JP2018173005A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2018173005A
JP2018173005A JP2017070487A JP2017070487A JP2018173005A JP 2018173005 A JP2018173005 A JP 2018173005A JP 2017070487 A JP2017070487 A JP 2017070487A JP 2017070487 A JP2017070487 A JP 2017070487A JP 2018173005 A JP2018173005 A JP 2018173005A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
ratio sensor
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017070487A
Other languages
Japanese (ja)
Inventor
光浩 高見
Mitsuhiro Takami
光浩 高見
健人 木谷
Taketo Kitani
健人 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017070487A priority Critical patent/JP2018173005A/en
Publication of JP2018173005A publication Critical patent/JP2018173005A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve accuracy in estimating an oxygen storage capacity of a catalyst.SOLUTION: A control device for an internal combustion engine is configured to compare a magnitude of an output signal from an air-fuel ratio sensor which is installed at a downstream side of a catalyst in an exhaust passage of the internal combustion engine, with a lean determination value, thereby determining that an air-fuel ratio at the downstream side of the catalyst is switched from rich to lean, and to compare the magnitude of the output signal from the air-fuel ratio sensor with a rich determination value, thereby determining that the air-fuel ratio at the downstream side of the catalyst is switched from lean to rich. A period from forcibly varying an air-fuel ratio at an upstream side of the catalyst to switching the determination of the air-fuel ratio at the downstream side of the catalyst is defined as an estimation period for an oxygen storage capacity of the catalyst. In a case where a degree of reduction in responsiveness of the air-fuel ratio sensor is small, in comparison with a case where the degree of reduction in the responsiveness of the air-fuel ratio sensor is great, the lean determination value and the rich determination value are made farther from a value of the output signal of the air-fuel ratio sensor in the case where the air-fuel ratio at the downstream side of the catalyst is substantially equal to a theoretical air-fuel ratio.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関における燃料噴射量を調整して空燃比を制御する制御装置に関する。   The present invention relates to a control device that controls an air-fuel ratio by adjusting a fuel injection amount in an internal combustion engine.

一般に、内燃機関の排気通路には、内燃機関の気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。 Generally, in the exhaust passage of an internal combustion engine, harmful substances HC contained in the exhaust gas discharged from the cylinders of the internal combustion engine, CO, three-way catalyst to harmless by oxidation / reduction of NO x is mounted.

触媒の酸素吸蔵能力(OSC:O2 Storage Capacity)は、経年劣化により減退する。触媒による排気ガスの浄化率は、触媒内に吸着できる酸素量に依存する。触媒の劣化が進行すると、排出される有害物質の量も増大する。一方で、触媒の劣化は、車両自体の運転性能にはほとんど影響を与えない。それ故、異常な排出ガス車が長期間、無意識に使用され続けるおそれがある。 The oxygen storage capacity (OSC: O 2 Storage Capacity) of the catalyst decreases due to aging. The exhaust gas purification rate by the catalyst depends on the amount of oxygen that can be adsorbed in the catalyst. As the catalyst deteriorates, the amount of harmful substances emitted increases. On the other hand, deterioration of the catalyst hardly affects the driving performance of the vehicle itself. Therefore, there is a risk that an abnormal exhaust vehicle will continue to be used unconsciously for a long time.

そのような事象に対処するべく、触媒の経年劣化の度合いを自己診断するダイアグノーシス機能を車両に実装することも通例となっている(例えば、下記特許文献を参照)。具体的には、触媒から酸素を完全に放出した状態で、触媒に流入するガスの空燃比を強制的にリーンに操作し、触媒の上流に設置した空燃比センサの出力信号がリーンに切り替わってから触媒の下流に設置した空燃比センサの出力信号がリーンに切り替わるまでの期間に、触媒に吸蔵した酸素量を推計する。触媒の下流の空燃比センサの出力がリーンに反転した時点での酸素吸蔵量が、当該触媒の最大酸素吸蔵能力となる。   In order to cope with such an event, it is also common to install a diagnosis function in the vehicle for self-diagnosis of the degree of aging of the catalyst (see, for example, the following patent document). Specifically, with the oxygen completely released from the catalyst, the air-fuel ratio of the gas flowing into the catalyst is forcibly operated to lean, and the output signal of the air-fuel ratio sensor installed upstream of the catalyst is switched to lean. The amount of oxygen occluded in the catalyst is estimated during the period until the output signal of the air-fuel ratio sensor installed downstream of the catalyst switches to lean. The oxygen storage amount at the time when the output of the air-fuel ratio sensor downstream of the catalyst is reversed to lean becomes the maximum oxygen storage capacity of the catalyst.

あるいは、触媒に酸素吸蔵能力一杯まで酸素を吸蔵した状態で、触媒に流入するガスの空燃比を強制的にリッチに操作し、触媒の上流の空燃比センサの出力信号がリッチに切り替わってから触媒の下流の空燃比センサの出力信号がリッチに切り替わるまでの期間に、触媒が放出した酸素の量を推計することもできる。触媒の下流の空燃比センサの出力がリッチに反転した時点の酸素放出量が、当該触媒の最大酸素放出能力、換言すれば最大酸素吸蔵能力ということになる。   Alternatively, with the oxygen stored in the catalyst to the full oxygen storage capacity, the air-fuel ratio of the gas flowing into the catalyst is forcibly made rich, and the output signal of the air-fuel ratio sensor upstream of the catalyst switches to rich. It is also possible to estimate the amount of oxygen released by the catalyst during the period until the output signal of the downstream air-fuel ratio sensor switches to rich. The amount of oxygen released when the output of the air-fuel ratio sensor downstream of the catalyst is richly inverted is the maximum oxygen releasing capacity of the catalyst, in other words, the maximum oxygen storage capacity.

触媒のダイアグノーシスにおいては、最大酸素吸蔵能力の推算値を判定閾値と比較し、前者が後者を下回ったならば触媒が劣化したと判断する。そして、触媒が劣化した旨を運転者に報知して、触媒の交換を促す。   In the diagnosis of the catalyst, the estimated value of the maximum oxygen storage capacity is compared with a determination threshold value, and if the former falls below the latter, it is determined that the catalyst has deteriorated. Then, the driver is notified that the catalyst has deteriorated, and the replacement of the catalyst is urged.

特開2016−070105号公報JP, 2006-070105, A 特開2016−070106号公報JP, 2006-070106, A

触媒の下流側のガスの空燃比の切り替わりのタイミングは、触媒の下流の空燃比センサの出力信号とリーン判定値及びリッチ判定値との比較を通じて知得する。即ち、空燃比センサの出力信号がリーン判定値を跨いで変化したときに触媒の下流側の空燃比がリッチからリーンに切り替わったと判定し、並びに、空燃比センサの出力信号がリッチ判定値を跨いで変化したときに触媒の下流側の空燃比がリーンからリッチに切り替わったと判定する。   The switching timing of the air-fuel ratio of the gas on the downstream side of the catalyst is obtained by comparing the output signal of the air-fuel ratio sensor downstream of the catalyst with the lean determination value and the rich determination value. That is, when the output signal of the air-fuel ratio sensor changes across the lean determination value, it is determined that the air-fuel ratio on the downstream side of the catalyst has switched from rich to lean, and the output signal of the air-fuel ratio sensor crosses the rich determination value. It is determined that the air-fuel ratio on the downstream side of the catalyst has changed from lean to rich.

空燃比センサの応答性(より具体的には、当該空燃比センサに接触するガスの空燃比が一定量変化したときの空燃比センサの出力信号の大きさの変化量、及び/または、ガスの空燃比の変化に対する空燃比センサの出力信号の変化の遅延)には、個体差が存在する。加えて、温度や経年変化の影響を受けて、空燃比センサの応答性が低下することも間々ある。   Responsiveness of the air-fuel ratio sensor (more specifically, the amount of change in the magnitude of the output signal of the air-fuel ratio sensor when the air-fuel ratio of the gas in contact with the air-fuel ratio sensor changes by a certain amount, and / or There is an individual difference in the delay in the change in the output signal of the air-fuel ratio sensor with respect to the change in the air-fuel ratio. In addition, the responsiveness of the air-fuel ratio sensor often decreases due to the influence of temperature and aging.

触媒の下流の空燃比センサの応答性が低下している場合、既に触媒内に酸素が充満しているにもかかわらず空燃比センサの出力信号がリーン判定値を超えない、または既に触媒内の酸素が欠乏しているにもかかわらず空燃比センサの出力信号がリッチ判定値を超えないといったことが起こり得る。さすれば、触媒の酸素吸蔵能力を正しく見積もることができなくなり、劣化した触媒を看過してしまうおそれがある。そこで、従来は、空燃比センサの応答性の低下を予め考慮に入れて、リーン判定値及びリッチ判定値をそれぞれ、空燃比センサが理論空燃比に略等しい空燃比のガスに接触したときに出力する信号値に近い値に設定するようにしている。   If the responsiveness of the air-fuel ratio sensor downstream of the catalyst is reduced, the output signal of the air-fuel ratio sensor does not exceed the lean judgment value even though the catalyst is already filled with oxygen, or already in the catalyst It may happen that the output signal of the air-fuel ratio sensor does not exceed the rich determination value despite the lack of oxygen. As a result, the oxygen storage capacity of the catalyst cannot be estimated correctly, and the deteriorated catalyst may be overlooked. Therefore, conventionally, taking into account a decrease in the response of the air-fuel ratio sensor in advance, the lean determination value and the rich determination value are output when the air-fuel ratio sensor comes into contact with an air-fuel ratio gas substantially equal to the stoichiometric air-fuel ratio. Is set to a value close to the signal value to be used.

しかしながら、空燃比センサの応答性が高く保たれている場合には、リーン判定値及びリッチ判定値の各々を理論空燃比近傍の値に設定することにより、触媒の酸素吸蔵量または酸素放出量を計数する期間の長さが不必要に短縮され、その結果として触媒の最大酸素吸蔵能力を過小評価することになってしまう。   However, when the responsiveness of the air-fuel ratio sensor is kept high, by setting each of the lean determination value and the rich determination value to a value close to the theoretical air-fuel ratio, the oxygen storage amount or oxygen release amount of the catalyst is reduced. The length of the counting period is unnecessarily shortened, resulting in an underestimation of the maximum oxygen storage capacity of the catalyst.

以上の問題に初めて着目してなされた本発明は、触媒の酸素吸蔵能力の推定の精度の向上を図ることを所期の目的としている。   The present invention, which was made by paying attention to the above problems for the first time, is intended to improve the accuracy of estimation of the oxygen storage capacity of a catalyst.

本発明では、内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの期間に触媒の酸素吸蔵能力の推定を行うものであって、排気通路における触媒の下流に設置した空燃比センサの出力信号の大きさをリーン判定値と比較することで触媒の下流側の空燃比がリッチからリーンに切り替わったと判定し、かつ同空燃比センサの出力信号の大きさをリッチ判定値と比較することで触媒の下流側の空燃比がリーンからリッチに切り替わったと判定し、触媒の上流側の空燃比を強制的に変動させてから触媒の下流側の空燃比の判定が切り替わるまでの期間を触媒の酸素吸蔵能力の推定期間とし、前記空燃比センサの応答性の低下の度合いが小さい場合、空燃比センサの応答性の低下の度合いが大きい場合と比較して、前記リーン判定値及び前記リッチ判定値を、触媒の下流側の空燃比が理論空燃比に略等しいときの当該空燃比センサの出力信号の値からより遠ざける内燃機関の制御装置を構成した。   In the present invention, the oxygen storage capacity of the catalyst during a period from when the air-fuel ratio on the upstream side of the exhaust gas purifying catalyst mounted in the exhaust passage of the internal combustion engine is forcibly changed until the air-fuel ratio on the downstream side fluctuates. The air-fuel ratio on the downstream side of the catalyst is switched from rich to lean by comparing the magnitude of the output signal of the air-fuel ratio sensor installed downstream of the catalyst in the exhaust passage with the lean determination value. It is determined that the air-fuel ratio on the downstream side of the catalyst has changed from lean to rich by comparing the magnitude of the output signal of the air-fuel ratio sensor with the rich judgment value, and the air-fuel ratio on the upstream side of the catalyst is forced The period until the determination of the air-fuel ratio on the downstream side of the catalyst is changed to the estimation period of the oxygen storage capacity of the catalyst, and when the degree of decrease in the responsiveness of the air-fuel ratio sensor is small, the response of the air-fuel ratio sensor The lean determination value and the rich determination value are obtained from the value of the output signal of the air-fuel ratio sensor when the air-fuel ratio on the downstream side of the catalyst is substantially equal to the stoichiometric air-fuel ratio, as compared with the case where the degree of decrease of the air is large. A control device for the internal combustion engine which is kept away is configured.

本発明によれば、触媒の酸素吸蔵能力の推定の精度の一層の向上を図り得る。   According to the present invention, it is possible to further improve the accuracy of estimation of the oxygen storage capacity of the catalyst.

本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine and control apparatus in one Embodiment of this invention. 同実施形態の制御装置が実施する燃料カット中の触媒の下流の空燃比センサの出力信号の変動の推移を示すタイミング図。The timing diagram which shows transition of the fluctuation | variation of the output signal of the air fuel ratio sensor downstream of the catalyst in the fuel cut which the control apparatus of the embodiment implements. 同実施形態の制御装置が実施する触媒のダイアグノーシスのためのアクティブ制御の内容を説明するタイミング図。The timing diagram explaining the content of the active control for the diagnosis of the catalyst which the control apparatus of the embodiment implements.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type 4-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

排気通路4における触媒41の上流及び下流には、排気通路を流通する排気ガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよいし、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよい。本実施形態では、触媒41の上流の空燃比センサ43及び下流の空燃比センサ44として、リニアA/Fセンサを想定している。 Air-fuel ratio sensors 43 and 44 for detecting the air-fuel ratio of the exhaust gas flowing through the exhaust passage are installed upstream and downstream of the catalyst 41 in the exhaust passage 4. Each of the air-fuel ratio sensors 43 and 44 may be a linear A / F sensor having an output characteristic proportional to the air-fuel ratio of the exhaust gas, or an O 2 sensor having an output characteristic nonlinear with respect to the air-fuel ratio of the exhaust gas. It may be. In the present embodiment, linear A / F sensors are assumed as the air-fuel ratio sensor 43 upstream and the air-fuel ratio sensor 44 downstream of the catalyst 41.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。   The exhaust gas recirculation device 2 realizes a so-called high pressure loop EGR, and an external EGR that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3. The passage 21, an EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of EGR gas flowing through the EGR passage 21 are used as elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, specifically to a surge tank 33.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 serving as a control device for an internal combustion engine according to the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサ(エンジン回転センサ)から出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求されるエンジン負荷率)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from a crank angle sensor (engine rotation sensor) that detects the rotation angle of the crankshaft and the engine speed. An accelerator opening signal c output from a sensor that detects the amount of depression of the accelerator pedal or the opening of the throttle valve 32 as an accelerator opening (in other words, a required engine load factor), an intake passage 3 (in particular, a surge tank 33) ), An intake air temperature / intake pressure signal d output from a temperature / pressure sensor that detects the intake air temperature and intake air pressure, a coolant temperature signal e output from a water temperature sensor that detects a coolant temperature indicating the temperature of the internal combustion engine, An air-fuel ratio signal f output from an air-fuel ratio sensor 43 that detects the air-fuel ratio of the exhaust gas upstream of the catalyst 41; The air-fuel ratio signal g outputted from the air-fuel ratio sensor 44 for detecting the air-fuel ratio of the exhaust gas on the downstream side, atmospheric pressure signal h or the like to be outputted from the atmospheric pressure sensor for detecting the atmospheric pressure is inputted.

出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。   From the output interface, the ignition signal i for the igniter of the spark plug 12, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, and the opening operation signal l for the EGR valve 23. Etc. are output.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR量(または、EGR率)等といった運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for operation control of the internal combustion engine via the input interface, and requests the required fuel injection amount, fuel injection timing (for one combustion). (Including the number of times of fuel injection), fuel injection pressure, ignition timing, required EGR amount (or EGR rate), etc. are determined. The ECU 0 applies various control signals i, j, k, and l corresponding to the operation parameters via the output interface.

本実施形態のECU0は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比をフィードバック制御する。ECU0は、まず、吸気圧及び吸気温、エンジン回転数、要求EGR率等から、気筒1に充填される新気の量を算出し、これに見合った基本噴射量TPを決定する。   The ECU 0 according to the present embodiment performs feedback control of the air-fuel ratio of the air-fuel mixture charged in the cylinder 1 and consequently the air-fuel ratio of the exhaust gas discharged from the cylinder 1 and led to the catalyst 41. The ECU 0 first calculates the amount of fresh air charged into the cylinder 1 from the intake pressure and intake temperature, the engine speed, the required EGR rate, etc., and determines the basic injection amount TP corresponding to this.

次いで、この基本噴射量TPを、触媒41の上流側及び/または下流側の空燃比に応じて定まるフィードバック補正係数FAFで補正する。一般に、フィードバック補正係数FAFは、空燃比センサ43、44を介して実測されるガスの空燃比と目標空燃比(平常時は理論空燃比14.6の近傍)との偏差に応じて調整され、実測空燃比が目標空燃比に対してリーンであるときには増加し、実測空燃比が目標空燃比に対してリッチであるときには減少する。   Next, the basic injection amount TP is corrected with a feedback correction coefficient FAF determined according to the air-fuel ratio on the upstream side and / or downstream side of the catalyst 41. In general, the feedback correction coefficient FAF is adjusted according to the deviation between the air / fuel ratio of the gas actually measured via the air / fuel ratio sensors 43 and 44 and the target air / fuel ratio (normally near the theoretical air / fuel ratio 14.6), It increases when the measured air-fuel ratio is lean with respect to the target air-fuel ratio, and decreases when the measured air-fuel ratio is rich with respect to the target air-fuel ratio.

そして、内燃機関の状況に応じて定まる各種補正係数Kや、インジェクタ11の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。しかして、燃料噴射時間Tだけインジェクタ11に信号jを入力、インジェクタ11を開弁して燃料を噴射させる。
Then, the final fuel injection time (energization time for the injector 11) T is calculated in consideration of various correction factors K determined according to the state of the internal combustion engine and the invalid injection time TAUV of the injector 11. The fuel injection time T is
T = TP × FAF × K + TAUV
It becomes. Accordingly, the signal j is input to the injector 11 for the fuel injection time T, and the injector 11 is opened to inject fuel.

触媒41の上流側及び/または下流側の空燃比信号f、gを参照したフィードバック制御は、例えば、内燃機関の冷却水温が所定温度以上であり、燃料カット中でなく、パワー増量中でなく、内燃機関の始動から所定時間が経過し、空燃比センサ43、43が活性中、吸気圧が正常である、等の諸条件が全て成立している場合に行う。   The feedback control with reference to the air-fuel ratio signals f and g on the upstream side and / or downstream side of the catalyst 41 is, for example, that the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined temperature, the fuel is not being cut, and the power is not being increased. This is performed when a predetermined time has elapsed since the start of the internal combustion engine, all the conditions such as the air-fuel ratio sensors 43 and 43 being active and the intake pressure being normal are all satisfied.

一方で、ECU0は、所定の燃料カット条件が成立したときに、気筒1への燃料供給を中断する燃料カットを実行する。ECU0は、少なくとも、アクセル開度が0または0に近い閾値以下となり、かつエンジン回転数が燃料カット許可回転数以上あることを以て、燃料カット条件が成立したものと判断する。   On the other hand, the ECU 0 executes a fuel cut that interrupts the fuel supply to the cylinder 1 when a predetermined fuel cut condition is satisfied. The ECU 0 determines that the fuel cut condition is satisfied at least when the accelerator opening is 0 or less than a threshold value close to 0 and the engine speed is equal to or higher than the fuel cut permission speed.

因みに、燃料カット条件が成立したとしても、即時にインジェクタ11からの燃料噴射(及び、点火)を停止するとは限らない。エンジントルクが比較的大きい段階で、急に燃料供給を遮断すると、エンジン回転数や車速がステップ的に急落するトルクショックが発生し、運転者を含む搭乗者に衝撃を感じさせる。このトルクショックを軽減するべく、燃料カット条件が成立した後、遅延時間の経過を待ってから、はじめて燃料噴射を停止する。この遅延時間中には、点火タイミングを遅角補正し、エンジントルクを積極的に低下させる。   Incidentally, even if the fuel cut condition is satisfied, the fuel injection (and ignition) from the injector 11 is not always stopped immediately. If the fuel supply is cut off suddenly when the engine torque is relatively large, a torque shock that causes the engine speed and the vehicle speed to drop stepwise occurs, causing the passengers including the driver to feel the shock. In order to reduce the torque shock, the fuel injection is stopped only after the elapse of the delay time after the fuel cut condition is satisfied. During this delay time, the ignition timing is retarded and the engine torque is actively reduced.

燃料カットの開始後、所定の燃料カット終了条件が成立したときには、燃料カットを終了、燃料噴射(及び、点火)を再開する。ECU0は、アクセル開度が閾値を上回った、エンジン回転数が燃料カット復帰回転数を下回るまで低下した等のうちの何れかを以て、燃料カット終了条件が成立したものと判断する。   When a predetermined fuel cut end condition is satisfied after the start of the fuel cut, the fuel cut ends and fuel injection (and ignition) is restarted. The ECU 0 determines that the fuel cut end condition is satisfied, for example, when the accelerator opening degree exceeds the threshold value, or when the engine speed decreases until it falls below the fuel cut return speed.

燃料カット中は、燃焼ガスを含まない新気が気筒1及び排気通路4を通じて触媒41に流入する。そして、触媒41の最大酸素吸蔵能力まで酸素が触媒41内に吸蔵されると、排気通路4における触媒41の下流側に余剰の酸素が流出する状態となる。このことを利用して、本実施形態のECU0は、燃料カットの実行中に、触媒41の下流に設置した空燃比センサ44の応答性の低下の度合いを推測する。   During the fuel cut, fresh air that does not contain combustion gas flows into the catalyst 41 through the cylinder 1 and the exhaust passage 4. When oxygen is stored in the catalyst 41 up to the maximum oxygen storage capacity of the catalyst 41, excess oxygen flows out downstream of the catalyst 41 in the exhaust passage 4. Utilizing this fact, the ECU 0 of the present embodiment estimates the degree of reduction in the responsiveness of the air-fuel ratio sensor 44 installed downstream of the catalyst 41 during execution of fuel cut.

具体的には、図2に示すように、燃料カットの開始時点以後、変動する空燃比センサ44の出力信号(出力電流または出力電圧)gを監視し、その大きさが変化を始めてから所定値(空燃比センサ44の応答性の低下がないと仮定した場合における所定のリーン空燃比に相当する値)に到達するまでの所要時間ΔTを計数する。なお、空燃比フィードバック制御により、燃料カットの開始時点における空燃比センサ44の出力信号gの大きさは、理論空燃比またはその近傍に相当する値となっている。   Specifically, as shown in FIG. 2, the output signal (output current or output voltage) g of the air-fuel ratio sensor 44 that fluctuates after the start of fuel cut is monitored, and a predetermined value after the magnitude starts to change. The time required ΔT until reaching the predetermined value (a value corresponding to a predetermined lean air-fuel ratio when it is assumed that the air-fuel ratio sensor 44 does not deteriorate in responsiveness) is counted. By the air-fuel ratio feedback control, the magnitude of the output signal g of the air-fuel ratio sensor 44 at the start of fuel cut is a value corresponding to the theoretical air-fuel ratio or the vicinity thereof.

あるいは、燃料カットの開始後一定の時間が経過した時点における空燃比センサ44の出力信号gの値と、燃料カットの開始時点若しくは出力信号gの大きさが変化を始めた時点における空燃比センサ44の出力信号gの値との差分ΔIを計数する。   Alternatively, the value of the output signal g of the air-fuel ratio sensor 44 when a certain time has elapsed after the start of the fuel cut and the air-fuel ratio sensor 44 when the fuel cut starts or when the magnitude of the output signal g starts to change. The difference ΔI from the value of the output signal g is counted.

しかして、計数した所要時間ΔTの長さ、及び/または、出力信号gの変化分ΔIに基づき、触媒41の下流の空燃比センサ44の応答性の低下の度合いを推測する。空燃比センサ44の応答性の低下の度合いは、ΔTが長いほど大きく、及び/または、ΔIが小さいほど大きいと考えられる。   Accordingly, the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 downstream of the catalyst 41 is estimated based on the counted length of the required time ΔT and / or the change ΔI of the output signal g. It is considered that the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 increases as ΔT increases and / or decreases as ΔI decreases.

本実施形態のECU0は、触媒41の最大酸素吸蔵能力を推定するとともに、推定した最大酸素吸蔵能力値を劣化判定値と比較して、当該触媒41が正常であるか異常であるかを判定するダイアグノーシスを行う。   The ECU 0 of the present embodiment estimates the maximum oxygen storage capacity of the catalyst 41 and compares the estimated maximum oxygen storage capacity value with the deterioration determination value to determine whether the catalyst 41 is normal or abnormal. Perform diagnosis.

触媒41の酸素吸蔵能力は既知の任意の手法を採用して推算することができるが、ここではその一典型例を示す。内燃機関の気筒1に空燃比リーンの混合気を供給して触媒41の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒1に供給する混合気を意図的に空燃比リッチに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号(出力電流または出力電圧)fは即座に空燃比リッチを示す。これに対し、触媒41の下流の空燃比センサ44の出力信号gは、上流の空燃比センサ43の出力信号fに遅れて空燃比リッチを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)下流の空燃比センサ44の出力信号gが空燃比リッチを示すまでの間、触媒41に吸蔵していた酸素が放出されて酸素の不足が補われるためである。   The oxygen storage capacity of the catalyst 41 can be estimated by adopting any known method. Here, a typical example is shown. From the state in which the air-fuel ratio lean air-fuel mixture is supplied to the cylinder 1 of the internal combustion engine and oxygen is stored to the full capacity of the oxygen storage capacity of the catalyst 41, the air-fuel mixture supplied to the cylinder 1 is intentionally operated to be rich in the air-fuel ratio. Perform active control. Then, the output signal (output current or output voltage) f of the air-fuel ratio sensor 43 upstream of the catalyst 41 immediately shows the air-fuel ratio rich. On the other hand, the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 shows the rich air-fuel ratio behind the output signal f of the upstream air-fuel ratio sensor 43. The output signal g of the downstream air-fuel ratio sensor 44 is rich in the air-fuel ratio after the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 indicates that the air-fuel ratio is rich (or the air-fuel mixture is operated to rich air-fuel ratio). This is because the oxygen stored in the catalyst 41 is released until the shortage of oxygen is compensated.

触媒41の上流の空燃比センサ43の出力信号fが空燃比リッチを示してから、下流の空燃比センサ44の出力信号gが空燃比リッチを示すまでの間に経過した時間をTRとおき、このTRの間に供給した燃料の総重量をGF、理論空燃比とリッチ時の空燃比との差分をΔA/FRとおくと、TRの間に触媒41中で不足した酸素量は、
(α・ΔA/FR・GF
となる。αは、空気中に占める酸素の重量割合(≒0.23)である。
From the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 indicates a rich air-fuel ratio, the time elapsed between the output signal g of the downstream air-fuel ratio sensor 44 until they show an air-fuel ratio rich T R Distant , the total weight G F of the fuel supplied during the T R, if the difference between the air-fuel ratio during the stoichiometric air-fuel ratio and rich put a .DELTA.A / F R, oxygen deficient in catalyst 41 between T R The amount is
(Α ・ ΔA / F R・ G F )
It becomes. α is a weight ratio (≈0.23) of oxygen in the air.

上式は、TRの時点までに触媒41が放出した酸素の量を表している。供給した燃料の総重量GFは、ECU0において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリッチな(14.6よりも小さい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数(エンジン回転数に比例)を乗じれば、単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TRを乗じれば、供給した燃料の総重量GFとなる。要するに、触媒41の下流の空燃比センサ44の出力信号gが空燃比リッチを示した時点での経過時間TRに基づいて、触媒41の最大酸素放出能力を算出することが可能である。この最大酸素放出能力は、最大酸素吸蔵能力と同義である。 The above equation, the catalyst 41 represents the amount of oxygen released by the time of T R. Total weight G F of the supplied fuel can be calculated in ECU0. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for making the air-fuel ratio a predetermined value richer than the stoichiometric air-fuel ratio (smaller than 14.6). Multiplying the number of per-expansion strokes (proportional to the engine speed) gives the fuel supply amount per unit time. Then, when multiplied by the elapsed time T R to a fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, the output signal g of the downstream air-fuel ratio sensor 44 of the catalyst 41 based on the elapsed time T R at the time of showing the air-fuel ratio rich, it is possible to calculate the maximum oxygen release capacity of the catalyst 41. This maximum oxygen release capacity is synonymous with the maximum oxygen storage capacity.

厳密には、TRの期間において、運転者のアクセル操作等に起因して単位時間当たりの燃料供給量(または、一回の噴射量)は増減し得る。故に、TRの期間中の供給燃料の総重量GFは、単位時間当たりの供給量gF(t)をTRの範囲で時間積分して求めることが好ましい。また、本実施形態では、触媒41の上流にリニアA/Fセンサを配しており、触媒41に流入するガスの空燃比を実時間で計測することが可能である。よって、ΔA/FR(t)を理論空燃比とA/Fセンサ43を介して計測した実測空燃比との差分として、触媒41の最大酸素吸蔵能力を、TRの期間の時間積分として求めることができる。即ち;
α∫{ΔA/FR(t)・gF(t)}dt
あるいは、内燃機関の気筒1に空燃比リッチの混合気を供給して触媒41に酸素を全く吸蔵していない状態から、気筒1に供給する混合気を意図的に空燃比リーンに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号fは即座に空燃比リーンを示す。これに対し、触媒41の下流の空燃比センサ44の出力信号gは、上流の空燃比センサ43の出力信号fに遅れて空燃比リーンを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)下流の空燃比センサ44の出力信号gが空燃比リーンを示すまでの間、過剰な酸素が触媒41に吸着するためである。
Strictly speaking, in the period T R, the fuel supply amount per unit due to the accelerator operation or the like of the driver's time (or, a single injection quantity) may increase or decrease. Thus, the total weight G F of the fuel supplied during the T R is preferably determined supply amount g F per unit time (t) and the time integral in the range of T R. In this embodiment, a linear A / F sensor is arranged upstream of the catalyst 41, and the air-fuel ratio of the gas flowing into the catalyst 41 can be measured in real time. Therefore, as the difference between the measured air-fuel ratio measured .DELTA.A / F R a (t) via a stoichiometric air-fuel ratio and the A / F sensor 43, the maximum oxygen storage capacity of the catalyst 41 is obtained as the time integral of the period T R be able to. Ie;
α∫ {ΔA / F R (t) · g F (t)} dt
Alternatively, active control in which the mixture supplied to the cylinder 1 is intentionally operated to lean to the air-fuel ratio from a state in which the air-fuel ratio rich mixture is supplied to the cylinder 1 of the internal combustion engine and no oxygen is stored in the catalyst 41. Execute. Then, the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 immediately shows the air-fuel ratio lean. On the other hand, the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 shows the air-fuel ratio lean behind the output signal f of the upstream air-fuel ratio sensor 43. After the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 indicates the air-fuel ratio lean (or after the air-fuel mixture is operated to the air-fuel ratio lean), the output signal g of the downstream air-fuel ratio sensor 44 becomes the air-fuel ratio lean. This is because excess oxygen is adsorbed on the catalyst 41 until the time of

触媒41の上流の空燃比センサ43の出力信号fが空燃比リーンを示してから、下流の空燃比センサ44の出力信号gが空燃比リーンを示すまでの間に経過した時間をTLとおき、このTLの間に供給した燃料の総重量をGF、リーン時の空燃比と理論空燃比との差分をΔA/FLとおくと、TLの間に触媒41中で過剰となった酸素量は、
(α・ΔA/FL・GF
となる。
The time elapsed from when the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 indicates the air-fuel ratio lean until the output signal g of the downstream air-fuel ratio sensor 44 indicates the air-fuel ratio lean is denoted by T L. , is the total weight of the fuel has been supplied during the T L G F, when the difference between the air-fuel ratio and the stoichiometric air-fuel ratio during the lean put a .DELTA.A / F L, the excess in the catalyst 41 between T L The amount of oxygen
(Α ・ ΔA / F L・ G F )
It becomes.

上式は、TLの時点で触媒41が吸蔵している酸素の量を表している。供給した燃料の総重量GFはやはり、ECU0において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリーンな(14.6よりも大きい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数を乗じれば単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TLを乗じれば、供給した燃料の総重量GFとなる。要するに、触媒41の下流の空燃比センサ44の出力信号が空燃比リーンを示した時点での経過時間TLに基づいて、触媒41の最大酸素吸蔵能力を算出することが可能である。 The above equation represents the amount of oxygen stored in the catalyst 41 at the time point T L. Total weight G F of the supplied fuel again, it can be calculated in ECU0. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for setting the air-fuel ratio to a predetermined value leaner than the stoichiometric air-fuel ratio (greater than 14.6). Multiply by the number of expansion strokes per unit, the fuel supply amount per unit time is obtained. Then, when multiplied by the elapsed time T L in the fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, it is possible to calculate the maximum oxygen storage capacity of the catalyst 41 based on the elapsed time T L when the output signal of the air-fuel ratio sensor 44 downstream of the catalyst 41 indicates the air-fuel ratio lean.

厳密には、TLの期間において、運転者のアクセル操作等に起因して単位時間当たりの燃料供給量(または、一回の噴射量)は増減し得る。故に、TLの期間中の供給燃料の総重量GFは、単位時間当たりの供給量gF(t)をTLの範囲で時間積分して求めることが好ましい。ΔA/FL(t)を理論空燃比とA/Fセンサ43を介して計測した実測空燃比との差分とすれば、触媒41の最大酸素吸蔵能力を、TLの期間の時間積分として求めることができる。即ち;
α∫{ΔA/FL(t)・gF(t)}dt
触媒41のダイアグノーシスは、触媒41の劣化の兆候を感知したことを契機として実施する。その兆候の例としては、内燃機関の運転中に刻々と変動する触媒41の下流の空燃比センサ44の出力信号gの振動の周波数が閾値よりも高く(または、振動の周期が閾値よりも短く)なったことや、触媒41の上流の空燃比センサ43の出力信号fの変動と下流の空燃比センサ44の出力信号gの変動との時間差が閾値よりも短くなったこと等が挙げられる。
Strictly speaking, during the period of TL , the fuel supply amount (or injection amount per time) per unit time can be increased or decreased due to the driver's accelerator operation or the like. Thus, the total weight G F of the fuel supplied during the T L, it is preferable to determine the supply amount g F per unit time (t) and the time integral in the range of T L. If ΔA / F L (t) is the difference between the stoichiometric air-fuel ratio and the actually measured air-fuel ratio measured via the A / F sensor 43, the maximum oxygen storage capacity of the catalyst 41 is obtained as the time integral of the period of T L. be able to. Ie;
α∫ {ΔA / F L (t) · g F (t)} dt
Diagnosis of the catalyst 41 is performed when a sign of deterioration of the catalyst 41 is detected. As an example of the indication, the frequency of vibration of the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 that fluctuates during operation of the internal combustion engine is higher than the threshold (or the period of vibration is shorter than the threshold). And the time difference between the fluctuation of the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 and the fluctuation of the output signal g of the downstream air-fuel ratio sensor 44 is shorter than a threshold value.

但し、触媒41のダイアグノーシスの実施は、内燃機関の冷却水温が所定以上、内燃機関の負荷、気筒1に充填される吸気量、エンジン回転数、空燃比フィードバック制御による補正係数FAF及び触媒41の温度がそれぞれ所定範囲内、等といった諸条件がおしなべて成立していることを前提とする。   However, the diagnosis of the catalyst 41 is performed when the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined value, the load of the internal combustion engine, the intake amount charged into the cylinder 1, the engine speed, the correction coefficient FAF by the air-fuel ratio feedback control, and the catalyst 41 It is assumed that various conditions such as the temperature being within a predetermined range are all satisfied.

また、触媒41のダイアグノーシスは、一トリップ(イグニッションスイッチがONに操作されて内燃機関を始動してから、イグニッションスイッチがOFFに操作されて内燃機関を停止するまでの期間)毎に少なくとも一回実施することが好ましい。   Further, the diagnosis of the catalyst 41 is performed at least once every trip (a period from when the ignition switch is turned on to start the internal combustion engine until the ignition switch is turned off to stop the internal combustion engine). It is preferable to implement.

図3に示しているように、アクティブ制御では、触媒41の下流の空燃比センサ44の出力信号gが所定のリッチ判定値に到達した、即ち出力gがリーンからリッチへと切り替わったタイミングで、制御目標空燃比をリーン側の所定空燃比に設定し、触媒41の上流の空燃比センサ43の出力信号fが当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒41に流入するガスの空燃比を強制的にリーン化する。そして、触媒41の上流の空燃比センサ43の出力信号fが前記制御目標に対応した値に到達してから、下流の空燃比センサ44の出力信号gがリーン判定値に到達するまでの間の経過時間TL、即ち出力gが再度リーンへと切り替わるまでの経過時間TLを計測する。 As shown in FIG. 3, in the active control, the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 has reached a predetermined rich determination value, that is, at the timing when the output g is switched from lean to rich. The control target air-fuel ratio is set to a predetermined lean air-fuel ratio, and the fuel injection amount is corrected so that the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 takes a value corresponding to the control target. As a result, the air-fuel ratio of the gas flowing into the catalyst 41 is forcibly made lean. Then, after the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 reaches a value corresponding to the control target, the output signal g of the downstream air-fuel ratio sensor 44 reaches a lean determination value. The elapsed time T L , that is, the elapsed time T L until the output g switches to lean again is measured.

並びに、触媒41の下流の空燃比センサ44の出力gがリッチからリーンへと切り替わったタイミングで、制御目標空燃比をリッチ側の所定空燃比に設定し、触媒41の上流の空燃比センサ43の出力信号fが当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒41に流入するガスの空燃比を強制的にリッチ化する。そして、触媒41の上流の空燃比センサ43の出力信号fが前記制御目標に対応した値に到達してから、下流の空燃比センサ44の出力信号gが所定のリーン判定値に到達するまでの間の経過時間TR、即ち出力gが再度リッチへと切り替わるまでの経過時間TRを計測する。 In addition, at the timing when the output g of the air-fuel ratio sensor 44 downstream of the catalyst 41 switches from rich to lean, the control target air-fuel ratio is set to the predetermined air-fuel ratio on the rich side, and the air-fuel ratio sensor 43 upstream of the catalyst 41 The fuel injection amount is corrected so that the output signal f takes a value corresponding to the control target. As a result, the air-fuel ratio of the gas flowing into the catalyst 41 is forcibly enriched. Then, after the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 reaches a value corresponding to the control target, the output signal g of the downstream air-fuel ratio sensor 44 reaches a predetermined lean determination value. Elapsed time T R , that is, the elapsed time T R until the output g switches to rich again is measured.

なお、既に述べた通り、ECU0は、燃料カットの実行中に、触媒41の下流の空燃比センサ44の応答性の低下の度合いを推測している。触媒41のダイアグノーシスにおいては、図3に示しているように、空燃比センサ44の応答性の低下の度合いが小さいほど、リーン判定値及びリッチ判定値を、理論空燃比に相当する値から遠ざける。逆に、空燃比センサ44の応答性の低下の度合いが大きいほど、リーン判定値及びリッチ判定値を、理論空燃比に相当する値に近づける。但し、図3に表している空燃比センサ43、44の出力信号f、g及び触媒41の酸素吸蔵量の推移は、空燃比センサ44の応答性の低下の度合いが小さい場合のものである。空燃比センサ44の応答性の低下の度合いが大きくなると、当該空燃比センサ44の出力信号gの変動が図3に描画しているものよりも緩慢になる。   As already described, the ECU 0 estimates the degree of decrease in responsiveness of the air-fuel ratio sensor 44 downstream of the catalyst 41 during execution of fuel cut. In the diagnosis of the catalyst 41, as shown in FIG. 3, the lean determination value and the rich determination value are moved away from the values corresponding to the stoichiometric air-fuel ratio as the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 is smaller. . Conversely, as the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 is greater, the lean determination value and the rich determination value are brought closer to values corresponding to the theoretical air-fuel ratio. However, the transition of the output signals f and g of the air-fuel ratio sensors 43 and 44 and the oxygen storage amount of the catalyst 41 shown in FIG. 3 is for the case where the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 is small. When the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 increases, the fluctuation of the output signal g of the air-fuel ratio sensor 44 becomes slower than that depicted in FIG.

ECU0は、酸素吸蔵能力一杯まで酸素を吸蔵していた触媒41がその酸素の全てを放出するのに要した時間TR、及び、酸素を吸蔵していない触媒41が酸素吸蔵能力一杯まで酸素を吸蔵するのに要した時間TLをそれぞれ一回以上計測し、計測したTR、TLを基に最大酸素吸蔵能力(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を算出して、それらの平均値を求める。 The ECU 0 determines the time T R required for the catalyst 41 that has stored oxygen to the full oxygen storage capacity to release all of the oxygen, and the catalyst 41 that has not stored oxygen to the oxygen storage capacity to the full. the time T L taken to storage measured more than once each, the measured T R, the maximum oxygen storage capacity based on T L (α · ΔA / F R · G F), (α · ΔA / F L Calculate G F ) and find the average of them.

触媒41が劣化したか否かの判断は、当該触媒41の最大酸素吸蔵能力(の複数回の推算値の平均)を判定閾値と比較することにより行う。即ち、最大酸素吸蔵能力が判定閾値未満であれば、当該触媒41は既に劣化しており十分な性能を発揮できないものと診断される。触媒41が劣化しているとの判断を下したECU0は、触媒41の異常の旨を示す情報(ダイアグノーシスコード)をメモリに記憶保持するとともに、触媒41の異常の旨を運転者の視覚または聴覚に訴えかける態様で出力して報知する。例えば、コックピット内のエンジンチェックランプを点灯させたり、ディスプレイに表示させたり、警告音を発したりして、触媒41の点検及び交換を促す。   The determination as to whether or not the catalyst 41 has deteriorated is made by comparing the maximum oxygen storage capacity of the catalyst 41 (average of a plurality of estimated values) with a determination threshold value. That is, if the maximum oxygen storage capacity is less than the determination threshold, it is diagnosed that the catalyst 41 has already deteriorated and cannot exhibit sufficient performance. The ECU 0 that has determined that the catalyst 41 has deteriorated stores and holds information indicating that the catalyst 41 is abnormal (diagnostic code) in the memory, and also indicates whether the catalyst 41 is abnormal or not. Output and alert in a manner that appeals to the auditory sense. For example, an engine check lamp in the cockpit is turned on, displayed on a display, or a warning sound is emitted to prompt inspection and replacement of the catalyst 41.

本実施形態では、内燃機関の排気通路4に装着される排気ガス浄化用の触媒41の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの期間に触媒41の酸素吸蔵能力の推定を行うものであって、排気通路4における触媒41の下流に設置した空燃比センサ44の出力信号gの大きさをリーン判定値と比較することで触媒41の下流側の空燃比がリッチからリーンに切り替わったと判定し、かつ同空燃比センサ44の出力信号gの大きさをリッチ判定値と比較することで触媒41の下流側の空燃比がリーンからリッチに切り替わったと判定し、触媒41の上流側の空燃比を強制的に変動させてから触媒41の下流側の空燃比の判定が切り替わるまでの期間を触媒41の酸素吸蔵能力の推定期間とし、前記空燃比センサ44の応答性の低下の度合いが小さい場合、空燃比センサ44の応答性の低下の度合いが大きい場合と比較して、前記リーン判定値及び前記リッチ判定値を、触媒41の下流側の空燃比が理論空燃比に略等しいときの当該空燃比センサ44の出力信号gの値からより遠ざける内燃機関の制御装置0を構成した。   In the present embodiment, the catalyst 41 is in a period from when the upstream air-fuel ratio of the exhaust gas purifying catalyst 41 mounted in the exhaust passage 4 of the internal combustion engine is forcibly changed until the downstream air-fuel ratio is changed. The oxygen storage capacity of the catalyst 41 is estimated by comparing the magnitude of the output signal g of the air-fuel ratio sensor 44 installed downstream of the catalyst 41 in the exhaust passage 4 with the lean determination value. It is determined that the air-fuel ratio has switched from rich to lean, and the output signal g of the air-fuel ratio sensor 44 is compared with a rich determination value to determine that the air-fuel ratio downstream of the catalyst 41 has switched from lean to rich. Then, the period from when the air-fuel ratio on the upstream side of the catalyst 41 is forcibly changed until the determination of the air-fuel ratio on the downstream side of the catalyst 41 is changed to the estimated period of the oxygen storage capacity of the catalyst 41, and the air-fuel ratio sensor 4 When the degree of decrease in the responsiveness of the air-fuel ratio sensor 44 is small, the lean determination value and the rich determination value are compared with the case where the air-fuel ratio on the downstream side of the catalyst 41 The control device 0 for the internal combustion engine is configured to be further away from the value of the output signal g of the air-fuel ratio sensor 44 when it is substantially equal to the theoretical air-fuel ratio.

本実施形態によれば、触媒41の酸素吸蔵能力の推定の精度がより一層向上する。即ち、触媒41の下流の空燃比センサ44の応答性の低下の度合いが小さい場合における、触媒41の最大酸素吸蔵能力の過小評価を回避できるとともに、同空燃比センサ44の応答性の低下の度合いが大きい場合においても、触媒41の最大酸素吸蔵能力の推定を適切に遂行することができる。   According to this embodiment, the accuracy of estimation of the oxygen storage capacity of the catalyst 41 is further improved. That is, underestimation of the maximum oxygen storage capacity of the catalyst 41 can be avoided when the degree of decrease in response of the air-fuel ratio sensor 44 downstream of the catalyst 41 is small, and the degree of decrease in response of the air-fuel ratio sensor 44 Even when is large, the maximum oxygen storage capacity of the catalyst 41 can be estimated appropriately.

なお、本発明は以上に詳述した実施形態には限られない。各部の具体的構成や具体的な処理の手順は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part and the specific processing procedure can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
4…排気通路
41…触媒
43…触媒の上流の空燃比センサ
44…触媒の下流の空燃比センサ
f…触媒の上流の空燃比信号
g…触媒の下流の空燃比信号
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 4 ... Exhaust passage 41 ... Catalyst 43 ... Air-fuel ratio sensor upstream of catalyst 44 ... Air-fuel ratio sensor downstream of catalyst f ... Air-fuel ratio signal upstream of catalyst g ... Air-fuel ratio signal downstream of catalyst

Claims (1)

内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの期間に触媒の酸素吸蔵能力の推定を行うものであって、
排気通路における触媒の下流に設置した空燃比センサの出力信号の大きさをリーン判定値と比較することで触媒の下流側の空燃比がリッチからリーンに切り替わったと判定し、かつ同空燃比センサの出力信号の大きさをリッチ判定値と比較することで触媒の下流側の空燃比がリーンからリッチに切り替わったと判定し、触媒の上流側の空燃比を強制的に変動させてから触媒の下流側の空燃比の判定が切り替わるまでの期間を触媒の酸素吸蔵能力の推定期間とし、
前記空燃比センサの応答性の低下の度合いが小さい場合、空燃比センサの応答性の低下の度合いが大きい場合と比較して、前記リーン判定値及び前記リッチ判定値を、触媒の下流側の空燃比が理論空燃比に略等しいときの当該空燃比センサの出力信号の値からより遠ざける内燃機関の制御装置。
The oxygen storage capacity of the catalyst is estimated during a period from when the upstream air-fuel ratio of the exhaust gas purifying catalyst mounted in the exhaust passage of the internal combustion engine is forcibly changed to when the downstream air-fuel ratio is changed. And
By comparing the magnitude of the output signal of the air-fuel ratio sensor installed downstream of the catalyst in the exhaust passage with the lean determination value, it is determined that the air-fuel ratio on the downstream side of the catalyst has switched from rich to lean, and the air-fuel ratio sensor By comparing the magnitude of the output signal with the rich judgment value, it is judged that the air-fuel ratio on the downstream side of the catalyst has changed from lean to rich, the air-fuel ratio on the upstream side of the catalyst is forcibly changed, and then the downstream side of the catalyst The period until the determination of the air-fuel ratio of the catalyst is changed to the estimation period of the oxygen storage capacity of the catalyst,
When the degree of decrease in the responsiveness of the air-fuel ratio sensor is small, the lean determination value and the rich determination value are compared with those in the downstream side of the catalyst as compared with the case where the degree of decrease in responsiveness of the air-fuel ratio sensor is large. A control device for an internal combustion engine, which is further away from the value of an output signal of the air-fuel ratio sensor when the fuel ratio is substantially equal to the stoichiometric air-fuel ratio.
JP2017070487A 2017-03-31 2017-03-31 Control device for internal combustion engine Pending JP2018173005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070487A JP2018173005A (en) 2017-03-31 2017-03-31 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070487A JP2018173005A (en) 2017-03-31 2017-03-31 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018173005A true JP2018173005A (en) 2018-11-08

Family

ID=64106645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070487A Pending JP2018173005A (en) 2017-03-31 2017-03-31 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018173005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181599A1 (en) * 2020-03-12 2021-09-16 ヤマハ発動機株式会社 Saddle-riding-type vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181599A1 (en) * 2020-03-12 2021-09-16 ヤマハ発動機株式会社 Saddle-riding-type vehicle

Similar Documents

Publication Publication Date Title
US5974790A (en) Catalytic converter decontamination method
US6978600B2 (en) Secondary air supply system and secondary air supply method
JP2014066154A (en) Control device of internal combustion engine
JP2018173005A (en) Control device for internal combustion engine
JP2017044172A (en) Control device for internal combustion engine
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP2018105163A (en) Control device of internal combustion engine
JP6166646B2 (en) Control device for internal combustion engine
JP2016070106A (en) Control device for internal combustion engine
JP6238729B2 (en) Control device for internal combustion engine
JP2016070156A (en) Control device for internal combustion engine
JP6961307B2 (en) Internal combustion engine control device
JP2015121191A (en) Control device for internal combustion engine
JP6153344B2 (en) Air-fuel ratio control device
JP2016070105A (en) Control device for internal combustion engine
JP3769820B2 (en) Engine misfire diagnostic device
JP2019148233A (en) Control device of internal combustion engine
JP2015121192A (en) Control device for internal combustion engine
JP2019100227A (en) Control device of internal combustion engine
JP2012140869A (en) Method for determining catalyst failure in internal combustion engine
JP2015094285A (en) Control device of internal combustion engine
JP7143032B2 (en) Control device for internal combustion engine
JP2015086746A (en) Internal combustion engine control device
JP2016070124A (en) Control device for internal combustion engine
JP7023129B2 (en) Internal combustion engine control device