JP2012026306A - Diagnosis control method of internal combustion engine - Google Patents

Diagnosis control method of internal combustion engine Download PDF

Info

Publication number
JP2012026306A
JP2012026306A JP2010163474A JP2010163474A JP2012026306A JP 2012026306 A JP2012026306 A JP 2012026306A JP 2010163474 A JP2010163474 A JP 2010163474A JP 2010163474 A JP2010163474 A JP 2010163474A JP 2012026306 A JP2012026306 A JP 2012026306A
Authority
JP
Japan
Prior art keywords
catalyst
air
fuel ratio
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010163474A
Other languages
Japanese (ja)
Inventor
Atsushi Naito
敦之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010163474A priority Critical patent/JP2012026306A/en
Publication of JP2012026306A publication Critical patent/JP2012026306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To further enhance the accuracy of estimation in an oxygen occlusion capacity of a catalyst.SOLUTION: In diagnosis which refers outputs of air-fuel ratio sensors arranged upstream and downstream of the exhaust gas purifying catalyst attached to an exhaust passage of an internal combustion engine, and estimates an oxygen amount occluded in the catalyst by measuring a passage time after the output of the upstream-side sensor is varied until the output of the downstream-side sensor is varied, a response delay Tuntil a variation of an actual air-fuel ratio L1 of gas upstream of the catalyst brings about a variation of the output L3 of the upstream-side sensor is acquired, correction according to the magnitude of the response delay Tis applied to the delay, and after that, the oxygen amount occluded in the catalyst is estimated.

Description

本発明は、排気ガスを浄化する触媒の異常判定を行う方法に関する。   The present invention relates to a method for determining abnormality of a catalyst that purifies exhaust gas.

一般に、車両の排気通路には、排気ガス中に含まれるHC及びCOを酸化、NOxを還元して無害化する三元触媒が装着されている。 Generally, the exhaust passage of the vehicle, oxidizes HC and CO contained in the exhaust gas, three-way catalyst to harmless by reducing NO x is mounted.

触媒の酸素吸蔵能力(OSC:O2 Storage Capacity)は、経年劣化により減退する。触媒による排気ガスの浄化率は、触媒内に吸着できる酸素量に依存する。触媒の劣化が進行すると、排気ガスに含まれる有害物質の量も増大する。一方で、触媒の劣化は、車両自体の運転性能にはほとんど影響を与えない。それ故、異常な排出ガス車が長期間、無意識に使用され続けるおそれがある。 The oxygen storage capacity (OSC: O 2 Storage Capacity) of the catalyst decreases due to aging. The exhaust gas purification rate by the catalyst depends on the amount of oxygen that can be adsorbed in the catalyst. As the catalyst deteriorates, the amount of harmful substances contained in the exhaust gas also increases. On the other hand, deterioration of the catalyst hardly affects the driving performance of the vehicle itself. Therefore, there is a risk that an abnormal exhaust vehicle will continue to be used unconsciously for a long time.

そのような事象に対処するべく、近時では、触媒の経年劣化の度合いを自己診断するダイアグノーシス機能を車両に実装することが通例となっている(例えば、下記特許文献を参照)。既に知られている通り、触媒から酸素を完全に放出した状況の下で、触媒に流入するガスの空燃比を強制的にリーンに操作し、触媒上流の空燃比センサの出力信号がリーンに切り替わってから触媒下流の空燃比センサの出力信号がリーンに切り替わるまでの間の経過時間を計測することにより、現在触媒に吸蔵している酸素量を推算することができる。下流側センサ出力がリーンに反転した瞬間の酸素吸蔵量が、当該触媒の最大酸素吸蔵能力となる。   Recently, in order to cope with such an event, it has become common to mount a diagnosis function on a vehicle for self-diagnosis of the degree of aging of the catalyst (see, for example, the following patent document). As already known, under the condition that oxygen is completely released from the catalyst, the air-fuel ratio of the gas flowing into the catalyst is forcibly operated to lean, and the output signal of the air-fuel ratio sensor upstream of the catalyst is switched to lean. By measuring the elapsed time from when the output signal of the air-fuel ratio sensor downstream of the catalyst changes to lean, the amount of oxygen currently stored in the catalyst can be estimated. The oxygen storage amount at the moment when the downstream sensor output reverses lean is the maximum oxygen storage capacity of the catalyst.

また、触媒に酸素吸蔵能力一杯まで酸素を吸蔵した状況の下で、触媒に流入するガスの空燃比を強制的にリッチに操作し、上流側センサ出力がリーンに切り替わってから下流側センサ出力がリッチに切り替わるまでの間の経過時間を計測することにより、触媒が放出した酸素の量、即ち酸素吸蔵能力一杯まで酸素を吸蔵した状態を基準とした酸素吸蔵量を推算することができる。下流側センサ出力がリッチに反転した瞬間の酸素吸蔵量が、当該触媒の最大酸素放出能力、換言すれば最大酸素吸蔵能力ということになる。   Also, under the situation where the catalyst has stored oxygen to the maximum oxygen storage capacity, the air-fuel ratio of the gas flowing into the catalyst is forcibly made rich, and after the upstream sensor output switches to lean, the downstream sensor output By measuring the elapsed time until switching to rich, it is possible to estimate the amount of oxygen released by the catalyst, that is, the oxygen storage amount based on the state in which oxygen is stored to the full oxygen storage capacity. The oxygen storage amount at the moment when the downstream sensor output is inverted to rich is the maximum oxygen release capacity of the catalyst, in other words, the maximum oxygen storage capacity.

燃焼直後の、そして未浄化の排気ガスにさらされる触媒上流の空燃比センサは、高温に加熱され、またカーボンデポジット等の汚れが付着するために、応答性が徐々に衰えてゆく。上流側センサ出力の応答遅れは、計測される経過時間を短縮化し、触媒の酸素吸蔵能力の過小評価を招く。しかも、触媒の酸素吸蔵能力は逓減することから、上流側センサ出力の応答遅れが酸素吸蔵能力の推算値に与える影響(応答遅れの計測時間に対する比)は次第に大きくなる一方である。   The air-fuel ratio sensor immediately after combustion and upstream of the catalyst exposed to unpurified exhaust gas is heated to a high temperature, and dirt such as carbon deposits adheres, so that the responsiveness gradually decreases. The response delay of the upstream sensor output shortens the measured elapsed time and causes an underestimation of the oxygen storage capacity of the catalyst. In addition, since the oxygen storage capacity of the catalyst gradually decreases, the influence of the response delay of the upstream sensor output on the estimated value of the oxygen storage capacity (ratio of response delay to measurement time) is gradually increasing.

特開平05−133264号公報JP 05-133264 A

本発明は、上記の問題に初めて着目してなされたものであり、触媒の酸素吸蔵能力の推定精度を一層高めることを所期の目的としている。   The present invention has been made by paying attention to the above-mentioned problem for the first time, and has an intended purpose of further improving the estimation accuracy of the oxygen storage capacity of the catalyst.

本発明では、内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流及び下流に設けられた空燃比センサの出力を参照し、上流側センサ出力が変動してから下流側センサ出力が変動するまでの間の経過時間を計測することを通じて、触媒に吸蔵された酸素量の推定を行うダイアグノーシスを実施する制御方法において、触媒の上流における実際のガスの空燃比の変動が前記上流側センサ出力の変動をもたらすまでの応答遅れを求め、当該応答遅れの多寡に応じた補正を加味した上で、前記触媒に吸蔵された酸素量を推定することとした。   In the present invention, the output of the air-fuel ratio sensor provided upstream and downstream of the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine is referred to, and the downstream sensor output changes after the upstream sensor output fluctuates. In the control method for performing diagnosis to estimate the amount of oxygen stored in the catalyst by measuring the elapsed time until the fluctuation, the actual change in the air-fuel ratio of the gas upstream of the catalyst The response delay until the sensor output fluctuates was obtained, and the amount of oxygen occluded in the catalyst was estimated after taking into account the correction according to the response delay.

前記応答遅れは、前記触媒に吸蔵された酸素量の推定を行う直前に求めることが好ましい。   The response delay is preferably obtained immediately before estimating the amount of oxygen stored in the catalyst.

本発明によれば、触媒の酸素吸蔵能力の推定精度を一層高めることができる。   According to the present invention, it is possible to further improve the estimation accuracy of the oxygen storage capacity of the catalyst.

本発明の一実施形態における触媒異常判定装置の構成要素を説明する図。The figure explaining the component of the catalyst abnormality determination apparatus in one Embodiment of this invention. 同触媒異常判定装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the catalyst abnormality determination apparatus. ダイアグノーシスのためのアクティブ制御の内容を説明するタイミングチャート。The timing chart explaining the content of the active control for diagnosis. 上流側空燃比センサの応答性の劣化の模様を示すタイミングチャート。The timing chart which shows the pattern of deterioration of the responsiveness of an upstream air-fuel ratio sensor. 同触媒異常判定装置が実行する処理の手順例を示すフローチャート。The flowchart which shows the example of a procedure of the process which the same catalyst abnormality determination apparatus performs. 同触媒異常判定装置が実行する処理の手順例を示すフローチャート。The flowchart which shows the example of a procedure of the process which the same catalyst abnormality determination apparatus performs. 同触媒異常判定装置が実行する処理の手順例を示すフローチャート。The flowchart which shows the example of a procedure of the process which the same catalyst abnormality determination apparatus performs.

本発明の一実施形態を、図面を参照して説明する。本実施形態における触媒異常判定装置1は、内燃機関2で燃料を燃焼させることにより発生する有害物質HC、CO、NOxを無害化する触媒3の経年劣化の度合いを診断するものであって、図1に示すように、触媒3の上流側における空燃比または酸素濃度に応じた出力信号を出力する第一の空燃比センサ11と、触媒3の下流側における空燃比または酸素濃度に応じた出力信号を出力する第二の空燃比センサ12と、両空燃比センサ11、12の出力信号を参照して触媒3及び第二の空燃比センサ12の異常判定を行う判定部13とを具備する。 An embodiment of the present invention will be described with reference to the drawings. The catalyst abnormality determination device 1 according to the present embodiment diagnoses the degree of aging of the catalyst 3 that detoxifies harmful substances HC, CO, NO x generated by burning fuel in the internal combustion engine 2, As shown in FIG. 1, a first air-fuel ratio sensor 11 that outputs an output signal corresponding to the air-fuel ratio or oxygen concentration upstream of the catalyst 3 and an output corresponding to the air-fuel ratio or oxygen concentration downstream of the catalyst 3. A second air-fuel ratio sensor 12 that outputs a signal, and a determination unit 13 that determines abnormality of the catalyst 3 and the second air-fuel ratio sensor 12 with reference to the output signals of both the air-fuel ratio sensors 11 and 12 are provided.

図2に、ハードウェア構成の概要を示す。内燃機関2は、車両に搭載される多気筒の燃料噴射式エンジンである。内燃機関2で生成された燃焼ガスは、排気ポートから排気マニホルド41、排気管42及び触媒3を通じて大気中に排出される。第一の空燃比センサ11、第二の空燃比センサ12はそれぞれ、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよく、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよいが、典型的には、第一の空燃比センサ11がリニアA/Fセンサ、第二の空燃比センサ12がO2センサである。 FIG. 2 shows an outline of the hardware configuration. The internal combustion engine 2 is a multi-cylinder fuel injection engine mounted on a vehicle. Combustion gas generated in the internal combustion engine 2 is discharged into the atmosphere from the exhaust port through the exhaust manifold 41, the exhaust pipe 42, and the catalyst 3. Each of the first air-fuel ratio sensor 11 and the second air-fuel ratio sensor 12 may be a linear A / F sensor having an output characteristic proportional to the air-fuel ratio of the exhaust gas, and is nonlinear with respect to the air-fuel ratio of the exhaust gas. may be O 2 sensor having a minimal output characteristics, but typically, the first air-fuel ratio sensor 11 is a linear a / F sensor, a second air-fuel ratio sensor 12 is O 2 sensor.

第一の空燃比センサ11及び第二の空燃比センサ12は、吸気負圧センサ、エンジン回転数センサ、車速センサ、冷却水温センサ、カムポジションセンサ、スロットルセンサ等の各種センサ(図示せず)とともに、電子制御装置(ECU)5に電気的に接続している。電子制御装置5は、プロセッサ51、RAM52、ROMまたはフラッシュメモリ53、I/Oインタフェース54等を包有するマイクロコンピュータシステムである。I/Oインタフェース54は、各種センサの出力信号の受信や制御信号の送信を担うもので、A/D変換回路及び/またはD/A変換回路を含む。プロセッサ51が実行するべきプログラムはROMまたはフラッシュメモリ53に格納されており、その実行の際にROMまたはフラッシュメモリ53からRAM52へ読み込まれ、プロセッサ51によって解読される。電子制御装置5は、プログラムに従い、判定部13としての機能を発揮する。   The first air-fuel ratio sensor 11 and the second air-fuel ratio sensor 12 together with various sensors (not shown) such as an intake negative pressure sensor, an engine speed sensor, a vehicle speed sensor, a coolant temperature sensor, a cam position sensor, and a throttle sensor. The electronic control unit (ECU) 5 is electrically connected. The electronic control unit 5 is a microcomputer system including a processor 51, a RAM 52, a ROM or flash memory 53, an I / O interface 54, and the like. The I / O interface 54 is responsible for receiving output signals of various sensors and transmitting control signals, and includes an A / D conversion circuit and / or a D / A conversion circuit. A program to be executed by the processor 51 is stored in the ROM or flash memory 53, and is read from the ROM or flash memory 53 into the RAM 52 and decoded by the processor 51 at the time of execution. The electronic control device 5 exhibits the function as the determination unit 13 according to the program.

電子制御装置5は、第一の空燃比センサ11、第二の空燃比センサ12やその他のセンサから出力される信号を、I/Oインタフェース54を介して受信する。そして、要求される燃料噴射量を算出し、この要求燃料噴射量に対応した制御信号をI/Oインタフェース54を介して燃料噴射弁21に入力、内燃機関2の燃料噴射を制御する。要求燃料噴射量は、吸気管内負圧及びエンジン回転数等を参照して基本噴射量を求め、その基本噴射量に、エンジン冷却水温等の環境条件に応じた環境補正、並びに空燃比フィードバック制御による補正を加えて、最終的に決定する。   The electronic control unit 5 receives signals output from the first air-fuel ratio sensor 11, the second air-fuel ratio sensor 12, and other sensors via the I / O interface 54. Then, the required fuel injection amount is calculated, and a control signal corresponding to the required fuel injection amount is input to the fuel injection valve 21 via the I / O interface 54 to control the fuel injection of the internal combustion engine 2. The required fuel injection amount is determined by referring to the intake pipe negative pressure and the engine speed, etc., and the basic injection amount is determined by environmental correction according to environmental conditions such as engine cooling water temperature and air-fuel ratio feedback control. Make corrections and final decision.

その上で、判定部13たる電子制御装置5は、触媒3の最大酸素吸蔵能力を推算するとともに、推算した最大酸素吸蔵能力値を劣化判定値と比較して、触媒3が正常であるか異常であるかを判定する。   Then, the electronic control unit 5 serving as the determination unit 13 estimates the maximum oxygen storage capacity of the catalyst 3 and compares the estimated maximum oxygen storage capacity value with the deterioration determination value to determine whether the catalyst 3 is normal or abnormal. It is determined whether it is.

触媒3の酸素吸蔵能力は、既知の任意の手法を採用して推算することができる。ここでは、その一典型例を示す。内燃機関2の気筒に空燃比リーンの混合気を供給して触媒3の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒に供給する混合気を意図的に空燃比リッチに操作する。すると、第一の空燃比センサ11の出力信号は即座に空燃比リッチを示す。これに対し、第二の空燃比センサ12の出力信号は、第一の空燃比センサ11の出力信号に遅れて空燃比リッチを示す。第一の空燃比センサ11の出力信号が空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)第二の空燃比センサ12の出力信号が空燃比リッチを示すまでの間、触媒3に吸蔵していた酸素が放出されて酸素の不足が補われるためである。   The oxygen storage capacity of the catalyst 3 can be estimated by adopting any known method. Here, one typical example is shown. From the state in which the air-fuel ratio lean air-fuel mixture is supplied to the cylinder of the internal combustion engine 2 and the oxygen is occluded to the full capacity of the catalyst 3, the air-fuel mixture supplied to the cylinder is intentionally operated to be rich in the air-fuel ratio. Then, the output signal of the first air-fuel ratio sensor 11 immediately shows the air-fuel ratio rich. On the other hand, the output signal of the second air-fuel ratio sensor 12 shows the rich air-fuel ratio behind the output signal of the first air-fuel ratio sensor 11. Until the output signal of the second air-fuel ratio sensor 12 indicates the air-fuel ratio rich after the output signal of the first air-fuel ratio sensor 11 indicates the air-fuel ratio rich (or after the air-fuel mixture is manipulated to the air-fuel ratio rich) This is because the oxygen occluded in the catalyst 3 is released during this period to compensate for the lack of oxygen.

第一の空燃比センサ11の出力信号が空燃比リッチを示してから、第二の空燃比センサ12の出力信号が空燃比リッチを示すまでの間に経過した時間をTRとおき、このTRの間に供給した燃料の総重量をGF、理論空燃比とリッチ時の空燃比との差分をΔA/FRとおくと、TRの間に触媒3中で不足した酸素量は、
(α・ΔA/FR・GF
となる。αは、空気中に占める酸素の重量割合(≒0.23)である。
From shows the output signal is the air-fuel ratio rich first air-fuel ratio sensor 11, the time elapsed between the output signal of the second air-fuel ratio sensor 12 until they show an air-fuel ratio rich T R Distant, this T total weight G F of the fuel that is supplied between the R, placing the difference between the air-fuel ratio during the stoichiometric air-fuel ratio and the rich and .DELTA.A / F R, the amount of oxygen is insufficient in the catalyst 3 during T R is
(Α ・ ΔA / F R・ G F )
It becomes. α is a weight ratio (≈0.23) of oxygen in the air.

上式は、TRの時点までに触媒3が放出した酸素の量を表している。供給した燃料の総重量GFは、電子制御装置5において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリッチな(14.6よりも小さい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数(エンジン回転数に比例)を乗じれば、単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TRを乗じれば、供給した燃料の総重量GFとなる。要するに、第二の空燃比センサ12の出力信号が空燃比リッチを示した時点での経過時間TRに基づいて、触媒3の最大酸素放出能力を算出することが可能である。この最大酸素放出能力は、最大酸素吸蔵能力と同義である。 The above equation, the catalyst 3 represents the amount of oxygen released by the time of T R. Total weight G F of the supplied fuel can be calculated in the electronic control unit 5. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for making the air-fuel ratio a predetermined value richer than the stoichiometric air-fuel ratio (smaller than 14.6). Multiplying the number of per-expansion strokes (proportional to the engine speed) gives the fuel supply amount per unit time. Then, when multiplied by the elapsed time T R to a fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, based on the elapsed time T R at the time that the output signal of the second air-fuel ratio sensor 12 is shown an air-fuel ratio rich, it is possible to calculate the maximum oxygen release capacity of the catalyst 3. This maximum oxygen release capacity is synonymous with the maximum oxygen storage capacity.

あるいは、内燃機関2の気筒に空燃比リッチの混合気を供給して触媒3に酸素を全く吸蔵していない状態から、気筒に供給する混合気を意図的に空燃比リーンに操作する。すると、第一の空燃比センサ11の出力信号は即座に空燃比リーンを示す。これに対し、第二の空燃比センサ12の出力信号は、第一の空燃比センサ11の出力信号に遅れて空燃比リーンを示す。第一の空燃比センサ11の出力信号が空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)第二の空燃比センサ12の出力信号が空燃比リーンを示すまでの間、過剰な酸素が触媒3に吸着するためである。   Alternatively, the air-fuel ratio rich mixture is supplied to the cylinder of the internal combustion engine 2 and the oxygen supplied to the cylinder 3 is intentionally manipulated to make the air-fuel ratio lean from the state where no oxygen is stored in the catalyst 3. Then, the output signal of the first air-fuel ratio sensor 11 immediately shows the air-fuel ratio lean. On the other hand, the output signal of the second air-fuel ratio sensor 12 shows the air-fuel ratio lean behind the output signal of the first air-fuel ratio sensor 11. Until the output signal of the second air-fuel ratio sensor 12 indicates the air-fuel ratio lean after the output signal of the first air-fuel ratio sensor 11 indicates the air-fuel ratio lean (or after the mixture is operated to the air-fuel ratio lean) This is because excess oxygen is adsorbed on the catalyst 3 during the period.

第一の空燃比センサ11の出力信号が空燃比リーンを示してから、第二の空燃比センサ12の出力信号が空燃比リーンを示すまでの間に経過した時間をTLとおき、このTLの間に供給した燃料の総重量をGF、リーン時の空燃比と理論空燃比との差分をΔA/FLとおくと、TLの間に触媒3中で過剰となった酸素量は、
(α・ΔA/FL・GF
となる。
The time elapsed from when the output signal of the first air-fuel ratio sensor 11 indicates air-fuel ratio lean until the output signal of the second air-fuel ratio sensor 12 indicates air-fuel ratio lean is set as T L. If the total weight of the fuel supplied during L is G F , and the difference between the lean air-fuel ratio and the stoichiometric air-fuel ratio is ΔA / F L , the amount of oxygen excess in the catalyst 3 during T L Is
(Α ・ ΔA / F L・ G F )
It becomes.

上式は、TLの時点で触媒3が吸蔵している酸素の量を表している。供給した燃料の総重量GFはやはり、電子制御装置5において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリーンな(14.6よりも大きい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数を乗じれば単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TLを乗じれば、供給した燃料の総重量GFとなる。要するに、第二の空燃比センサ12の出力信号が空燃比リーンを示した時点での経過時間TLに基づいて、触媒3の最大酸素吸蔵能力を算出することが可能である。 The above formula represents the amount of oxygen stored in the catalyst 3 at the time point T L. Total weight G F of the supplied fuel again, it can be calculated in the electronic control unit 5. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for setting the air-fuel ratio to a predetermined value leaner than the stoichiometric air-fuel ratio (greater than 14.6). Multiply by the number of expansion strokes per unit, the fuel supply amount per unit time is obtained. Then, when multiplied by the elapsed time T L in the fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, it is possible to calculate the maximum oxygen storage capacity of the catalyst 3 based on the elapsed time T L when the output signal of the second air-fuel ratio sensor 12 indicates the air-fuel ratio lean.

実際には、アイドリング状態、定常運転状態、その他特定の運転状態にあるときに、理論空燃比へのフィードバック制御を一時停止し、混合気の空燃比を意図的に振動させる「アクティブ制御」に移行してダイアグノーシスを実施する。   Actually, the feedback control to the stoichiometric air-fuel ratio is temporarily stopped when the engine is in an idling state, a steady operation state, or other specific operation state, and the operation shifts to “active control” that intentionally vibrates the air-fuel ratio of the mixture. Then, diagnosis is performed.

図3に示しているように、アクティブ制御では、第二の空燃比センサ12の出力電圧が所定のリッチ判定値に到達した、即ち第二空燃比センサ12の出力がリーンからリッチへと切り替わったタイミングで、制御目標空燃比をリーン側の所定空燃比に設定し、第一の空燃比センサ11の出力電圧が当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒3に流入するガスの空燃比を強制的にリーン化する。そして、第一の空燃比センサ11の出力電圧が前記制御目標に対応した値に到達してから、第二の空燃比センサ12の出力電圧が所定のリーン判定値に到達するまでの間の経過時間TL、即ち第二の空燃比センサ12の出力が再度リーンへと切り替わるまでの経過時間TLを計測する。リッチ判定値とリーン判定値とは、相異なる値であってもよく、同一の値であってもよい。 As shown in FIG. 3, in the active control, the output voltage of the second air-fuel ratio sensor 12 has reached a predetermined rich determination value, that is, the output of the second air-fuel ratio sensor 12 has been switched from lean to rich. At the timing, the control target air-fuel ratio is set to a predetermined lean air-fuel ratio, and the fuel injection amount is corrected so that the output voltage of the first air-fuel ratio sensor 11 takes a value corresponding to the control target. As a result, the air-fuel ratio of the gas flowing into the catalyst 3 is forcibly made lean. Then, a lapse of time from when the output voltage of the first air-fuel ratio sensor 11 reaches a value corresponding to the control target until the output voltage of the second air-fuel ratio sensor 12 reaches a predetermined lean determination value. The time T L , that is, the elapsed time T L until the output of the second air-fuel ratio sensor 12 switches to lean again is measured. The rich determination value and the lean determination value may be different values or the same value.

並びに、第二の空燃比センサ12の出力がリッチからリーンへと切り替わったタイミングで、制御目標空燃比をリッチ側の所定空燃比に設定し、第一の空燃比センサ11の出力電圧が当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒3に流入するガスの空燃比を強制的にリッチ化する。そして、第一の空燃比センサ11の出力電圧が前記制御目標に対応した値に到達してから、第二の空燃比センサ12の出力電圧が所定のリーン判定値に到達するまでの間の経過時間TR、即ち第二の空燃比センサ12の出力が再度リッチへと切り替わるまでの経過時間TRを計測する。 In addition, at the timing when the output of the second air-fuel ratio sensor 12 switches from rich to lean, the control target air-fuel ratio is set to a predetermined air-fuel ratio on the rich side, and the output voltage of the first air-fuel ratio sensor 11 is controlled. The fuel injection amount is corrected so as to take a value corresponding to the target. This forcibly enriches the air-fuel ratio of the gas flowing into the catalyst 3. Then, a lapse of time from when the output voltage of the first air-fuel ratio sensor 11 reaches a value corresponding to the control target until the output voltage of the second air-fuel ratio sensor 12 reaches a predetermined lean determination value. The time T R , that is, the elapsed time T R until the output of the second air-fuel ratio sensor 12 switches to rich again is measured.

しかして、酸素吸蔵能力一杯まで酸素を吸蔵していた触媒3がその酸素の全てを放出するのに要した時間TR、及び、酸素を吸蔵していない触媒3が酸素吸蔵能力一杯まで酸素を吸蔵するのに要した時間TLをそれぞれ一回以上計測し、計測したTR、TLを基に最大酸素吸蔵能力(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を算出して、それらの平均値を求める。 Thus, the time T R required for the catalyst 3 storing oxygen to the full oxygen storage capacity to release all of the oxygen, and the catalyst 3 not storing oxygen to the oxygen storage capacity to the full. the time T L taken to storage measured more than once each, the measured T R, the maximum oxygen storage capacity based on T L (α · ΔA / F R · G F), (α · ΔA / F L Calculate G F ) and find the average of them.

上記の最大酸素吸蔵能力の平均値を劣化判定値と比較し、その値が劣化判定値を下回っているならば、触媒3が異常である旨の情報をRAM52またはフラッシュメモリ53に書き込み記録するとともに、運転者の視覚または聴覚に訴えかける態様で報知して触媒3の交換を促す。報知は、例えば、電子制御装置5がI/Oインタフェース54を介して電気信号を出力し、コックピット内で発光デバイスを点灯または点滅させることにより行う。   The average value of the maximum oxygen storage capacity is compared with the deterioration determination value. If the average value is lower than the deterioration determination value, information indicating that the catalyst 3 is abnormal is written in the RAM 52 or the flash memory 53 and recorded. The catalyst 3 is notified in a manner that appeals to the driver's vision or hearing, and the replacement of the catalyst 3 is urged. The notification is performed, for example, when the electronic control device 5 outputs an electrical signal via the I / O interface 54 and turns on or blinks the light emitting device in the cockpit.

このような触媒3の酸素吸蔵能力の推定に際して、本実施形態では、触媒3の上流における実際のガスの空燃比の変動が、第一の空燃比センサ11の出力信号の変動をもたらすまでの応答遅れを求めた上、その応答遅れの多寡に応じた補正を最大酸素吸蔵能力の推算値(α・ΔA/FR・GF)、(α・ΔA/FL・GF)に加味することとしている。 In estimating the oxygen storage capacity of the catalyst 3 in this embodiment, in this embodiment, the response until the fluctuation of the actual air / fuel ratio of the gas upstream of the catalyst 3 causes the fluctuation of the output signal of the first air / fuel ratio sensor 11. After obtaining the delay, the correction corresponding to the response delay is added to the estimated value of the maximum oxygen storage capacity (α · ΔA / F R · G F ) and (α · ΔA / F L · G F ) It is said.

燃焼直後、そして未浄化の排気ガスにさらされる第一の空燃比センサ11は、高温加熱されたり、カーボンデポジット等の汚れが付着してガスとの接触面積が縮小したりすることで、その応答性が徐々に衰えてゆく。図4に、第一の空燃比センサ11の応答性の劣化の模様を例示する。図4中、触媒3の上流における実際のガスの空燃比を一点鎖線L1にて示し、応答性の劣化してない空燃比センサ11の出力を破線L2にて示し、応答性の劣化した空燃比センサ11の出力を実線L3にて示している。応答性の劣化した空燃比センサ11の出力L3の変動は、実際のガスの空燃比の変動L1に対して大きく遅れる。この応答の遅延は、計測時間TR、TLを短縮化し、触媒3の酸素吸蔵能力を実態よりも小さく見積もらせてしまう。 The first air-fuel ratio sensor 11 that is exposed to unpurified exhaust gas immediately after combustion is heated at high temperature, or dirt such as carbon deposits adheres to reduce the contact area with the gas. Sex gradually declines. FIG. 4 illustrates a pattern of deterioration in the responsiveness of the first air-fuel ratio sensor 11. In FIG. 4, the air-fuel ratio of the actual gas upstream of the catalyst 3 is indicated by a one-dot chain line L1, the output of the air-fuel ratio sensor 11 whose responsiveness is not deteriorated is indicated by a broken line L2, and the air-fuel ratio whose responsiveness is deteriorated The output of the sensor 11 is indicated by a solid line L3. The fluctuation of the output L3 of the air-fuel ratio sensor 11 whose responsiveness has deteriorated is greatly delayed from the actual air-fuel ratio fluctuation L1 of the gas. This delay in response shortens the measurement times T R and T L and makes it possible to estimate the oxygen storage capacity of the catalyst 3 to be smaller than the actual value.

本実施形態では、触媒3の酸素吸蔵能力の推定を行う前準備として、第一の空燃比センサ11の応答遅れの計測を行う。図4に示しているように、応答遅れの計測では、制御目標空燃比をリーン側の所定値とリッチ側の所定値との間で反転させたときの第一の空燃比センサ11の出力信号L3の時系列を測定し、これを応答性の劣化していない空燃比センサ11が出力するであろう理想的な出力信号L2と比較して、双方の時間差TDを求める。理想的な出力信号L2の時系列データは、例えば、新品のリニアA/Fセンサのカタログスペックの中央値(新品のセンサ個体毎の入出力特性のばらつきの中央値、新品のセンサの平均的な特性)であって、予め電子制御装置5のROMまたはフラッシュメモリ53に格納されている。この時間差TDが、第一の空燃比センサ11の応答遅れとなる。さらに、制御目標空燃比の反転を所定周期で繰り返し、時間差TDを複数回計測してそれらの平均値を求めてもよい。 In the present embodiment, the response delay of the first air-fuel ratio sensor 11 is measured as a preparation for estimating the oxygen storage capacity of the catalyst 3. As shown in FIG. 4, in response delay measurement, the output signal of the first air-fuel ratio sensor 11 when the control target air-fuel ratio is inverted between a predetermined value on the lean side and a predetermined value on the rich side. the time series of L3 were measured, which was compared with the ideal output signal L2 which would fuel ratio sensor 11 is not responding degradation outputs, determining the time difference T D both. The ideal time-series data of the output signal L2 is, for example, the median value of the catalog specifications of a new linear A / F sensor (the median value of variation in input / output characteristics of each new sensor individual, the average value of new sensors) Characteristic), which is stored in advance in the ROM or flash memory 53 of the electronic control unit 5. The time difference T D is a delay in response of the first air-fuel ratio sensor 11. Furthermore, the reversal of the control target air-fuel ratio repeatedly at a predetermined period may be determined and the average value by measuring several times the time difference T D.

最大酸素吸蔵能力の推算値(α・ΔA/FR・GF)、(α・ΔA/FL・GF)は、第一の空燃比センサ11の応答遅れの存在を無視して算出されている。そこで、第一の空燃比センサ11の応答遅れを示すTD(の平均値)を用いて、推算値(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を補正し、触媒3の真の酸素吸蔵能力の値を得る。 The estimated values (α · ΔA / F R · G F ) and (α · ΔA / F L · G F ) of the maximum oxygen storage capacity are calculated ignoring the presence of the response delay of the first air-fuel ratio sensor 11. ing. Therefore, the estimated values (α · ΔA / F R · G F ), (α · ΔA / F L · G F ) are used by using T D (average value) indicating the response delay of the first air-fuel ratio sensor 11. Is corrected, and the value of the true oxygen storage capacity of the catalyst 3 is obtained.

触媒3に流れ込むガスの空燃比を強制的にリッチ化するアクティブ制御期間にあって、触媒3の上流における実際のガスの空燃比がリッチ側の所定空燃比に達してから、第一の空燃比センサ11の出力がリッチ側の所定空燃比を示すまでの応答遅れTDの間に供給した燃料の総重量をGF’とおくと、応答遅れTDの間に触媒3から放出される酸素量は、
(α・ΔA/FR・GF’)
となる。エンジン回転数が一定であれば、供給した燃料の総重量GFは応答遅れTDに比例する。よって、補正量(α・ΔA/FR・GF’)もまた、応答遅れTDに比例する。応答遅れTDの多寡に応じた補正を加味した触媒3の真の最大酸素放出能力の推算値は、下式となる。
(α・ΔA/FR・GF)+(α・ΔA/FR・GF’)
並びに、触媒3に流れ込むガスの空燃比を強制的にリーン化するアクティブ制御期間にあって、触媒3の上流における実際のガスの空燃比がリーン側の所定空燃比に達してから、第一の空燃比センサ11の出力がリーン側の所定空燃比を示すまでの応答遅れTDの間に供給した燃料の総重量をGF’とおくと、応答遅れTDの間に触媒3が吸収する酸素量は、
(α・ΔA/FL・GF’)
となる。エンジン回転数が一定であれば、供給した燃料の総重量GFは応答遅れTDに比例する。よって、補正量(α・ΔA/FL・GF’)もまた、応答遅れTDに比例する。応答遅れTDの多寡に応じた補正を加味した触媒3の真の最大酸素吸蔵能力の推算値は、下式となる。
(α・ΔA/FL・GF)+(α・ΔA/FL・GF’)
図5から図7に、触媒3のダイアグノーシスの手順を示す。電子制御装置5は、今回のトリップ中に、既に第一の空燃比センサ11の応答遅れTDの計測を完了していることを条件として(ステップS1)、触媒3の酸素吸蔵能力の推定を開始する。さもなくば、触媒3の酸素吸蔵能力の計測に先んじて、応答遅れTDの計測を実施する。ここで、トリップとは、運転者自らの意思で(イグニッションキーまたはイグニッションスイッチを操作することにより)内燃機関2を始動してから、運転者自らの意思で内燃機関2を停止するまでの期間のことを言う。
In the active control period in which the air-fuel ratio of the gas flowing into the catalyst 3 is forcibly enriched, the first air-fuel ratio is increased after the actual air-fuel ratio upstream of the catalyst 3 reaches the predetermined air-fuel ratio on the rich side. If the total weight of the fuel supplied during the response delay T D until the output of the sensor 11 indicates the predetermined air-fuel ratio on the rich side is G F ′, oxygen released from the catalyst 3 during the response delay T D The amount is
(Α ・ ΔA / F R・ G F ′)
It becomes. If the engine speed is constant, the total weight G F of the supplied fuel is proportional to the response delay T D. Therefore, the correction amount (α · ΔA / F R · G F ′) is also proportional to the response delay T D. Estimated value of the true maximum oxygen release capacity of the catalyst 3 in consideration of the correction according to amount of response delay T D becomes the following equation.
(Α · ΔA / F R · G F ) + (α · ΔA / F R · G F ')
In addition, in the active control period in which the air-fuel ratio of the gas flowing into the catalyst 3 is forcibly leaned, the first air-fuel ratio upstream of the catalyst 3 reaches the predetermined air-fuel ratio on the lean side. If the total weight of the fuel supplied during the response delay T D until the output of the air-fuel ratio sensor 11 indicates the predetermined air-fuel ratio on the lean side is set as G F ′, the catalyst 3 absorbs during the response delay T D. The amount of oxygen is
(Α ・ ΔA / F L・ G F ')
It becomes. If the engine speed is constant, the total weight G F of the supplied fuel is proportional to the response delay T D. Therefore, the correction amount (α · ΔA / F L · G F ′) is also proportional to the response delay T D. Estimated value of the true maximum oxygen storage capacity of the catalyst 3 in consideration of the correction according to amount of response delay T D becomes the following equation.
(Α · ΔA / F L · G F ) + (α · ΔA / F L · G F ')
FIG. 5 to FIG. 7 show the procedure of the diagnosis of the catalyst 3. The electronic control unit 5, in this trip, as already provided that you have completed the measurement of the response delay T D of the first air-fuel ratio sensor 11 (step S1), and the estimation of the oxygen storage capacity of the catalyst 3 Start. Otherwise, prior to the measurement of the oxygen storage capacity of the catalyst 3, carrying out the measurement of the response delay T D. Here, the trip is a period from when the internal combustion engine 2 is started at the driver's own intention (by operating the ignition key or the ignition switch) until the internal combustion engine 2 is stopped at the driver's own intention. Say that.

原則として、現在のトリップ中に応答遅れTDの計測を一度も完遂していなければ、応答遅れTDの計測を開始する。但し、過去の所定の数トリップの履歴を参照して、当該数トリップの範囲で少なくとも一度以上応答遅れTDの計測を完了しており(ステップS2)、その応答遅れTDが閾値以下であり(ステップS3)、なおかつ前回のトリップ中に触媒3が正常である旨の判定を下している(ステップS4)場合には、応答遅れTDの新たな計測をキャンセルし、直近の応答遅れTDの計測値を用いて触媒3の酸素吸蔵能力の推算を行う。応答遅れTDの計測をキャンセルできるようにしている理由は、TDの計測のために制御目標空燃比を反復的に反転させる操作が燃費及びエミッションを悪化させるというデメリットを抱えているためである。ステップS3における閾値は、例えば、新品のリニアA/Fセンサのカタログスペックの限界値(新品のセンサ個体毎の入出力特性のばらつきのうち最も応答性が遅いものの値、正常品として保証されるセンサの下限特性)とする。 As a general rule, if you have not completed even once the measurement of the response delay T D during the current trip, to start the measurement of the response delay T D. However, referring to the history of a predetermined number of trips in the past, measurement of the response delay T D has been completed at least once within the range of the number of trips (step S2), and the response delay T D is less than the threshold value. (step S3), and yet when the catalyst 3 is made a determination that is normal (step S4) is that during the previous trip, to cancel a new measurement of the response delay T D, immediate response delay T The oxygen storage capacity of the catalyst 3 is estimated using the measured value of D. The reason why the measurement of the response delay T D can be canceled is because the operation of repeatedly reversing the control target air-fuel ratio for the measurement of T D has a demerit that the fuel consumption and the emission are deteriorated. . The threshold value in step S3 is, for example, the limit value of the catalog specifications of a new linear A / F sensor (the value of the slowest responsiveness among variations in input / output characteristics of each new sensor individual, a sensor guaranteed as a normal product) Lower limit characteristics).

第一の空燃比センサ11の応答遅れTDの計測では、電子制御装置5が、内燃機関2の気筒に供給する混合気の空燃比をリーンからリッチへ、またはリッチからリーンへと強制的に反転操作し(ステップS5)、第一の空燃比センサ11の出力信号L3が理想的な出力信号L2からどれだけの時間遅れたかを計測して(ステップS6)、その応答遅れ時間TDをRAM52に一時記憶する(ステップS7)。しかる後、混合気の空燃比を強制的に再反転させて、応答遅れ時間TDの計測を繰り返す。TDの値を複数回計測したら(ステップS8)、複数回計測したTDの平均値を演算し(ステップS9)、これを今回のトリップ中に計測した応答遅れTDの履歴としてROMまたはフラッシュメモリ53に記憶する(ステップS10)。 The measurement of the response delay T D of the first air-fuel ratio sensor 11, the electronic control unit 5, the air-fuel ratio of the mixture supplied to the cylinders of the internal combustion engine 2 from lean to rich, or forced from rich to lean reversed operation (step S5), and output signal L3 of the first air-fuel ratio sensor 11 measures whether delayed how much time from the ideal output signal L2 (step S6), and the response delay time T D RAM 52 Is temporarily stored (step S7). Thereafter, forcibly re-inverting the air-fuel ratio of the mixture, repeated measurement of the response delay time T D. Once the value of T D is measured a plurality of times (step S8), and calculates the average value of a plurality of times the measured T D (step S9), ROM or flash as the history of the response delay T D This was measured during this trip Store in the memory 53 (step S10).

触媒3の酸素吸蔵能力の推定では、電子制御装置5が、内燃機関2の気筒に供給する混合気の空燃比をリーンからリッチへ、またはリッチからリーンへと強制的に反転操作し(ステップS11)、第一の空燃比センサ11の出力が反転してから第二の空燃比センサ12の出力が反転するまでの経過時間TR、TLを計測して(ステップS12)、経過時間TR、TLを基に触媒3が吸蔵している酸素量を演算する(ステップS13)。第二の空燃比センサ12の出力信号がリッチからリーンへ、またはリーンからリッチへと反転したならば(ステップS14)、その反転時点における酸素吸蔵量を触媒3の最大酸素吸蔵能力の基本値とし、この基本値に応答遅れTDに基づいた補正を加味して触媒3の真の最大酸素吸蔵能力の推算値を得(ステップS15)、その推算値をRAM52に一時記憶する(ステップS16)。しかる後、混合気の空燃比を強制的に再反転させ、最大酸素吸蔵能力の算出処理を繰り返す。最大酸素吸蔵能力の値を複数回推算したら(ステップS17)、アクティブ制御を停止するとともに(ステップS18)、複数回推算した最大酸素吸蔵能力の平均値を演算し(ステップS19)、これを劣化判定値と比較する(ステップS20)。 In estimating the oxygen storage capacity of the catalyst 3, the electronic control unit 5 forcibly reverses the air-fuel ratio of the air-fuel mixture supplied to the cylinder of the internal combustion engine 2 from lean to rich or from rich to lean (step S11). ) Elapsed times T R and T L from when the output of the first air-fuel ratio sensor 11 is inverted until the output of the second air-fuel ratio sensor 12 is inverted are measured (step S12), and the elapsed time T R is measured. Based on TL , the amount of oxygen stored in the catalyst 3 is calculated (step S13). If the output signal of the second air-fuel ratio sensor 12 is inverted from rich to lean or from lean to rich (step S14), the oxygen storage amount at the time of the inversion is set as the basic value of the maximum oxygen storage capacity of the catalyst 3. , to give the estimated value of the true maximum oxygen storage capacity of the catalyst 3 by adding a correction based on the response delay T D to the basic value (step S15), and the estimated value is temporarily stored in the RAM 52 (step S16). Thereafter, the air-fuel ratio of the air-fuel mixture is forcibly re-inverted, and the process for calculating the maximum oxygen storage capacity is repeated. When the value of the maximum oxygen storage capacity is estimated a plurality of times (step S17), the active control is stopped (step S18), the average value of the maximum oxygen storage capacity estimated a plurality of times is calculated (step S19), and this is determined as deterioration. The value is compared (step S20).

最大酸素吸蔵能力の平均値が劣化判定値以上であるならば、今回のトリップ中に推算した触媒3の酸素吸蔵能力値が劣化判定値以上である、即ち触媒3が正常である旨の判定を下したという情報を履歴としてROMまたはフラッシュメモリ53に記憶する(ステップS21)。逆に、最大酸素吸蔵能力の平均値が劣化判定値を下回っているならば、今回のトリップ中に推算した触媒3の酸素吸蔵能力値が劣化判定値未満である、即ち触媒3が異常である旨の判定を下したという情報を記録する(ステップS22)。加えて、触媒3の劣化異常を運転者の視覚または聴覚に訴えかける態様で報知し(ステップS23)、触媒3の交換を促す。   If the average value of the maximum oxygen storage capacity is equal to or greater than the deterioration determination value, it is determined that the oxygen storage capacity value of the catalyst 3 estimated during the current trip is equal to or greater than the deterioration determination value, that is, the catalyst 3 is normal. The information that it has been deleted is stored in the ROM or flash memory 53 as a history (step S21). Conversely, if the average value of the maximum oxygen storage capacity is below the deterioration determination value, the oxygen storage capacity value of the catalyst 3 estimated during the current trip is less than the deterioration determination value, that is, the catalyst 3 is abnormal. Information that the determination is made is recorded (step S22). In addition, the deterioration abnormality of the catalyst 3 is notified in a manner appealing to the driver's vision or hearing (step S23), and the replacement of the catalyst 3 is urged.

本実施形態によれば、内燃機関2の排気通路に装着される排気ガス浄化用の触媒3の上流及び下流に設けられた空燃比センサ11、12の出力を参照し、上流側センサ出力が変動してから下流側センサ出力が変動するまでの間の経過時間TR、TLを計測することを通じて、触媒3に吸蔵された酸素量の推算を行うダイアグノーシスを実施する制御方法において、触媒3の上流における実際のガスの空燃比L1の変動が前記上流側センサ出力L3の変動をもたらすまでの応答遅れTDを求め、当該応答遅れTDの多寡に応じた補正を加味した上で、前記触媒3に吸蔵された酸素量を推算することとしたため、上流側の空燃比センサ11の応答性の低下による触媒3の酸素吸蔵能力の推定誤差が小さくなり、常に的確に触媒3の劣化の度合いを診断できるようになる。 According to the present embodiment, the upstream sensor output varies with reference to the outputs of the air-fuel ratio sensors 11 and 12 provided upstream and downstream of the exhaust gas purifying catalyst 3 mounted in the exhaust passage of the internal combustion engine 2. In the control method for performing the diagnosis for estimating the amount of oxygen occluded in the catalyst 3 by measuring the elapsed times T R and T L from when the downstream sensor output fluctuates, the catalyst 3 obtains the response delay T D to the actual variation of the air-fuel ratio L1 of the gas in the upstream leads to variations of the upstream sensor output L3 of, upon adding the correction according to the amount of the response delay T D, the Since the amount of oxygen stored in the catalyst 3 is estimated, an estimation error of the oxygen storage capacity of the catalyst 3 due to a decrease in the response of the upstream air-fuel ratio sensor 11 is reduced, and the degree of deterioration of the catalyst 3 is always accurately determined. Examine It becomes possible way.

さらに、前記触媒3に吸蔵された酸素量の推算を行う直前に前記応答遅れTDを求めることとしており、触媒3の酸素吸蔵能力の推定精度をより一層高めることができる。特に、応答遅れTDを計測する目的で混合気の空燃比をリーンからリッチへ、またリッチからリーンへと周期的に反転させる操作を繰り返すことで、触媒3内部の酸素吸蔵状態が整う。これにより、触媒3の酸素吸蔵能力の推定処理の開始時点、つまり上流側の空燃比センサ11の出力反転時点において、触媒3内の酸素が空っぽ、または満杯であることが保証される。従って、アクティブ制御開始前の内燃機関2の運転状態、車両の走行状況に影響されずに、精確に触媒3の酸素吸蔵能力を推定することが可能となる。 Furthermore, a and obtaining the response delay T D immediately before the estimation of the amount of oxygen occluded in the the catalyst 3 can be further enhanced accuracy of estimation of the oxygen storage capacity of the catalyst 3. In particular, to the rich air-fuel ratio of the mixture for the purpose of measuring the response delay T D from the lean and by repeating the operation that periodically reverses from the rich to lean, the catalyst 3 inside the oxygen storage state is ready. As a result, it is ensured that the oxygen in the catalyst 3 is empty or full at the start of the process for estimating the oxygen storage capacity of the catalyst 3, that is, at the time when the output of the upstream air-fuel ratio sensor 11 is reversed. Accordingly, it is possible to accurately estimate the oxygen storage capacity of the catalyst 3 without being affected by the operating state of the internal combustion engine 2 before the start of the active control and the traveling state of the vehicle.

なお、本発明は以上に詳述した実施形態に限定されるものではない。最大酸素吸蔵能力の補正量(α・ΔA/FR・GF’)または(α・ΔA/FL・GF’)を算定するに際して、応答遅れTDの期間中に、一回の燃料噴射量または単位時間当たりの燃料供給量が変動することはあり得る。その場合、TDの期間中の供給燃料の総重量GF’は、一回の噴射量または単位時間当たりの供給量を時間積分して求めることが好ましい。 In addition, this invention is not limited to embodiment described in full detail above. When calculating the correction amount (α · ΔA / F R · G F ′) or (α · ΔA / F L · G F ′) for the maximum oxygen storage capacity, one fuel is used during the response delay T D. The injection amount or the fuel supply amount per unit time may vary. In this case, it is preferable that the total weight G F ′ of the supplied fuel during the period T D is obtained by time integration of the injection amount per time or the supply amount per unit time.

具体的には、アクティブ制御の開始時点から、全ての気筒の毎回の燃料噴射量及び吸入空気量の履歴を保存しておき、アクティブ制御の開始後に上流側空燃比センサ11の出力信号L3がリッチからリーンまたはリーンからリッチへ変動した時点からセンサ遅れ期間TD分の履歴を遡って参照し、センサ遅れTDの期間中における燃料噴射量及び吸入空気量を時間積分することでTD期間中の供給燃料の総重量GF’及びΔA/FRまたはΔA/FLを求めることができる。 Specifically, the history of the fuel injection amount and the intake air amount for each cylinder is saved from the start of active control, and the output signal L3 of the upstream air-fuel ratio sensor 11 is rich after the start of active control. Referring to retroactively sensor delay period T D of historical from the time of change from the lean or lean to rich from the fuel injection amount and the intake air amount during T D period by integrating time during the period of the sensor delay T D The total weight G F ′ and ΔA / F R or ΔA / F L of the supplied fuel can be determined.

あるいは、アクティブ制御開始からの期間を複数の区間に分割し、各区間iにおける供給燃料の総重量GFi及び吸入空気量を知得して、各区間i毎に(α・ΔA/FR・GFi)または(α・ΔA/FL・GFi)を演算した上、履歴として保存し、アクティブ制御の開始後に上流側空燃比センサ11の出力信号L3がリッチからリーンまたはリーンからリッチへ変動した時点からセンサ遅れ期間TD分の履歴を遡って参照し、センサ遅れTDの期間中におけるΣ(α・ΔA/FR・GFi)またはΣ(α・ΔA/FL・GFi)を演算して最大酸素吸蔵能力の補正量を算定するようにしても構わない。 Alternatively, the period from the start of active control is divided into a plurality of sections, the total weight G Fi of the supplied fuel and the intake air amount in each section i are obtained, and (α · ΔA / F for each section i) R · G Fi ) or (α · ΔA / F L · G Fi ) is calculated and stored as a history, and the output signal L3 of the upstream air-fuel ratio sensor 11 is rich to lean after the start of active control. or reference from the time of change from lean to rich back sensor delay period T D of historical, sigma during the period of the sensor delay T D (α · ΔA / F R · G F 'i) or sigma (alpha · ΔA / F L · G Fi ) may be calculated to calculate the correction amount of the maximum oxygen storage capacity.

その他、各部の具体的構成や具体的な処理の手順は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit and the specific processing procedure can be variously modified without departing from the spirit of the present invention.

本発明は、車両に搭載される内燃機関に付帯する排気ガス浄化用の触媒の劣化診断に適用することができる。   The present invention can be applied to deterioration diagnosis of an exhaust gas purifying catalyst incidental to an internal combustion engine mounted on a vehicle.

1…触媒異常判定装置
11…第一の空燃比センサ
12…第二の空燃比センサ
13、5…判定部(電子制御装置)
2…内燃機関
3…触媒
DESCRIPTION OF SYMBOLS 1 ... Catalyst abnormality determination apparatus 11 ... 1st air fuel ratio sensor 12 ... 2nd air fuel ratio sensor 13, 5 ... determination part (electronic controller)
2 ... Internal combustion engine 3 ... Catalyst

Claims (2)

内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流及び下流に設けられた空燃比センサの出力を参照し、上流側センサ出力が変動してから下流側センサ出力が変動するまでの間の経過時間を計測することを通じて、触媒に吸蔵された酸素量の推算を行うダイアグノーシスを実施するものにおいて、
触媒の上流における実際のガスの空燃比の変動が前記上流側センサ出力の変動をもたらすまでの応答遅れを求め、当該応答遅れの多寡に応じた補正を加味した上で、前記触媒に吸蔵された酸素量を推算することを特徴とする内燃機関のダイアグノーシス制御方法。
Referring to the output of the air-fuel ratio sensor provided upstream and downstream of the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine, from the fluctuation of the upstream sensor output to the fluctuation of the downstream sensor output In performing the diagnosis to estimate the amount of oxygen stored in the catalyst by measuring the elapsed time between
The response delay until the fluctuation of the actual gas air-fuel ratio upstream of the catalyst brings about the fluctuation of the upstream sensor output is obtained, and after the correction corresponding to the amount of the response delay is added, the catalyst is occluded. A diagnostic control method for an internal combustion engine, characterized in that an oxygen amount is estimated.
前記触媒に吸蔵された酸素量の推算を行う直前に前記応答遅れを求める請求項1記載の内燃機関のダイアグノーシス制御方法。 The diagnosis control method for an internal combustion engine according to claim 1, wherein the response delay is obtained immediately before the amount of oxygen stored in the catalyst is estimated.
JP2010163474A 2010-07-21 2010-07-21 Diagnosis control method of internal combustion engine Pending JP2012026306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163474A JP2012026306A (en) 2010-07-21 2010-07-21 Diagnosis control method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163474A JP2012026306A (en) 2010-07-21 2010-07-21 Diagnosis control method of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012026306A true JP2012026306A (en) 2012-02-09

Family

ID=45779535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163474A Pending JP2012026306A (en) 2010-07-21 2010-07-21 Diagnosis control method of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012026306A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806128A1 (en) 2013-05-20 2014-11-26 Kawasaki Jukogyo Kabushiki Kaisha Device and method for estimating ideal air-fuel ratio in internal combustion engine, method of estimating oxygen storage capacity of catalyst, internal combustion engine device and motorcycle incorporating internal combustion engine device
US9279382B2 (en) 2012-10-16 2016-03-08 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
WO2016098907A1 (en) * 2014-12-19 2016-06-23 ヤマハ発動機株式会社 Saddle-type vehicle
EP3276137A4 (en) * 2015-03-24 2018-10-03 Honda Motor Co., Ltd. Saddle-riding-type vehicle exhaust device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279382B2 (en) 2012-10-16 2016-03-08 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
EP2806128A1 (en) 2013-05-20 2014-11-26 Kawasaki Jukogyo Kabushiki Kaisha Device and method for estimating ideal air-fuel ratio in internal combustion engine, method of estimating oxygen storage capacity of catalyst, internal combustion engine device and motorcycle incorporating internal combustion engine device
JP2014227843A (en) * 2013-05-20 2014-12-08 川崎重工業株式会社 Device and method for estimating stoichiometric air-fuel ratio in internal combustion engine, method of estimating oxygen storage amount of catalyst, internal combustion engine device, and motorcycle mounted with internal combustion engine device
US9291085B2 (en) 2013-05-20 2016-03-22 Kawasaki Jukogyo Kabushiki Kaisha Device and method for estimating ideal air-fuel ratio in internal combustion engine, method of estimating oxygen storage capacity of catalyst, internal combustion engine device and motorcycle incorporating internal combustion engine device
WO2016098907A1 (en) * 2014-12-19 2016-06-23 ヤマハ発動機株式会社 Saddle-type vehicle
WO2016098896A1 (en) * 2014-12-19 2016-06-23 ヤマハ発動機株式会社 Saddle-type vehicle
WO2016098902A1 (en) * 2014-12-19 2016-06-23 ヤマハ発動機株式会社 Saddle-type vehicle
TWI576506B (en) * 2014-12-19 2017-04-01 Yamaha Motor Co Ltd Straddle type vehicle
TWI577600B (en) * 2014-12-19 2017-04-11 Yamaha Motor Co Ltd Straddle type vehicle
TWI612213B (en) * 2014-12-19 2018-01-21 山葉發動機股份有限公司 Straddle type vehicle
EP3276137A4 (en) * 2015-03-24 2018-10-03 Honda Motor Co., Ltd. Saddle-riding-type vehicle exhaust device
US10844769B2 (en) 2015-03-24 2020-11-24 Honda Motor Co., Ltd. Exhaust device of motorcycle

Similar Documents

Publication Publication Date Title
JP6036772B2 (en) Control device for internal combustion engine
JP2010185325A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP5338974B2 (en) Exhaust gas purification device for internal combustion engine
JP2002070625A (en) Deterioration detecting device for exhaust gas purifying catalyst
JP2007046517A (en) Control device for internal combustion engine
CN108884774B (en) Catalyst diagnosis device
KR100592414B1 (en) Method of Estimating NOX Storage
JP2008223644A (en) Control device for internal combustion engine
JP2012026306A (en) Diagnosis control method of internal combustion engine
JP2841823B2 (en) Catalyst purification rate detector
JP2005121003A (en) Malfunction detecting device for air-fuel ratio sensor
JP2000034946A (en) Exhaust emission control device for internal combustion engine
US20120204629A1 (en) Exhaust catalyst temperature estimating apparatus and exhaust catalyst temperature estimation method for internal combustion engine
JP5545631B2 (en) Air-fuel ratio control device
JP2012002070A (en) Diagnosis control method of internal combustion engine
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP3412216B2 (en) Exhaust gas purification device for internal combustion engine
US11053831B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5404262B2 (en) Air-fuel ratio control device
JP2009013991A (en) Malfunction detection device for air-fuel ratio sensor
JP5679839B2 (en) Air-fuel ratio control device
JP4422398B2 (en) Exhaust gas purification device for internal combustion engine
JP2012140869A (en) Method for determining catalyst failure in internal combustion engine
JP2015121191A (en) Control device for internal combustion engine