JP2010203389A - Catalyst deterioration determination device - Google Patents

Catalyst deterioration determination device Download PDF

Info

Publication number
JP2010203389A
JP2010203389A JP2009051816A JP2009051816A JP2010203389A JP 2010203389 A JP2010203389 A JP 2010203389A JP 2009051816 A JP2009051816 A JP 2009051816A JP 2009051816 A JP2009051816 A JP 2009051816A JP 2010203389 A JP2010203389 A JP 2010203389A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
exhaust gas
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009051816A
Other languages
Japanese (ja)
Other versions
JP5308870B2 (en
Inventor
Katsuji Wada
勝治 和田
Yuichi Matsuo
雄一 松尾
Naohiro Sato
尚宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009051816A priority Critical patent/JP5308870B2/en
Publication of JP2010203389A publication Critical patent/JP2010203389A/en
Application granted granted Critical
Publication of JP5308870B2 publication Critical patent/JP5308870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst deterioration determination device, highly accurately and simply determining deterioration of a catalyst, based on upstream and downstream air-fuel ratio parameters detected at optimal timing depending on actual states of exhaust gas flowing into the catalyst. <P>SOLUTION: The deterioration determination device 1 detects the air-fuel ratio parameters AFEX1, AFEX2 of upstream and downstream of the catalyst 7. When determining deterioration, air-fuel ratio deviation ΔAFEX12 is compared with a determination value DAF12 to determine the deterioration of the catalyst 7. The air-fuel ratio deviation ΔAFEX12 is a difference between the upstream air-fuel ratio parameter AFEX1 and the downstream air-fuel ratio parameter AFEX2, which are detected after the exhaust gas is switched from an oxydizing atmosphere to a reducing atmosphere and when the upstream air-fuel ratio parameter AFEX1 is within a predetermined range corresponding to the reducing atmosphere of the exhaust gas and variation in upstream air-fuel ratio parameter AFEX1 becomes a predetermined value ΔAFREF or smaller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気通路に設けられ、排ガスを浄化するための触媒の劣化を判定する触媒の劣化判定装置に関する。   The present invention relates to a catalyst deterioration determination device that is provided in an exhaust passage of an internal combustion engine and determines deterioration of a catalyst for purifying exhaust gas.

従来の触媒の劣化判定装置として、例えば特許文献1に開示されたものが知られている。この劣化判定装置は、酸素貯蔵能力を有するNOx触媒や三元触媒などの触媒の劣化を判定するものである。触媒の上流側および下流側には、排ガスの空燃比を検出する上流側空燃比センサおよび下流側空燃比センサが、それぞれ設けられている。   As a conventional catalyst deterioration determination device, for example, one disclosed in Patent Document 1 is known. This deterioration determination device determines deterioration of a catalyst such as a NOx catalyst or a three-way catalyst having an oxygen storage capacity. An upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor for detecting the air-fuel ratio of exhaust gas are provided on the upstream side and downstream side of the catalyst, respectively.

劣化判定を行う際には、まず、混合気の空燃比を理論空燃比よりもリーンな状態からリッチな状態に切り換えることにより、触媒に捕捉されていた酸素を放出させる。この空燃比のリッチ化制御中に、上流側空燃比センサおよび下流側空燃比センサで所定の周期ごとに検出された多数の上流側空燃比および下流側空燃比を用い、所定の劣化触媒モデルのモデルパラメータを最小二乗法により同定する。この劣化触媒モデルは、Y=β・Xで表され、Xは上流側空燃比、Yは下流側空燃比およびβはモデルパラメータである。そして、このモデルパラメータβを同定することによって得られた同定パラメータβminが判定値よりも小さいときに、上流側空燃比に対する下流側空燃比の遅れが小さいとして、触媒が劣化していると判定される。   When performing the deterioration determination, first, the oxygen trapped by the catalyst is released by switching the air-fuel ratio of the air-fuel mixture from a leaner state to a richer state than the stoichiometric air-fuel ratio. During the air-fuel ratio enrichment control, a number of upstream air-fuel ratios and downstream air-fuel ratios detected at predetermined intervals by the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor are used to determine a predetermined deterioration catalyst model. The model parameters are identified by the least square method. This deteriorated catalyst model is represented by Y = β · X, where X is an upstream air-fuel ratio, Y is a downstream air-fuel ratio, and β is a model parameter. When the identification parameter βmin obtained by identifying the model parameter β is smaller than the determination value, it is determined that the catalyst is deteriorated because the delay of the downstream air-fuel ratio with respect to the upstream air-fuel ratio is small. The

特開2007−292014号公報JP 2007-292014 A

しかし、上述した従来の劣化判定装置では、劣化触媒モデルを設定し、検出された多数の上流側空燃比および下流側空燃比を用い、モデルパラメータを最小二乗法により同定することが必要であるため、その演算処理が煩雑であるとともに、演算負荷が大きくなってしまう。このため、触媒の劣化判定を簡便に行うことができない。   However, in the above-described conventional deterioration determination device, it is necessary to set a deterioration catalyst model, use a large number of detected upstream air-fuel ratios and downstream air-fuel ratios, and identify model parameters by the least square method. The calculation process is complicated and the calculation load increases. For this reason, it is not possible to easily determine the deterioration of the catalyst.

また、上記の劣化判定装置では、多数の上流側空燃比および下流側空燃比のサンプリングが、上流側空燃比が理論空燃比よりもリッチ側に変化した後の全領域にわたって行われる。このため、サンプリングされた上流側空燃比および下流側空燃比の中には、上流側空燃比が大きく変化している状態でサンプリングされたものも含まれてしまうため、同定パラメータが上流側空燃比に対する下流側空燃比の遅れを必ずしも適正に表さない。その結果、正確な触媒の劣化判定を行えず、その精度が低下し、誤判定による不必要な触媒の交換が行われるおそれがある。   In the above-described deterioration determination device, sampling of a large number of upstream air-fuel ratios and downstream air-fuel ratios is performed over the entire region after the upstream air-fuel ratio has changed to a richer side than the stoichiometric air-fuel ratio. For this reason, the sampled upstream air-fuel ratio and the downstream air-fuel ratio include those sampled in a state where the upstream air-fuel ratio has changed greatly. The delay of the downstream air-fuel ratio with respect to the above does not necessarily represent properly. As a result, accurate determination of catalyst deterioration cannot be performed, the accuracy of the catalyst may be reduced, and unnecessary catalyst replacement may be performed due to erroneous determination.

本発明は、このような課題を解決するためになされたものであり、触媒に流入する排ガスの実際の状態に応じた最適なタイミングで検出された、上流側および下流側空燃比パラメータに基づいて、触媒の劣化を精度良く簡便に判定することができる触媒の劣化判定装置を提供することを目的とする。   The present invention has been made to solve such a problem, and is based on upstream and downstream air-fuel ratio parameters detected at an optimal timing according to the actual state of exhaust gas flowing into the catalyst. An object of the present invention is to provide a catalyst deterioration determination device capable of accurately and easily determining catalyst deterioration.

上記目的を達成するために、請求項1に係る発明は、内燃機関3の排気通路(実施形態における(以下、本項において同じ)排気管5)に設けられ、内燃機関3の排ガスが酸化雰囲気のときに排ガス中の酸素を貯蔵する酸素貯蔵能力を有し、貯蔵した酸素を排ガスが還元雰囲気のときに放出するとともに、排ガスを浄化する触媒7の劣化を判定する触媒7の劣化判定装置1であって、排気通路の触媒7よりも上流側における排ガスの空燃比を表す上流側空燃比パラメータ(上流側排ガス空燃比AFEX1)を検出する上流側空燃比パラメータセンサ(上流側LAFセンサ12)と、排気通路の触媒7よりも下流側における排ガスの空燃比を表す下流側空燃比パラメータ(下流側排ガス空燃比AFEX2)を検出する下流側空燃比パラメータセンサ(下流側LAFセンサ13)と、上流側空燃比パラメータセンサ12を通って触媒7に流入する排ガスを、酸化雰囲気と還元雰囲気との間で切り換えて制御する制御手段(ECU2)と、制御手段により排ガスが酸化雰囲気から還元雰囲気に切り換えられた後、検出された上流側空燃比パラメータが排ガスの還元雰囲気に相当する所定の範囲内にあり、かつ上流側空燃比パラメータの変化量(上流側空燃比変化量ΔAFEX1)が所定値ΔAFREF以下になったときに検出された上流側空燃比パラメータと下流側空燃比パラメータとの乖離度合を表す値(空燃比偏差DAFEX12)を、判定値DAF12と比較することによって、触媒7の劣化を判定する劣化判定手段(ECU2、ステップ9〜11)と、を備えることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is provided in an exhaust passage of the internal combustion engine 3 (the exhaust pipe 5 in the embodiment (hereinafter, the same applies in this section)), and the exhaust gas of the internal combustion engine 3 is in an oxidizing atmosphere. The deterioration determination device 1 of the catalyst 7 has an oxygen storage capacity for storing oxygen in the exhaust gas, and releases the stored oxygen when the exhaust gas is in a reducing atmosphere, and determines deterioration of the catalyst 7 that purifies the exhaust gas. An upstream air-fuel ratio parameter sensor (upstream LAF sensor 12) for detecting an upstream air-fuel ratio parameter (upstream exhaust gas air-fuel ratio AFEX1) representing the air-fuel ratio of exhaust gas upstream of the catalyst 7 in the exhaust passage; A downstream air-fuel ratio parameter set for detecting a downstream air-fuel ratio parameter (downstream exhaust gas air-fuel ratio AFEX2) representing the air-fuel ratio of the exhaust gas downstream of the catalyst 7 in the exhaust passage. Control means (ECU2) for controlling exhaust gas flowing into the catalyst 7 through the upstream (downstream LAF sensor 13) and upstream air-fuel ratio parameter sensor 12 between an oxidizing atmosphere and a reducing atmosphere, and a controlling means After the exhaust gas is switched from the oxidizing atmosphere to the reducing atmosphere, the detected upstream air-fuel ratio parameter is within a predetermined range corresponding to the reducing atmosphere of the exhaust gas, and the amount of change in the upstream air-fuel ratio parameter (upstream air A value (air-fuel ratio deviation DAFEX12) representing the degree of deviation between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter detected when the fuel ratio change amount ΔAFEX1) is equal to or less than the predetermined value ΔAFREF is compared with the determination value DAF12. Thus, a deterioration determination means (ECU 2, steps 9 to 11) for determining deterioration of the catalyst 7 is provided.

この触媒の劣化判定装置によれば、排気通路の触媒よりも上流側および下流側における、排ガスの空燃比をそれぞれ表す上流側空燃比パラメータおよび下流側空燃比パラメータが、上流側空燃比パラメータセンサおよび下流側空燃比パラメータセンサによってそれぞれ検出される。また、触媒に流入する排ガスが、制御手段によって、酸化雰囲気から還元雰囲気に切り換えられた後において検出された、上流側空燃比パラメータと下流側空燃比パラメータとの乖離度合を表す値を判定値と比較することにより、触媒の劣化を判定する。   According to this catalyst deterioration determination device, the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter respectively representing the air-fuel ratio of the exhaust gas on the upstream side and downstream side of the catalyst in the exhaust passage are the upstream air-fuel ratio parameter sensor and Each is detected by a downstream air-fuel ratio parameter sensor. Further, a value representing the degree of divergence between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter, which is detected after the exhaust gas flowing into the catalyst is switched from the oxidizing atmosphere to the reducing atmosphere by the control means, is a determination value. By comparing, the deterioration of the catalyst is determined.

触媒に流入する排ガスが酸化雰囲気から還元雰囲気に切り換えられると、触媒の上流側における排ガスの空燃比は、すぐにリッチ側に変化する。一方、触媒の下流側における排ガスの空燃比は、排ガスが酸化雰囲気のときに貯蔵されていた酸素が触媒から放出され、排ガス中の還元剤を酸化するのに消費されるため、すぐにはリッチ側に変化せず、上流側の空燃比に対して遅れをもって変化する。また、触媒が劣化すると、触媒の酸素貯蔵能力が低下し、それに応じて触媒に貯蔵される酸素量が減少するため、上流側の空燃比に対する下流側の空燃比の遅れは小さくなる。以上から、排ガスの還元雰囲気への切り換え後に検出された上流側空燃比パラメータと下流側空燃比パラメータとの乖離度合を表す値を、判定値と比較することによって、触媒の劣化を判定することができる。   When the exhaust gas flowing into the catalyst is switched from the oxidizing atmosphere to the reducing atmosphere, the air-fuel ratio of the exhaust gas on the upstream side of the catalyst immediately changes to the rich side. On the other hand, the air-fuel ratio of the exhaust gas on the downstream side of the catalyst is rich immediately because oxygen stored when the exhaust gas is in an oxidizing atmosphere is released from the catalyst and consumed to oxidize the reducing agent in the exhaust gas. It changes with a delay with respect to the upstream air-fuel ratio. Further, when the catalyst is deteriorated, the oxygen storage capacity of the catalyst is reduced, and the amount of oxygen stored in the catalyst is accordingly reduced, so that the delay of the downstream air-fuel ratio with respect to the upstream air-fuel ratio becomes small. From the above, it is possible to determine the deterioration of the catalyst by comparing the value indicating the degree of divergence between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter detected after switching to the reducing atmosphere of the exhaust gas with the determination value. it can.

また、この触媒の劣化判定装置によれば、上流側空燃比パラメータが、排ガスが酸化雰囲気から還元雰囲気への切り換え後、排ガスの還元雰囲気に相当する所定の判定値の範囲内にあり、かつ上流側空燃比パラメータの変化量が所定値以下になったときに検出された上流側空燃比パラメータと下流側空燃比パラメータとを用いて上記の判定が行われる。このため、触媒に流入する排ガスが還元雰囲気に確実に切り換わり、かつその状態で十分に安定し、しかも、上流側空燃比パラメータと下流側空燃比パラメータとの乖離度合いが比較的大きな最適なタイミングで検出された上流側および下流側空燃比パラメータを用いて、触媒の劣化を精度良く判定することができる。   Further, according to the catalyst deterioration determination device, the upstream air-fuel ratio parameter is within a predetermined determination value range corresponding to the reducing atmosphere of the exhaust gas after the exhaust gas is switched from the oxidizing atmosphere to the reducing atmosphere, and the upstream side. The above determination is performed using the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter detected when the amount of change in the side air-fuel ratio parameter is equal to or less than a predetermined value. For this reason, the optimal timing is ensured that the exhaust gas flowing into the catalyst is switched to the reducing atmosphere, is sufficiently stable in that state, and the degree of deviation between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter is relatively large. The deterioration of the catalyst can be accurately determined using the upstream and downstream air-fuel ratio parameters detected in step (1).

また、判定に際し、上述した1つのタイミングで検出された上流側および下流側空燃比パラメータを用いるだけでよいので、従来のような複雑な演算処理を行うことなく、触媒の劣化判定を簡便に行うことができる。   Further, since it is only necessary to use the upstream and downstream air-fuel ratio parameters detected at one timing as described above, it is possible to easily determine the deterioration of the catalyst without performing a complicated calculation process as in the prior art. be able to.

請求項2に係る発明は、請求項1に記載の触媒7の劣化判定装置1において、触媒7の硫黄被毒量QSを算出する硫黄被毒量算出手段(ECU2、ステップ6)と、判定値DAF12を、算出された硫黄被毒量QSが大きいほど、より大きな値に設定する判定値設定手段(ECU2、ステップ7、図4)と、をさらに備えることを特徴とする。   According to a second aspect of the present invention, there is provided a sulfur poisoning amount calculating means (ECU 2, step 6) for calculating the sulfur poisoning amount QS of the catalyst 7 in the deterioration determination device 1 for the catalyst 7 according to the first aspect, and a determination value. The DAF 12 further includes determination value setting means (ECU 2, step 7, FIG. 4) for setting a larger value as the calculated sulfur poisoning amount QS is larger.

一般に、内燃機関の燃料には硫黄分が含まれており、硫黄分を含む排ガスに触媒がさらされると、触媒内に硫黄分が付着する。また、後述するように、この硫黄分の付着の量(以下「硫黄被毒量」という)が大きいほど、触媒の酸素貯蔵能力が高くなることが確認されている。このような観点から、上記の構成によれば、硫黄被毒量算出手段により算出された触媒の硫黄被毒量が大きいほど、劣化判定に用いる判定値をより大きな値に設定する。これにより、硫黄被毒量に応じて変化する酸素貯蔵能力に応じた適切な判定値が設定されるので、硫黄分の付着による誤判定を回避し、触媒の劣化判定の精度をさらに向上させることができる。   In general, the fuel of an internal combustion engine contains a sulfur content, and when the catalyst is exposed to exhaust gas containing the sulfur content, the sulfur content adheres to the catalyst. As will be described later, it has been confirmed that the greater the amount of sulfur adhering (hereinafter referred to as “sulfur poisoning amount”), the higher the oxygen storage capacity of the catalyst. From such a viewpoint, according to the above configuration, the determination value used for the deterioration determination is set to a larger value as the sulfur poisoning amount of the catalyst calculated by the sulfur poisoning amount calculating unit is larger. As a result, an appropriate determination value according to the oxygen storage capacity that changes according to the sulfur poisoning amount is set, so that erroneous determination due to adhesion of sulfur content is avoided, and the accuracy of catalyst deterioration determination is further improved. Can do.

本実施形態による触媒の劣化判定装置を、これを適用した内燃機関とともに概略的に示す図である。It is a figure which shows roughly the deterioration determination apparatus of the catalyst by this embodiment with the internal combustion engine to which this is applied. 劣化判定処理を示すフローチャートである。It is a flowchart which shows a deterioration determination process. 硫黄被毒量を算出するためのテーブルである。It is a table for calculating the sulfur poisoning amount. 劣化判定用の判定値を設定するためのテーブルである。It is a table for setting the determination value for deterioration determination. 劣化判定処理によって得られる動作例を示すタイミングチャートである。It is a timing chart which shows the operation example obtained by a degradation determination process.

以下、図面を参照しながら、本発明の好ましい実施形態について説明する。図1は、本実施形態による触媒の劣化判定装置1、およびこれを適用した内燃機関3を示している。この内燃機関(以下「エンジン」という)3は、車両(図示せず)に搭載されたディーゼルエンジンである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a catalyst deterioration determination device 1 according to this embodiment and an internal combustion engine 3 to which the catalyst deterioration determination device 1 is applied. The internal combustion engine (hereinafter referred to as “engine”) 3 is a diesel engine mounted on a vehicle (not shown).

エンジン3のシリンダヘッド3aには、吸気管4および排気管5が接続されるとともに、燃料噴射弁(以下「インジェクタ」という)6が、燃焼室3bに臨むように取り付けられている。このインジェクタ6は、燃焼室3bの天壁の中央に配置されており、燃料タンク(図示せず)の燃料を燃焼室3bに噴射する。インジェクタ6から噴射される燃料噴射量QINJは、後述するECU2によって設定され、ECU2からの駆動信号により、インジェクタ6の開弁時間が制御されることによって、制御される。   An intake pipe 4 and an exhaust pipe 5 are connected to the cylinder head 3a of the engine 3, and a fuel injection valve (hereinafter referred to as "injector") 6 is attached so as to face the combustion chamber 3b. The injector 6 is disposed at the center of the top wall of the combustion chamber 3b, and injects fuel from a fuel tank (not shown) into the combustion chamber 3b. The fuel injection amount QINJ injected from the injector 6 is set by the ECU 2 described later, and is controlled by controlling the valve opening time of the injector 6 by a drive signal from the ECU 2.

排気管5には、NOx触媒で構成された触媒7が設けられている。この触媒7は、流入する排ガスがその酸素濃度が高い酸化雰囲気のときには、排ガス中のNOxを捕捉するとともに、排ガス中の酸素を貯蔵する酸素貯蔵能力を有している。また、触媒7は、還元雰囲気の排ガスが流入したときには、貯蔵していた酸素を放出するとともに、捕捉したNOxを還元させることによって、排ガスを浄化する。   The exhaust pipe 5 is provided with a catalyst 7 composed of a NOx catalyst. The catalyst 7 has an oxygen storage capacity for capturing NOx in the exhaust gas and storing oxygen in the exhaust gas when the inflowing exhaust gas is in an oxidizing atmosphere having a high oxygen concentration. Further, when exhaust gas in a reducing atmosphere flows in, the catalyst 7 purifies the exhaust gas by releasing stored oxygen and reducing captured NOx.

また、排気管5には、触媒7の上流側および下流側に、上流側LAFセンサ12および下流側LAFセンサ13がそれぞれ設けられている。これらのLAFセンサ12、13は、ジルコニアなどで構成されており、エンジン3に供給される混合気の空燃比がリッチ領域からリーン領域までの広範囲な領域において、排ガスの酸素濃度をリニアに検出する。上流側LAFセンサ12は、触媒7の上流側における排ガスの酸素濃度を検出し、下流側LAFセンサ13は、触媒7の下流側における排ガスの酸素濃度を検出し、それらの検出信号をECU2に出力する。   The exhaust pipe 5 is provided with an upstream LAF sensor 12 and a downstream LAF sensor 13 on the upstream side and downstream side of the catalyst 7, respectively. These LAF sensors 12 and 13 are composed of zirconia or the like, and linearly detect the oxygen concentration of the exhaust gas in a wide range where the air-fuel ratio of the air-fuel mixture supplied to the engine 3 ranges from a rich region to a lean region. . The upstream LAF sensor 12 detects the oxygen concentration of the exhaust gas on the upstream side of the catalyst 7, and the downstream LAF sensor 13 detects the oxygen concentration of the exhaust gas on the downstream side of the catalyst 7, and outputs these detection signals to the ECU 2. To do.

ECU2は、上流側LAFセンサ12の検出信号に基づいて、触媒7の上流側における排ガスの空燃比(以下「上流側排ガス空燃比」という)AFEX1を検出する。ここで、「排ガスの空燃比」とは、排ガス中の空気と可燃性気体の重量比をいう。このため、排ガスの空燃比は、排ガスが酸化雰囲気のときには大きくなり、還元雰囲気のときには小さくなる。同様に、ECU2は、下流側LAFセンサ13の検出信号に基づいて、触媒7の下流側における排ガスの空燃比(以下「下流側排ガス空燃比」という)AFEX2を検出する。   Based on the detection signal of the upstream LAF sensor 12, the ECU 2 detects the air-fuel ratio (hereinafter referred to as “upstream exhaust gas air-fuel ratio”) AFEX 1 upstream of the catalyst 7. Here, the “air-fuel ratio of exhaust gas” refers to the weight ratio of air and combustible gas in the exhaust gas. For this reason, the air-fuel ratio of the exhaust gas increases when the exhaust gas is in an oxidizing atmosphere and decreases when it is in a reducing atmosphere. Similarly, the ECU 2 detects an air-fuel ratio (hereinafter referred to as “downstream exhaust gas air-fuel ratio”) AFEX2 on the downstream side of the catalyst 7 based on a detection signal from the downstream LAF sensor 13.

また、ECU2は、CPU、RAM、ROMおよびI/Oインターフェースなどから成るマイクロコンピュータ(いずれも図示せず)で構成されている。前述した各種のセンサ12,13からの検出信号はそれぞれ、I/OインターフェースでA/D変換や整形がなされた後、CPUに入力される。また、ECU2は、これらの入力信号に応じ、ROMに記録された制御プログラムなどに従って、エンジン3の運転状態を判別するとともに、判別した運転状態に応じて、インジェクタ6の燃料噴射量QINJの制御や、触媒7の劣化を判定する劣化判定処理を実行する。   The ECU 2 is composed of a microcomputer (all not shown) including a CPU, a RAM, a ROM, an I / O interface, and the like. The detection signals from the various sensors 12 and 13 described above are input to the CPU after A / D conversion and shaping by the I / O interface. Further, the ECU 2 determines the operating state of the engine 3 according to the control program recorded in the ROM in accordance with these input signals, and controls the fuel injection amount QINJ of the injector 6 according to the determined operating state. Then, a deterioration determination process for determining deterioration of the catalyst 7 is executed.

また、ECU2は、触媒7の硫黄被毒量QSを、後述するようにして算出するとともに、算出した硫黄被毒量QSが所定量に達したときに、触媒7から硫黄分を除去するために硫黄除去処理を実行する。なお、本実施形態では、ECU2が、制御手段、劣化判定手段、硫黄被毒量算出手段および判定値設定手段に相当する。   Further, the ECU 2 calculates the sulfur poisoning amount QS of the catalyst 7 as described later, and removes the sulfur content from the catalyst 7 when the calculated sulfur poisoning amount QS reaches a predetermined amount. Perform sulfur removal treatment. In the present embodiment, the ECU 2 corresponds to a control unit, a deterioration determination unit, a sulfur poisoning amount calculation unit, and a determination value setting unit.

図2は、上述した触媒7の劣化判定処理を示すフローチャートである。本処理は、所定時間ごとに実行される。また、この劣化判定処理を実行するに際し、次のようなエンジン3の混合気の空燃比制御が行われる。すなわち、エンジン3では、ECU2による燃料噴射量制御により、通常、混合気の空燃比が、理論空燃比よりもリーン側に制御されており、それにより、排ガスは酸化雰囲気に制御されている。劣化判定処理を実行する際には、この状態から、混合気の空燃比を理論空燃比よりもリッチ側に制御することで、排ガスを還元雰囲気に切り換える。以下、このように劣化判定処理のために排ガスを還元雰囲気に切り換える制御を「排ガス還元制御」という。また、劣化判定処理は、エンジン3が安定した所定の運転状態にあり、かつ、ECU2および各種のセンサ12,13が正常であることを条件として実行される。   FIG. 2 is a flowchart showing the deterioration determination process for the catalyst 7 described above. This process is executed every predetermined time. Further, when executing the deterioration determination process, the air-fuel ratio control of the air-fuel mixture of the engine 3 is performed as follows. That is, in the engine 3, the air-fuel ratio of the air-fuel mixture is normally controlled to be leaner than the stoichiometric air-fuel ratio by controlling the fuel injection amount by the ECU 2, thereby controlling the exhaust gas in an oxidizing atmosphere. When executing the deterioration determination process, the exhaust gas is switched to the reducing atmosphere from this state by controlling the air-fuel ratio of the air-fuel mixture to be richer than the stoichiometric air-fuel ratio. Hereinafter, such control for switching the exhaust gas to the reducing atmosphere for the deterioration determination process is referred to as “exhaust gas reduction control”. The deterioration determination process is executed on condition that the engine 3 is in a stable predetermined operating state and the ECU 2 and the various sensors 12 and 13 are normal.

まず、図2のステップ1(「S1」と図示。以下同じ)では、還元制御フラグF_JUDが「1」であるか否かを判別する。この還元制御フラグF_JUDは、排ガス還元制御中に「1」にセットされるものである。このステップ1の答がNOで、排ガス還元制御中でないときには、燃料消費量積算値SQFを算出し(ステップ2)、本処理を終了する。なお、この燃料消費量積算値SQFは、燃料噴射量QINJを積算した燃料噴射量積算値に等しい値として算出される。なお、前述した触媒7の硫黄除去処理が実行された場合には、燃料消費量積算値SQFは「0」にリセットされる。   First, in step 1 of FIG. 2 (illustrated as “S1”, the same applies hereinafter), it is determined whether or not the reduction control flag F_JUD is “1”. The reduction control flag F_JUD is set to “1” during the exhaust gas reduction control. If the answer to step 1 is NO, and the exhaust gas reduction control is not being performed, the fuel consumption integrated value SQF is calculated (step 2), and this process ends. The fuel consumption integrated value SQF is calculated as a value equal to the fuel injection integrated value obtained by integrating the fuel injection amount QINJ. Note that, when the above-described sulfur removal processing of the catalyst 7 is executed, the fuel consumption integrated value SQF is reset to “0”.

ステップ1の答がYESで、排ガス還元制御中のときには、上流側排ガス空燃比AFEX1が所定値AFREFよりも小さいか否かを判別する(ステップ3)。この所定値AFREFは、混合気の理論空燃比に相当する排ガスの空燃比よりもリッチ側に、すなわち、還元雰囲気に相当する値に設定されている。このステップ3の答がNOで、AFEX1≧AFREFのときには、触媒7に流入する排ガスが確実に還元雰囲気に切り換わっていないとして、触媒7の劣化判定は行わず、前記ステップ2を実行した後、本処理を終了する。   If the answer to step 1 is YES and the exhaust gas reduction control is being performed, it is determined whether or not the upstream exhaust gas air-fuel ratio AFEX1 is smaller than a predetermined value AFREF (step 3). The predetermined value AFREF is set to a richer side than the air-fuel ratio of the exhaust gas corresponding to the stoichiometric air-fuel ratio of the air-fuel mixture, that is, a value corresponding to the reducing atmosphere. When the answer to step 3 is NO and AFEX1 ≧ AFREF, it is determined that the exhaust gas flowing into the catalyst 7 has not surely switched to the reducing atmosphere, and the deterioration determination of the catalyst 7 is not performed. This process ends.

ステップ3の答がYESで、上流側排ガス空燃比AFEX1が所定値AFREFよりも小さいときには、上流側排ガス空燃比の前回値AFEX1(n−1)と今回値AFEX1(n)との差(AFEX1(n−1)−AFEX1(n))を、上流側空燃比変化量ΔAFEX1として算出する(ステップ4)。   If the answer to step 3 is YES and the upstream side exhaust gas air-fuel ratio AFEX1 is smaller than the predetermined value AFREF, the difference (AFEX1 (n) between the previous value AFEX1 (n−1) and the current value AFEX1 (n) of the upstream side exhaust gas air / fuel ratio n-1) -AFEX1 (n)) is calculated as the upstream air-fuel ratio change amount ΔAFEX1 (step 4).

次に、上記ステップ4で算出された上流側空燃比変化量ΔAFEX1が、所定値ΔAFREF以下であるか否かを判別する(ステップ5)。このステップ5の答がNOで、ΔAFEX1>ΔAFREFのときには、触媒7に流入する排ガスの空燃比が十分に安定していないとして、触媒7の劣化判定は行わず、前記ステップ2を実行した後、本処理を終了する。   Next, it is determined whether or not the upstream air-fuel ratio change amount ΔAFEX1 calculated in step 4 is equal to or less than a predetermined value ΔAFREF (step 5). If the answer to step 5 is NO and ΔAFEX1> ΔAFREF, the air-fuel ratio of the exhaust gas flowing into the catalyst 7 is not sufficiently stable, and thus the deterioration determination of the catalyst 7 is not performed. This process ends.

ステップ5の答がYESで、上流側空燃比変化量ΔAFEX1が所定値ΔAFREF以下のときには、前記ステップ2で算出された燃料消費量積算値SQFに応じ、図3に示すテーブルを検索することによって、触媒7の硫黄被毒量QSを算出する(ステップ6)。このテーブルでは、硫黄被毒量QSは、燃料消費量積算値SQFに比例するように設定されている。   When the answer to step 5 is YES and the upstream air-fuel ratio change amount ΔAFEX1 is equal to or less than the predetermined value ΔAFREF, the table shown in FIG. 3 is searched according to the fuel consumption integrated value SQF calculated in the step 2. The sulfur poisoning amount QS of the catalyst 7 is calculated (step 6). In this table, the sulfur poisoning amount QS is set to be proportional to the fuel consumption integrated value SQF.

次に、ステップ6で算出された硫黄被毒量QSに応じ、図4に示すテーブルを検索することによって、触媒7の劣化を判定するための判定値DAF12を設定する(ステップ7)。このテーブルでは、判定値DAF12は、触媒7の硫黄被毒量QSが大きいほど、より大きくなるようにリニアに設定されている。これは、硫黄被毒量QSが大きいほど触媒7の酸素貯蔵能力が高くなることが確認されているため、それに応じた判定値DAF12を適切に設定するためである。また、このように硫黄被毒量QSが大きいほど触媒7の酸素貯蔵能力が高くなるのは、硫黄分が触媒7の表面に硫酸根という形態で化学吸着することによって、硫酸根中の酸素が出入りしやすい化学状態になっているためと推定される。   Next, a determination value DAF 12 for determining deterioration of the catalyst 7 is set by searching the table shown in FIG. 4 according to the sulfur poisoning amount QS calculated in step 6 (step 7). In this table, the determination value DAF12 is linearly set so as to increase as the sulfur poisoning amount QS of the catalyst 7 increases. This is because it is confirmed that the oxygen storage capacity of the catalyst 7 increases as the sulfur poisoning amount QS increases, so that the determination value DAF12 corresponding thereto is appropriately set. In addition, the larger the sulfur poisoning amount QS, the higher the oxygen storage capacity of the catalyst 7 is because the sulfur content is chemically adsorbed on the surface of the catalyst 7 in the form of sulfate radicals. It is presumed that the chemical state is easy to enter and exit.

次のステップ8では、下流側排ガス空燃比AFEX2と上流側排ガス空燃比AFEX1との差(AFEX2−AFEX1)を、空燃比偏差DAFEX12として算出する。次に、この空燃比偏差DAFEX12が、ステップ7で設定された判定値DAF12よりも大きいか否かを判別する(ステップ9)。   In the next step 8, the difference (AFEX2-AFEX1) between the downstream exhaust gas air-fuel ratio AFEX2 and the upstream exhaust gas air-fuel ratio AFEX1 is calculated as the air-fuel ratio deviation DAFEX12. Next, it is determined whether or not the air-fuel ratio deviation DAFEX12 is larger than the determination value DAF12 set in step 7 (step 9).

この答がYESで、DAFEX12>DAF12のときには、触媒7に貯蔵されていた酸素の量が十分に大きいと推定されるため、触媒7が劣化していないと判定するとともに、そのことを表すために、触媒劣化フラグF_CATNGを「0」にセットし(ステップ10)、本処理を終了する。一方、上記ステップ9の答がNOで、DAFEX12≦DAF12のときには、触媒7に貯蔵されていた酸素の量が小さいと推定されるため、触媒7が劣化していると判定するとともに、そのことを表すために、触媒劣化フラグF_CATNGを「1」にセットし(ステップ11)、本処理を終了する。   When this answer is YES and DAFEX12> DAF12, it is estimated that the amount of oxygen stored in the catalyst 7 is sufficiently large, so that it is determined that the catalyst 7 is not deteriorated and this is expressed. Then, the catalyst deterioration flag F_CATNG is set to “0” (step 10), and this process is terminated. On the other hand, if the answer to step 9 is NO and DAFEX12 ≦ DAF12, it is estimated that the amount of oxygen stored in the catalyst 7 is small. In order to express this, the catalyst deterioration flag F_CATNG is set to “1” (step 11), and this process is terminated.

図5は、これまでに説明した触媒7の劣化判定処理によって得られる動作例を示している。同図の実線および一点鎖線は、排ガス還元制御が行われたときの、上流側および下流側排ガス空燃比AFEX1,AFEX2の推移をそれぞれ示す。同図に示すように、時点t1の前においては、触媒7の劣化判定の条件が成立していないため、混合気の空燃比を理論空燃比よりもリーン側に制御するリーン運転が行われている。このため、排ガスは酸化雰囲気に制御され、上流側および下流側排ガス空燃比AFEX1,AFEX2は、混合気の空燃比に対応した大きな値になっている。   FIG. 5 shows an operation example obtained by the deterioration determination process for the catalyst 7 described so far. The solid line and the alternate long and short dash line in FIG. 6 indicate the transitions of the upstream and downstream exhaust gas air-fuel ratios AFEX1 and AFEX2, respectively, when exhaust gas reduction control is performed. As shown in the figure, before the time point t1, since the condition for determining the deterioration of the catalyst 7 is not satisfied, the lean operation for controlling the air-fuel ratio of the air-fuel mixture to be leaner than the stoichiometric air-fuel ratio is performed. Yes. For this reason, the exhaust gas is controlled in an oxidizing atmosphere, and the upstream and downstream exhaust gas air-fuel ratios AFEX1 and AFEX2 have large values corresponding to the air-fuel ratio of the air-fuel mixture.

その後、触媒7の劣化判定の条件が成立すると(時点t1)、還元制御フラグF_JUDが「1」にセットされ、混合気の空燃比を理論空燃比よりもリッチ側に制御する排ガス還元制御が開始される。これにより、排ガスが酸化雰囲気から還元雰囲気に切り換えられる。それに伴い、上流側排ガス空燃比AFEX1は、排ガスが上流側LAFセンサ12に到達するまでの時間、遅れて低下し始める(時点t2)。   Thereafter, when the condition for determining the deterioration of the catalyst 7 is satisfied (time t1), the reduction control flag F_JUD is set to “1”, and exhaust gas reduction control is started to control the air-fuel ratio of the air-fuel mixture to be richer than the theoretical air-fuel ratio Is done. Thereby, the exhaust gas is switched from the oxidizing atmosphere to the reducing atmosphere. Accordingly, the upstream side exhaust gas air-fuel ratio AFEX1 starts to decrease with a delay until the exhaust gas reaches the upstream side LAF sensor 12 (time point t2).

一方、下流側排ガス空燃比AFEX2は、リーン運転中に触媒7によって貯蔵されていた酸素が放出されるため、貯蔵された酸素量、すなわち触媒7の酸素貯蔵能力に応じた遅れをもって低下する。   On the other hand, the downstream exhaust gas air-fuel ratio AFEX2 decreases with a delay corresponding to the amount of stored oxygen, that is, the oxygen storage capacity of the catalyst 7, because the oxygen stored by the catalyst 7 during the lean operation is released.

また、上流側排ガス空燃比AFEX1は、所定値AFREFを横切り(時点t3)、それを下回るようになる(ステップ3:YES)。その後、上流側空燃比変化量ΔAFEX1は徐々に減少する。そして、時点t4において、上流側空燃比変化量ΔAFEX1が所定値ΔAFREF以下になると(ステップ5:YES)、そのときに検出された下流側排ガス空燃比AFEX2と上流側排ガス空燃比AFEX1との差である空燃比偏差DAFEX12を、判定値DAF12と比較することによって、触媒7の劣化判定が行われる(ステップ9〜11)。その後、上流側排ガス空燃比AFEX1は、さらに低下し、排ガス還元制御中の混合気の空燃比に対応する値に収束し、これに遅れて下流側排ガス空燃比AFEX2も同様に収束する。   Further, the upstream side exhaust gas air-fuel ratio AFEX1 crosses the predetermined value AFREF (time point t3) and becomes lower (step 3: YES). Thereafter, the upstream air-fuel ratio change amount ΔAFEX1 gradually decreases. At time t4, when the upstream air-fuel ratio change amount ΔAFEX1 becomes equal to or smaller than the predetermined value ΔAFREF (step 5: YES), the difference between the downstream exhaust gas air-fuel ratio AFEX2 and the upstream exhaust gas air-fuel ratio AFEX1 detected at that time The deterioration determination of the catalyst 7 is performed by comparing a certain air-fuel ratio deviation DAFEX12 with the determination value DAF12 (steps 9 to 11). Thereafter, the upstream exhaust gas air-fuel ratio AFEX1 further decreases and converges to a value corresponding to the air-fuel ratio of the air-fuel mixture during exhaust gas reduction control, and the downstream exhaust gas air-fuel ratio AFEX2 converges similarly thereafter.

以上のように、本実施形態によれば、排ガス還元制御中に検出された下流側排ガス空燃比AFEX2と上流側排ガス空燃比AFEX1との差である空燃比偏差DAFEX12を、判定値DAF12と比較することによって、触媒7の劣化を判定する。触媒7が劣化すると、その酸素貯蔵能力が低下し、それに応じて、触媒7に貯蔵される酸素量が減少するため、上流側排ガス空燃比AFEX1に対する下流側排ガス空燃比AFEX2の遅れは小さくなる。このため、上述のようにして算出された空燃比偏差DAFEX12を判定値DAF12と比較することによって、触媒7の劣化を判定することができる。   As described above, according to the present embodiment, the air-fuel ratio deviation DAFEX12 that is the difference between the downstream exhaust gas air-fuel ratio AFEX2 and the upstream exhaust gas air-fuel ratio AFEX1 detected during the exhaust gas reduction control is compared with the determination value DAF12. Thus, the deterioration of the catalyst 7 is determined. When the catalyst 7 deteriorates, its oxygen storage capacity decreases, and accordingly, the amount of oxygen stored in the catalyst 7 decreases. Therefore, the delay of the downstream exhaust gas air-fuel ratio AFEX2 with respect to the upstream exhaust gas air-fuel ratio AFEX1 becomes small. Therefore, the deterioration of the catalyst 7 can be determined by comparing the air-fuel ratio deviation DAFEX12 calculated as described above with the determination value DAF12.

また、空燃比偏差DAFEX12を算出する際の上流側および下流側排ガス空燃比AFEX1,AFEX2として、上流側排ガス空燃比AFEX1が所定値AFREFを下回り、かつ上流側空燃比変化量ΔAFEX1が所定値ΔAFREF以下になったときに検出されたものを用いる。これにより、排ガスが還元雰囲気に確実に切り換わり、かつその状態で十分に安定し、しかも空燃比偏差DAFEX12が比較的大きな最適なタイミングで検出された上流側および下流側排ガス空燃比AFEX1,AFEX2を用いて、触媒7の劣化を精度良く判定することができる。   Further, as the upstream and downstream exhaust gas air-fuel ratios AFEX1 and AFEX2 when calculating the air-fuel ratio deviation DAFEX12, the upstream exhaust gas air-fuel ratio AFEX1 is less than a predetermined value AFREF, and the upstream air-fuel ratio change amount ΔAFEX1 is not more than a predetermined value ΔAFREF. Use the one detected when. As a result, the exhaust gas air-fuel ratio AFEX1 and AFEX2 upstream and downstream, where the exhaust gas is reliably switched to the reducing atmosphere and sufficiently stable in that state, and the air-fuel ratio deviation DAFEX12 is detected at a relatively large optimum timing, can be obtained. By using this, it is possible to accurately determine the deterioration of the catalyst 7.

また、判定に際し、上述した1つのタイミングで検出された上流側および下流側排ガス空燃比AFEX1,AFEX2を用いるだけでよいので、従来のような複雑な演算処理を行うことなく、触媒7の劣化判定を簡便に行うことができる。   Further, since it is only necessary to use the upstream and downstream exhaust gas air-fuel ratios AFEX1 and AFEX2 detected at one timing described above, the deterioration determination of the catalyst 7 can be performed without performing complicated arithmetic processing as in the prior art. Can be performed easily.

さらに、触媒7の硫黄被毒量QSが大きいほど、空燃比偏差DAFEX12と比較される判定値DAF12は、より大きな値に設定される。これにより、硫黄被毒量QSに応じて変化する酸素貯蔵能力に応じた適切な判定値DAF12が設定されるので、硫黄分の付着による誤判定を回避し、触媒7の劣化判定の精度をさらに向上させることができる。   Further, as the sulfur poisoning amount QS of the catalyst 7 is larger, the determination value DAF12 compared with the air-fuel ratio deviation DAFEX12 is set to a larger value. As a result, an appropriate determination value DAF12 corresponding to the oxygen storage capacity that changes in accordance with the sulfur poisoning amount QS is set, so that erroneous determination due to adhesion of sulfur content is avoided, and the accuracy of deterioration determination of the catalyst 7 is further increased. Can be improved.

なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、空燃比パラメータとして、上流側および下流側排ガス空燃比AFEX1,AFEX2を用いているが、排ガスの空燃比を表す他の任意のパラメータを用いてもよい。例えば、排ガス中の酸素濃度または還元剤の濃度を用いてもよく、あるいは、理論空燃比の混合気に対応する排ガスの空燃比と実際の排ガスの空燃比との比である当量比を用いてもよい。   In addition, this invention can be implemented in various aspects, without being limited to the described embodiment. For example, in the embodiment, the upstream and downstream exhaust gas air-fuel ratios AFEX1 and AFEX2 are used as the air-fuel ratio parameter, but any other parameter representing the air-fuel ratio of the exhaust gas may be used. For example, the oxygen concentration or the concentration of the reducing agent in the exhaust gas may be used, or the equivalent ratio that is the ratio of the air-fuel ratio of the exhaust gas corresponding to the stoichiometric air-fuel mixture to the actual air-fuel ratio is used. Also good.

また、本実施形態では、上流側空燃比パラメータと下流側空燃比パラメータとの乖離度合を表す値として、下流側排ガス空燃比AFEX2と上流側排ガス空燃比AFEX1との差を用いているが、これに限らず、両者AFEX1,AFEX2の比を用いてもよい。   In the present embodiment, the difference between the downstream exhaust gas air-fuel ratio AFEX2 and the upstream exhaust gas air-fuel ratio AFEX1 is used as a value representing the degree of divergence between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter. However, the ratio of both AFEX1 and AFEX2 may be used.

あるいは、実施形態は、触媒7が単一のNOx触媒の例であるが、触媒7が酸素貯蔵能力を有するものであれば、そのタイプや、配置および数を任意に変更することが可能であり、例えば三元触媒でもよいことはもちろんである。   Alternatively, the embodiment is an example in which the catalyst 7 is a single NOx catalyst. However, if the catalyst 7 has an oxygen storage capacity, the type, arrangement, and number thereof can be arbitrarily changed. Of course, for example, a three-way catalyst may be used.

さらに、実施形態は、本発明を車両に搭載されたディーゼルエンジンに適用した例であるが、本発明は、これに限らず、ディーゼルエンジン以外のガソリンエンジンなどの各種のエンジンに適用してもよく、また、車両用以外のエンジン、例えば、クランク軸を鉛直に配置した船外機などのような船舶推進機用エンジンにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。   Furthermore, although embodiment is an example which applied this invention to the diesel engine mounted in the vehicle, this invention is not restricted to this, You may apply to various engines, such as gasoline engines other than a diesel engine. Also, the present invention can be applied to engines other than those for vehicles, for example, engines for marine propulsion devices such as outboard motors having a crankshaft arranged vertically. In addition, it is possible to appropriately change the detailed configuration within the scope of the gist of the present invention.

1 劣化判定装置
2 ECU(制御手段、劣化判定手段、硫黄被毒量算出手段、判定値設 定手段)
3 エンジン(内燃機関)
5 排気管(排気通路)
7 触媒
12 上流側LAFセンサ(上流側空燃比パラメータセンサ)
13 下流側LAFセンサ(下流側空燃比パラメータセンサ)
AFEX1 上流側排ガス空燃比(上流側空燃比パラメータ)
AFEX2 下流側排ガス空燃比(下流側空燃比パラメータ)
ΔAFEX1 上流側空燃比変化量(上流側空燃比パラメータの変化量)
ΔAFREF 所定値
QS 硫黄被毒量
DAFEX12 空燃比偏差(上流側空燃比パラメータと下流側空燃比パラメータと の乖離度合を表す値)
DAF12 判定値
1 Degradation judgment device
2 ECU (control means, deterioration determination means, sulfur poisoning amount calculation means, determination value setting means)
3 Engine (Internal combustion engine)
5 Exhaust pipe (exhaust passage)
7 Catalyst
12 Upstream LAF sensor (upstream air-fuel ratio parameter sensor)
13 Downstream LAF sensor (downstream air-fuel ratio parameter sensor)
AFEX1 upstream exhaust air-fuel ratio (upstream air-fuel ratio parameter)
AFEX2 Downstream exhaust air-fuel ratio (downstream air-fuel ratio parameter)
ΔAFEX1 upstream air-fuel ratio change (upstream air-fuel ratio parameter change)
ΔAFREF predetermined value
QS sulfur poisoning amount DAFEX12 air-fuel ratio deviation (value indicating the degree of deviation between upstream air-fuel ratio parameter and downstream air-fuel ratio parameter)
DAF12 judgment value

Claims (2)

内燃機関の排気通路に設けられ、前記内燃機関の排ガスが酸化雰囲気のときに排ガス中の酸素を貯蔵する酸素貯蔵能力を有し、当該貯蔵した酸素を排ガスが還元雰囲気のときに放出するとともに、排ガスを浄化する触媒の劣化を判定する触媒の劣化判定装置であって、
前記排気通路の前記触媒よりも上流側における排ガスの空燃比を表す上流側空燃比パラメータを検出する上流側空燃比パラメータセンサと、
前記排気通路の前記触媒よりも下流側における排ガスの空燃比を表す下流側空燃比パラメータを検出する下流側空燃比パラメータセンサと、
前記上流側空燃比パラメータセンサを通って前記触媒に流入する排ガスを、前記酸化雰囲気と前記還元雰囲気との間で切り換えて制御する制御手段と、
当該制御手段により前記排ガスが前記酸化雰囲気から前記還元雰囲気に切り換えられた後、前記検出された上流側空燃比パラメータが前記排ガスの前記還元雰囲気に相当する所定の範囲内にあり、かつ前記上流側空燃比パラメータの変化量が所定値以下になったときに検出された前記上流側空燃比パラメータと前記下流側空燃比パラメータとの乖離度合を表す値を、判定値と比較することによって、前記触媒の劣化を判定する劣化判定手段と、
を備えることを特徴とする触媒の劣化判定装置。
Provided in the exhaust passage of the internal combustion engine, having an oxygen storage capacity for storing oxygen in the exhaust gas when the exhaust gas of the internal combustion engine is in an oxidizing atmosphere, and releasing the stored oxygen when the exhaust gas is in a reducing atmosphere; A catalyst deterioration determination device for determining deterioration of a catalyst for purifying exhaust gas,
An upstream air-fuel ratio parameter sensor for detecting an upstream air-fuel ratio parameter representing an air-fuel ratio of exhaust gas upstream of the catalyst in the exhaust passage;
A downstream air-fuel ratio parameter sensor for detecting a downstream air-fuel ratio parameter representing an air-fuel ratio of exhaust gas downstream of the catalyst in the exhaust passage;
Control means for switching and controlling the exhaust gas flowing into the catalyst through the upstream air-fuel ratio parameter sensor between the oxidizing atmosphere and the reducing atmosphere;
After the exhaust gas is switched from the oxidizing atmosphere to the reducing atmosphere by the control means, the detected upstream air-fuel ratio parameter is within a predetermined range corresponding to the reducing atmosphere of the exhaust gas, and the upstream side By comparing a value indicating a degree of deviation between the upstream air-fuel ratio parameter and the downstream air-fuel ratio parameter detected when the amount of change in the air-fuel ratio parameter becomes a predetermined value or less with a determination value, the catalyst Degradation determination means for determining degradation of
An apparatus for determining deterioration of a catalyst, comprising:
前記触媒の硫黄被毒量を算出する硫黄被毒量算出手段と、
前記判定値を、前記算出された硫黄被毒量が大きいほど、より大きな値に設定する判定値設定手段と、
をさらに備えることを特徴とする、請求項1に記載の触媒の劣化判定装置。
A sulfur poisoning amount calculating means for calculating the sulfur poisoning amount of the catalyst;
Determination value setting means for setting the determination value to a larger value as the calculated sulfur poisoning amount is larger;
The catalyst deterioration determination device according to claim 1, further comprising:
JP2009051816A 2009-03-05 2009-03-05 Catalyst deterioration judgment device Expired - Fee Related JP5308870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051816A JP5308870B2 (en) 2009-03-05 2009-03-05 Catalyst deterioration judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051816A JP5308870B2 (en) 2009-03-05 2009-03-05 Catalyst deterioration judgment device

Publications (2)

Publication Number Publication Date
JP2010203389A true JP2010203389A (en) 2010-09-16
JP5308870B2 JP5308870B2 (en) 2013-10-09

Family

ID=42965116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051816A Expired - Fee Related JP5308870B2 (en) 2009-03-05 2009-03-05 Catalyst deterioration judgment device

Country Status (1)

Country Link
JP (1) JP5308870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094500A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301103A (en) * 2003-04-01 2004-10-28 Nissan Motor Co Ltd Deterioration diagnostic device of waste gas purifying catalyst
JP2006242188A (en) * 2005-02-28 2006-09-14 Ford Global Technologies Llc DEVICE AND METHOD FOR DESULFURIZING NOx OCCLUDING AND CONVERTING CATALYST DEVICE
JP2007292014A (en) * 2006-04-27 2007-11-08 Honda Motor Co Ltd Catalyst deterioration detecting device for internal combustion engine
JP2008138562A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Deterioration diagnostic system of exhaust emission control device of internal combustion engine
JP2009036172A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Catalyst-degradation diagnostic system for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301103A (en) * 2003-04-01 2004-10-28 Nissan Motor Co Ltd Deterioration diagnostic device of waste gas purifying catalyst
JP2006242188A (en) * 2005-02-28 2006-09-14 Ford Global Technologies Llc DEVICE AND METHOD FOR DESULFURIZING NOx OCCLUDING AND CONVERTING CATALYST DEVICE
JP2007292014A (en) * 2006-04-27 2007-11-08 Honda Motor Co Ltd Catalyst deterioration detecting device for internal combustion engine
JP2008138562A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Deterioration diagnostic system of exhaust emission control device of internal combustion engine
JP2009036172A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Catalyst-degradation diagnostic system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094500A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
JP7059912B2 (en) 2018-12-10 2022-04-26 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Also Published As

Publication number Publication date
JP5308870B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP4497132B2 (en) Catalyst degradation detector
US9188072B2 (en) Air-fuel ratio control apparatus for an internal combustion engine
JP5346989B2 (en) Air-fuel ratio sensor abnormality determination device
US10125708B2 (en) Internal combustion engine
US6766640B2 (en) Engine exhaust purification device
US8205435B2 (en) Deterioration determination device for catalyst, catalyst deterioration determining method, and engine control unit
JP4637213B2 (en) Catalyst deterioration judgment device
JP2006233943A (en) Air fuel ratio control device for internal combustion engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JP5844218B2 (en) Control device for internal combustion engine
JP5022997B2 (en) Catalyst deterioration judgment device
JP2008255952A (en) Sulfur concentration detection device of internal combustion engine
JP5308870B2 (en) Catalyst deterioration judgment device
JP2010059957A (en) Deterioration determining device for catalyst
JP4924924B2 (en) Catalyst deterioration detection device for internal combustion engine
JP4906793B2 (en) Catalyst deterioration judgment device
JP2010265802A (en) Exhaust emission control device of internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP2008202563A (en) Air/fuel ratio control device for internal combustion engine
JP2008175118A (en) Catalyst deterioration detection device
JP2005090388A (en) Exhaust emission purification controller for internal combustion engine
JP2002276433A (en) Exhaust emission control device for internal combustion engine
JP2018035771A (en) Exhaust purification system of internal combustion engine
JP2010248952A (en) Device for determining deterioration of catalyst
JP2004116295A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees