酸素割合Oとその目標値との偏差に基づいて燃料噴射量のフィードバック補正量を算出し、要求燃料噴射量に加味する。これにより、空燃比の振動を抑圧してウィンドウ内に維持する。   Naturally, the value of the oxygen ratio O is in the range of 0 ≦ O ≦ 1. The electronic control unit 5 appropriately sets a target value for the oxygen ratio O, and performs feedback control for converging the oxygen ratio O estimated according to the model formula (Equation 2) to the target value. That is, the feedback correction amount of the fuel injection amount is calculated based on the deviation between the estimated current oxygen ratio O and the target value, and is added to the required fuel injection amount. Thereby, the vibration of the air-fuel ratio is suppressed and maintained in the window.

ところで、触媒3の酸素吸蔵能、酸素吸蔵速度、酸素放出速度は、おしなべて触媒3の経時劣化の影響を受ける。つまり、モデルパラメータθ1は、触媒3の経時劣化の影響を受ける。従って、モデルパラメータθ1はオンライン同定することが望ましい。モデルパラメータθ1の同定を行うタイミングは、燃料カットの実行時がよい。燃料カットを実行すると、触媒3には燃料成分を含まない空気が流入し、触媒3内が酸素で満たされて酸素割合が1に限りなく近づくことが保証されるからである。しかも、燃料カットの機会は自動車の運転中しばしば訪れるので、自然にθ1の同定回数を増やすことができる。 By the way, the oxygen storage capacity, oxygen storage rate, and oxygen release rate of the catalyst 3 are influenced by the deterioration of the catalyst 3 with time. That is, the model parameter θ 1 is affected by the deterioration of the catalyst 3 with time. Therefore, it is desirable to identify the model parameter θ 1 online. The timing for identifying the model parameter θ 1 is good when the fuel cut is performed. This is because when the fuel cut is executed, air containing no fuel component flows into the catalyst 3 and the inside of the catalyst 3 is filled with oxygen, so that the oxygen ratio is as close as possible to 1. In addition, fuel cut opportunities often occur during driving of the automobile, so that the number of times θ 1 can be identified can be increased naturally.

電子制御装置5は、所定の燃料カット条件が成立し、内燃機関2の気筒への燃料供給(燃料噴射)を一時中断する燃料カットを実行するときに、モデルパラメータθ1を同定する。燃料カット条件は、既存の自動車用内燃機関2に準ずる。例えば、エンジン回転数が一定以上あり、かつアイドルスイッチがONになった(または、アクセルペダルの踏込量が閾値以下となった)ことを条件とする。燃料カットは、エンジン回転数が所定の復帰回転数以下まで下がったり、アイドルスイッチがOFFになったりすると終了(燃料供給を再開)する。 The electronic control unit 5 identifies the model parameter θ 1 when a predetermined fuel cut condition is satisfied and a fuel cut that temporarily stops fuel supply (fuel injection) to the cylinders of the internal combustion engine 2 is executed. The fuel cut condition is in accordance with the existing automobile internal combustion engine 2. For example, the condition is that the engine speed is equal to or greater than a certain value and the idle switch is turned on (or the accelerator pedal depression amount is equal to or less than a threshold value). The fuel cut ends (resumption of fuel supply) when the engine speed falls below a predetermined return speed or the idle switch is turned off.

その上で、電子制御装置5は、燃料カットの実行開始時点t0から、触媒3内の酸素割合Oが1の近傍に達した時点t1までの経過時間を計測する。電子制御装置5は、触媒3下流の第二の空燃比センサ12の出力信号を観測し、図3に示すように、その出力が完全なリーンを示す所定の閾値に到達した時点をt1と判断する。また、電子制御装置5は、時点t0から時点t1までの期間における流入空気量Ga及び空気過剰率λをも計測する。 Then, the electronic control unit 5 measures the elapsed time from the fuel cut execution start time t 0 to the time t 1 when the oxygen ratio O in the catalyst 3 reaches around 1 . The electronic control unit 5 observes the output signal of the second air-fuel ratio sensor 12 downstream of the catalyst 3, and, as shown in FIG. 3, the time when the output reaches a predetermined threshold value indicating complete lean is defined as t 1 . to decide. Further, the electronic control unit 5 also measures the inlet air amount G a and the excess air ratio λ in the period from time t 0 to time t 1.

燃料カットの実行開始直前における触媒3内の酸素割合をO(t0)とおくと、時点t0から時点t1までの期間における計測値Ga、λについて、下式(数3)が成立する。 If the oxygen ratio in the catalyst 3 immediately before the start of the fuel cut is O (t 0 ), the following equation (Equation 3) is established for the measured values G a and λ during the period from time t 0 to time t 1. To do.

Figure 0005404262
Figure 0005404262

なお、式(数3)の左辺第二項のO(t0)に、燃料カットの実行開始直前における酸素割合Oの目標値を代入してもよい。 Note that the target value of the oxygen ratio O immediately before the start of the fuel cut may be substituted for O (t 0 ) in the second term on the left side of the equation (Equation 3).

電子制御装置5は、式(数3)からモデルパラメータθ1を逆算することで、θ1を同定する。同定したθ1は、RAM52またはROM53に学習値として記憶し、燃料供給再開後の空燃比制御に用いる。 The electronic control unit 5, by back calculation model parameters theta 1 from equation (3), to identify theta 1. The identified θ 1 is stored as a learned value in the RAM 52 or ROM 53 and used for air-fuel ratio control after resumption of fuel supply.

本実施形態によれば、内燃機関2の排気通路に装着された排気ガス浄化用の触媒3の上流に設けられる第一の空燃比センサ11と、前記触媒3の下流に設けられる第二の空燃比センサ12と、少なくとも前記第一の空燃比センサ11の出力を参照して空燃比のフィードバック制御を行う空燃比制御部13とを具備する空燃比制御装置1において、前記空燃比制御部13が、前記触媒3内に吸蔵した酸素量と当該触媒3の酸素吸蔵能との比である酸素割合Oのモデル数式に則り、酸素割合Oをリアルタイムで推算してその酸素割合Oを目標値に制御するものとしたため、触媒3下流にある第二の空燃比センサ12の出力信号の変動が触媒3内の空燃比の変動に対して遅延する問題を有効に回避でき、触媒3の排気ガス浄化能率を高く保つことが可能となる。加えて、触媒3に使用する貴金属量の削減にも資する。   According to the present embodiment, the first air-fuel ratio sensor 11 provided upstream of the exhaust gas purifying catalyst 3 mounted in the exhaust passage of the internal combustion engine 2 and the second air-fuel ratio provided downstream of the catalyst 3. In the air-fuel ratio control device 1, which includes a fuel-fuel ratio sensor 12 and an air-fuel ratio control unit 13 that performs feedback control of the air-fuel ratio with reference to at least the output of the first air-fuel ratio sensor 11, the air-fuel ratio control unit 13 includes: The oxygen ratio O is estimated in real time according to the model formula of the oxygen ratio O, which is the ratio of the amount of oxygen stored in the catalyst 3 and the oxygen storage capacity of the catalyst 3, and the oxygen ratio O is controlled to the target value. Therefore, the problem that the fluctuation of the output signal of the second air-fuel ratio sensor 12 downstream of the catalyst 3 is delayed with respect to the fluctuation of the air-fuel ratio in the catalyst 3 can be effectively avoided, and the exhaust gas purification efficiency of the catalyst 3 can be avoided. Can keep high The ability. In addition, it contributes to the reduction of the amount of noble metal used for the catalyst 3.

酸素割合Oは、触媒3内に酸素が充満した状態を基準(O=1)とする値であり、これを制御量としていることで、触媒3の酸素吸蔵能の劣化の度合いに応じた目標値の設定変更が不要となっている。また、燃料カットを実行する度、酸素割合Oの値が1にリセットされ、推算誤差もリセットされることから、高精度のフィードバック制御が実現される。   The oxygen ratio O is a value based on the state in which the catalyst 3 is filled with oxygen (O = 1). By using this as a control amount, a target corresponding to the degree of deterioration of the oxygen storage capacity of the catalyst 3 is obtained. It is not necessary to change the value setting. Further, each time the fuel cut is executed, the value of the oxygen ratio O is reset to 1, and the estimation error is also reset, so that highly accurate feedback control is realized.

前記空燃比制御部13が、前記内燃機関2における燃料カットの実行開始時点t0から前記触媒3内に酸素が充満する時点t1までの時間を計測することを通じて、モデルパラメータθ1をオンライン同定するため、触媒3の経時劣化に起因するモデル化誤差を効果的に縮小することができる。 The air-fuel ratio control unit 13 measures the time from the fuel cut execution start time t 0 in the internal combustion engine 2 to the time t 1 when the catalyst 3 is filled with oxygen, thereby identifying the model parameter θ 1 online. Therefore, the modeling error caused by the deterioration of the catalyst 3 with time can be effectively reduced.

次に述べる参考例は、モデルパラメータθiのオンライン同定を伴わない制御手法である。以降、上記実施形態との相異点を中心に説明する。特記しない要素については、上記実施形態と同様に構成してよい。 The reference example described below is a control method that does not involve online identification of the model parameter θ i . Hereinafter, the difference from the above embodiment will be mainly described. Elements that are not specified may be configured in the same manner as in the above embodiment.

図4は、触媒3に流入するガスの空燃比を意図的に上下させる実験を行い、第一の空燃比センサ11の出力信号及び第二の空燃比センサ12の出力信号を観測したものである。第一の空燃比センサ11の出力は、触媒3に流入するガスの空燃比をそのまま表示していると言える。一方で、第二の空燃比センサ12の出力は、第一の空燃比センサ11の出力、ひいては触媒3に流入するガスの空燃比の変動に対して遅れている。   FIG. 4 is an experiment in which the air-fuel ratio of the gas flowing into the catalyst 3 is intentionally increased or decreased, and the output signal of the first air-fuel ratio sensor 11 and the output signal of the second air-fuel ratio sensor 12 are observed. . It can be said that the output of the first air-fuel ratio sensor 11 displays the air-fuel ratio of the gas flowing into the catalyst 3 as it is. On the other hand, the output of the second air-fuel ratio sensor 12 is delayed with respect to the output of the first air-fuel ratio sensor 11 and consequently the fluctuation of the air-fuel ratio of the gas flowing into the catalyst 3.

触媒3に流入するガスの空燃比がリーンな期間では、触媒3に酸素が吸蔵される。触媒3に流入するガスの空燃比がリッチな期間では、触媒3に吸蔵されていた酸素が放出される。図4中、空燃比リッチだった流入ガスが空燃比リーンとなった後、再び空燃比リッチとなるまでの期間T1が、触媒3に酸素が吸蔵される期間である。そして、空燃比リーンだった流入ガスが空燃比リッチとなった後、第二の空燃比センサ12の出力信号がリーンからリッチへと反転するまでの期間T2が、触媒3から酸素が放出される期間である。第二の空燃比センサ12の出力がリーンからリッチへと反転したことは、触媒3からの酸素の放出が衰えたことを暗示している。 During the period when the air-fuel ratio of the gas flowing into the catalyst 3 is lean, oxygen is occluded in the catalyst 3. In a period in which the air-fuel ratio of the gas flowing into the catalyst 3 is rich, oxygen stored in the catalyst 3 is released. In FIG. 4, a period T 1 from when the inflow gas rich in the air-fuel ratio becomes lean to the air-fuel ratio until it becomes rich again again is a period during which oxygen is stored in the catalyst 3. Then, after the inflowing gas that has been lean in the air-fuel ratio becomes rich in the air-fuel ratio, oxygen is released from the catalyst 3 during a period T 2 until the output signal of the second air-fuel ratio sensor 12 reverses from lean to rich. It is a period. The inversion of the output of the second air-fuel ratio sensor 12 from lean to rich implies that the release of oxygen from the catalyst 3 has declined.

図5は、流入空気量Gaを一定として上記実験を行い、酸素吸蔵期間T1と酸素放出期間T2とをそれぞれ計測してプロットしたものである。図5では、触媒3に流入するガスの空燃比のリーン時の値とリッチ時の値との組合せを、三通りに変えて実験した結果を示している。流入ガスの空燃比の値によらず、酸素吸蔵期間T1と酸素放出期間T2との間には一定の比例関係が存在している。ここではその比例係数、即ち図5中に引いた直線の傾きを、反応速度比と呼称する。反応速度比は、酸素放出速度に対する酸素吸蔵速度の比(T1/T2)を示す。 Figure 5 performs the experiment the inflow air quantity G a is constant, is plotted oxygen storage period T 1 and the oxygen release period T 2 and the measures respectively. FIG. 5 shows the results of experiments in which the combinations of the lean value and rich value of the air-fuel ratio of the gas flowing into the catalyst 3 are changed in three ways. Regardless of the value of the air-fuel ratio of the inflowing gas, there is a certain proportional relationship between the oxygen storage period T 1 and the oxygen release period T 2 . Here, the proportionality coefficient, that is, the slope of the straight line drawn in FIG. 5, is called the reaction rate ratio. The reaction rate ratio indicates the ratio of the oxygen storage rate to the oxygen release rate (T 1 / T 2 ).

図6は、流入空気量Gaを変えて上記実験を行い、反応速度比を計測したものである。並びに、図7は、同様の実験を、新しい触媒3と古い劣化した触媒3とを用いてそれぞれ行った結果である。図7から明らかなように、反応速度比は触媒3の経時劣化によらず一定であると見なすことができる。 Figure 6 performs the experiment by changing the inlet air amount G a, in which the reaction rate ratio were measured. FIG. 7 shows the result of the same experiment using the new catalyst 3 and the old deteriorated catalyst 3, respectively. As is clear from FIG. 7, the reaction rate ratio can be regarded as being constant regardless of the deterioration of the catalyst 3 over time.

因みに、図8は、触媒3に流入するガスの温度と、触媒3の酸素吸蔵能との関係をプロットしたものである。酸素吸蔵能は、同触媒3が放出することのできる酸素量の最大値と考えることができる。図9に示しているように、流入ガスの温度と酸素吸蔵能との関係は、触媒3の経時劣化の影響を受ける。   FIG. 8 is a plot of the relationship between the temperature of the gas flowing into the catalyst 3 and the oxygen storage capacity of the catalyst 3. The oxygen storage capacity can be considered as the maximum value of the amount of oxygen that the catalyst 3 can release. As shown in FIG. 9, the relationship between the temperature of the inflowing gas and the oxygen storage capacity is affected by the deterioration of the catalyst 3 over time.

参考例では、触媒3内に酸素吸蔵能まで酸素を吸蔵した状態を基準とし、この状態から酸素を放出した量をモデル数式によって推算する。そして、推算した酸素放出量を制御量として、これを所要の目標値に到達させるフィードバック制御を実施する。 In this reference example , the amount of oxygen released from this state is estimated by a model formula based on the state where oxygen is stored in the catalyst 3 up to the oxygen storage capacity. Then, the estimated oxygen release amount is used as a control amount, and feedback control is performed to reach the required target value.

既に述べた通り、内燃機関2の気筒への燃料供給を一時中断する燃料カットを実行すると、触媒3に燃料成分を含まない空気が流入し、触媒3内に酸素が充満する。よって、燃料カットを終了して燃料供給を再開する直前の時点t2では、触媒3内に酸素吸蔵能一杯まで酸素を吸蔵している。酸素吸蔵能は触媒3の経時劣化とともに低下するため、時点t2において触媒3に吸蔵している酸素の絶対量は不明である。だが、図10に示すように、燃料供給再開後に触媒3から放出した酸素の量Oを考えれば、燃料供給再開時点t2における酸素放出量Oを常に0とすることができる。 As described above, when a fuel cut that temporarily interrupts the fuel supply to the cylinders of the internal combustion engine 2 is executed, air containing no fuel component flows into the catalyst 3 and the catalyst 3 is filled with oxygen. Therefore, in the end the fuel cut fuel supply time t 2 immediately before resume, and storing oxygen until the oxygen storage capacity filled in the catalyst 3. Since the oxygen storage capacity decreases as the catalyst 3 deteriorates with time, the absolute amount of oxygen stored in the catalyst 3 at time t 2 is unknown. However, as shown in FIG. 10, considering the amount O of oxygen released from the catalyst 3 after resumption of fuel supply, the oxygen release amount O at the fuel supply resumption time t 2 can always be zero.

上記実施形態において述べたモデル数式(数2)を援用し、モデルパラメータθ1を酸素吸蔵速度または酸素放出速度を示すモデルパラメータをθ2に置き換えると、酸素放出量Oのモデル数式として下式(数4)を得られる。 Using the model formula (Equation 2) described in the above embodiment and replacing the model parameter θ 1 with the model parameter indicating the oxygen storage rate or oxygen release rate by θ 2 , the following formula ( Equation 4) is obtained.

Figure 0005404262
Figure 0005404262

酸素放出量Oの値は、0≦O≦酸素吸蔵能の範囲をとる。   The value of the oxygen release amount O is in the range of 0 ≦ O ≦ oxygen storage capacity.

モデルパラメータθ2は、触媒3が酸素を放出する(λ≦1となる)期間と、触媒3が酸素を吸蔵する(λ>1となる)期間とで相異する。しかしながら、反応速度比は、触媒3の経時劣化によらず一定であることが分かっている。図6に示している反応速度比k(Ga)を用いれば、モデルパラメータθ2を下式(数5)のように設定することができる。 The model parameter θ 2 is different between a period in which the catalyst 3 releases oxygen (λ ≦ 1) and a period in which the catalyst 3 occludes oxygen (λ> 1). However, it has been found that the reaction rate ratio is constant regardless of the deterioration of the catalyst 3 over time. If the reaction rate ratio k (G a ) shown in FIG. 6 is used, the model parameter θ 2 can be set as shown in the following equation (Equation 5).

Figure 0005404262
Figure 0005404262

上式(数5)のモデルパラメータθ2は、マップデータとしてRAM52またはROM53に記憶保持させておけばよい。 The model parameter θ 2 in the above equation (Equation 5) may be stored in the RAM 52 or ROM 53 as map data.

電子制御装置5は、酸素放出量Oに適宜に目標値を設定し、モデル数式(数4)及び(数5)に則って推算した酸素放出量Oをその目標値に収束させるフィードバック制御を実施する。即ち、推算した現在の酸素放出量Oとその目標値との偏差に基づいて燃料噴射量のフィードバック補正量を算出し、要求燃料噴射量に加味する。これにより、空燃比の振動を抑圧してウィンドウ内に維持する。   The electronic control unit 5 appropriately sets a target value for the oxygen release amount O, and performs feedback control to converge the oxygen release amount O estimated according to the model formulas (Equation 4) and (Equation 5) to the target value. To do. That is, the feedback correction amount of the fuel injection amount is calculated based on the deviation between the estimated current oxygen release amount O and the target value, and is added to the required fuel injection amount. Thereby, the vibration of the air-fuel ratio is suppressed and maintained in the window.

参考例によれば、内燃機関2の排気通路に装着された排気ガス浄化用の触媒3の上流に設けられる第一の空燃比センサ11と、前記触媒3の下流に設けられる第二の空燃比センサ12と、少なくとも前記第一の空燃比センサ11の出力を参照して空燃比のフィードバック制御を行う空燃比制御部13とを具備する空燃比制御装置1において、前記空燃比制御部13が、前記触媒3内に吸蔵した酸素量と当該触媒3の酸素吸蔵能との比である酸素割合Oのモデル数式に則り、触媒3内に酸素吸蔵能まで酸素を吸蔵し酸素が充満した状態を基準としてこの状態から酸素を放出した量Oをリアルタイムで推算してその放出量Oを目標値に制御するものとしたため、触媒3下流にある第二の空燃比センサ12の出力信号の変動が触媒3内の空燃比の変動に対して遅延する問題を有効に回避でき、触媒3の排気ガス浄化能率を高く保つことが可能となる。加えて、触媒3に使用する貴金属量の削減にも資する。 According to this reference example , the first air-fuel ratio sensor 11 provided upstream of the exhaust gas purifying catalyst 3 mounted in the exhaust passage of the internal combustion engine 2 and the second air-fuel ratio sensor provided downstream of the catalyst 3. In the air-fuel ratio control device 1, which includes a fuel-fuel ratio sensor 12 and an air-fuel ratio control unit 13 that performs feedback control of the air-fuel ratio with reference to at least the output of the first air-fuel ratio sensor 11, the air-fuel ratio control unit 13 includes: In accordance with a model formula of oxygen ratio O, which is the ratio of the amount of oxygen occluded in the catalyst 3 and the oxygen occlusion capacity of the catalyst 3, a state in which oxygen is occluded in the catalyst 3 up to the oxygen occlusion capacity and is filled with oxygen. As a reference, the amount O of released oxygen from this state is estimated in real time and the released amount O is controlled to the target value. Therefore, the fluctuation of the output signal of the second air-fuel ratio sensor 12 downstream of the catalyst 3 is the catalyst. Of air-fuel ratio in 3 Can effectively avoid the problem of delayed relative movement, it is possible to maintain a high exhaust gas purification efficiency of the catalyst 3. In addition, it contributes to the reduction of the amount of noble metal used for the catalyst 3.

酸素放出量Oは、触媒3内に酸素が充満した状態を基準(O=0)とする値であり、これを制御量としていることで、触媒3の酸素吸蔵能の劣化の度合いに応じた目標値の設定変更が不要となっている。また、燃料カットを実行する度、酸素放出量Oの値が0にリセットされ、推算誤差もリセットされることから、高精度のフィードバック制御が実現される。   The oxygen release amount O is a value based on the state in which the catalyst 3 is filled with oxygen (O = 0). By using this as a control amount, the oxygen release amount O corresponds to the degree of deterioration of the oxygen storage capacity of the catalyst 3. It is not necessary to change the target value setting. Further, each time a fuel cut is performed, the value of the oxygen release amount O is reset to 0 and the estimation error is also reset, so that highly accurate feedback control is realized.

前記空燃比制御部13が、モデルパラメータθ2を、前記触媒3における酸素吸蔵速度と酸素放出速度との比kに基づいて定めるため、触媒3の経時劣化に起因するモデル化誤差を効果的に縮小することができる。 Since the air-fuel ratio control unit 13 determines the model parameter θ 2 based on the ratio k between the oxygen storage rate and the oxygen release rate in the catalyst 3, the modeling error due to the deterioration of the catalyst 3 with time is effectively reduced. Can be reduced.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、自動車等に搭載される内燃機関の制御に利用することができる。   The present invention can be used for control of an internal combustion engine mounted on an automobile or the like.

1…空燃比制御装置
11…第一の空燃比センサ
12…第二の空燃比センサ
13、5…空燃比制御部(電子制御装置)
2…内燃機関
3…触媒
DESCRIPTION OF SYMBOLS 1 ... Air fuel ratio control apparatus 11 ... 1st air fuel ratio sensor 12 ... 2nd air fuel ratio sensor 13, 5 ... Air fuel ratio control part (electronic controller)
2 ... Internal combustion engine 3 ... Catalyst

Claims (1)

内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられる第一の空燃比センサと、
前記触媒の下流に設けられる第二の空燃比センサと、
少なくとも前記第一の空燃比センサの出力を参照して空燃比のフィードバック制御を行う空燃比制御部と
を具備しており、
前記空燃比制御部は、前記触媒内に吸蔵した酸素量と当該触媒の酸素吸蔵能との比である酸素割合のモデル数式に則り、酸素割合を推算してその酸素割合を目標値に制御する、または、触媒内に酸素吸蔵能まで酸素を吸蔵し酸素が充満した状態を基準としてこの状態から酸素を放出した量を推算してその放出量を目標値に制御するものであり、
前記モデル数式が、式(数6)の形で表されるとともに、
前記空燃比制御部が、前記内燃機関における燃料カットの実行開始から前記触媒内に酸素が充満するまでの時間を計測することを通じて、モデルパラメータθ i をオンライン同定する空燃比制御装置。
Figure 0005404262
A first air-fuel ratio sensor provided upstream of an exhaust gas purifying catalyst mounted in an exhaust passage of the internal combustion engine;
A second air-fuel ratio sensor provided downstream of the catalyst;
An air-fuel ratio control unit that performs feedback control of the air-fuel ratio with reference to at least the output of the first air-fuel ratio sensor,
The air-fuel ratio control unit estimates an oxygen ratio and controls the oxygen ratio to a target value according to a model formula of an oxygen ratio, which is a ratio between the amount of oxygen stored in the catalyst and the oxygen storage capacity of the catalyst. Or, the amount of oxygen released from this state is estimated based on the state where oxygen is stored in the catalyst up to the oxygen storage capacity and the oxygen is filled, and the release amount is controlled to the target value .
The model formula is expressed in the form of formula (Equation 6),
An air-fuel ratio control apparatus in which the air-fuel ratio control unit performs online identification of the model parameter θ i by measuring the time from the start of fuel cut in the internal combustion engine until the catalyst is filled with oxygen .
Figure 0005404262
JP2009205204A 2009-09-04 2009-09-04 Air-fuel ratio control device Expired - Fee Related JP5404262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205204A JP5404262B2 (en) 2009-09-04 2009-09-04 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205204A JP5404262B2 (en) 2009-09-04 2009-09-04 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2011058364A JP2011058364A (en) 2011-03-24
JP5404262B2 true JP5404262B2 (en) 2014-01-29

Family

ID=43946286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205204A Expired - Fee Related JP5404262B2 (en) 2009-09-04 2009-09-04 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP5404262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157111A1 (en) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 Correction device for air/fuel ratio sensor
CN112539113B (en) * 2020-11-30 2023-01-06 潍柴动力股份有限公司 Air system control method and device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128718C2 (en) * 1991-08-29 2001-02-01 Bosch Gmbh Robert Method and device for regulating the amount of fuel for an internal combustion engine with a catalyst
JP3733671B2 (en) * 1996-12-24 2006-01-11 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP3721897B2 (en) * 1999-11-16 2005-11-30 トヨタ自動車株式会社 Three-way catalyst storage oxygen desorption amount calculation apparatus and air-fuel ratio control apparatus for internal combustion engine
JP2004116295A (en) * 2002-09-24 2004-04-15 Hitachi Unisia Automotive Ltd Exhaust emission control device of internal combustion engine
JP2007231750A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP5001183B2 (en) * 2008-01-11 2012-08-15 日立オートモティブシステムズ株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2011058364A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4264760B2 (en) Exhaust gas purification device for internal combustion engine
WO2020189080A1 (en) Internal combustion engine control device
EP1882088B1 (en) Exhaust gas purification system for internal combustion engine
US8955309B2 (en) Method for adapting an exothermic reaction in the exhaust system of a motor vehicle
US7467511B2 (en) Emission control strategy for lean idle
JP5545631B2 (en) Air-fuel ratio control device
JP5404262B2 (en) Air-fuel ratio control device
JP2004360516A (en) Exhaust gas recirculation control device for diesel engine
JP4781151B2 (en) Exhaust gas purification system for internal combustion engine
JP7044022B2 (en) Exhaust gas purification system control device
JP2012026306A (en) Diagnosis control method of internal combustion engine
JP2010084670A (en) Air-fuel ratio control device of internal combustion engine
JP5679839B2 (en) Air-fuel ratio control device
JP3627612B2 (en) Air-fuel ratio control device for internal combustion engine and catalyst deterioration determination device
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP3412216B2 (en) Exhaust gas purification device for internal combustion engine
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
CN113530653A (en) Method and computing unit for determining the state of a catalytic converter
JP2012002070A (en) Diagnosis control method of internal combustion engine
JP5041294B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2019100221A (en) Control device for internal combustion engine
JP2005090460A (en) Engine control device
JP4366588B2 (en) Exhaust gas purification device for internal combustion engine
JP7143032B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

LAPS Cancellation because of no payment of annual fees