JP2016070105A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2016070105A
JP2016070105A JP2014197615A JP2014197615A JP2016070105A JP 2016070105 A JP2016070105 A JP 2016070105A JP 2014197615 A JP2014197615 A JP 2014197615A JP 2014197615 A JP2014197615 A JP 2014197615A JP 2016070105 A JP2016070105 A JP 2016070105A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014197615A
Other languages
Japanese (ja)
Inventor
裕之 中島
Hiroyuki Nakajima
裕之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014197615A priority Critical patent/JP2016070105A/en
Publication of JP2016070105A publication Critical patent/JP2016070105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of estimating the oxygen storage capacity of a catalyst under a reduced pressure.SOLUTION: A control device for an internal combustion engine utilizes a period from forcibly varying an air-fuel ratio on the upstream side of the exhaust gas purifying catalyst mounted in an exhaust passage of the internal combustion engine to actualizing a variation in the air-fuel ratio on the upstream side, to estimate the oxygen storage capacity of the catalyst. The control device changes the characteristics of a relationship between an output signal from an air-fuel ratio sensor for detecting the air-fuel ratio of gas flowing into the catalyst and the air-fuel ratio of the gas, depending the levels of the atmospheric pressure in this case, and then acquires the air-fuel ratio of the gas from the output signal from the air-fuel ratio sensor. It uses the air-fuel ratio of the gas to estimate the oxygen storage capacity of the catalyst.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関における燃料噴射量を調整して空燃比を制御する制御装置に関する。   The present invention relates to a control device that controls an air-fuel ratio by adjusting a fuel injection amount in an internal combustion engine.

一般に、内燃機関の排気通路には、内燃機関の気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。 Generally, in the exhaust passage of an internal combustion engine, harmful substances HC contained in the exhaust gas discharged from the cylinders of the internal combustion engine, CO, three-way catalyst to harmless by oxidation / reduction of NO x is mounted.

触媒の酸素吸蔵能力(OSC:O2 Storage Capacity)は、経年劣化により減退する。触媒による排気ガスの浄化率は、触媒内に吸着できる酸素量に依存する。触媒の劣化が進行すると、排出される有害物質の量も増大する。一方で、触媒の劣化は、車両自体の運転性能にはほとんど影響を与えない。それ故、異常な排出ガス車が長期間、無意識に使用され続けるおそれがある。 The oxygen storage capacity (OSC: O 2 Storage Capacity) of the catalyst decreases due to aging. The exhaust gas purification rate by the catalyst depends on the amount of oxygen that can be adsorbed in the catalyst. As the catalyst deteriorates, the amount of harmful substances emitted increases. On the other hand, deterioration of the catalyst hardly affects the driving performance of the vehicle itself. Therefore, there is a risk that an abnormal exhaust vehicle will continue to be used unconsciously for a long time.

そのような事象に対処するべく、触媒の経年劣化の度合いを自己診断するダイアグノーシス機能を車両に実装することも通例となっている(例えば、下記特許文献を参照)。具体的には、触媒から酸素を完全に放出した状態で、触媒に流入するガスの空燃比を強制的にリーンに操作し、触媒上流の空燃比センサの出力信号がリーンに切り替わってから触媒下流の空燃比センサの出力信号がリーンに切り替わるまでの間の経過時間を計測することにより、現在触媒に吸蔵している酸素量を推算する。下流側センサ出力がリーンに反転した瞬間の酸素吸蔵量が、当該触媒の最大酸素吸蔵能力となる。   In order to cope with such an event, it is also common to install a diagnosis function in the vehicle for self-diagnosis of the degree of aging of the catalyst (see, for example, the following patent document). Specifically, in a state where oxygen is completely released from the catalyst, the air-fuel ratio of the gas flowing into the catalyst is forcibly operated to lean, and after the output signal of the air-fuel ratio sensor upstream of the catalyst switches to lean, the downstream of the catalyst The amount of oxygen currently stored in the catalyst is estimated by measuring the elapsed time until the output signal of the air / fuel ratio sensor switches to lean. The oxygen storage amount at the moment when the downstream sensor output reverses lean is the maximum oxygen storage capacity of the catalyst.

触媒に酸素吸蔵能力一杯まで酸素を吸蔵した状態で、触媒に流入するガスの空燃比を強制的にリッチに操作し、上流側センサ出力がリッチに切り替わってから下流側センサ出力がリッチに切り替わるまでの間の経過時間を計測することにより、触媒が放出した酸素の量、即ち酸素吸蔵能力一杯まで酸素を吸蔵した状態を基準とした酸素吸蔵量を推算することもできる。下流側センサ出力がリッチに反転した瞬間の酸素吸蔵量が、当該触媒の最大酸素放出能力、換言すれば最大酸素吸蔵能力ということになる。   While the oxygen is occluded to the full capacity of the catalyst, the air-fuel ratio of the gas flowing into the catalyst is forcibly made rich until the upstream sensor output switches to rich until the downstream sensor output switches to rich By measuring the elapsed time, the amount of oxygen released by the catalyst, that is, the oxygen storage amount based on the state in which oxygen is stored to the full oxygen storage capacity can be estimated. The oxygen storage amount at the moment when the downstream sensor output is inverted to rich is the maximum oxygen release capacity of the catalyst, in other words, the maximum oxygen storage capacity.

触媒のダイアグノーシスにおいては、最大酸素吸蔵能力の推算値を判定閾値と比較し、前者が後者を下回ったならば触媒が劣化したと判断する。そして、触媒が劣化した旨を運転者に報知して、触媒の交換を促す。   In the diagnosis of the catalyst, the estimated value of the maximum oxygen storage capacity is compared with a determination threshold value, and if the former falls below the latter, it is determined that the catalyst has deteriorated. Then, the driver is notified that the catalyst has deteriorated, and the replacement of the catalyst is urged.

特開平05−133264号公報JP 05-133264 A

高地のような大気圧の低い場所では、大気中に含まれる酸素の分圧、換言すれば酸素イオン濃度が低下する。このため、空燃比センサの出力信号電圧を参照して推算される触媒の最大酸素吸蔵能力が、実際の触媒の能力よりも目減りして推算されることがある。その場合、未だ必要十分な性能を有している触媒であっても劣化した触媒であると誤判定することになりかねない。   In a place with a low atmospheric pressure such as a high altitude, the partial pressure of oxygen contained in the atmosphere, in other words, the oxygen ion concentration decreases. For this reason, the maximum oxygen storage capacity of the catalyst estimated with reference to the output signal voltage of the air-fuel ratio sensor may be estimated to be less than the actual catalyst capacity. In that case, even a catalyst that still has the necessary and sufficient performance may be erroneously determined as a deteriorated catalyst.

減圧下でのダイアグノーシスにおける誤判定を回避する方法としては、減圧下で推算された触媒の酸素吸蔵能力値を嵩上げするように補正し、平地にて推算される値に近づけることが考えられる。しかし、嵩上げの補正量の設定如何によっては、逆に、劣化した触媒を劣化していない触媒と誤判定するおそれがある。   As a method of avoiding an erroneous determination in diagnosis under reduced pressure, it is conceivable to correct the oxygen storage capacity value of the catalyst estimated under reduced pressure so as to increase the value and approximate the value estimated on a flat ground. However, depending on how the correction amount for raising is set, there is a possibility that a deteriorated catalyst is erroneously determined as an undegraded catalyst.

本発明は、減圧下における触媒の酸素吸蔵能力の推定の精度の向上を図ることを所期の目的としている。   An object of the present invention is to improve the accuracy of estimation of the oxygen storage capacity of a catalyst under reduced pressure.

本発明では、内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの期間を利用して触媒の酸素吸蔵能力の推定を行うものであり、その際の大気圧の高低に応じて、触媒に流入するガスの空燃比を検出する空燃比センサの出力信号と当該ガスの空燃比との関係特性を変更し、その上で空燃比センサの出力信号から当該ガスの空燃比を知得して、当該ガスの空燃比を用いて触媒の酸素吸蔵能力を推算する内燃機関の制御装置を構成した。   In the present invention, the period of time from when the air-fuel ratio on the upstream side of the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine is forcibly changed until the air-fuel ratio on the downstream side fluctuates is utilized. The oxygen storage capacity is estimated, and the relationship between the output signal of the air-fuel ratio sensor for detecting the air-fuel ratio of the gas flowing into the catalyst and the air-fuel ratio of the gas is determined according to the atmospheric pressure at that time. Then, the control device for the internal combustion engine was constructed in which the air-fuel ratio of the gas was obtained from the output signal of the air-fuel ratio sensor, and the oxygen storage capacity of the catalyst was estimated using the air-fuel ratio of the gas.

本発明によれば、減圧下における触媒の酸素吸蔵能力の推定の精度の向上を図り得る。   According to the present invention, it is possible to improve the accuracy of estimating the oxygen storage capacity of a catalyst under reduced pressure.

本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine and control apparatus in one Embodiment of this invention. 同実施形態の制御装置が実施する触媒のダイアグノーシスのためのアクティブ制御の内容を説明するタイミング図。The timing diagram explaining the content of the active control for the diagnosis of the catalyst which the control apparatus of the embodiment implements.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type 4-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

排気通路4における触媒41の上流及び下流には、排気通路を流通する排気ガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。O2センサの出力特性は、理論空燃比近傍の範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。本実施形態では、触媒41の上流側の空燃比センサ43としてリニアA/Fセンサを想定し、下流側の空燃比センサ44としてO2センサを想定している。 Air-fuel ratio sensors 43 and 44 for detecting the air-fuel ratio of the exhaust gas flowing through the exhaust passage are installed upstream and downstream of the catalyst 41 in the exhaust passage 4. Each of the air-fuel ratio sensors 43 and 44 may be an O 2 sensor having a non-linear output characteristic with respect to the air-fuel ratio of the exhaust gas, or a linear A / F sensor having an output characteristic proportional to the air-fuel ratio of the exhaust gas. There may be. As for the output characteristics of the O 2 sensor, the rate of change of the output with respect to the air-fuel ratio shows a large and steep slope in the range near the stoichiometric air-fuel ratio, and in the lean region where the air-fuel ratio is larger than that, it gradually approaches the lower saturation value. In a small rich region, a so-called Z characteristic curve that draws an asymptotic approach to a high saturation value is drawn. In the present embodiment, a linear A / F sensor is assumed as the air-fuel ratio sensor 43 on the upstream side of the catalyst 41, and an O 2 sensor is assumed as the air-fuel ratio sensor 44 on the downstream side.

本実施形態の内燃機関には、外部EGR装置2が付帯している。EGR装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。   An external EGR device 2 is attached to the internal combustion engine of the present embodiment. The EGR device 2 realizes a so-called high-pressure loop EGR. An EGR passage 21 that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3, and the EGR passage 21 The EGR cooler 22 provided and the EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of the EGR gas flowing through the EGR passage 21 are used as elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, specifically to a surge tank 33.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 serving as a control device for an internal combustion engine according to the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle and engine speed of the crankshaft, and depression of an accelerator pedal. The accelerator opening signal c output from a sensor that detects the amount or the opening of the throttle valve 32 as an accelerator opening (so-called required load), the intake air temperature and the intake pressure in the intake passage 3 (particularly, the surge tank 33). The intake air temperature / intake pressure signal d output from the temperature / pressure sensor to be detected, the coolant temperature signal e output from the water temperature sensor that detects the coolant temperature indicating the temperature of the internal combustion engine, and the exhaust gas upstream of the catalyst 41 The air-fuel ratio signal f output from the air-fuel ratio sensor 43 that detects the air-fuel ratio, and the exhaust gas air-fuel ratio downstream of the catalyst 41 are detected. The air-fuel ratio signal output from the air-fuel ratio sensor 44 g, the atmospheric pressure signal h or the like to be outputted from the atmospheric pressure sensor for detecting the atmospheric pressure is inputted to.

出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。   From the output interface, the ignition signal i for the igniter of the spark plug 12, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, and the opening operation signal l for the EGR valve 23. Etc. are output.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR量(または、EGR率)等といった運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for operation control of the internal combustion engine via the input interface, and requests the required fuel injection amount, fuel injection timing (once Operating parameters such as fuel injection pressure, ignition timing, required EGR amount (or EGR rate), etc. are determined. The ECU 0 applies various control signals i, j, k, and l corresponding to the operation parameters via the output interface.

本実施形態のECU0は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比をフィードバック制御する。ECU0は、まず、吸気圧及び吸気温、エンジン回転数、要求EGR率等から、気筒1に充填される新気の量を算出し、これに見合った基本噴射量TPを決定する。   The ECU 0 according to the present embodiment performs feedback control of the air-fuel ratio of the air-fuel mixture charged in the cylinder 1 and consequently the air-fuel ratio of the exhaust gas discharged from the cylinder 1 and led to the catalyst 41. The ECU 0 first calculates the amount of fresh air charged into the cylinder 1 from the intake pressure and intake temperature, the engine speed, the required EGR rate, etc., and determines the basic injection amount TP corresponding to this.

次いで、この基本噴射量TPを、触媒41の上流側及び/または下流側の空燃比に応じて定まるフィードバック補正係数FAFで補正する。一般に、フィードバック補正係数FAFは、空燃比センサ43、44を介して実測されるガスの空燃比と目標空燃比(平常時は理論空燃比近傍)との偏差に応じて調整され、実測空燃比が目標空燃比に対してリーンであるときには増加し、実測空燃比が目標空燃比に対してリッチであるときには減少する。   Next, the basic injection amount TP is corrected with a feedback correction coefficient FAF determined according to the air-fuel ratio on the upstream side and / or downstream side of the catalyst 41. In general, the feedback correction coefficient FAF is adjusted according to the deviation between the air / fuel ratio of the gas actually measured via the air / fuel ratio sensors 43 and 44 and the target air / fuel ratio (normally near the theoretical air / fuel ratio). It increases when it is lean with respect to the target air-fuel ratio, and decreases when the actually measured air-fuel ratio is rich with respect to the target air-fuel ratio.

そして、内燃機関の状況に応じて定まる各種補正係数Kや、後述するインジェクタ11の性能のばらつきを吸収するための補正係数X、さらにはインジェクタ11の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、
T=TP×FAF×K×X+TAUV
となる。しかして、燃料噴射時間Tだけインジェクタ11に信号jを入力、インジェクタ11を開弁して燃料を噴射させる。
Then, the final value is determined by taking into account various correction factors K determined according to the state of the internal combustion engine, correction factors X for absorbing variations in the performance of the injector 11 described later, and the invalid injection time TAUV of the injector 11. The fuel injection time (energization time for the injector 11) T is calculated. The fuel injection time T is
T = TP × FAF × K × X + TAUV
It becomes. Accordingly, the signal j is input to the injector 11 for the fuel injection time T, and the injector 11 is opened to inject fuel.

触媒41の上流側及び/または下流側の空燃比信号f、gを参照したフィードバック制御は、例えば、内燃機関の冷却水温が所定温度以上であり、燃料カット中でなく、パワー増量中でなく、内燃機関の始動から所定時間が経過し、空燃比センサ43、43が活性中、吸気圧が正常である、等の諸条件が全て成立している場合に行う。   The feedback control with reference to the air-fuel ratio signals f and g on the upstream side and / or downstream side of the catalyst 41 is, for example, that the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined temperature, the fuel is not being cut, and the power is not being increased. This is performed when a predetermined time has elapsed since the start of the internal combustion engine, all the conditions such as the air-fuel ratio sensors 43 and 43 being active and the intake pressure being normal are all satisfied.

また、本実施形態のECU0は、触媒41の最大酸素吸蔵能力を推定するとともに、推定した最大酸素吸蔵能力値を劣化判定値と比較して、当該触媒41が正常であるか異常であるかを判定するダイアグノーシスを行う。   Further, the ECU 0 of the present embodiment estimates the maximum oxygen storage capacity of the catalyst 41 and compares the estimated maximum oxygen storage capacity value with the deterioration determination value to determine whether the catalyst 41 is normal or abnormal. A diagnosis is performed.

触媒41の酸素吸蔵能力は既知の任意の手法を採用して推算することができるが、ここではその一典型例を示す。内燃機関の気筒1に空燃比リーンの混合気を供給して触媒41の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒1に供給する混合気を意図的に空燃比リッチに操作するアクティブ制御を実行する。すると、上流側空燃比センサ43の出力信号fは即座に空燃比リッチを示す。これに対し、下流側空燃比センサ44の出力信号gは、上流側空燃比センサ43の出力信号fに遅れて空燃比リッチを示す。上流側空燃比センサ43の出力信号fが空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)下流側空燃比センサ44の出力信号gが空燃比リッチを示すまでの間、触媒41に吸蔵していた酸素が放出されて酸素の不足が補われるためである。   The oxygen storage capacity of the catalyst 41 can be estimated by adopting any known method. Here, a typical example is shown. From the state in which the air-fuel ratio lean air-fuel mixture is supplied to the cylinder 1 of the internal combustion engine and oxygen is stored to the full capacity of the oxygen storage capacity of the catalyst 41, the air-fuel mixture supplied to the cylinder 1 is intentionally operated to be rich in the air-fuel ratio. Perform active control. Then, the output signal f of the upstream side air-fuel ratio sensor 43 immediately shows the air-fuel ratio rich. On the other hand, the output signal g of the downstream air-fuel ratio sensor 44 shows the air-fuel ratio rich after the output signal f of the upstream air-fuel ratio sensor 43. After the output signal f of the upstream air-fuel ratio sensor 43 shows the air-fuel ratio rich (or after the air-fuel mixture is manipulated to the air-fuel ratio rich) until the output signal g of the downstream air-fuel ratio sensor 44 shows the air-fuel ratio rich This is because the oxygen occluded in the catalyst 41 is released during this period to compensate for the lack of oxygen.

上流側空燃比センサ43の出力信号fが空燃比リッチを示してから、下流側空燃比センサ44の出力信号gが空燃比リッチを示すまでの間に経過した時間をTRとおき、このTRの間に供給した燃料の総重量をGF、理論空燃比とリッチ時の空燃比との差分をΔA/FRとおくと、TRの間に触媒41中で不足した酸素量は、
(α・ΔA/FR・GF
となる。αは、空気中に占める酸素の重量割合(≒0.23)である。
From the output signal f of the upstream air-fuel ratio sensor 43 indicates a rich air-fuel ratio, the time elapsed between the output signal g of the downstream air-fuel ratio sensor 44 until they show an air-fuel ratio rich T R Distant, this T the total weight of the fuel has been supplied between the R G F, when the difference between the air-fuel ratio during the stoichiometric air-fuel ratio and rich put a .DELTA.A / F R, the amount of oxygen is insufficient in the catalyst 41 during the T R is
(Α ・ ΔA / F R・ G F )
It becomes. α is a weight ratio (≈0.23) of oxygen in the air.

上式は、TRの時点までに触媒41が放出した酸素の量を表している。供給した燃料の総重量GFは、ECU0において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリッチな(14.6よりも小さい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数(エンジン回転数に比例)を乗じれば、単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TRを乗じれば、供給した燃料の総重量GFとなる。要するに、下流側空燃比センサ44の出力信号gが空燃比リッチを示した時点での経過時間TRに基づいて、触媒41の最大酸素放出能力を算出することが可能である。この最大酸素放出能力は、最大酸素吸蔵能力と同義である。 The above equation, the catalyst 41 represents the amount of oxygen released by the time of T R. Total weight G F of the supplied fuel can be calculated in ECU0. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for making the air-fuel ratio a predetermined value richer than the stoichiometric air-fuel ratio (smaller than 14.6). Multiplying the number of per-expansion strokes (proportional to the engine speed) gives the fuel supply amount per unit time. Then, when multiplied by the elapsed time T R to a fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, based on the elapsed time T R at the time that the output signal g of the downstream air-fuel ratio sensor 44 indicates a rich air-fuel ratio, it is possible to calculate the maximum oxygen release capacity of the catalyst 41. This maximum oxygen release capacity is synonymous with the maximum oxygen storage capacity.

厳密には、TRの期間において、運転者のアクセル操作等に起因して単位時間当たりの燃料供給量(または、一回の噴射量)は増減し得る。故に、TRの期間中の供給燃料の総重量GFは、単位時間当たりの供給量gF(t)をTRの範囲で時間積分して求めることが好ましい。また、本実施形態では、触媒31の上流にリニアA/Fセンサ11を配しており、触媒31に流入するガスの空燃比を実時間で計測することが可能である。よって、ΔA/FR(t)を理論空燃比とA/Fセンサ11を介して計測した実測空燃比との差分として、触媒31の最大酸素吸蔵能力を、TRの期間の時間積分として求めることができる。即ち;
α∫{ΔA/FR(t)・gF(t)}dt
あるいは、内燃機関の気筒1に空燃比リッチの混合気を供給して触媒41に酸素を全く吸蔵していない状態から、気筒1に供給する混合気を意図的に空燃比リーンに操作するアクティブ制御を実行する。すると、上流側空燃比センサ43の出力信号fは即座に空燃比リーンを示す。これに対し、下流側空燃比センサ44の出力信号gは、上流側空燃比センサ43の出力信号fに遅れて空燃比リーンを示す。上流側空燃比センサ43の出力信号fが空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)下流側空燃比センサ44の出力信号gが空燃比リーンを示すまでの間、過剰な酸素が触媒41に吸着するためである。
Strictly speaking, in the period T R, the fuel supply amount per unit due to the accelerator operation or the like of the driver's time (or, a single injection quantity) may increase or decrease. Thus, the total weight G F of the fuel supplied during the T R is preferably determined supply amount g F per unit time (t) and the time integral in the range of T R. In this embodiment, the linear A / F sensor 11 is arranged upstream of the catalyst 31, and the air-fuel ratio of the gas flowing into the catalyst 31 can be measured in real time. Therefore, as the difference between the measured air-fuel ratio measured .DELTA.A / F R a (t) via a stoichiometric air-fuel ratio and the A / F sensor 11, the maximum oxygen storage capacity of the catalyst 31 is obtained as the time integral of the period T R be able to. Ie;
α∫ {ΔA / F R (t) · g F (t)} dt
Alternatively, active control in which the mixture supplied to the cylinder 1 is intentionally operated to lean to the air-fuel ratio from a state in which the air-fuel ratio rich mixture is supplied to the cylinder 1 of the internal combustion engine and no oxygen is stored in the catalyst 41. Execute. Then, the output signal f of the upstream side air-fuel ratio sensor 43 immediately shows the air-fuel ratio lean. On the other hand, the output signal g of the downstream air-fuel ratio sensor 44 shows an air-fuel ratio lean behind the output signal f of the upstream air-fuel ratio sensor 43. After the output signal f of the upstream air-fuel ratio sensor 43 indicates the air-fuel ratio lean (or after the air-fuel mixture is operated to the air-fuel ratio lean), until the output signal g of the downstream air-fuel ratio sensor 44 indicates the air-fuel ratio lean This is because excess oxygen is adsorbed on the catalyst 41 during the period.

上流側空燃比センサ43の出力信号fが空燃比リーンを示してから、下流側空燃比センサ44の出力信号gが空燃比リーンを示すまでの間に経過した時間をTLとおき、このTLの間に供給した燃料の総重量をGF、リーン時の空燃比と理論空燃比との差分をΔA/FLとおくと、TLの間に触媒41中で過剰となった酸素量は、
(α・ΔA/FL・GF
となる。
The time elapsed from when the output signal f of the upstream air-fuel ratio sensor 43 indicates air-fuel ratio lean until the output signal g of the downstream air-fuel ratio sensor 44 indicates air-fuel ratio lean is set as T L. If the total weight of the fuel supplied during L is G F , and the difference between the lean air-fuel ratio and the stoichiometric air-fuel ratio is ΔA / F L , the amount of oxygen excess in the catalyst 41 during T L Is
(Α ・ ΔA / F L・ G F )
It becomes.

上式は、TLの時点で触媒41が吸蔵している酸素の量を表している。供給した燃料の総重量GFはやはり、ECU0において演算することができる。即ち、一回の燃料噴射機会における燃料噴射量は、空燃比を理論空燃比よりもリーンな(14.6よりも大きい)所定値とするために必要な量であり、その噴射量に単位時間当たりの膨張行程回数を乗じれば単位時間当たりの燃料供給量となる。そして、単位時間当たりの燃料供給量に経過時間TLを乗じれば、供給した燃料の総重量GFとなる。要するに、下流側空燃比センサ44の出力信号が空燃比リーンを示した時点での経過時間TLに基づいて、触媒41の最大酸素吸蔵能力を算出することが可能である。 The above equation represents the amount of oxygen stored in the catalyst 41 at the time point T L. Total weight G F of the supplied fuel again, it can be calculated in ECU0. That is, the fuel injection amount in one fuel injection opportunity is an amount necessary for setting the air-fuel ratio to a predetermined value leaner than the stoichiometric air-fuel ratio (greater than 14.6). Multiply by the number of expansion strokes per unit, the fuel supply amount per unit time is obtained. Then, when multiplied by the elapsed time T L in the fuel supply amount per unit time, the total weight G F of the supplied fuel. In short, it is possible to calculate the maximum oxygen storage capacity of the catalyst 41 based on the elapsed time T L when the output signal of the downstream air-fuel ratio sensor 44 indicates the air-fuel ratio lean.

厳密には、TLの期間において、運転者のアクセル操作等に起因して単位時間当たりの燃料供給量(または、一回の噴射量)は増減し得る。故に、TLの期間中の供給燃料の総重量GFは、単位時間当たりの供給量gF(t)をTLの範囲で時間積分して求めることが好ましい。ΔA/FL(t)を理論空燃比とA/Fセンサ11を介して計測した実測空燃比との差分とすれば、触媒31の最大酸素吸蔵能力を、TLの期間の時間積分として求めることができる。即ち;
α∫{ΔA/FL(t)・gF(t)}dt
触媒41のダイアグノーシスは、触媒41の劣化の兆候を感知したことを契機として実施する。その兆候の例としては、内燃機関の運転中に刻々と変動する下流側空燃比センサ44の出力電圧gの振動の周波数が閾値よりも高く(または、振動の周期が閾値よりも短く)なったことや、上流側空燃比センサ43の出力電圧fの変動と下流側空燃比センサ44の出力電圧gの変動との時間差が閾値よりも短くなったこと等が挙げられる。
Strictly speaking, during the period of TL , the fuel supply amount (or injection amount per time) per unit time can be increased or decreased due to the driver's accelerator operation or the like. Thus, the total weight G F of the fuel supplied during the T L, it is preferable to determine the supply amount g F per unit time (t) and the time integral in the range of T L. If ΔA / F L (t) is the difference between the stoichiometric air-fuel ratio and the actually measured air-fuel ratio measured via the A / F sensor 11, the maximum oxygen storage capacity of the catalyst 31 is obtained as the time integral of the period of T L. be able to. Ie;
α∫ {ΔA / F L (t) · g F (t)} dt
Diagnosis of the catalyst 41 is performed when a sign of deterioration of the catalyst 41 is detected. As an example of the sign, the frequency of oscillation of the output voltage g of the downstream side air-fuel ratio sensor 44, which fluctuates every time during the operation of the internal combustion engine, is higher than the threshold (or the cycle of oscillation is shorter than the threshold). For example, the time difference between the fluctuation of the output voltage f of the upstream air-fuel ratio sensor 43 and the fluctuation of the output voltage g of the downstream air-fuel ratio sensor 44 is shorter than a threshold value.

但し、触媒41のダイアグノーシスの実施は、内燃機関の冷却水温が所定以上、内燃機関の負荷、気筒1に充填される吸気量、エンジン回転数、空燃比フィードバック制御による補正係数FAF及び触媒41の温度がそれぞれ所定範囲内、等といった諸条件がおしなべて成立していることを前提とする。   However, the diagnosis of the catalyst 41 is performed when the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined value, the load of the internal combustion engine, the intake amount charged into the cylinder 1, the engine speed, the correction coefficient FAF by the air-fuel ratio feedback control, and the catalyst 41 It is assumed that various conditions such as the temperature being within a predetermined range are all satisfied.

また、触媒41のダイアグノーシスは、一トリップ(イグニッションスイッチがONに操作されて内燃機関を始動してから、イグニッションスイッチがOFFに操作されて内燃機関を停止するまでの期間)毎に少なくとも一回実施することが好ましい。   Further, the diagnosis of the catalyst 41 is performed at least once every trip (a period from when the ignition switch is turned on to start the internal combustion engine until the ignition switch is turned off to stop the internal combustion engine). It is preferable to implement.

図2に示しているように、アクティブ制御では、下流側空燃比センサ44の出力電圧gが所定のリッチ判定値に到達した、即ち出力gがリーンからリッチへと切り替わったタイミングで、制御目標空燃比をリーン側の所定空燃比に設定し、上流側空燃比センサ43の出力電圧fが当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒41に流入するガスの空燃比を強制的にリーン化する。そして、上流側空燃比センサ43の出力電圧fが前記制御目標に対応した値に到達してから、下流側空燃比センサ44の出力電圧gが所定のリーン判定値に到達するまでの間の経過時間TL、即ち出力gが再度リーンへと切り替わるまでの経過時間TLを計測する。リッチ判定値とリーン判定値とは、相異なる値であってもよく、同一の値であってもよい。 As shown in FIG. 2, in the active control, the control target empty position is reached at the timing when the output voltage g of the downstream air-fuel ratio sensor 44 reaches a predetermined rich determination value, that is, when the output g is switched from lean to rich. The fuel ratio is corrected so that the fuel ratio is set to a predetermined lean air-fuel ratio and the output voltage f of the upstream air-fuel ratio sensor 43 takes a value corresponding to the control target. As a result, the air-fuel ratio of the gas flowing into the catalyst 41 is forcibly made lean. Then, the time from when the output voltage f of the upstream air-fuel ratio sensor 43 reaches a value corresponding to the control target until the output voltage g of the downstream air-fuel ratio sensor 44 reaches a predetermined lean determination value. Time T L , that is, elapsed time T L until output g switches to lean again is measured. The rich determination value and the lean determination value may be different values or the same value.

並びに、下流側空燃比センサ44の出力gがリッチからリーンへと切り替わったタイミングで、制御目標空燃比をリッチ側の所定空燃比に設定し、上流側空燃比センサ43の出力電圧fが当該制御目標に対応した値をとるように燃料噴射量を補正する。これにより、触媒41に流入するガスの空燃比を強制的にリッチ化する。そして、上流側空燃比センサ43の出力電圧fが前記制御目標に対応した値に到達してから、下流側空燃比センサ44の出力電圧gが所定のリーン判定値に到達するまでの間の経過時間TR、即ち出力gが再度リッチへと切り替わるまでの経過時間TRを計測する。 In addition, at the timing when the output g of the downstream side air-fuel ratio sensor 44 is switched from rich to lean, the control target air-fuel ratio is set to the predetermined air-fuel ratio on the rich side, and the output voltage f of the upstream side air-fuel ratio sensor 43 is controlled. The fuel injection amount is corrected so as to take a value corresponding to the target. As a result, the air-fuel ratio of the gas flowing into the catalyst 41 is forcibly enriched. Then, the time from when the output voltage f of the upstream air-fuel ratio sensor 43 reaches a value corresponding to the control target until the output voltage g of the downstream air-fuel ratio sensor 44 reaches a predetermined lean determination value. Time T R , that is, elapsed time T R until output g switches to rich again is measured.

ECU0は、酸素吸蔵能力一杯まで酸素を吸蔵していた触媒41がその酸素の全てを放出するのに要した時間TR、及び、酸素を吸蔵していない触媒41が酸素吸蔵能力一杯まで酸素を吸蔵するのに要した時間TLをそれぞれ一回以上計測し、計測したTR、TLを基に最大酸素吸蔵能力(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を算出して、それらの平均値を求める。 The ECU 0 determines the time T R required for the catalyst 41 that has stored oxygen to the full oxygen storage capacity to release all of the oxygen, and the catalyst 41 that has not stored oxygen to the oxygen storage capacity to the full. the time T L taken to storage measured more than once each, the measured T R, the maximum oxygen storage capacity based on T L (α · ΔA / F R · G F), (α · ΔA / F L Calculate G F ) and find the average of them.

触媒41が劣化したか否かの判断は、当該触媒41の最大酸素吸蔵能力(の複数回の推算値の平均)を判定閾値を比較することにより行う。即ち、最大酸素吸蔵能力が判定閾値未満であれば、当該触媒41は既に劣化しており十分な性能を発揮できないものと診断される。触媒41が劣化しているとの判断を下したECU0は、触媒41の異常の旨を示す情報(ダイアグノーシスコード)をメモリに記憶保持するとともに、触媒41の異常の旨を運転者の視覚または聴覚に訴えかける態様で出力して報知する。例えば、コックピット内のエンジンチェックランプを点灯させたり、ディスプレイに表示させたり、警告音を発したりして、触媒41の点検及び交換を促す。   The determination of whether or not the catalyst 41 has deteriorated is made by comparing the maximum oxygen storage capacity of the catalyst 41 (the average of a plurality of estimated values) with a determination threshold value. That is, if the maximum oxygen storage capacity is less than the determination threshold, it is diagnosed that the catalyst 41 has already deteriorated and cannot exhibit sufficient performance. The ECU 0 that has determined that the catalyst 41 has deteriorated stores and holds information indicating that the catalyst 41 is abnormal (diagnostic code) in the memory, and also indicates whether the catalyst 41 is abnormal or not. Output and alert in a manner that appeals to the auditory sense. For example, an engine check lamp in the cockpit is turned on, displayed on a display, or a warning sound is emitted to prompt inspection and replacement of the catalyst 41.

車両が高地を走行しているとき等、大気圧が標準大気圧よりも低い状況下では、空燃比センサ43、44の出力信号f、gに依拠して推算される触媒41の最大酸素吸蔵能力が、実際の触媒41の能力よりも目減りして推算される。そのような状況下で触媒41のダイアグノーシスの契機が訪れた場合、未だ必要十分な性能を有している触媒41であるにもかかわらず、酸素吸蔵能力の推算値が判定閾値を下回り、劣化した触媒41であると誤判定してしまうおそれがある。   When the atmospheric pressure is lower than the standard atmospheric pressure, such as when the vehicle is traveling on a high altitude, the maximum oxygen storage capacity of the catalyst 41 is estimated based on the output signals f and g of the air-fuel ratio sensors 43 and 44. However, it is estimated to be less than the actual capacity of the catalyst 41. In such a situation, when an opportunity for diagnosis of the catalyst 41 comes, the estimated value of the oxygen storage capacity falls below the determination threshold even though the catalyst 41 still has the necessary and sufficient performance, and deteriorated. The catalyst 41 may be erroneously determined as being the same.

そこで、本実施形態のECU0は、大気圧センサの出力信号hを参照して現在の大気圧をセンシングしておき、触媒41のダイアグノーシスを実施する際の大気圧の高低に応じて、空燃比センサ43の出力信号fと触媒41に流入するガスの実際の空燃比との関係特性を変更するようにしている。   Therefore, the ECU 0 of the present embodiment senses the current atmospheric pressure with reference to the output signal h of the atmospheric pressure sensor, and according to the level of the atmospheric pressure when the diagnosis of the catalyst 41 is performed, the air-fuel ratio The relational characteristic between the output signal f of the sensor 43 and the actual air-fuel ratio of the gas flowing into the catalyst 41 is changed.

より具体的に述べると、ECU0のメモリには予め、大気圧と大気中の酸素分圧との関係を規定したマップデータ、並びに、大気中の酸素分圧と空燃比センサ43の入出力特性との関係を規定したマップデータが格納されている。いわば、大気圧の大きさ毎に異なる、複数の空燃比センサ43の入出力特性を記憶保持している。ここで、空燃比センサ43の入出力特性とは、空燃比センサ43の出力信号fの電圧値を触媒41に流入するガスの空燃比の値に換算するためのマップデータまたは関数式である。   More specifically, the ECU 0 memory preliminarily maps data defining the relationship between the atmospheric pressure and the oxygen partial pressure in the atmosphere, and the oxygen partial pressure in the atmosphere and the input / output characteristics of the air-fuel ratio sensor 43. Map data defining the relationship is stored. In other words, the input / output characteristics of a plurality of air-fuel ratio sensors 43 that differ depending on the magnitude of the atmospheric pressure are stored and held. Here, the input / output characteristic of the air-fuel ratio sensor 43 is map data or a function expression for converting the voltage value of the output signal f of the air-fuel ratio sensor 43 into the value of the air-fuel ratio of the gas flowing into the catalyst 41.

ECU0は、現在の大気圧をキーとして前者のマップを検索し、現在の大気中の酸素分圧を知得する。さらに、その酸素分圧をキーとして後者のマップを検索し、酸素分圧に対応した空燃比センサ43の入出力特性を選出する。このようにして、触媒41に流入するガスの空燃比の計測に用いる空燃比センサ43の入出力特性を切り替える。   The ECU 0 searches the former map using the current atmospheric pressure as a key, and obtains the current oxygen partial pressure in the atmosphere. Further, the latter map is searched using the oxygen partial pressure as a key, and input / output characteristics of the air-fuel ratio sensor 43 corresponding to the oxygen partial pressure are selected. In this way, the input / output characteristics of the air-fuel ratio sensor 43 used for measuring the air-fuel ratio of the gas flowing into the catalyst 41 are switched.

その上で、大気圧に応じて選出した入出力特性に照らし合わせて、空燃比センサ43の出力信号fの電圧を、触媒41に流入するガスの空燃比に換算する。これにより、減圧下においても、触媒41に流入するガスの空燃比を精度よく知得することが可能となる。その空燃比を以て上述のΔA/FRまたはΔA/FLを算定し、触媒41の酸素吸蔵能力(α・ΔA/FR・GF)または(α・ΔA/FL・GF)を推算すれば、触媒41のダイアグノーシスにおける誤判定のリスクを著しく低減できる。 Then, the voltage of the output signal f of the air-fuel ratio sensor 43 is converted into the air-fuel ratio of the gas flowing into the catalyst 41 in light of the input / output characteristics selected according to the atmospheric pressure. As a result, the air-fuel ratio of the gas flowing into the catalyst 41 can be accurately obtained even under reduced pressure. The above ΔA / F R or ΔA / F L is calculated using the air-fuel ratio, and the oxygen storage capacity (α · ΔA / F R · G F ) or (α · ΔA / F L · G F ) of the catalyst 41 is estimated. By doing so, the risk of erroneous determination in the diagnosis of the catalyst 41 can be significantly reduced.

本実施形態では、内燃機関の排気通路4に装着される排気ガス浄化用の触媒41の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの間の経過時間TR、TLを計測することを通じて、触媒41の酸素吸蔵能力(α・ΔA/FR・GF)、(α・ΔA/FL・GF)を推算するものであって、その際の大気圧の高低に応じて、触媒41に流入するガスの空燃比を検出する空燃比センサ43の出力信号fと当該ガスの空燃比との関係特性を変更し、その上で空燃比センサ43の出力信号fから当該ガスの空燃比を知得して、当該ガスの空燃比を用いて触媒41の酸素吸蔵能力を推算する内燃機関の制御装置0を構成した。 In this embodiment, the elapsed time from when the air-fuel ratio on the upstream side of the exhaust gas purification catalyst 41 mounted in the exhaust passage 4 of the internal combustion engine is forcibly changed until the air-fuel ratio on the downstream side is changed. By measuring T R and T L , the oxygen storage capacity (α · ΔA / F R · G F ) and (α · ΔA / F L · G F ) of the catalyst 41 are estimated. The relationship between the output signal f of the air-fuel ratio sensor 43 that detects the air-fuel ratio of the gas flowing into the catalyst 41 and the air-fuel ratio of the gas is changed according to the level of the atmospheric pressure, and the air-fuel ratio sensor 43 is then changed. The control device 0 of the internal combustion engine is configured to obtain the air-fuel ratio of the gas from the output signal f of the gas and to estimate the oxygen storage capacity of the catalyst 41 using the air-fuel ratio of the gas.

本実施形態によれば、減圧下における触媒41の酸素吸蔵能力の推定の精度をより一層向上させることができ、未だ必要十分な性能を有している触媒41を劣化した触媒であると誤判定したり、あるいは逆に劣化した触媒41を劣化していない触媒41であると誤判定したりするリスクが非常に小さくなる。誤判定のリスクの低減は、触媒41に使用する貴金属の量を減らすことにもつながり、コストの低廉化に資する。   According to this embodiment, the accuracy of estimation of the oxygen storage capacity of the catalyst 41 under reduced pressure can be further improved, and the catalyst 41 that still has the necessary and sufficient performance is erroneously determined as a deteriorated catalyst. Or, on the contrary, the risk of erroneously determining that the catalyst 41 that has deteriorated is the catalyst 41 that has not deteriorated becomes very small. Reduction of the risk of erroneous determination also leads to a reduction in the amount of noble metal used for the catalyst 41, which contributes to a reduction in cost.

なお、本発明は以上に詳述した実施形態には限られない。各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
4…排気通路
41…触媒
43…触媒上流の空燃比センサ
44…触媒下流の空燃比センサ
f…触媒上流の空燃比信号
g…触媒下流の空燃比信号
h…大気圧信号
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 4 ... Exhaust passage 41 ... Catalyst 43 ... Air-fuel ratio sensor upstream of catalyst 44 ... Air-fuel ratio sensor downstream of catalyst f ... Air-fuel ratio signal upstream of catalyst g ... Air-fuel ratio signal downstream of catalyst h ... Atmospheric pressure signal

Claims (1)

内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流側の空燃比を強制的に変動させてから下流側の空燃比が変動するまでの期間を利用して触媒の酸素吸蔵能力の推定を行うものであり、
その際の大気圧の高低に応じて、触媒に流入するガスの空燃比を検出する空燃比センサの出力信号と当該ガスの空燃比との関係特性を変更し、その上で空燃比センサの出力信号から当該ガスの空燃比を知得して、当該ガスの空燃比を用いて触媒の酸素吸蔵能力を推算する内燃機関の制御装置。
The oxygen storage capacity of the catalyst is determined by using the period from when the air-fuel ratio on the upstream side of the exhaust gas purifying catalyst mounted in the exhaust passage of the internal combustion engine is forcibly changed until the air-fuel ratio on the downstream side fluctuates. Is an estimation,
In accordance with the atmospheric pressure at that time, the relationship between the output signal of the air-fuel ratio sensor for detecting the air-fuel ratio of the gas flowing into the catalyst and the air-fuel ratio of the gas is changed, and then the output of the air-fuel ratio sensor is changed. A control device for an internal combustion engine that obtains the air-fuel ratio of the gas from a signal and estimates the oxygen storage capacity of the catalyst using the air-fuel ratio of the gas.
JP2014197615A 2014-09-26 2014-09-26 Control device for internal combustion engine Pending JP2016070105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197615A JP2016070105A (en) 2014-09-26 2014-09-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197615A JP2016070105A (en) 2014-09-26 2014-09-26 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016070105A true JP2016070105A (en) 2016-05-09

Family

ID=55866440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197615A Pending JP2016070105A (en) 2014-09-26 2014-09-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016070105A (en)

Similar Documents

Publication Publication Date Title
US7739868B2 (en) Deterioration diagnostic system of exhaust gas purifying catalyst
JPH1162728A (en) Vaporized fuel concentration determining device for internal combustion engine
JP2017044172A (en) Control device for internal combustion engine
JP2016070106A (en) Control device for internal combustion engine
JP2018173005A (en) Control device for internal combustion engine
JP2016070156A (en) Control device for internal combustion engine
JP2016070105A (en) Control device for internal combustion engine
JP7013090B2 (en) Internal combustion engine control device
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP6166646B2 (en) Control device for internal combustion engine
JP2018105163A (en) Control device of internal combustion engine
JP6961307B2 (en) Internal combustion engine control device
JP2015121191A (en) Control device for internal combustion engine
JP6238729B2 (en) Control device for internal combustion engine
JP7123512B2 (en) Control device for internal combustion engine
JPH07158425A (en) Exhaust emission control device for internal combustion engine
JP2015086746A (en) Internal combustion engine control device
JP2005194981A (en) Catalyst deterioration determining device
JP7143032B2 (en) Control device for internal combustion engine
JP2015094285A (en) Control device of internal combustion engine
JP2021055596A (en) Control device for vehicle
JP2015140759A (en) Control device for internal combustion engine
JP2015121192A (en) Control device for internal combustion engine
JP5988721B2 (en) Control device for internal combustion engine
JP2019135382A (en) Control device of internal combustion engine