JP2008138562A - Deterioration diagnostic system of exhaust emission control device of internal combustion engine - Google Patents

Deterioration diagnostic system of exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008138562A
JP2008138562A JP2006324553A JP2006324553A JP2008138562A JP 2008138562 A JP2008138562 A JP 2008138562A JP 2006324553 A JP2006324553 A JP 2006324553A JP 2006324553 A JP2006324553 A JP 2006324553A JP 2008138562 A JP2008138562 A JP 2008138562A
Authority
JP
Japan
Prior art keywords
fuel ratio
catalyst
reducing agent
air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006324553A
Other languages
Japanese (ja)
Other versions
JP4706977B2 (en
Inventor
Daisuke Shibata
大介 柴田
Yutaka Sawada
裕 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006324553A priority Critical patent/JP4706977B2/en
Publication of JP2008138562A publication Critical patent/JP2008138562A/en
Application granted granted Critical
Publication of JP4706977B2 publication Critical patent/JP4706977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration diagnostic system of an exhaust emission control device of an internal combustion engine capable of surely diagnosing the deterioration without increasing cost. <P>SOLUTION: This deterioration diagnostic system of the exhaust emission control deice is provided by arranging a preprocessing catalyst 132 in an exhaust passage and a storage-reduction type NOx catalyst 136 on its downstream side, and has a first A/F sensor 138 arranged on the upstream side of the storage reduction type NOx catalyst on the downstream side of the preprocessing catalyst, a second A/F sensor 139 arranged on the downstream side of the storage reduction type NOx catalyst, a reducing agent adding valve 115, and a diagnostic means for diagnosing a deterioration degree of the preprocessing catalyst based on the size of a difference, by determining the difference between an arrival exhaust air-fuel ratio value detected by the first A/F sensor and an arrival exhaust air-fuel ratio value detected by the second A/F sensor in a predetermined time when operating the reducing agent adding valve 115, by operating the reducing agent adding valve 115 in the predetermined timing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気ガス浄化装置の劣化診断装置に関し、特に、排気通路に酸化機能を有する前処理触媒とその下流に吸蔵還元型NOx触媒とが設置された内燃機関の排気浄化装置の劣化診断装置に関する。   The present invention relates to a deterioration diagnosis device for an exhaust gas purification device of an internal combustion engine, and more particularly to an exhaust purification device for an internal combustion engine in which a pretreatment catalyst having an oxidation function in an exhaust passage and an NOx storage reduction catalyst are installed downstream thereof. The present invention relates to a deterioration diagnosis apparatus.

一般に、例えばディーゼル機関や希薄燃焼式のガソリン機関において、酸化(リーン)雰囲気で排気中の窒素酸化物(NOx)を吸蔵させ、その後、還元剤(燃料等)を排気中に供給することにより還元(リッチ、ストイキ)雰囲気にして、吸蔵されていたNOxを放出させ、且つ還元して浄化する吸蔵還元型NOx触媒を用いた排気浄化装置が知られている。そして、常時リーン状態で用いられるディーゼル機関の場合には、この吸蔵還元型NOx触媒に対する還元雰囲気を確実に形成するために、該吸蔵還元型NOx触媒の上流に還元剤添加装置や酸化機能を有する前処理触媒としての酸化触媒や三元触媒が配置された排気浄化装置が提案されている。   In general, for example, in a diesel engine or a lean-burn gasoline engine, nitrogen oxide (NOx) in exhaust gas is occluded in an oxidizing (lean) atmosphere, and then reduced by supplying a reducing agent (fuel, etc.) into the exhaust gas. 2. Description of the Related Art There is known an exhaust gas purification apparatus that uses an NOx storage reduction catalyst that releases (stores rich) stoichiometric NOx and reduces and purifies the stored NOx. In the case of a diesel engine that is always used in a lean state, in order to reliably form a reducing atmosphere for the NOx storage reduction catalyst, it has a reducing agent addition device and an oxidation function upstream of the NOx storage reduction catalyst. An exhaust emission control device in which an oxidation catalyst or a three-way catalyst as a pretreatment catalyst is arranged has been proposed.

この吸蔵還元型NOx触媒は、排気ガスリーン状態においては、NOxを吸蔵する一方、逆に排気ガスリッチ状態においては、吸蔵したNOxを放出する特性を有する。そして、排気ガスリッチ状態においては、吸蔵還元型NOx触媒から放出されるNOxがHC、COにより還元されて、窒素ガスとして排出され、またHC、COは酸化されて水蒸気及び二酸化炭素として排出される。   The NOx storage reduction catalyst has a characteristic of storing NOx in the exhaust gas lean state, and conversely releasing the stored NOx in the exhaust gas rich state. In the exhaust gas rich state, NOx released from the NOx storage reduction catalyst is reduced by HC and CO and discharged as nitrogen gas, and HC and CO are oxidized and discharged as water vapor and carbon dioxide.

また、吸蔵還元型NOx触媒が、吸蔵できるNOx量には当然限界があり、この限界値は、吸蔵還元型NOx触媒が劣化すると小さくなる傾向を示す。そのため、吸蔵還元型NOx触媒の上流側及び下流側に酸素濃度センサを配置し、吸蔵還元型NOx触媒に吸蔵されたNOxを放出させるための空燃比リッチ化を実行し、上流側酸素濃度センサがリッチ空燃比を示す値に変化した時点から、下流側酸素濃度センサの出力値がリッチ空燃比を示す値に変化する時点までの遅れ時間に基づき、吸蔵還元型NOx触媒の劣化度合を判定する手法が知られている。   Further, there is a limit to the amount of NOx that the NOx storage reduction catalyst can store, and this limit value tends to decrease as the NOx storage reduction catalyst deteriorates. Therefore, oxygen concentration sensors are disposed upstream and downstream of the NOx storage reduction catalyst, and air-fuel ratio enrichment is performed to release NOx stored in the NOx storage reduction catalyst. A method of determining the degree of deterioration of the NOx storage reduction catalyst based on the delay time from the time when the rich air-fuel ratio is changed to a value when the output value of the downstream oxygen concentration sensor is changed to a value showing the rich air-fuel ratio. It has been known.

ところが、希薄燃焼式のガソリン機関の場合でも、常にリーン運転を行うわけではなく、機関運転状態によっては、空燃比を理論空燃比に設定するストイキ運転や、理論空燃比よりリッチ側の空燃比に設定するリッチ運転も行うので、通常は吸蔵還元型NOx触媒だけでなく、酸化還元作用を有する三元触媒も併用される。また、ディーゼル機関の場合には、この吸蔵還元型NOx触媒に対する還元雰囲気を確実に形成するために、該吸蔵還元型NOx触媒の上流に還元剤添加装置や酸化機能を有する前処理触媒としての酸化触媒や三元触媒が配置されること上述の通りである。   However, even in the case of a lean-burn gasoline engine, lean operation is not always performed, and depending on the engine operation state, stoichiometric operation in which the air-fuel ratio is set to the stoichiometric air-fuel ratio, or to an air-fuel ratio richer than the stoichiometric air-fuel ratio. Since the rich operation to be set is also performed, not only the NOx storage reduction catalyst but also a three-way catalyst having a redox action is used in combination. Further, in the case of a diesel engine, in order to reliably form a reducing atmosphere for the NOx storage reduction catalyst, an oxidation as a reducing agent addition device or a pretreatment catalyst having an oxidation function is provided upstream of the NOx storage reduction catalyst. As described above, the catalyst and the three-way catalyst are arranged.

このような三元触媒が劣化してくると、空燃比をリーン空燃比からリッチ空燃比に変更したときに、三元触媒下流側において酸素濃度が低下するタイミングが早くなり、かつ還元作用を有するHC、COの濃度も大きくなるため、吸蔵還元型NOx触媒に吸蔵されたNOx量が同じであってもその還元に要する時間が変化し、吸蔵還元型NOx触媒の劣化を正確に判定できない場合があることから、吸蔵還元型NOx触媒が三元触媒の下流側に配置される場合でも、その劣化度合を正確に判定すべく、このような吸蔵還元型NOx触媒の上流側に設けられた三元触媒を備えた排気ガス浄化装置において、吸蔵還元型NOx触媒の上流および下流に排気ガス中の酸素濃度を検出する第1および第2の酸素濃度センサをそれぞれ設けると共に、三元触媒の上流側に第3の酸素濃度センサを設け、三元触媒の劣化度合と吸蔵還元型NOx触媒の劣化を判定するようにした技術が特許文献1に開示されている。   When such a three-way catalyst deteriorates, when the air-fuel ratio is changed from a lean air-fuel ratio to a rich air-fuel ratio, the timing at which the oxygen concentration decreases on the downstream side of the three-way catalyst becomes earlier and has a reducing action. Since the concentration of HC and CO also increases, the time required for the reduction may change even if the NOx amount stored in the NOx storage reduction catalyst is the same, and deterioration of the NOx storage reduction catalyst may not be accurately determined. Therefore, even when the NOx storage reduction catalyst is arranged on the downstream side of the three-way catalyst, the three-way provided on the upstream side of such an NOx storage reduction catalyst in order to accurately determine the degree of deterioration thereof. In the exhaust gas purification apparatus provided with the catalyst, first and second oxygen concentration sensors for detecting the oxygen concentration in the exhaust gas are provided upstream and downstream of the NOx storage reduction catalyst, respectively. A third oxygen concentration sensor provided upstream of the catalyst, the techniques so as to determine the deterioration of the degree of deterioration of the three-way catalyst and NOx storage reduction catalyst is disclosed in Patent Document 1.

特開2000−328929号公報JP 2000-328929 A

しかしながら、特許文献1に記載の技術は、ガソリン機関用であり、上流側の三元触媒の劣化度合と下流側の吸蔵還元型NOx触媒の劣化判定を行なうのに、第1ないし第3の酸素濃度センサを設けることにより劣化判定を行うものであり、その酸素濃度センサの個数が増加する分コストアップすることが避けられないという問題を有している。   However, the technique described in Patent Document 1 is for a gasoline engine, and the first to third oxygens are used to determine the degree of deterioration of the upstream three-way catalyst and the deterioration of the NOx storage reduction catalyst on the downstream side. Degradation determination is performed by providing a concentration sensor, and there is a problem that cost increases due to an increase in the number of oxygen concentration sensors.

本発明はかかる事情に鑑みなされたもので、その目的は、コストアップを伴うことなく確実に劣化診断を行なうことのできる内燃機関の排気浄化装置の劣化診断装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a deterioration diagnosis device for an exhaust gas purification apparatus for an internal combustion engine that can reliably perform deterioration diagnosis without increasing the cost.

上記目的を達成する本発明の一形態に係る内燃機関の排気浄化装置の劣化診断装置は、排気通路に酸化機能を有する前処理触媒とその下流に吸蔵還元型NOx触媒とが設置された内燃機関の排気浄化装置の劣化診断装置であって、前記前処理触媒の下流で前記吸蔵還元型NOx触媒の上流に配置された第1の排気空燃比検出手段と、前記吸蔵還元型NOx触媒の下流に配置された第2の排気空燃比検出手段と、
前記前処理触媒の上流において、排気ガスに還元剤を添加する第1の還元剤添加手段と、所定の時期に前記第1の還元剤添加手段を作動させる第1の還元剤添加手段作動手段と、前記第1の還元剤添加手段作動手段による前記第1の還元剤添加手段の作動時の所定時間内において、前記第1の排気空燃比検出手段により検出される到達排気空燃比値と前記第2の排気空燃比検出手段により検出される到達排気空燃比値との差を求め、該差の大小に基づき、前記前処理触媒の劣化度合を診断する診断手段と、を備えることを特徴とする。
A deterioration diagnosis device for an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention that achieves the above object is an internal combustion engine in which a pretreatment catalyst having an oxidation function in an exhaust passage and an NOx storage reduction catalyst are installed downstream thereof. The exhaust gas purification device deterioration diagnosis apparatus of the present invention further comprises a first exhaust air / fuel ratio detection means disposed downstream of the pretreatment catalyst and upstream of the NOx storage reduction catalyst, and downstream of the NOx storage reduction catalyst. A second exhaust air / fuel ratio detecting means disposed;
Upstream of the pretreatment catalyst, a first reducing agent adding means for adding a reducing agent to exhaust gas; and a first reducing agent adding means operating means for operating the first reducing agent adding means at a predetermined time; The first exhaust air / fuel ratio value detected by the first exhaust air / fuel ratio detection means and the first exhaust air / fuel ratio value within a predetermined time when the first reducing agent addition means is actuated by the first reducing agent addition means actuating means. And a diagnostic means for diagnosing the degree of deterioration of the pretreatment catalyst based on a difference between the exhaust exhaust air / fuel ratio value detected by the exhaust air / fuel ratio detection means of 2 and the magnitude of the difference. .

上記本発明の一形態に係る内燃機関の排気浄化装置の劣化診断装置においては、所定の時期に、第1の還元剤添加手段作動手段により第1の還元剤添加手段が作動され、前処理触媒の上流において排気ガスに還元剤が添加されると、排気空燃比がリッチ側に移行された排気ガスが、酸化機能を有する前処理触媒とその下流の吸蔵還元型NOx触媒とを流通することになる。このリッチ側に移行された排気ガスの排気空燃比は、前処理触媒の下流で吸蔵還元型NOx触媒の上流に配置された第1の排気空燃比検出手段と、吸蔵還元型NOx触媒の下流に配置された第2の排気空燃比検出手段とにより検出される。すなわち、第1の還元剤添加手段作動手段による第1の還元剤添加手段の作動時の所定時間内において、第1の排気空燃比検出手段により検出される到達触媒前空燃比値と第2の排気空燃比検出手段により検出される到達触媒後空燃比値とが検出され、さらに、この到達触媒前空燃比値と到達触媒後空燃比値との差が求められ、診断手段により該差の大小に基づいて前処理触媒の劣化度合が診断される。   In the deterioration diagnosis device for an exhaust gas purification apparatus for an internal combustion engine according to one aspect of the present invention, the first reducing agent adding means is operated by the first reducing agent adding means operating means at a predetermined time, and the pretreatment catalyst When the reducing agent is added to the exhaust gas upstream of the exhaust gas, the exhaust gas whose exhaust air-fuel ratio has shifted to the rich side flows through the pretreatment catalyst having an oxidation function and the NOx storage reduction catalyst downstream thereof. Become. The exhaust air / fuel ratio of the exhaust gas shifted to the rich side is the first exhaust air / fuel ratio detecting means disposed downstream of the pretreatment catalyst and upstream of the NOx storage reduction catalyst, and downstream of the NOx storage reduction catalyst. It is detected by the arranged second exhaust air / fuel ratio detecting means. That is, within a predetermined time when the first reducing agent adding means is operated by the first reducing agent adding means operating means, the pre-catalyst pre-catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detecting means and the second The after-catalyst air-fuel ratio value detected by the exhaust air-fuel ratio detection means is detected, and further, the difference between the pre-catalyst air-fuel ratio value and the after-catalyst air-fuel ratio value is obtained. Based on this, the degree of deterioration of the pretreatment catalyst is diagnosed.

詳しくは、前処理触媒の酸化機能が低下ないしは劣化した場合は、添加された還元剤と排気ガス中の酸素との酸化反応が十分に行なわれず、第1の排気空燃比検出手段をまず通過する排気ガスの排気空燃比は、排気空燃比検出手段が感知する酸素濃度が実際よりも高くなり、出力としてはリーンにずれる。ところが、その後、吸蔵還元型NOx触媒を通過するとこの排気ガス中の酸素は該触媒での酸化反応に使用され、到達排気空燃比はリッチ側に移行する。従って、到達触媒前空燃比値と到達触媒後空燃比値との差が大きいときは、前処理触媒での酸化機能が十分ではなく劣化していると診断される。逆に、到達触媒前空燃比値と到達触媒後空燃比値との差が小さいときは、前処理触媒で排気ガス中の酸素が処理された結果であり、前処理触媒は正常に機能していると診断される。   Specifically, when the oxidation function of the pretreatment catalyst decreases or deteriorates, the oxidation reaction between the added reducing agent and oxygen in the exhaust gas is not sufficiently performed, and first passes through the first exhaust air-fuel ratio detection means. The exhaust air / fuel ratio of the exhaust gas is higher than the actual oxygen concentration sensed by the exhaust air / fuel ratio detection means, and the output is shifted to lean. However, after that, when passing through the NOx storage reduction catalyst, oxygen in the exhaust gas is used for the oxidation reaction in the catalyst, and the ultimate exhaust air-fuel ratio shifts to the rich side. Therefore, when the difference between the pre-catalyst pre-catalyst air-fuel ratio value and the post-catalyst air-fuel ratio value is large, it is diagnosed that the oxidation function of the pretreatment catalyst is not sufficient and deteriorated. In contrast, when the difference between the pre-catalyst pre-catalyst air-fuel ratio value and the post-catalyst post-air-fuel ratio value is small, it is the result of the oxygen in the exhaust gas being treated by the pre-treatment catalyst, and the pre-treatment catalyst is functioning normally. Is diagnosed.

従って、上記一形態の構成によれば、第3の酸素濃度センサなどの追加部品を必要とすることなく、単に、第1の排気空燃比検出手段による到達触媒前空燃比値および第2の排気空燃比検出手段による到達触媒後空燃比値の差に基づきコストアップを伴うことなく確実に前処理触媒の劣化診断を行なうことができる。   Therefore, according to the configuration of the above aspect, the pre-catalyst pre-catalyst air-fuel ratio value and the second exhaust gas are simply detected by the first exhaust air-fuel ratio detection means without requiring additional parts such as a third oxygen concentration sensor. The deterioration diagnosis of the pretreatment catalyst can be reliably performed based on the difference in the after-catalyst post-catalyst air-fuel ratio value by the air-fuel ratio detection means without increasing costs.

ここで、前記第1の還元剤添加手段により添加供給される還元剤量は、排気空燃比がストイキに到達しない量であってもよい。   Here, the amount of reducing agent added and supplied by the first reducing agent addition means may be an amount at which the exhaust air-fuel ratio does not reach stoichiometry.

この形態によれば、還元剤の使用量が少なくて済むと共に、第1および第2の排気空燃比検出手段での検出精度が向上する。   According to this embodiment, the amount of reducing agent used can be reduced, and the detection accuracy of the first and second exhaust air / fuel ratio detection means can be improved.

さらに、前記第1の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比を推定する第1の到達排気空燃比推定手段と、前記第1の到達排気空燃比推定手段により推定された第1の到達排気空燃比推定値と、前記第1の排気空燃比検出手段により検出された到達触媒前空燃比値または前記第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差を求め、該差の大小に基づき、前記第1の還元剤添加手段を診断する第2の診断手段と、前記前処理触媒の上流において、排気ガスに還元剤を添加する第2の還元剤添加手段と、前記第2の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比を推定する第2の到達排気空燃比推定手段と、前記第2の到達排気空燃比推定手段により推定された第2の到達排気空燃比推定値と、前記第1の排気空燃比検出手段により検出された到達触媒前空燃比値または前記第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差を求め、該差の大小に基づき、前記第1の還元剤添加手段、前記前処理触媒および前記吸蔵還元型NOx触媒を診断する第3の診断手段と、を備えるようにしてもよい。   Further, the first reached exhaust air / fuel ratio estimating means for estimating the reached exhaust air / fuel ratio resulting from the amount of reducing agent added and supplied by the first reducing agent adding means, and the first reached exhaust air / fuel ratio estimating means The estimated first reached exhaust air / fuel ratio estimated value, the before-catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detection means, or the after-catalyst detected by the second exhaust air / fuel ratio detection means A difference from the air-fuel ratio value is obtained, and based on the magnitude of the difference, a second diagnostic means for diagnosing the first reducing agent addition means, and a reducing agent is added to the exhaust gas upstream of the pretreatment catalyst. Second reducing agent adding means, second reaching exhaust air / fuel ratio estimating means for estimating the reaching exhaust air / fuel ratio due to the amount of reducing agent added and supplied by the second reducing agent adding means, and the second Estimated by the exhaust air / fuel ratio estimation means 2 reached exhaust air-fuel ratio estimated value, and the pre-catalyst air-fuel ratio value detected by the first exhaust air-fuel ratio detection means or the after-catalyst air-fuel ratio value detected by the second exhaust air-fuel ratio detection means And a third diagnostic means for diagnosing the first reducing agent addition means, the pretreatment catalyst, and the NOx storage reduction catalyst based on the magnitude of the difference.

この形態によれば、第1の到達排気空燃比推定手段により第1の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比が推定され、この推定された第1の到達排気空燃比推定値と、第1の排気空燃比検出手段により検出された到達触媒前空燃比値または第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差が求められる。そして、該差の大小に基づき、第2の診断手段により第1の還元剤添加手段が診断される。すなわち、推定された第1の到達排気空燃比推定値と第1または第2の排気空燃比検出手段による実測値との差が大きく乖離するときは、第1の還元剤添加手段が異常ないしは故障の可能性がある。逆に、その差が小さいときは、第1の還元剤添加手段は正常と診断されるので、前処理触媒は正常に機能しているとの診断が行なわれる。   According to this embodiment, the first exhaust exhaust air / fuel ratio estimation means estimates the ultimate exhaust air / fuel ratio caused by the amount of reducing agent added and supplied by the first reducing agent addition means, and this estimated first arrival is achieved. A difference between the estimated exhaust air / fuel ratio and the pre-catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detection means or the post-catalyst air / fuel ratio value detected by the second exhaust air / fuel ratio detection means is obtained. . Then, based on the magnitude of the difference, the first reducing agent adding means is diagnosed by the second diagnostic means. That is, when the difference between the estimated first reached exhaust air / fuel ratio estimated value and the actually measured value by the first or second exhaust air / fuel ratio detecting means deviates greatly, the first reducing agent adding means is abnormal or malfunctioning. There is a possibility. On the contrary, when the difference is small, the first reducing agent addition means is diagnosed as normal, so that the pretreatment catalyst is diagnosed as functioning normally.

そして、第1の還元剤添加手段が異常ないしは故障の可能性があるとされたときには、第2の還元剤添加手段により前処理触媒の上流において、排気ガスに還元剤が添加され、第2の到達排気空燃比推定手段により第2の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比が推定される。さらに、この推定された第2の到達排気空燃比推定値と、第1の排気空燃比検出手段により検出された到達触媒前空燃比値または第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差が求められる。そして、第3の診断手段により、該差の大小に基づき、第1の還元剤添加手段、前処理触媒および吸蔵還元型NOx触媒が診断される。すなわち、上述の第1の到達排気空燃比推定値と共に第2の到達排気空燃比推定値と第1または第2の排気空燃比検出手段による実測値との差が大きく乖離するときは、第1の還元剤添加手段と第2の還元剤添加手段とにより添加供給された還元剤量に起因する到達排気空燃比は等しいにもかかわらず、推定値と実測値との差が大きいことを意味する。従って、この場合は、第1の還元剤添加手段は正常であるが、前処理触媒および吸蔵還元型NOx触媒が、異常ないしは劣化と診断される。逆に、その差が小さいときは、第1の還元剤添加手段が異常ないしは故障と診断される。   Then, when it is determined that the first reducing agent addition means is abnormal or has a possibility of failure, the reducing agent is added to the exhaust gas upstream of the pretreatment catalyst by the second reducing agent addition means. The ultimate exhaust air / fuel ratio is estimated by the ultimate exhaust air / fuel ratio estimating means due to the amount of reducing agent added and supplied by the second reducing agent addition means. Further, the estimated second reached exhaust air / fuel ratio estimated value, the reached before-catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detecting means, or the reached catalyst detected by the second exhaust air / fuel ratio detecting means. The difference from the rear air-fuel ratio value is obtained. The third diagnosis means diagnoses the first reducing agent addition means, the pretreatment catalyst, and the NOx storage reduction catalyst based on the difference. That is, when the difference between the second ultimate exhaust air / fuel ratio estimated value and the actual value measured by the first or second exhaust air / fuel ratio detecting means is greatly different from the first ultimate exhaust air / fuel ratio estimated value described above, This means that the difference between the estimated value and the actual measurement value is large even though the ultimate exhaust air-fuel ratio due to the amount of reducing agent added and supplied by the reducing agent addition means and the second reducing agent addition means is equal. . Therefore, in this case, the first reducing agent addition means is normal, but the pretreatment catalyst and the NOx storage reduction catalyst are diagnosed as abnormal or deteriorated. On the contrary, when the difference is small, it is diagnosed that the first reducing agent adding means is abnormal or out of order.

従って、この形態によれば、前処理触媒および吸蔵還元型NOx触媒が同時に劣化している場合および第1の還元剤添加手段の異常ないしは故障の場合をも診断できるので、前処理触媒の診断がさらに精度よく行われ得る。   Therefore, according to this embodiment, it is possible to diagnose the case where the pretreatment catalyst and the NOx storage reduction catalyst are simultaneously deteriorated and the case where the first reducing agent addition means is abnormal or faulty. Furthermore, it can be performed with high accuracy.

なお、前記第1および第2の還元剤添加手段が、それぞれ、排気通路に設けられた還元剤添加弁および燃焼室に設けられた燃料噴射弁のいずれか一方およびその他方を用いるものであることが好ましい。   The first and second reducing agent addition means use one or the other of a reducing agent addition valve provided in the exhaust passage and a fuel injection valve provided in the combustion chamber, respectively. Is preferred.

この形態によれば、還元剤添加手段として一つの還元剤添加弁を追加すれば足るので、さほどコストアップを伴わずに実施できる。   According to this embodiment, since it is sufficient to add one reducing agent addition valve as the reducing agent addition means, the embodiment can be implemented without much cost increase.

以下、添付図面を用いて本発明の実施形態について説明する。図1は、本発明を自動車用ディーゼルエンジンに適用した実施形態の概略構成を説明する模式図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

図1において、100はディーゼルエンジン本体、102はエンジン100の吸気通路、104は吸気通路102に設けられたサージタンク、106はサージタンク104と各気筒の吸気ポートとを接続する吸気枝管である。本実施形態では、吸気通路102には吸気通路102を流れる吸入空気の流量を絞る吸気絞り弁108、および吸気を冷却するインタクーラ110が設けられている。吸気絞り弁108はソレノイド、バキュームアクチュエータ等の適宜な形式のアクチュエータ108Aを備え、後述する電子制御ユニット(ECU)200からの制御信号に応じた開度をとる。本実施形態では、吸気絞り弁108は、例えば機関低回転時等に吸気圧力を低下させて、後述するEGR通路152を通ってサージタンク104に還流する排気(EGRガス)量を増大させるために用いられる。   In FIG. 1, 100 is a diesel engine body, 102 is an intake passage of the engine 100, 104 is a surge tank provided in the intake passage 102, and 106 is an intake branch pipe connecting the surge tank 104 and the intake port of each cylinder. . In the present embodiment, the intake passage 102 is provided with an intake throttle valve 108 that restricts the flow rate of intake air flowing through the intake passage 102 and an intercooler 110 that cools intake air. The intake throttle valve 108 includes an actuator 108A of an appropriate type such as a solenoid or a vacuum actuator, and takes an opening degree according to a control signal from an electronic control unit (ECU) 200 described later. In the present embodiment, the intake throttle valve 108 reduces the intake pressure, for example, at the time of low engine rotation, and increases the amount of exhaust gas (EGR gas) that returns to the surge tank 104 through the EGR passage 152 described later. Used.

図1に112で示すのは、吸気通路102の吸気入口近傍に設けられたエアフローメータである。本実施形態では、エアフローメータ112は熱線式流量計等のように、吸気通路102を流れる吸入空気の質量流量を測定可能な形式のものが使用されている。吸気通路102に流入した大気は、エアフローメータ112を通過した後、ターボチャージャ130のタービン130Tで駆動されるコンプレッサ130Cにより昇圧され、吸気通路102に設けられたインタクーラ110により冷却された後サージタンク104、枝管106を経て各気筒に吸入される。   In FIG. 1, an air flow meter 112 is provided near the intake inlet of the intake passage 102. In the present embodiment, the air flow meter 112 is of a type that can measure the mass flow rate of the intake air flowing through the intake passage 102, such as a hot-wire flow meter. After the air flowing into the intake passage 102 passes through the air flow meter 112, it is pressurized by the compressor 130C driven by the turbine 130T of the turbocharger 130, cooled by the intercooler 110 provided in the intake passage 102, and then the surge tank 104. Then, it is sucked into each cylinder through the branch pipe 106.

図1に114で示すのは、各気筒内に燃料を直接に噴射する燃料噴射弁である。燃料噴射弁114は、高圧燃料を貯留する共通の蓄圧室(コモンレール)116に接続されている。機関100の燃料は高圧燃料ポンプ118により昇圧されてコモンレール116に供給され、コモンレール116から各燃料噴射弁114を介して直接各気筒内に噴射される。また、排気中に燃料を還元剤として噴射供給する還元剤添加装置を備えており、本実施の形態では、この還元剤添加装置は、一つの気筒における排気ポートに対し還元剤としての燃料を供給可能な還元剤添加弁115を備え、不図示の供給管を介してコモンレール116に接続されている。   Reference numeral 114 in FIG. 1 denotes a fuel injection valve that directly injects fuel into each cylinder. The fuel injection valve 114 is connected to a common pressure accumulation chamber (common rail) 116 that stores high-pressure fuel. The fuel of the engine 100 is boosted by a high-pressure fuel pump 118, supplied to the common rail 116, and injected directly into each cylinder from the common rail 116 via each fuel injection valve 114. In addition, a reductant addition device that injects and supplies fuel as a reductant into exhaust gas is provided. In this embodiment, this reductant addition device supplies fuel as a reductant to an exhaust port in one cylinder. A possible reducing agent addition valve 115 is provided and connected to the common rail 116 via a supply pipe (not shown).

また、図1に120で示すのは各気筒の排気ポートと排気通路122とを接続する排気マニホルドであり、その下流に上述のターボチャージャ130が配置されている。ターボチャージャ130は排気通路122の排気により駆動される排気タービン130Tと、この排気タービン130Tにより駆動される吸気コンプレッサ130Cとを備えていること前述の通りである。   Further, reference numeral 120 in FIG. 1 denotes an exhaust manifold that connects the exhaust port of each cylinder and the exhaust passage 122, and the above-described turbocharger 130 is disposed downstream thereof. As described above, the turbocharger 130 includes the exhaust turbine 130T driven by the exhaust gas in the exhaust passage 122 and the intake compressor 130C driven by the exhaust turbine 130T.

また、本実施形態では、ターボチャージャ130下流側の排気通路122に、酸化機能を有する前処理触媒装置(例えば、酸化触媒または三元触媒)132が配置されると共に、その下流に排気通路122を流れる排気流量を制御するための排気絞り弁134が配置されている。排気絞り弁134は、吸気絞り弁108と同様なアクチュエータ134Aを備え、ECU200からの制御信号に応じて全開位置と所定の開度の閉弁位置とをとる。本実施形態では排気絞り弁134は、前処理触媒装置132の早期活性化のために排気温度を上昇させる際に用いられる。そして、本実施形態では、排気絞り弁134の下流に上述の吸蔵還元型NOx触媒136が配置されている。   Further, in the present embodiment, a pretreatment catalyst device (for example, an oxidation catalyst or a three-way catalyst) 132 having an oxidation function is disposed in the exhaust passage 122 downstream of the turbocharger 130, and the exhaust passage 122 is disposed downstream thereof. An exhaust throttle valve 134 for controlling the flowing exhaust gas flow rate is arranged. The exhaust throttle valve 134 includes an actuator 134A similar to the intake throttle valve 108, and takes a fully open position and a closed position with a predetermined opening according to a control signal from the ECU 200. In the present embodiment, the exhaust throttle valve 134 is used when raising the exhaust temperature for early activation of the pretreatment catalyst device 132. In the present embodiment, the above-described storage reduction type NOx catalyst 136 is disposed downstream of the exhaust throttle valve 134.

本実施形態の吸蔵還元型NOx触媒136は、アルミナAl等の酸化物からなるハニカム状基材表面に、触媒成分としての白金Ptのような貴金属と、NOx吸収成分とが担持されて構成されている。NOx吸収成分は、例えばカリウムK、ナトリウムNa,リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つから成る。 The NOx storage reduction catalyst 136 of this embodiment has a noble metal such as platinum Pt as a catalyst component and a NOx absorption component supported on the surface of a honeycomb substrate made of an oxide such as alumina Al 2 O 3. It is configured. The NOx absorbing component is at least one selected from, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y. It consists of one.

この吸蔵還元型NOx触媒136により、機関運転時において排気が酸化雰囲気(リーン)にあるときに、NOxは吸蔵還元型NOx触媒136に吸蔵される。そして還元雰囲気(ストイキあるいはリッチ)では吸蔵還元型NOx触媒136に吸蔵されたNOxが酸化窒素(NO)として離脱し、炭化水素(HC)や一酸化炭素(CO)により還元される。このことによりNOxの浄化が行なわれる。   With this NOx storage reduction catalyst 136, NOx is stored in the NOx storage reduction catalyst 136 when the exhaust is in an oxidizing atmosphere (lean) during engine operation. In a reducing atmosphere (stoichiometric or rich), NOx stored in the NOx storage reduction catalyst 136 is released as nitrogen oxide (NO) and is reduced by hydrocarbon (HC) or carbon monoxide (CO). As a result, purification of NOx is performed.

そして、吸蔵還元型NOx触媒136の上流の排気通路122には、第1の排気空燃比検出手段としての触媒前空燃比センサ、すなわち、第1の空燃比センサ(以下、A/Fセンサともいう)138、および吸蔵還元型NOx触媒136の下流の排気通路122には第2の排気空燃比検出手段としての触媒後空燃比センサ、すなわち、第2の空燃比センサ139がそれぞれ設けられている。なお、これらの第1および第2のA/Fセンサ138、139は排気中の酸素成分に基づいて排気の空燃比を検出し、空燃比に比例した電圧信号をリニアに出力するセンサである。   In the exhaust passage 122 upstream of the NOx storage reduction catalyst 136, a pre-catalyst air-fuel ratio sensor as a first exhaust air-fuel ratio detection means, that is, a first air-fuel ratio sensor (hereinafter also referred to as an A / F sensor). ) And the exhaust passage 122 downstream of the NOx storage reduction catalyst 136 are respectively provided with a post-catalyst air-fuel ratio sensor as a second exhaust air-fuel ratio detection means, that is, a second air-fuel ratio sensor 139. The first and second A / F sensors 138 and 139 are sensors that detect the air-fuel ratio of the exhaust based on the oxygen component in the exhaust and linearly output a voltage signal proportional to the air-fuel ratio.

さらに、本実施形態ではエンジン排気の一部を吸気系に還流させるEGR装置150が設けられている。EGR装置150は、排気マニホルド120と吸気サージタンク104とを連通する前述のEGR通路152、およびEGR通路152に配置されたEGR制御弁(以下、EGR弁という)154、およびEGR弁154の上流側のEGR通路152に設けられたEGRクーラ156を備えている。EGR弁154は図示しないステッパモータ、ソレノイドアクチュエータ等のアクチュエータを備え、ECU200からの制御信号に応じた開度をとり、EGR通路152を通って吸気サージタンク104に還流されるEGRガス流量を制御する。なお、EGRガスは気筒から排出された高温の排気であるため、多量のEGRガスを吸気に還流させると吸気温度が上昇してしまい、エンジンの吸気体積効率が低下することになる。本実施形態では、これを防止するために、EGR弁154上流側のEGR通路152には水冷または空冷のEGRクーラ156が設けられている。本実施形態では、EGRクーラ156を用いて吸気系に還流するEGRガス温度を低下させることにより、エンジンの吸気体積効率の低下を抑制して比較的多量のEGRガスを還流させることが可能となっている。   Further, in the present embodiment, an EGR device 150 that recirculates part of the engine exhaust to the intake system is provided. The EGR device 150 includes the EGR passage 152 that connects the exhaust manifold 120 and the intake surge tank 104, an EGR control valve (hereinafter referred to as an EGR valve) 154 disposed in the EGR passage 152, and an upstream side of the EGR valve 154. The EGR cooler 156 provided in the EGR passage 152 is provided. The EGR valve 154 includes actuators such as stepper motors and solenoid actuators (not shown), takes an opening degree according to a control signal from the ECU 200, and controls an EGR gas flow rate recirculated to the intake surge tank 104 through the EGR passage 152. . Since the EGR gas is a high-temperature exhaust gas discharged from the cylinder, when a large amount of EGR gas is recirculated to the intake air, the intake air temperature rises, and the intake volume efficiency of the engine decreases. In the present embodiment, in order to prevent this, a water-cooled or air-cooled EGR cooler 156 is provided in the EGR passage 152 upstream of the EGR valve 154. In the present embodiment, by using the EGR cooler 156 to reduce the temperature of the EGR gas recirculated to the intake system, it is possible to recirculate a relatively large amount of EGR gas while suppressing a decrease in the intake volume efficiency of the engine. ing.

さらに、図1に200で示すのは、エンジン100の電子制御ユニット(ECU)である。本実施形態のECU200は、公知の構成のマイクロコンピュータとして構成され、CPU、RAM、ROM、入力ポート、出力ポートを双方向性バスで相互に接続した構成とされている。ECU200はエンジン100の燃料噴射制御、回転数制御等の基本制御を行うほか、本実施形態では後述するように、前処理触媒装置132および吸蔵還元型NOx触媒136の劣化診断を行なう。   Further, an electronic control unit (ECU) of the engine 100 is indicated by 200 in FIG. The ECU 200 according to the present embodiment is configured as a microcomputer having a known configuration, and is configured such that a CPU, a RAM, a ROM, an input port, and an output port are connected to each other via a bidirectional bus. The ECU 200 performs basic control such as fuel injection control and rotation speed control of the engine 100, and in this embodiment, performs deterioration diagnosis of the pretreatment catalyst device 132 and the NOx storage reduction catalyst 136, as will be described later.

これらの制御を行うため、ECU200の入力ポートには、エンジン100のクランク軸近傍に配置された回転数センサ160からエンジン回転数NEに対応する信号が入力されている他、エアフローメータ112からエンジン吸入空気量Gnに相当する信号が、また、不図示のアクセルペダル近傍に配置されたアクセル開度センサ162から運転者のアクセルペダル踏み込み量(アクセル開度)に対応する信号とEGR弁154に配置されたEGR弁開度センサ164からEGR弁開度を表す信号、第1のA/Fセンサ138および第2のA/Fセンサ139から排気ガスの空燃比を表す信号等が、それぞれ入力されている。   In order to perform these controls, a signal corresponding to the engine rotational speed NE is input to the input port of the ECU 200 from the rotational speed sensor 160 disposed in the vicinity of the crankshaft of the engine 100. A signal corresponding to the air amount Gn is also disposed in the EGR valve 154 and a signal corresponding to the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor 162 disposed in the vicinity of an unillustrated accelerator pedal. The EGR valve opening sensor 164 receives a signal indicating the EGR valve opening, and the first A / F sensor 138 and the second A / F sensor 139 input a signal indicating the air-fuel ratio of the exhaust gas. .

ECU200の出力ポートは、図示しない燃料噴射回路を介してエンジン100の燃料噴射弁114および還元剤添加弁115に接続され、燃料噴射弁114および還元剤添加弁115からの燃料噴射量と燃料噴射時期とがそれぞれ制御されている。また、ECU200の出力ポートは図示しない駆動回路を介してEGR弁154、吸気絞り弁108および排気絞り弁134のアクチュエータに接続され、それぞれの弁開度も制御されている。   The output port of the ECU 200 is connected to the fuel injection valve 114 and the reducing agent addition valve 115 of the engine 100 via a fuel injection circuit (not shown), and the fuel injection amount and the fuel injection timing from the fuel injection valve 114 and the reducing agent addition valve 115. And are controlled respectively. Further, the output port of the ECU 200 is connected to the actuators of the EGR valve 154, the intake throttle valve 108, and the exhaust throttle valve 134 via a drive circuit (not shown), and the respective valve opening degrees are also controlled.

〔第1実施形態〕
以下、上記構成になる排気浄化装置の劣化診断の処理手順の第1実施形態について図2のフローチャートを参照して説明する。ここで、このフローチャートに示す一連の処理は、上記劣化診断処理の処理手順を概念的に示したものであり、実際の処理は所定周期毎のサブルーチン処理として、ECU200により実行される。なお、この劣化診断処理ルーチンはエンジン100がスタートされてから停止されるまでの、いわゆる、ワントリップにおいて、例えば、エンジン100の暖機完了後の比較的早い時期に少なくとも一回ないしは所定の周期で数回実行されればよい。従って、診断が正常に完了したときは、診断完了フラグを立てることにより、ワントリップ中における無用な診断を避けるようにしてもよい。この診断の時期ないしは回数については、予めECU200におけるプログラムに設定され得る。
[First Embodiment]
Hereinafter, a first embodiment of the processing procedure of the deterioration diagnosis of the exhaust gas purification apparatus configured as described above will be described with reference to the flowchart of FIG. Here, the series of processing shown in this flowchart conceptually shows the processing procedure of the deterioration diagnosis processing, and the actual processing is executed by the ECU 200 as a subroutine processing at predetermined intervals. Note that this deterioration diagnosis processing routine is performed in a so-called one trip from when the engine 100 is started to when it is stopped, for example, at least once or at a predetermined cycle at a relatively early time after completion of warming up of the engine 100. It only needs to be executed several times. Therefore, when diagnosis is normally completed, useless diagnosis during one trip may be avoided by setting a diagnosis completion flag. The timing or number of times of the diagnosis can be set in advance in a program in the ECU 200.

そこで、ECU200において処理がスタートすると、ステップS201において、劣化診断実施要求があった(=ON)か否かが判定される。すなわち、上述のようにプログラムに設定された時期に至ったか否かが判定される。至っていない、すなわち、「No」のときはこのルーチンは一旦終了される。そして、「Yes」のときはステップS202に進み、リッチスパイクが実施される。このリッチスパイクが実施されると、還元剤添加弁115から第1の気筒における排気ポートに対し、還元剤としての燃料が所定の回数および所定量噴射供給される。なお、本明細書の記述において、「リッチスパイク」とは、排気ガスに所定量の還元剤を添加することを意味し、必ずしも空燃比がストイキを超えてリッチ領域に至る量の還元剤を添加しない場合も含む。   Therefore, when the process starts in the ECU 200, it is determined in step S201 whether or not a deterioration diagnosis execution request has been made (= ON). That is, it is determined whether or not the time set in the program has been reached as described above. If not, that is, if “No”, this routine is once terminated. If “Yes”, the process proceeds to step S202 to execute rich spike. When this rich spike is executed, fuel as a reducing agent is supplied from the reducing agent addition valve 115 to the exhaust port of the first cylinder for a predetermined number of times and in a predetermined amount. In the description of the present specification, “rich spike” means that a predetermined amount of reducing agent is added to the exhaust gas, and an amount of reducing agent that necessarily exceeds the stoichiometric range and reaches the rich region is added. Including the case of not.

そして、次のステップS203において、還元剤添加弁115から還元剤としての燃料が所定量噴射供給されたときの所定時間内において、第1のA/Fセンサ138によって前処理触媒装置132の下流で吸蔵還元型NOx触媒136の上流の触媒前空燃比が順次計測され、その計測値の最小値が到達触媒前空燃比値A/Fin-minとして記憶される。同様に、ステップS204において、第2のA/Fセンサ139によって吸蔵還元型NOx触媒136の下流の触媒後空燃比が順次計測され、その計測値の最小値が到達触媒後空燃比値A/Fout-minとして記憶される。   Then, in the next step S203, the first A / F sensor 138 downstream of the pretreatment catalyst device 132 within a predetermined time when a predetermined amount of fuel as a reducing agent is injected and supplied from the reducing agent addition valve 115. The pre-catalyst air-fuel ratio upstream of the NOx storage reduction catalyst 136 is sequentially measured, and the minimum value of the measured value is stored as the pre-catalyst air-fuel ratio value A / Fin-min. Similarly, in step S204, the post-catalyst air-fuel ratio downstream of the NOx storage reduction catalyst 136 is sequentially measured by the second A / F sensor 139, and the minimum value of the measured values is the reached post-catalyst air-fuel ratio value A / Fout. Stored as -min.

さらに、ステップS205に進み、ステップS203で得られた触媒前空燃比の最小値である到達触媒前空燃比値A/Fin-minとステップS204で得られた触媒後空燃比の最小値である到達触媒後空燃比値A/Fout-minとの差ΔA/Fが求められる。そして、次のステップS206において、この到達排気空燃比値の差ΔA/Fが所定の閾値αと比較され、それとの大小に基づいて前処理触媒132の劣化度合が診断される。すなわち、差ΔA/Fが所定の閾値αより小さいとき、換言すると、「No」のときはステップS207に進み、前処理触媒132の酸化機能は低下ないしは劣化していないとして、前処理触媒劣化フラグを「OFF」として診断を終了する。一方、差ΔA/Fが所定の閾値αより大きいとき、換言すると、「Yes」のときはステップS208に進み、前処理触媒132の酸化機能が低下ないしは劣化しているとして、前処理触媒劣化フラグを「ON」として診断を終了する。   Further, the process proceeds to step S205, where the pre-catalyst air-fuel ratio value A / Fin-min that is the minimum value of the pre-catalyst air-fuel ratio obtained in step S203 and the minimum value of the post-catalyst air-fuel ratio obtained in step S204 are reached. A difference ΔA / F from the post-catalyst air-fuel ratio value A / Fout-min is obtained. In the next step S206, the difference ΔA / F in the reached exhaust air / fuel ratio value is compared with a predetermined threshold value α, and the degree of deterioration of the pretreatment catalyst 132 is diagnosed based on the difference. That is, when the difference ΔA / F is smaller than the predetermined threshold value α, in other words, when “No”, the process proceeds to step S207, and the pretreatment catalyst deterioration flag is determined that the oxidation function of the pretreatment catalyst 132 is not lowered or deteriorated. The diagnosis is terminated with “OFF”. On the other hand, when the difference ΔA / F is larger than the predetermined threshold value α, in other words, when “Yes”, the process proceeds to step S208, and the pretreatment catalyst deterioration flag is determined that the oxidation function of the pretreatment catalyst 132 is lowered or deteriorated. The diagnosis is terminated with “ON”.

ここで、上述の第1のA/Fセンサ138によって計測される到達触媒前空燃比値A/Fin-minと第2のA/Fセンサ139によって計測される到達触媒後空燃比値A/Fout-minとの差ΔA/Fの大小に基づき、前処理触媒132の劣化度合が診断できる理由について説明する。   Here, the before-catalyst air-fuel ratio value A / Fin-min measured by the first A / F sensor 138 and the after-catalyst air-fuel ratio value A / Fout measured by the second A / F sensor 139 are measured. The reason why the degree of deterioration of the pretreatment catalyst 132 can be diagnosed based on the difference ΔA / F from −min will be described.

図3は、前処理触媒132および吸蔵還元型NOx触媒136が正常に機能している場合の、第1のA/Fセンサ138および第2のA/Fセンサ139によって計測される排気空燃比の変化の様子を縦軸に排気空燃比(A/F)を、横軸に時間(Time-sec)をとって示すタイムチャートである。ここで、実線Aは第1のA/Fセンサ138よって計測される前処理触媒装置132の下流で吸蔵還元型NOx触媒136の上流の触媒前空燃比A/Finを表し、点線Bは第2のA/Fセンサ139によって計測される吸蔵還元型NOx触媒136の下流の触媒後空燃比A/Foutを表している。また、図4は、吸蔵還元型NOx触媒136は正常であるが、前処理触媒132の酸化機能が低下ないしは劣化した場合、および図5は前処理触媒132が正常である場合の、第1のA/Fセンサ138および第2のA/Fセンサ139によって計測されて出力されるA/Fセンサ出力の変化の様子をそれぞれ示すタイムチャートである。   FIG. 3 shows the exhaust air-fuel ratio measured by the first A / F sensor 138 and the second A / F sensor 139 when the pretreatment catalyst 132 and the NOx storage reduction catalyst 136 are functioning normally. It is a time chart which shows the mode of change, taking the exhaust air-fuel ratio (A / F) on the vertical axis and time (Time-sec) on the horizontal axis. Here, the solid line A represents the pre-catalyst air-fuel ratio A / Fin upstream of the NOx storage reduction catalyst 136 downstream of the pretreatment catalyst device 132 measured by the first A / F sensor 138, and the dotted line B represents the second The post-catalyst air-fuel ratio A / Fout downstream of the NOx storage reduction catalyst 136 measured by the A / F sensor 139 is shown. 4 shows that the NOx storage reduction catalyst 136 is normal, but the oxidation function of the pretreatment catalyst 132 is reduced or deteriorated, and FIG. 5 shows the first case where the pretreatment catalyst 132 is normal. It is a time chart which shows the mode of the change of the A / F sensor output measured and output by the A / F sensor 138 and the 2nd A / F sensor 139, respectively.

今、図3の時刻t1において、還元剤添加弁115から第1の気筒における排気ポートに対し、還元剤としての燃料が所定量噴射供給が開始され所定時間(例えば、1〜2sec)に亘りリッチスパイクが実施されたとするとき、前処理触媒132が正常に機能している場合には、添加された還元剤と排気ガス中の酸素との酸化反応により酸素が消費される結果、触媒前空燃比A/Finがリッチ側に移行し、還元剤としての燃料の供給ないしは添加量に依存する所定時間T内において、ほぼ一定の到達触媒前排気空燃比A/Fin-minに到達することになる。   Now, at time t1 in FIG. 3, a predetermined amount of fuel as a reducing agent is injected and supplied from the reducing agent addition valve 115 to the exhaust port of the first cylinder, and is rich for a predetermined time (for example, 1 to 2 seconds). If the pretreatment catalyst 132 is functioning normally when the spike is performed, the oxygen is consumed by the oxidation reaction between the added reducing agent and oxygen in the exhaust gas. A / Fin shifts to the rich side, and reaches a substantially constant pre-catalyst exhaust air-fuel ratio A / Fin-min within a predetermined time T depending on the supply or addition amount of fuel as a reducing agent.

一方、この排気空燃比がリッチ側に移行した排気ガスが吸蔵還元型NOx触媒136に流入すると、吸蔵還元型NOx触媒136に吸蔵されていたNOxが酸化窒素(NO)として離脱し、炭化水素(HC)や一酸化炭素(CO)により還元される。同時に、この還元雰囲気(ストイキあるいはリッチ)では吸蔵還元型NOx触媒136から放出される二酸化窒素と炭化水素(HC)や一酸化炭素(CO)との反応により酸素が発生される。かくて、このNOxの還元中においては、吸蔵還元型NOx触媒136を通過した排気ガスの排気空燃比は直ぐにはリッチに至らず、図3に点線Bで示されるようにストイキ付近に維持される。そして、図3に黒塗りで示される、吸蔵還元型NOx触媒136に吸蔵されていたNOxの離脱分が時刻t2でなくなると、上述の還元反応が停止される結果、触媒後空燃比A/Foutもリッチ側に移行し、最終的に到達触媒後排気空燃比A/Fout-minに到達する(時刻t3)。   On the other hand, when the exhaust gas whose exhaust air-fuel ratio has shifted to the rich side flows into the NOx storage reduction catalyst 136, the NOx stored in the NOx storage reduction catalyst 136 is released as nitrogen oxide (NO), and hydrocarbons ( HC) and carbon monoxide (CO). At the same time, in this reducing atmosphere (stoichiometric or rich), oxygen is generated by the reaction of nitrogen dioxide released from the NOx storage reduction catalyst 136 with hydrocarbon (HC) or carbon monoxide (CO). Thus, during the reduction of NOx, the exhaust air-fuel ratio of the exhaust gas that has passed through the NOx storage reduction catalyst 136 does not immediately become rich, but is maintained near the stoichiometry as shown by the dotted line B in FIG. . When the amount of NOx occluded in the NOx storage reduction catalyst 136 shown in black in FIG. 3 disappears at time t2, the above-described reduction reaction is stopped, resulting in the post-catalyst air-fuel ratio A / Fout. Shifts to the rich side, and finally reaches the post-catalyst exhaust air-fuel ratio A / Fout-min (time t3).

このように、前処理触媒132が正常に機能している場合には、触媒前空燃比A/Finと触媒後空燃比A/Foutとが最終的に到達する到達触媒前排気空燃比A/Fin-minと到達触媒後排気空燃比A/Fout-minとが等しくなる。従って、第1のA/Fセンサ138により得られる到達触媒前空燃比値A/Fin-minと第2のA/Fセンサ139によって得られる到達触媒後空燃比値A/Fout-minとの差が所定の閾値αより小さいのは、前処理触媒132で排気ガス中の酸素が処理された結果であり、前処理触媒132が正常に機能していると診断されるのである。   Thus, when the pretreatment catalyst 132 is functioning normally, the pre-catalyst exhaust air-fuel ratio A / Fin where the pre-catalyst air-fuel ratio A / Fin and the post-catalyst air-fuel ratio A / Fout finally reach each other is reached. -min is equal to the post-catalyst exhaust air-fuel ratio A / Fout-min. Therefore, the difference between the pre-catalyst air / fuel ratio value A / Fin-min obtained by the first A / F sensor 138 and the post-catalyst air / fuel ratio value A / Fout-min obtained by the second A / F sensor 139. Is smaller than the predetermined threshold value α, which is a result of processing the oxygen in the exhaust gas by the pretreatment catalyst 132, and it is diagnosed that the pretreatment catalyst 132 is functioning normally.

ところで、前処理触媒132の酸化機能が低下ないしは劣化した場合には、添加された還元剤と排気ガス中の酸素との酸化反応が十分に行なわれず、第1のA/Fセンサ138をまず通過する排気ガスの排気空燃比A/Fin、延いては、到達触媒前排気空燃比A/Fin-minは、図4に示すように、リーン側にずれる。しかし、リーン側にずれた排気ガスが吸蔵還元型NOx触媒136を通過すると、この排気ガス中の酸素は吸蔵還元型NOx触媒136での酸化反応に使用され、触媒後空燃比A/Fout、延いては、到達触媒後排気空燃比A/Fout-minはリッチ側に移行する。従って、第1のA/Fセンサ138により得られる到達触媒前空燃比値A/Fin-minと第2のA/Fセンサ139によって得られる到達触媒後空燃比値A/Fout-minとの差が大きいときは、前処理触媒132での酸化機能が十分ではなく劣化していると診断されるのである。   By the way, when the oxidation function of the pretreatment catalyst 132 is lowered or deteriorated, the oxidation reaction between the added reducing agent and oxygen in the exhaust gas is not sufficiently performed and first passes through the first A / F sensor 138. As shown in FIG. 4, the exhaust air / fuel ratio A / Fin of the exhaust gas to be discharged, and hence the exhaust air / fuel ratio A / Fin-min before reaching the catalyst, shifts to the lean side. However, when the exhaust gas shifted to the lean side passes through the NOx storage reduction catalyst 136, the oxygen in the exhaust gas is used for the oxidation reaction in the NOx storage reduction catalyst 136, and the post-catalyst air-fuel ratio A / Fout, In this case, the exhaust air / fuel ratio A / Fout-min after the reaching catalyst shifts to the rich side. Therefore, the difference between the pre-catalyst air / fuel ratio value A / Fin-min obtained by the first A / F sensor 138 and the post-catalyst air / fuel ratio value A / Fout-min obtained by the second A / F sensor 139. Is large, it is diagnosed that the oxidation function of the pretreatment catalyst 132 is not sufficient and deteriorated.

なお、前処理触媒132の酸化機能が低下ないしは劣化したか否かを診断する目的のために行なわれるリッチスパイクでは、図5に示すように、前処理触媒132が正常のときは、第1のA/Fセンサ138により得られる到達触媒前空燃比値A/Fin-minと第2のA/Fセンサ139によって得られる到達触媒後空燃比値A/Fout-minとが共にリーン側で等しくなるので、還元剤の添加量は排気空燃比がストイキを超えてリッチ領域に至らない少量であってもよい。このようにすると、還元剤の使用量が少なくて済むと共に、第1および第2のA/Fセンサ138、139での検出精度が向上する。   In the rich spike performed for the purpose of diagnosing whether the oxidation function of the pretreatment catalyst 132 is lowered or deteriorated, as shown in FIG. 5, when the pretreatment catalyst 132 is normal, the first The reached after-catalyst air-fuel ratio value A / Fin-min obtained by the A / F sensor 138 and the after-catalyst air-fuel ratio value A / Fout-min obtained by the second A / F sensor 139 are both equal on the lean side. Therefore, the amount of the reducing agent added may be small so that the exhaust air-fuel ratio exceeds the stoichiometric range and does not reach the rich region. This reduces the amount of reducing agent used and improves the detection accuracy of the first and second A / F sensors 138 and 139.

〔第2実施形態〕
次に、本発明に係る劣化診断の処理手順の第2実施形態について図6のフローチャートを参照して説明する。前実施形態では、前処理触媒132および吸蔵還元型NOx触媒136の両者が共に正常に機能していない場合に、誤診断が行なわれる可能性がある。そこで、この第2実施形態は、両者が共に正常に機能していない場合と還元剤添加手段との機能状態を検証して、前処理触媒132の診断精度をさらに向上させようとするものである。
[Second Embodiment]
Next, a second embodiment of the processing procedure for deterioration diagnosis according to the present invention will be described with reference to the flowchart of FIG. In the previous embodiment, when both the pretreatment catalyst 132 and the NOx storage reduction catalyst 136 are not functioning normally, there is a possibility that an erroneous diagnosis is performed. Therefore, this second embodiment is intended to further improve the diagnostic accuracy of the pretreatment catalyst 132 by verifying the functional state of the case where both are not functioning normally and the reducing agent addition means. .

そこで、ECU200において処理がスタートすると、ステップS601ないしステップS606においては、第1実施形態におけるステップS201ないしステップS206と同じ処理が実行される。従って、ステップS601ないしステップS606についての詳細な説明は、上述のステップS201ないしステップS206についての説明を援用するが、簡単に列記すると以下のようになる。
・ステップS601:劣化診断実施要求の有無を判定する。
・ステップS602:リッチスパイクを実施する。
・ステップS603:第1のA/Fセンサ138による触媒前空燃比A/Finの順次計測および第1の到達触媒前空燃比値(1)・A/Fin-minを記憶する。
・ステップS604:第2のA/Fセンサ139による触媒後空燃比A/Foutの順次計測および第1の到達触媒後空燃比値(1)・A/Fout-minを記憶する。
・ステップS605:第1の到達触媒前空燃比値(1)・A/Fin-minと第1の到達触媒後空燃比値(1)・A/Fout-minとの第1の差ΔA/F(1)を求める。
・ステップS606:これらの触媒前後の到達空燃比値の第1の差ΔA/F(1)と所定の閾値αとを比較し、それとの大小に基づいて前処理触媒132の劣化度合を診断する。ここで、上記ステップS602ないしステップS606が本発明の実施形態における第1の診断手段を構成する。
Therefore, when the process is started in the ECU 200, the same processes as in steps S201 to S206 in the first embodiment are executed in steps S601 to S606. Therefore, the detailed description of steps S601 to S606 uses the description of the above-described steps S201 to S206, but a simple list is as follows.
Step S601: It is determined whether or not there is a deterioration diagnosis execution request.
Step S602: A rich spike is performed.
Step S603: Sequential measurement of the pre-catalyst air / fuel ratio A / Fin by the first A / F sensor 138 and the first pre-catalyst air / fuel ratio value (1) · A / Fin-min are stored.
Step S604: Sequential measurement of the post-catalyst air-fuel ratio A / Fout by the second A / F sensor 139 and the first post-catalyst air-fuel ratio value (1) · A / Fout-min are stored.
Step S605: A first difference ΔA / F between the first pre-catalyst air-fuel ratio value (1) and A / Fin-min and the first post-catalyst air-fuel ratio value (1) A / Fout-min Find (1).
Step S606: The first difference ΔA / F (1) between the air-fuel ratio values before and after these catalysts is compared with a predetermined threshold value α, and the degree of deterioration of the pretreatment catalyst 132 is diagnosed based on the magnitude of the difference. . Here, the above steps S602 to S606 constitute the first diagnosis means in the embodiment of the present invention.

そして、この第1の差ΔA/F(1)が所定の閾値αより大きいとき、換言すると、「Yes」のときはステップS607に進み、前処理触媒132の酸化機能が低下ないしは劣化しているとして、前処理触媒劣化フラグを「ON」として診断を終了する。一方、第1の差ΔA/F(1)が所定の閾値αより小さいとき、換言すると、「No」のときはステップS608に進み、第1の推定到達排気空燃比(1)・A/Fを算出する。この第1の推定到達排気空燃比(1)・A/Fは、エアフローメータ112により測定された吸入空気量GAと、燃料噴射弁114から筒内に噴射供給された燃料噴射量Qiおよび還元剤添加弁115から噴射供給された燃料添加量Qaとに基づき、(1)・A/F=GA/(Qi+Qa)として、ECU200により算出される。   When the first difference ΔA / F (1) is larger than the predetermined threshold value α, in other words, when “Yes”, the process proceeds to step S607, and the oxidation function of the pretreatment catalyst 132 is lowered or deteriorated. Then, the pretreatment catalyst deterioration flag is set to “ON” and the diagnosis is terminated. On the other hand, when the first difference ΔA / F (1) is smaller than the predetermined threshold value α, in other words, when it is “No”, the process proceeds to step S608 and the first estimated exhaust air / fuel ratio (1) · A / F. Is calculated. The first estimated exhaust air / fuel ratio (1) · A / F is calculated based on the intake air amount GA measured by the air flow meter 112, the fuel injection amount Qi injected into the cylinder from the fuel injection valve 114, and the reducing agent. Based on the fuel addition amount Qa injected and supplied from the addition valve 115, the ECU 200 calculates (1) · A / F = GA / (Qi + Qa).

そして、次のステップS609に進み第1の推定到達排気空燃比(1)・A/Fと第1の到達触媒前空燃比値(1)・A/Fin-minとの第2の差ΔA/F(2)が求められる。なお、このステップS609では第1の推定到達排気空燃比(1)・A/Fと第1の到達触媒後空燃比値(1)・A/Fout-minとの第2の差ΔA/F(2)を求めるようにしてもよい。ステップS606での判定から明らかなように、両者間にはさほどの差がないからである。   Then, the process proceeds to the next step S609, and the second difference ΔA / between the first estimated reached exhaust air / fuel ratio (1) · A / F and the first reached before-catalyst air / fuel ratio value (1) · A / Fin-min. F (2) is obtained. In step S609, the second difference ΔA / F (1) between the first estimated reached exhaust air / fuel ratio (1) · A / F and the first after-catalyst air / fuel ratio value (1) · A / Fout-min. 2) may be obtained. This is because, as is clear from the determination in step S606, there is no significant difference between the two.

次に、ステップS610において、この第2の差ΔA/F(2)が所定の閾値βと比較され、第2の差ΔA/F(2)が所定の閾値βより小さいとき、換言すると、「No」のときはステップS618に進み、還元剤添加弁115の添加機能は正常で、且つ、前処理触媒132の酸化機能は低下ないしは劣化していないとして、前処理触媒劣化フラグを「OFF」として診断を終了する。これは、互いに差が小さい第1のA/Fセンサ138による実測で得られる第1の到達触媒前空燃比値(1)・A/Fin-minまたは第2のA/Fセンサ139による実測で得られる第1の到達触媒後空燃比値(1)・A/Fout-minと、ECU200により算出される第1の推定到達排気空燃比(1)・A/Fとの差が小さいとは、還元剤添加弁115から適量の燃料が添加され、前処理触媒132で排気ガス中の酸素が正しく処理された結果であり、還元剤添加弁115および前処理触媒132が正常に機能していることを意味するからである。   Next, in step S610, the second difference ΔA / F (2) is compared with a predetermined threshold β, and when the second difference ΔA / F (2) is smaller than the predetermined threshold β, in other words, “ If “No”, the process proceeds to step S618, and the pretreatment catalyst deterioration flag is set to “OFF”, assuming that the addition function of the reducing agent addition valve 115 is normal and the oxidation function of the pretreatment catalyst 132 is not lowered or deteriorated. End diagnosis. This is based on the first pre-catalyst pre-catalyst air-fuel ratio value (1) · A / Fin-min obtained by actual measurement by the first A / F sensor 138 having a small difference or the actual measurement by the second A / F sensor 139. The difference between the obtained first after-catalyst air-fuel ratio value (1) · A / Fout-min and the first estimated reached exhaust air-fuel ratio (1) · A / F calculated by the ECU 200 is small. A proper amount of fuel is added from the reducing agent addition valve 115, and oxygen in the exhaust gas is correctly processed by the pretreatment catalyst 132, and the reducing agent addition valve 115 and the pretreatment catalyst 132 are functioning normally. Because it means.

逆に、ステップS610における判定で、第2の差ΔA/F(2)が所定の閾値βより大きいとき、換言すると、「Yes」のときは還元剤添加弁115の故障の可能性もあるので、ステップS611に進みさらに診断が続けられる。ここで、上記ステップS608ないしステップS610が本発明の実施形態における第2の診断手段を構成している。   Conversely, when the second difference ΔA / F (2) is larger than the predetermined threshold value β in the determination in step S610, in other words, when “Yes”, there is a possibility that the reducing agent addition valve 115 may be broken. Then, the process proceeds to step S611 and further diagnosis is continued. Here, steps S608 to S610 constitute the second diagnosis means in the embodiment of the present invention.

そこで、ステップS611ではリッチスパイクが実施される。このリッチスパイクは、第2の還元剤添加手段としての燃料噴射弁114から筒内に膨張行程後期又は排気行程で燃料である軽油を噴射するいわゆるポスト噴射により行なわれる。   Therefore, a rich spike is performed in step S611. This rich spike is performed by so-called post-injection in which light oil as fuel is injected into the cylinder from the fuel injection valve 114 as the second reducing agent addition means in the late stage of the expansion stroke or in the exhaust stroke.

そして、次のステップS612において、ポスト噴射により還元剤としての燃料が所定量噴射供給されたときの所定時間内において、第1のA/Fセンサ138によって前処理触媒装置132の下流で吸蔵還元型NOx触媒136の上流の触媒前空燃比が順次計測され、その計測値の最小値が第2の到達触媒前空燃比値(2)・A/Fin-minとして記憶される。   In the next step S 612, the first A / F sensor 138 stores the occlusion reduction type downstream of the pretreatment catalyst device 132 within a predetermined time when a predetermined amount of fuel as a reducing agent is injected and supplied by post injection. The pre-catalyst air-fuel ratio upstream of the NOx catalyst 136 is sequentially measured, and the minimum value of the measured value is stored as the second pre-catalyst air-fuel ratio value (2) · A / Fin-min.

さらに、ステップS613において、第2の推定到達排気空燃比(2)・A/Fが算出される。この第2の推定到達排気空燃比(2)・A/Fは、エアフローメータ112により測定された吸入空気量GAと、燃料噴射弁114から筒内に膨張行程初期に正規に噴射供給された燃料噴射量Qiおよびポスト噴射により供給された燃料添加量Qpとに基づき、(2)・A/F=GA/(Qi+Qp)として、ECU200により算出される。   In step S613, the second estimated exhaust air / fuel ratio (2) · A / F is calculated. This second estimated exhaust air / fuel ratio (2) · A / F is the intake air amount GA measured by the air flow meter 112 and the fuel that is normally injected and supplied from the fuel injection valve 114 into the cylinder in the initial stage of the expansion stroke. Based on the injection amount Qi and the fuel addition amount Qp supplied by post injection, the ECU 200 calculates (2) · A / F = GA / (Qi + Qp).

そして、次のステップS614に進み第2の推定到達排気空燃比(2)・A/Fと第1の到達触媒前空燃比値(1)・A/Fin-minとの第3の差ΔA/F(3)が求められる。   Then, the process proceeds to the next step S614, the third difference ΔA / between the second estimated reached exhaust air / fuel ratio (2) · A / F and the first before-catalyst pre-catalyst air / fuel ratio value (1) · A / Fin-min. F (3) is obtained.

次に、ステップS615において、この第3の差ΔA/F(3)が所定の閾値γと比較され、第3の差ΔA/F(3)が所定の閾値γより大きいとき、換言すると、「Yes」と判定されるときはステップS616に進み、前処理触媒132の酸化機能が低下ないしは劣化しており、且つ吸蔵還元型NOx触媒136も劣化しているとして、前処理触媒劣化フラグを「ON」、且つ吸蔵還元型NOx触媒劣化フラグを「ON」として診断を終了する。ここで、上記ステップS611ないしステップS615が本発明の実施形態における第3の診断手段を構成している。   Next, in step S615, the third difference ΔA / F (3) is compared with a predetermined threshold γ, and when the third difference ΔA / F (3) is larger than the predetermined threshold γ, in other words, “ When it is determined “Yes”, the process proceeds to step S616, and the pretreatment catalyst deterioration flag is set to “ON” on the assumption that the oxidation function of the pretreatment catalyst 132 is lowered or deteriorated and the NOx storage reduction catalyst 136 is also deteriorated. ", And the NOx storage reduction catalyst deterioration flag is set to" ON ", and the diagnosis is terminated. Here, the above steps S611 to S615 constitute the third diagnosis means in the embodiment of the present invention.

一方、ステップS615において、第3の差ΔA/F(3)が所定の閾値γより
小さいとき、換言すると、「No」のときはステップS617に進み、還元剤添加弁115の添加機能は異状であると判定し、還元剤添加弁故障フラグを「ON」とする。そして、次のステップS618に進み、前処理触媒132の酸化機能は低下ないしは劣化していないとして、前処理触媒劣化フラグを「OFF」として診断を終了する。
On the other hand, when the third difference ΔA / F (3) is smaller than the predetermined threshold γ in step S615, in other words, when “No”, the process proceeds to step S617, and the addition function of the reducing agent addition valve 115 is abnormal. It is determined that there is, and the reducing agent addition valve failure flag is set to “ON”. Then, the process proceeds to the next step S618, assuming that the oxidation function of the pretreatment catalyst 132 has not been lowered or deteriorated, the pretreatment catalyst deterioration flag is set to “OFF”, and the diagnosis is terminated.

これは、第1のA/Fセンサ138による実測で得られる第3の到達触媒前空燃比値(3)・A/Fin-minと、ECU200により算出される第2の推定到達排気空燃比(2)・A/Fとの差が小さいとは、ポスト噴射により適量の燃料が添加され、前処理触媒132で排気ガス中の酸素が正しく処理された結果であり、還元剤添加弁115からの燃料添加量が適切ではないこと、および前処理触媒132が正常に機能していることを意味するからである。   This is because the third pre-catalyst air-fuel ratio value (3) · A / Fin-min obtained by actual measurement by the first A / F sensor 138 and the second estimated ultimate exhaust air-fuel ratio calculated by the ECU 200 ( 2) The small difference from A / F is the result of the appropriate amount of fuel being added by post-injection, and the oxygen in the exhaust gas being correctly processed by the pretreatment catalyst 132. This is because the fuel addition amount is not appropriate, and the pretreatment catalyst 132 is functioning normally.

本発明に係る内燃機関の排気浄化装置の劣化診断装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a deterioration diagnosis device for an exhaust gas purification device for an internal combustion engine according to the present invention. 本発明に係る内燃機関の排気浄化装置の劣化診断装置の第1実施形態における劣化診断の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the deterioration diagnosis in 1st Embodiment of the deterioration diagnosis apparatus of the exhaust gas purification device of the internal combustion engine which concerns on this invention. 前処理触媒132および吸蔵還元型NOx触媒136が正常に機能している場合の、第1のA/Fセンサ138および第2のA/Fセンサ139によって計測される排気空燃比の変化の様子を示すタイムチャートである。Changes in the exhaust air-fuel ratio measured by the first A / F sensor 138 and the second A / F sensor 139 when the pretreatment catalyst 132 and the NOx storage reduction catalyst 136 function normally. It is a time chart which shows. 吸蔵還元型NOx触媒136は正常であるが、前処理触媒132の酸化機能が低下ないしは劣化した場合、第1のA/Fセンサ138および第2のA/Fセンサ139によって計測される排気空燃比の変化の様子を示すタイムチャートである。Although the NOx storage reduction catalyst 136 is normal, the exhaust air-fuel ratio measured by the first A / F sensor 138 and the second A / F sensor 139 when the oxidation function of the pretreatment catalyst 132 decreases or deteriorates. It is a time chart which shows the mode of change of. 前処理触媒132および吸蔵還元型NOx触媒136が正常である場合の、第1のA/Fセンサ138および第2のA/Fセンサ139によって計測される排気空燃比の変化の様子を示すタイムチャートである。Time chart showing how the exhaust air-fuel ratio changes measured by the first A / F sensor 138 and the second A / F sensor 139 when the pretreatment catalyst 132 and the NOx storage reduction catalyst 136 are normal It is. 本発明に係る内燃機関の排気浄化装置の劣化診断装置の第2実施形態における劣化診断の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the degradation diagnosis in 2nd Embodiment of the degradation diagnostic apparatus of the exhaust gas purification device of the internal combustion engine which concerns on this invention.

符号の説明Explanation of symbols

100 ディーゼルエンジン本体
112 エアフローメータ
114 燃料噴射弁
115 還元剤添加弁
132 前処理触媒装置(酸化触媒または三元触媒)
136 吸蔵還元型NOx触媒
138 第1の空燃比センサ(第1のA/Fセンサ)
139 第2の空燃比センサ(第2のA/Fセンサ)
200 電子制御ユニット(ECU)
100 Diesel engine body 112 Air flow meter 114 Fuel injection valve 115 Reductant addition valve 132 Pretreatment catalyst device (oxidation catalyst or three-way catalyst)
136 NOx storage reduction catalyst 138 First air-fuel ratio sensor (first A / F sensor)
139 Second air-fuel ratio sensor (second A / F sensor)
200 Electronic control unit (ECU)

Claims (4)

排気通路に酸化機能を有する前処理触媒とその下流に吸蔵還元型NOx触媒とが設置された内燃機関の排気浄化装置の劣化診断装置であって、
前記前処理触媒の下流で前記吸蔵還元型NOx触媒の上流に配置された第1の排気空燃比検出手段と、
前記吸蔵還元型NOx触媒の下流に配置された第2の排気空燃比検出手段と、
前記前処理触媒の上流において、排気ガスに還元剤を添加する第1の還元剤添加手段と、
所定の時期に前記第1の還元剤添加手段を作動させる第1の還元剤添加手段作動手段と、
前記第1の還元剤添加手段作動手段による前記第1の還元剤添加手段の作動時の所定時間内において、前記第1の排気空燃比検出手段により検出される到達触媒前空燃比値と前記第2の排気空燃比検出手段により検出される到達触媒後空燃比値との差を求め、該差の大小に基づき、前記前処理触媒の劣化度合を診断する診断手段と、
を備えることを特徴とする内燃機関の排気浄化装置の劣化診断装置。
A deterioration diagnosis device for an exhaust gas purification device for an internal combustion engine, in which a pretreatment catalyst having an oxidation function in an exhaust passage and an NOx storage reduction catalyst downstream thereof are installed,
First exhaust air-fuel ratio detection means disposed downstream of the pretreatment catalyst and upstream of the NOx storage reduction catalyst;
Second exhaust air-fuel ratio detecting means disposed downstream of the NOx storage reduction catalyst;
A first reducing agent addition means for adding a reducing agent to the exhaust gas upstream of the pretreatment catalyst;
First reducing agent addition means operating means for operating the first reducing agent addition means at a predetermined time;
The pre-catalyst pre-catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detection means and the first reductant addition means operating means within a predetermined time when the first reducing agent addition means is operated by the first reducing agent addition means operating means. A diagnostic means for diagnosing the degree of deterioration of the pretreatment catalyst based on the difference between the post-catalyst post-catalyst air / fuel ratio value detected by the exhaust air / fuel ratio detection means of
A deterioration diagnosis device for an exhaust gas purification device for an internal combustion engine, comprising:
前記第1の還元剤添加手段により添加供給される還元剤量は、排気空燃比がストイキに到達しない量であることを特徴とする請求項1に記載の内燃機関の排気浄化装置の劣化診断装置。   2. The deterioration diagnosis device for an exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the amount of the reducing agent added and supplied by the first reducing agent adding means is an amount at which the exhaust air-fuel ratio does not reach stoichiometry. . 前記第1の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比を推定する第1の到達排気空燃比推定手段と、
前記第1の到達排気空燃比推定手段により推定された第1の到達排気空燃比推定値と、前記第1の排気空燃比検出手段により検出された到達触媒前空燃比値または前記第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差を求め、該差の大小に基づき、前記第1の還元剤添加手段を診断する第2の診断手段と、
前記前処理触媒の上流において、排気ガスに還元剤を添加する第2の還元剤添加手段と、
前記第2の還元剤添加手段により添加供給された還元剤量に起因する到達排気空燃比を推定する第2の到達排気空燃比推定手段と、
前記第2の到達排気空燃比推定手段により推定された第2の到達排気空燃比推定値と、前記第1の排気空燃比検出手段により検出された到達触媒前空燃比値または前記第2の排気空燃比検出手段により検出された到達触媒後空燃比値との差を求め、該差の大小に基づき、前記第1の還元剤添加手段、前記前処理触媒および前記吸蔵還元型NOx触媒を診断する第3の診断手段と、
を備えることを特徴とする請求項1または2に記載の内燃機関の排気浄化装置の劣化診断装置。
First attainment exhaust air-fuel ratio estimation means for estimating an attainment exhaust air-fuel ratio resulting from the amount of reducing agent added and supplied by the first reducing agent addition means;
The first ultimate exhaust air / fuel ratio estimation value estimated by the first ultimate exhaust air / fuel ratio estimation means, the ultimate catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detection means, or the second exhaust gas A second diagnosing means for diagnosing the first reducing agent adding means based on a difference between the air-fuel ratio value after the reached catalyst detected by the air-fuel ratio detecting means and the magnitude of the difference;
Upstream of the pretreatment catalyst, a second reducing agent addition means for adding a reducing agent to the exhaust gas;
Second reached exhaust air / fuel ratio estimating means for estimating an reached exhaust air / fuel ratio resulting from the amount of reducing agent added and supplied by the second reducing agent adding means;
The second ultimate exhaust air / fuel ratio estimated value estimated by the second ultimate exhaust air / fuel ratio estimation means, the ultimate catalyst air / fuel ratio value detected by the first exhaust air / fuel ratio detection means, or the second exhaust gas A difference from the post-attainment catalyst post-air-fuel ratio value detected by the air-fuel ratio detection means is obtained, and the first reducing agent addition means, the pretreatment catalyst, and the NOx storage reduction catalyst are diagnosed based on the difference. A third diagnostic means;
The deterioration diagnosis device for an exhaust gas purification device for an internal combustion engine according to claim 1 or 2, characterized by comprising:
前記第1および第2の還元剤添加手段は、排気通路に設けられた還元剤添加弁および燃焼室に設けられた燃料噴射弁のいずれか一方およびその他方を、それぞれ、用いるものであることを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気浄化装置の劣化診断装置。   The first and second reducing agent addition means use one or the other of a reducing agent addition valve provided in the exhaust passage and a fuel injection valve provided in the combustion chamber, respectively. The deterioration diagnosis apparatus for an exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3.
JP2006324553A 2006-11-30 2006-11-30 Deterioration diagnosis device for exhaust gas purification device of internal combustion engine Active JP4706977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324553A JP4706977B2 (en) 2006-11-30 2006-11-30 Deterioration diagnosis device for exhaust gas purification device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324553A JP4706977B2 (en) 2006-11-30 2006-11-30 Deterioration diagnosis device for exhaust gas purification device of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008138562A true JP2008138562A (en) 2008-06-19
JP4706977B2 JP4706977B2 (en) 2011-06-22

Family

ID=39600303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324553A Active JP4706977B2 (en) 2006-11-30 2006-11-30 Deterioration diagnosis device for exhaust gas purification device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4706977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058461A1 (en) * 2008-11-19 2010-05-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP2010116803A (en) * 2008-11-11 2010-05-27 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2010203389A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Catalyst deterioration determination device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193744A (en) * 1997-09-19 1999-04-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002030923A (en) * 2000-07-21 2002-01-31 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2002256856A (en) * 2001-03-06 2002-09-11 Mitsubishi Motors Corp Device for detecting deterioration of exhaust emission control catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193744A (en) * 1997-09-19 1999-04-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002030923A (en) * 2000-07-21 2002-01-31 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2002256856A (en) * 2001-03-06 2002-09-11 Mitsubishi Motors Corp Device for detecting deterioration of exhaust emission control catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116803A (en) * 2008-11-11 2010-05-27 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
WO2010058461A1 (en) * 2008-11-19 2010-05-27 トヨタ自動車株式会社 Control device for internal combustion engine
CN102132025A (en) * 2008-11-19 2011-07-20 丰田自动车株式会社 Control device for internal combustion engine
JP4952847B2 (en) * 2008-11-19 2012-06-13 トヨタ自動車株式会社 Control device for internal combustion engine
US9027539B2 (en) 2008-11-19 2015-05-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2010203389A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Catalyst deterioration determination device

Also Published As

Publication number Publication date
JP4706977B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US8091404B2 (en) Abnormality diagnosis apparatus for NOx sensor
US8302378B2 (en) Degradation diagnosis device for catalyst
US8234916B2 (en) Abnormality diagnosis device for air-fuel ratio sensor
US8429902B2 (en) Secondary air supply system and secondary air supplying method of internal combustion engine
US7730718B2 (en) Control system for internal combustion engine
JP4929261B2 (en) Engine control device
CN109973184B (en) Abnormality diagnosis system for exhaust gas purification device
JP2008128114A (en) Exhaust throttle valve failure diagnostic device for internal combustion engine
JP2005002854A (en) Exhaust gas emission control device for engine
JP2010031749A (en) Control device for internal combustion engine
JP4706977B2 (en) Deterioration diagnosis device for exhaust gas purification device of internal combustion engine
JP3683175B2 (en) Exhaust gas purification device for internal combustion engine
JP2008038737A (en) Catalyst deterioration detecting device
JP4765866B2 (en) Control device for internal combustion engine
JP5098479B2 (en) Exhaust gas purification device for internal combustion engine
JP4114355B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP4506279B2 (en) Exhaust gas purification device for internal combustion engine
JP4352651B2 (en) Abnormality determination device for internal combustion engine
JP2012117406A (en) Catalyst abnormality determination method for internal combustion engine
JP2010053742A (en) Exhaust system diagnostic device of internal combustion engine
JP4033117B2 (en) Secondary air supply device
JP2015004319A (en) Exhaust emission control system of internal combustion engine
JP4190378B2 (en) Internal combustion engine catalyst bed temperature estimation device and internal combustion engine control device
JP4930018B2 (en) Abnormality detection device for reducing agent addition valve
JP2007224750A (en) Sulfur poisoning recovery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R151 Written notification of patent or utility model registration

Ref document number: 4706977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151