JP4114355B2 - Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof - Google Patents

Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof Download PDF

Info

Publication number
JP4114355B2
JP4114355B2 JP2002013148A JP2002013148A JP4114355B2 JP 4114355 B2 JP4114355 B2 JP 4114355B2 JP 2002013148 A JP2002013148 A JP 2002013148A JP 2002013148 A JP2002013148 A JP 2002013148A JP 4114355 B2 JP4114355 B2 JP 4114355B2
Authority
JP
Japan
Prior art keywords
catalyst
temperature
nox
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013148A
Other languages
Japanese (ja)
Other versions
JP2003214153A (en
JP2003214153A5 (en
Inventor
大介 柴田
久 大木
孝太郎 林
忍 石山
尚史 曲田
正明 小林
孝宏 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002013148A priority Critical patent/JP4114355B2/en
Priority to DE10300555A priority patent/DE10300555B4/en
Priority to FR0300271A priority patent/FR2834531B1/en
Publication of JP2003214153A publication Critical patent/JP2003214153A/en
Publication of JP2003214153A5 publication Critical patent/JP2003214153A5/ja
Application granted granted Critical
Publication of JP4114355B2 publication Critical patent/JP4114355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02T10/24
    • Y02T10/47

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関し、特にその劣化判定方法に関する。
【0002】
【従来の技術】
排気中の窒素酸化物(NOx)を浄化する触媒の一つとして、酸素濃度過剰(リーン)状態でNOxを吸蔵し、排気中に還元剤である燃料を添加して酸素濃度希薄(リッチ)状態にした時に吸蔵したNOxを放出し、活性化された触媒(Pt等)により燃料(HC)と反応させ、N2に還元して外気に排出する吸蔵還元型NOx触媒がある。
【0003】
このNOx触媒は、前記のように排気中のNOxをリーンの時に吸蔵、リッチの時に放出するNOx吸蔵剤と、還元剤である燃料により活性化されて、排出されたNOxに酸化還元反応を起こさせる貴金属触媒とから構成され、それぞれ吸蔵放出機能、活性化機能を組み合わせて排気を浄化している。
【0004】
これらの劣化を判定するにあたり、従来例としては、特開平11−229859号公報にあるように、NOx触媒において、該触媒に設けた温度センサと該触媒下流に設けたNOxセンサを用いて、このNOxセンサ及び温度特定手段である温度センサの経時情報に応じたNOx触媒の高温時及び低温時のNOx浄化状態に基づいて触媒劣化を判定する方法や、特開平7−208151号公報にあるように、NOx触媒下流に設けたNOxセンサを用いて、該触媒でNOx排出完了後に前記NOxセンサで感知するNOx濃度に応じて出力する出力値が所定値まで上昇するまでの時間が所定時間以下の場合に触媒劣化と判定する方法等がある。
【0005】
これらの劣化判定方法では、何れも排気中のNOx濃度を用いて触媒の劣化を判定するものであり、つまりはNOx濃度を検出するNOxセンサを用いて触媒の劣化を判定する必要がある。
【0006】
【発明が解決しようとする課題】
前記の劣化判定に用いられているNOxセンサは、そのNOx濃度の測定の精度が高いものが未だ実用レベルにないものであるため、実際にNOxセンサを用いて劣化判定を行う場合には、極めてコスト高になるか、若しくはその劣化判定精度が低下するものであった。
【0007】
本発明は前記の問題を鑑みて、NOxセンサを用いずに触媒のNOx浄化能力の劣化を判定することを課題とする。
【0008】
【課題を解決するための手段】
前記の課題を解決するために、内燃機関の排気系に設けられた排気浄化装置内に有する触媒が、劣化していない触媒のライトオフ温度以上の所定の判定温度に達した時に前記触媒に還元剤の添加を行うと共に、前記触媒の上流側排気温度と触媒床温度とを測定して、触媒床温度に対する上流側排気温度の温度差に基づいて該排気浄化装置の劣化状態を判定する、排気浄化装置の劣化判定方法により劣化を判定する。
【0009】
前記劣化判定方法を行うために、内燃機関の排気通路に設けられて排出される排気を浄化する触媒と、この触媒に流入する排気温度を測定する触媒流入排気温度測定手段と、前記触媒の床温度を測定する触媒床温度測定手段と、劣化していない触媒のライトオフ温度以上の所定の判定温度に触媒床温度が達した時に前記触媒に還元剤を添加する還元剤添加手段と、前記還元剤添加手段により還元剤を触媒に添加した際の触媒流入排気温度に対する触媒床温度の差を検出する差分温度検出手段と、前記差分温度検出手段により検出された温度差が所定の温度差より小さい場合に該触媒が劣化していると判定する劣化判定手段と、を備えた排気浄化装置の劣化判定装置を用いた。
【0011】
触媒上でHCやCOとNOxは酸化還元反応を起こしてH2OやCO2、N2などに変化し外気に排出される。この触媒が活性化され、触媒上で前記のHCやCO、NOxが酸化還元反応を開始する温度(ライトオフ温度)は触媒が劣化するに従い上昇する。また、同じく劣化した触媒は、NOxを吸蔵放出する能力も低下するため、触媒上にて単位時間あたりにおいて還元剤と反応するNOxの量も少なくなる。すなわち酸化還元反応量も低下することとなり、この酸化還元反応量の低下により、この酸化還元反応時の反応熱による触媒床温度の上昇量、すなわち触媒床温度と触媒流入排気温度との差も小さくなる。
【0012】
よって前記の劣化判定方法は、この特性を用いて行うものであり、劣化していない触媒のライトオフ温度以上の温度を所定の判定温度とし、この判定温度にて劣化判定を行う触媒に還元剤添加を行い、この時の昇温反応の程度により、触媒の劣化状態を判定する。前記判定温度は、前記劣化していない触媒のライトオフ温度以上であって且つ該ライトオフ温度近傍の温度であっても良い。また、前記判定温度は、前記劣化していない触媒のライトオフ温度以上であって且つ劣化している触媒のライトオフ温度未満の温度であっても良い。
【0013】
内燃機関の排気通路中に燃料を添加した際に触媒が酸化還元反応を開始する活性化温度以下であり、昇温反応が起こらないのであれば、触媒を有する排気浄化装置は排気通路の一部となる。この状態では触媒上流の排気温度と触媒床温度は等しい温度になる。よってこの活性化温度以下で燃料添加を行えば添加された燃料は触媒に付着した状態になるか、若しくはそのまま外気に排出されることになる。したがって、判定を行う触媒の床温度が、劣化していない触媒で酸化還元反応を開始する温度以上に上昇した時点で燃料添加を行うことにより触媒の劣化判定を行うことが可能となる。
【0014】
前記の触媒流入排気温度測定手段と触媒床温度測定手段とについては、その測定方法として、熱電対等によって直接排気温度及び触媒床温度を測定する方法や、特に触媒床温度については触媒下流の排気温度を測定してこの温度を触媒床温度とする測定方法が例示できる。また差分温度検出手段については、前記触媒流入排気温度測定手段と触媒床温度測定手段とで測定した温度に基づいて検出した信号をECU(電子制御装置)にて処理し、温度差(Δt)が発生する排気温度を検出する方法がある。
【0015】
前記排気浄化装置は、流入する排気が酸素濃度過剰状態の時に排気中に存在する窒素酸化物をその駆体に吸蔵し、同じく流入する排気が酸素濃度希薄状態の時に駆体に吸蔵した窒素酸化物を放出還元する吸蔵還元機能を有すると共に前記窒素酸化物の吸蔵量を推定する吸蔵量推定手段を有し、前記吸蔵量推定手段により窒素酸化物の吸蔵量が所定量以下と推定されたならば、還元剤添加手段による還元剤の添加が行われないこととした。
【0016】
前記NOx触媒は、周辺雰囲気によりNOxを吸蔵、放出するNOx吸蔵剤及び放出されたNOxと還元剤とを反応させる貴金属が担体上に担持されて構成されている。よって添加された燃料がNOx吸蔵剤より放出されたNOxと貴金属上で酸化還元反応を起こす際に発生する反応熱により昇温し、この昇温反応を用いてNOx触媒の劣化判定を行うものである。前記方法によるNOx触媒の劣化判定を行うには、劣化判定が行われるのに必要なNOx量を予めNOx触媒に吸蔵しておき、劣化判定を行うために還元剤と反応させる時にはこの吸蔵されたNOxを放出する必要がある。よって判定を行うNOx触媒のNOx吸蔵量を推定し、この推定されたNOx吸蔵量が劣化判定を行うに必要な所定量以下であるならば、前記排気浄化装置に有するNOx触媒に還元剤添加が行われないこと、すなわち劣化判定を実行しないこととした。
【0017】
前記各判定方法において、その判定に最もNOx吸蔵量が必要、すなわちNOxと還元剤の酸化還元反応による昇温反応が必要となるのは、Δtの最大値の相違による触媒劣化の判定方法である。よってこの判定方法に必要なNOxの吸蔵量を前記推定される吸蔵量として用いれば他の判定方法も行うことが可能となる。また、吸蔵量推定手段としては、内燃機関の負荷状態、燃焼室内に添加される燃料添加量、排気温度、NOx吸蔵に必要な時間等を把握した状態で、新触媒において同様にΔtの最大値が出るまでに必要なNOx吸蔵量を予め算出してNOx吸蔵量マップとしてECUに記憶しておく。このマップから劣化判定する触媒に最低限吸蔵されるNOx吸蔵量を推定し、この値をNOx吸蔵量として用いる方法等がある。
【0018】
【発明の実施の形態】
本発明に係る内燃機関の排気浄化装置の劣化判定装置及び方法を、ディーゼルエンジンシステムに適用した実施の形態について説明する。
【0019】
図1において、内燃機関(以下、エンジンという)1は、燃料供給系10、燃焼室20、吸気系30及び排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。以下、本ディーゼルエンジンシステムの構成について説明する。
【0020】
燃料供給系10は、サプライポンプ11、蓄圧室(コモンレール)12、燃料噴射弁13、遮断弁14、燃料添加ノズル17、機関燃料通路P1及び添加燃料通路P2等を備えて構成される。
【0021】
サプライポンプ11は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P1を介してコモンレール12に供給する。コモンレール12はサプライポンプ11から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各燃料噴射弁13に分配する。燃料噴射弁13はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃焼室20内に燃料を供給噴射する。
【0022】
他方、サプライポンプ11は、燃料タンクからくみ上げた燃料の一部を添加燃料通路P2を介して燃料添加ノズル17に供給する。添加燃料通路P2にはサプライポンプ11から燃料添加ノズル17に向かって遮断弁14が配設されている。遮断弁14は緊急時において、添加燃料通路P2を遮断し、燃料供給を中止する。燃料添加ノズル17は燃料噴射弁13と同様な電磁弁であり、排気系40内に還元剤である燃料を噴射添加する。
【0023】
吸気系30は、各燃焼室20内に供給される吸気空気の通路(吸気通路)を形成する。一方、排気系40は、各燃焼室20から排出される排気ガスの通路(排気通路)を形成する。
【0024】
また、このエンジン1には、周知の過給器(ターボチャージャ)50が備えられている。ターボチャージャ50は、シャフト51を介して連結されたタービンホイール52とコンプレッサ53とを備える。一方のコンプレッサ53は吸気系30内の吸気に晒され、他方のタービンホイール52は排気系40内の排気ガスに晒されている。このような構成を有するターボチャージャ50は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサ53を回転させ、吸気圧を高める効果(過給効果)を有する。
【0025】
吸気系30において、ターボチャージャ50に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。インタークーラ31よりも更に下流に設けられたスロットル弁32は、その開度を無段階に調節することができる電子制御式の開閉弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0026】
また、エンジン1には、燃焼室20の上流(吸気系30)及び下流(排気系40)をバイパスする排気環流通路(EGR通路)60が形成されている。具体的には、EGR通路60は排気系40におけるターボチャージャ50上流の排気集合管40aと吸気系30におけるスロットル弁32の下流側を連通している。このEGR通路60は、排気ガスの一部を適宜吸気系30に戻す機能を有する。EGR通路60には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁61と、EGR通路60を通過(環流)する排気ガスを冷却するためのEGRクーラ62が設けられている。
【0027】
また、排気系40において、燃焼室より接続する排気集合管40a、タービンホイール52が設けられた部位より下流側には、排気ガスの流路に沿って排気通路40b、その下流にNOx触媒ケーシング42、更に下流に排気通路40cが順次連結されている。NOx触媒ケーシング42には、後述するように排気ガス中に含まれるNOx等の有害成分を浄化する吸蔵還元型NOx触媒42bが収容されている。
【0028】
また、エンジン1の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン1の運転状態に関する信号を出力する。
【0029】
すなわち、レール圧センサ70は、コモンレール12内に蓄えられている燃料の圧力に応じた検出信号を出力する。燃圧センサ71は、添加燃料通路P2内を流通する燃料のうち、燃料添加ノズル17へ導入される燃料の圧力(燃圧)に応じた検出信号を出力する。エアフローメータ72は、吸気系30内のスロットル弁32上流において吸入空気の流量(吸気量)に応じた検出信号を出力する。空燃比(A/F)センサ73は、排気系40の触媒ケーシング42上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。触媒流出排気温度センサ74は、同じく排気系40の触媒ケーシング42下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。触媒流入排気温度センサ78は触媒ケーシング42入口において流入する排気ガスの温度に応じた検出信号を出力する。
【0030】
また、アクセル開度センサ76はアクセルペダル(図外)に取り付けられ、同ペダルの踏込量に応じてエンジン1において要求する仕事量の基となる検出信号を出力する。クランク角センサ77は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ70〜79は、電子制御装置(ECU)80と電気的に接続されている。
【0031】
図2に示すように、ECU80は中央演算処理装置(CPU)81、読み出し専用メモリ(ROM)82、ランダムアクセスメモリ(RAM)83及び運転停止後も記憶した情報が消去されないバックアップRAM84、タイマカウンタ85等と、A/D変換器を含む入力ポート86と、出力ポート87とが、双方向性バス88により接続されて構成される論理演算回路を備える。
【0032】
ECU80は、前記各種センサの検出信号を入力ポート86を介して入力し、これら信号に基づいてECU80に有するCPU81において、ROM82に記憶されているプログラムから、エンジン1の燃料噴射等についての基本制御を行う他、還元剤(還元剤として機能する燃料)添加に係る燃料噴射の供給量の決定や添加時期等に関する還元剤(燃料)添加制御等、エンジン1の運転状態に関係する各種制御を行う。
【0033】
尚、燃料噴射弁13を通じて各気筒に燃料を供給する燃料供給系10、排気系40に備えられたNOx触媒、及びこれら燃料供給系10やNOx触媒の機能を制御するECU80等は、併せて本実施の形態に係るエンジン1の排気浄化装置を構成する。前記燃料添加制御等は、当該制御に関する指令信号を出力するECU80を含め、この排気浄化装置を構成する各種部材の作動を通じて実施される。
【0034】
次に、以上説明したエンジン1の構成要素のうち、排気系40に設けられた触媒ケーシング42について、その構成及び機能を詳しく説明する。
【0035】
図3は、図1に示した触媒ケーシング42を、その内部構造の一部と共に拡大して示す断面図である。触媒ケーシング42は、その内部に吸蔵還元型NOx触媒42bを収容する。
【0036】
NOx触媒42bは、例えばアルミナ(Al 2 3 を主材料とした担体とし、この担体の表面にNOx吸蔵剤として機能する、例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)、のようなアルカリ土類金属、あるいはイットリウム(Y)のような希土類と、酸化触媒(貴金属触媒)として機能する、例えば白金(Pt)のような貴金属とが担持されることによって構成される。
【0037】
NOx吸蔵剤は、排気ガス中の酸素濃度が高い状態ではNOxを保持し、排気ガス中の酸素濃度が低い状態ではNOxを放出する特性を有する。また、排気ガス中にNOxが放出された時、排気ガス中にHCやCO等が存在していれば、貴金属触媒がこれらHCやCOの酸化反応を促すことで、NOxを酸化成分、HCやCOを還元成分とする酸化還元反応が両者間で起こる。すなわち、HCやCOはCO2やH2Oに酸化され、NOxはN2に還元される。
【0038】
また、NOx触媒42bを構成している貴金属触媒はHCの酸化を促して、HCの酸化反応熱により床温を昇温する。
【0039】
また、NOx吸蔵剤は排気ガス中の酸素濃度が高い状態である時にでも所定の限界量のNOxを保持すると、それ以上NOxを保持しなくなる。エンジン1では、触媒ケーシング42内に収容されたNOx触媒42bのNOx保持量が限界に達する前に、排気通路の触媒ケーシング42上流に還元剤を添加供給することで、NOx触媒42bを活性化して保持されたNOxを還元浄化し、NOx触媒42bのNOx保持能力を回復させるといった制御を所定のインターバルで繰り返す。
【0040】
以下NOx浄化について具体的に述べる。
【0041】
一般に、ディーゼルエンジンでは、燃焼室内で燃焼に供される燃料及び空気の混合気の酸素濃度が、殆どの運転領域で高濃度状態にある。燃焼に供される混合気の酸素濃度は、燃焼に供された酸素を差し引いてそのまま排気ガス中の酸素濃度に反映されるのが通常であり、混合気中の酸素濃度(空燃比)が高ければ、排気ガス中の酸素濃度(空燃比)も基本的には同様に高くなる。
【0042】
一方、前述したように、NOx触媒42bは排気ガス中の酸素濃度が高ければNOxを保持し、低ければNOxをNO2若しくはNOに還元する特性を有するため、排気ガス中の酸素が高濃度にある限りNOxを保持し続ける。但し、当該NOx触媒42bのNOx保持量には限界が存在し、同NOx触媒42bが限界量のNOxを保持した状態では、排気ガス中のNOxは同NOx触媒42bに保持されず触媒ケーシング42を素通りする。
【0043】
NOx触媒42bのNOx保持作用を復帰させるため、還元剤をNOx触媒42b中のNOx吸蔵剤に添加する必要があるが、エンジンの構成上、通常の燃料噴射を行った場合に、酸素濃度が低い、すなわち還元剤である燃料を多量に含んだ排気ガスは排出され難い。
【0044】
よって、内燃機関の燃焼室にて行われる動力転化用の主燃料噴射とは別に主に未燃焼燃料として燃料を噴射する副次的燃料噴射を行う方法や、排気通路に設けられ、排気ガス中に燃料を噴射する方法などにより燃料を排気ガス中に添加して排気ガス中の還元剤成分を増量させ、この還元成分によりNOx保持作用を復帰、再生させる(NOx触媒再生制御)。
【0045】
このNOx触媒再生制御を行う場合は、再生を行うNOx触媒42bの床温度(排気温度)、NOx吸蔵量等により、還元剤である燃料の添加量や添加時期等が異なるものである。また、この添加量や添加時期を決定するにあたっては、車両搭載時のNOx触媒42bの浄化能力に基づいた値が設定されている。しかし長期間NOx触媒42bを使用すると、その経年劣化等により、該NOx触媒42bの排気浄化能力が変化してくる。よってNOx触媒42bの劣化程度を判定し、その劣化程度に即したNOx触媒再生制御の各制御値の変更等が必要となる。
【0046】
以下、NOx触媒42bについての触媒劣化判定について述べる。触媒の排気浄化性能が衰えて発生する問題としては、図4に示すように、酸化還元能力の低下により、排気中に添加された還元剤とNOx触媒42bより排出するNOxとの酸化還元反応を開始する温度(ライトオフ温度)の上昇や、NOx触媒42bに吸蔵するNOx量の低下及びNOxの放出量等のNOx吸蔵反応性能の低下等が例示できる。これにより新しい状態の触媒(新触媒)のライトオフ温度等を所定の温度として劣化した触媒でNOx浄化制御を行うと、そのライトオフ温度の違いから十分なNOx浄化が行えない。つまりは、新触媒のライトオフ温度近傍温度で劣化した触媒に燃料添加を行うと、酸化還元反応が進行しないため該触媒に燃料が付着するか、若しくはそのまま未燃焼ガスとして大気中に放出される。
【0047】
また、酸化還元反応が行われている場合においても、劣化した触媒ではその酸化還元反応による昇温の最高到達温度が低くなると共にその反応速度も遅くなる。前記事項に基づいて新触媒を基にした触媒再生制御を行うと、劣化した触媒でその触媒床温度が酸化還元反応にて生じる温度の最高点に達したとしても、新触媒を基にした触媒再生制御では、触媒で反応を行う燃料が不十分なため温度上昇が進まないと判断される。この判断により、NOxを浄化するに必要な燃料量よりも多量の燃料を触媒に添加してしまう可能性もある。よって、この場合には触媒再生後に、燃料がそのまま触媒に付着したままになるか、若しくはその付着した燃料が未燃焼ガスとして大気中に放出される。
【0048】
前記ライトオフ温度を測定する手段としては、触媒流入排気温度センサ78と触媒流出排気温度センサ74とを用いて測定する。排気中に還元剤が含まれていないか、若しくは還元剤が含まれていてもNOx触媒42bが活性化温度以下であるならば、NOx触媒42bにて燃料及びNOxによる酸化還元反応は行われない。よって、この状態ではNOx触媒42bの流入側排気温度:Tinと排出側排気温度:Texはほぼ同等な温度を示す。
【0049】
しかし、NOx触媒42bで排気中に添加された燃料によりNOxが浄化されると、この浄化に伴う酸化還元反応によりTexは上昇してTin<Texとなり、ここにTinとTexの間に温度差:Δtが発生する。よってこのΔtが発生した時点でのTinの温度がライトオフ温度となる。
【0050】
次にライトオフ温度に到達した後、TinとTexとの温度差Δtに着目する。劣化した触媒では酸化還元反応に必要なNOxの吸蔵放出能力の低下、特に放出能力の低下により、触媒雰囲気がリッチになった状態でも新触媒に比較して排気中に放出するNOxの単位時間あたりの放出量が減少する。排気中には放出されたNOxと酸化還元反応を行って触媒床温度を上昇させるに十分な燃料が存在するため、酸化還元反応の単位時間あたりの反応量はNOxの排出量により決定される。
【0051】
よって、この単位時間あたりの酸化還元反応量の違いにより、酸化還元時の触媒床温度上昇値に差が発生する。すなわち、図5に示すように、酸化還元反応量の少ない劣化した触媒では、TinとTexの間のΔt(Tex−Tin)は余り大きくならないが、酸化還元反応量の多い新触媒ではΔtが大きくなる。
【0052】
更に、劣化した触媒では、その酸化還元能力も低下するため、酸化還元反応を行うNOxの放出量の低下と前記酸化還元能力の低下との相乗的な作用により、劣化した触媒は、劣化していない触媒と比較して、その酸化還元反応による触媒床温度の最高値は低くなる結果となる。
【0053】
前記の事項をふまえてこの劣化した触媒と劣化していない触媒でのライトオフ温度時での温度差の違いを基にして触媒の劣化判定を行う。判定方法としては、先に劣化の判定基準となるライトオフ判定温度を定めておき、このライトオフ判定温度に判定を行う触媒が到達した時に燃料添加を行い、この時の昇温反応の有無及び程度により該触媒の劣化判定を行う。
【0054】
より具体的には、予め、劣化判定の基準となるライトオフ判定温度を定めておくと共に、このライトオフ判定温度が該ライトオフ温度となる触媒での燃料添加時の温度上昇値を測定してこれを所定の温度上昇値と定め、ECU80内のROM82に記憶しておく。これに対して劣化判定を行うNOx触媒42bに排気を流入させると共にこのNOx触媒42b前後でTin、Texをそれぞれ触媒流入排気温度センサ78と触媒流出排気温度センサ74とで測定する。そしてTin、Texがライトオフ判定温度になったことをCPU81で認識した時点で燃料添加ノズル17へ信号を送り排気中に所定の燃料量を添加する。
【0055】
この燃料添加を行うにあたり、予め該NOx触媒42bにNOxが所定量吸蔵されていることを確認する。この所定量としては、NOx触媒42bが燃料添加による酸化還元反応により昇温し、この昇温によって触媒床温度が最高値を示すまでの酸化還元反応に必要なNOx吸蔵量とする。よって、前記の所定の燃料添加量もこのNOx吸蔵量と酸化還元反応を行う際に必要な量となる。
【0056】
前記NOx吸蔵量を確認する手段としては、エンジン1での燃料噴射量、アクセル開度センサ76,空燃比センサ73などの情報からエンジン1より排出されるNOx量を算出するマップを予めROM82に記憶しておく。このマップと前回燃料添加を行った時間から今回燃料添加を行う時間により、NOx触媒42bにどれだけの量のNOxが流入したかを算出する。そしてこの値が所定のNOx吸蔵量になった時に前記NOx触媒42bに所定のNOx量が吸蔵されたと推定する。
【0057】
前記燃料添加を行った後に触媒流入排気温度センサ78と触媒流出排気温度センサ74より検出される温度であるTinとTexの間に温度差Δtがないのであれば、NOx触媒42bが劣化しているとCPU81で判定される。また、前記Δtが所定の値以上あるのであれば、NOx触媒42bは劣化していないと判定される。
【0058】
以上の方法によりライトオフ判定温度にて還元剤添加を行い触媒の劣化を判定する。前記判定方法で、ライトオフ判定温度にて燃料添加を行った際に、昇温反応は見られるがΔtが所定値より下の場合には、NOx吸蔵量若しくは還元剤添加量不足等で十分な昇温反応が行われなかった疑いがあるので、この場合には判定を行わずに終了するか、又は再度前記判定方法を行い劣化判定を行う。
【0059】
以下、本実施の形態に係るエンジン1のECU80が実施する「劣化触媒判定制御」に関し、具体的な処理手順について図6に示すフローチャートを参照して説明する。
【0060】
先ず、S601〜S603にて触媒床温度がライトオフ判定温度になるようにする。S601にて触媒床温度がライトオフ判定温度より高いならば、低くなるまでこのステップを繰り返し、ライトオフ判定温度以下になった時点で次のステップに進む。S602では、触媒床温度がライトオフ判定温度以下であるか否かが判定される。S601で否定判定された場合は、触媒床温度がライトオフ判定温度以下であるため、S602で肯定判定されることで、S603へ進む。
【0061】
S603では、触媒床温度=ライトオフ判定温度であるか否かが判定され、触媒床温度=ライトオフ判定温度である場合は、S604に進んで所定量の燃料添加を行う。このS603において触媒床温度=ライトオフ判定温度が確認されなかった場合には、S602に戻り、触媒床温度=ライトオフ判定温度となるまでS602およびS603の判定を繰り返す。S602およびS603の判定を繰り返す間に、触媒床温度がライトオフ判定温度よりも高い温度まで昇温された場合は、S602において否定判定されてS601へ戻る。これらS601〜S603の処理によって、触媒床温度がライトオフ判定温度に一致した後、S604に進んで所定量の燃料添加が行われる。
【0062】
S604で燃料添加をした後、S605にて触媒流入排気温度センサ78より検出される流入排気温度と触媒流出排気温度センサ74より検出される流出排気温度の温度差(流出排気温度−流入排気温度)が所定温度未満かどうか判断する。判断結果が所定値以上であるならばS609に進み触媒は劣化していないと判断して本チャートを終了する。判定結果が所定値より下であるならば次のステップへ進む。
【0063】
S606では、前記の温度差について判断する。前記温度差が0℃以下ならばS608へ進み、該触媒は劣化してると判定され、その後本チャートを終了する。また前記温度差が0℃より上であるならば、S607へ進み、酸化還元反応不足のため明確な判定をせずに終了するか、若しくはS601に戻り、再度同じ判定を行う。
【0064】
本実施の形態では、判定を行う際に、ライトオフ判定温度で燃料添加を行い、このときの昇温反応の有無と昇温反応量とを同時に判定したものであるが、これを個別に行っても良い。つまり、最初に触媒が昇温反応を始める温度を検出し、この検出した温度でのΔtを求め、この値をそれぞれライトオフ判定温度と比較して劣化判定を行っても良い。このとき前記触媒が昇温反応を始める温度の検出方法としては、ライトオフ温度を検出する触媒にて、温度が低い状態、例えば新触媒のライトオフ温度の時点で燃料添加を行い、触媒床に燃料を付着させる。こののち触媒床温度を昇温させ、付着した燃料によりTinとTexに差が出る温度であるライトオフ温度を検出する方法等がある。そしてライトオフ温度を検出した後Δtmaxも同様に検出する。この判定方法であれば劣化の有無の他に、ライトオフ温度の上昇程度により、劣化判定を行う触媒の劣化程度も判断することが可能となる。
【0065】
また、還元剤の添加手段として本実施の形態では排気通路中に燃料噴射装置である燃料添加ノズル17を設けてこれにより燃料を排気中に添加したが、添加手段としてはこれに限るものでは無い。例えば燃焼室内に燃料を添加する際に、燃焼工程以外で燃料添加し、未燃焼のまま排気してこの未燃焼燃料を還元剤として用いても良い。要は排気浄化装置に還元剤を添加できれば特に手段にこだわるものでは無い。
【0066】
【発明の効果】
本発明に係る触媒の劣化判定装置及び方法を用いることにより、NOxセンサを用いずに触媒のNOx浄化能力の劣化を判定することが可能となる。
【0067】
また本発明では、吸蔵還元型NOx触媒を主眼としてその構成及び方法を述べたものであるが、吸蔵還元型NOx触媒に限らず、NOxを浄化する際に昇温する触媒、例えばガソリンエンジンの排気浄化等に用いられる三元触媒等でも同様な構成でNOxセンサを用いずにNOx浄化能力を測定することが可能となる。
【図面の簡単な説明】
【図1】本発明実施の形態に係るディーゼルエンジンシステムを示す概略構成図。
【図2】同実施の形態に係る、ECU周りの構成概念図。
【図3】同実施の形態に係る、触媒ケーシングの断面概念図。
【図4】同実施の形態に係る、ライトオフ温度と触媒床温度の関係を示すグラフ。
【図5】同実施の形態に係る、Δtと触媒の劣化の関係を示すグラフ。
【図6】同実施の形態に係る、触媒劣化判定制御を示すフローチャート。
【符号の説明】
1 エンジン(内燃機関)
10 燃料供給系
11 サプライポンプ
12 コモンレール(蓄圧室)
13 燃料噴射弁
14 制御弁
17 燃料添加ノズル
20 燃焼室
30 吸気系
31 インタークーラ
32 スロットル弁
40 排気系
40a 排気集合管
40b、c 排気通路
42 触媒ケーシング
42b 吸蔵還元型NOx触媒(NOx触媒)
43 噴射燃料溜まり
50 ターボチャージャ
51 シャフト
52 タービンホイール
53 コンプレッサ
60 EGR通路
61 EGR弁
62 EGRクーラ
70 レール圧センサ
71 燃焼センサ
72 エアフローメータ
73 空燃比(A/F)センサ
74 触媒排出排気温度センサ
76 アクセル開度センサ
77 クランク角センサ
78 触媒流入排気温度センサ
80 電子制御装置(ECU)
81 中央演算処理装置(CPU)
82 読み出し専用メモリ(ROM)
83 ランダムアクセスメモリ(RAM)
84 バックアップRAM
85 タイマカウンタ
86 入力ポート
87 出力ポート
88 双方向バス
P1 機関燃料通路
P2 添加燃料通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a method for determining deterioration thereof.
[0002]
[Prior art]
As a catalyst for purifying nitrogen oxides (NOx) in exhaust gas, NOx is occluded in an oxygen concentration excess (lean) state, and a fuel that is a reducing agent is added to the exhaust gas, resulting in a lean oxygen concentration state. There is an NOx storage reduction catalyst that releases NOx stored when it is turned on, reacts with fuel (HC) by an activated catalyst (Pt or the like), is reduced to N 2 and discharged to the outside air.
[0003]
As described above, this NOx catalyst is activated by the NOx storage agent that is stored when the exhaust gas is lean and released when it is rich and the fuel that is the reducing agent, and causes a redox reaction on the exhausted NOx. The exhaust gas is purified by combining the occlusion / release function and the activation function, respectively.
[0004]
In determining such deterioration, as a conventional example, as disclosed in Japanese Patent Application Laid-Open No. 11-229859, in a NOx catalyst, a temperature sensor provided in the catalyst and a NOx sensor provided downstream of the catalyst are used. As disclosed in Japanese Patent Laid-Open No. 7-208151, there is a method for determining catalyst deterioration based on the NOx purification state of the NOx catalyst at a high temperature and a low temperature according to the time-lapse information of the NOx sensor and temperature sensor as temperature specifying means. When the NOx sensor provided downstream of the NOx catalyst is used and the time until the output value output according to the NOx concentration sensed by the NOx sensor rises to a predetermined value after completion of NOx discharge by the catalyst is less than a predetermined time There is a method for determining the catalyst deterioration.
[0005]
In any of these deterioration determination methods, the deterioration of the catalyst is determined using the NOx concentration in the exhaust gas. In other words, it is necessary to determine the deterioration of the catalyst using a NOx sensor that detects the NOx concentration.
[0006]
[Problems to be solved by the invention]
The NOx sensor used for the deterioration determination has a high NOx concentration measurement accuracy that is not yet at a practical level. Therefore, when the deterioration determination is actually performed using the NOx sensor, it is extremely difficult. The cost is high, or the deterioration determination accuracy is low.
[0007]
In view of the above problems, an object of the present invention is to determine the deterioration of the NOx purification capacity of a catalyst without using a NOx sensor.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, when the catalyst in the exhaust purification device provided in the exhaust system of the internal combustion engine reaches a predetermined judgment temperature equal to or higher than the light-off temperature of the catalyst that has not deteriorated, the catalyst is reduced to the catalyst. An exhaust agent is added, the upstream exhaust temperature and the catalyst bed temperature of the catalyst are measured, and the deterioration state of the exhaust purification device is determined based on the temperature difference between the upstream exhaust temperature and the catalyst bed temperature. Deterioration is determined by a deterioration determination method for the purifier.
[0009]
In order to perform the deterioration determination method, a catalyst provided in an exhaust passage of an internal combustion engine for purifying exhaust gas discharged, catalyst inflow exhaust gas temperature measuring means for measuring an exhaust gas temperature flowing into the catalyst, and a bed of the catalyst A catalyst bed temperature measuring means for measuring temperature, a reducing agent adding means for adding a reducing agent to the catalyst when the catalyst bed temperature reaches a predetermined judgment temperature that is equal to or higher than a light-off temperature of an undegraded catalyst, and the reduction a differential temperature detecting means for detecting a difference between the catalyst bed temperature to the catalyst inlet exhaust gas temperature at the time of the reducing agent was added to the catalyst by agent addition means, the temperature difference detected by the previous SL differential temperature detecting means is higher than a predetermined temperature difference A deterioration determination device for an exhaust gas purification apparatus, which includes deterioration determination means for determining that the catalyst has deteriorated when the catalyst is small is used.
[0011]
On the catalyst, HC, CO, and NOx undergo oxidation-reduction reactions, change into H 2 O, CO 2 , N 2, etc., and are discharged to the outside air. When the catalyst is activated, the temperature at which the HC, CO, and NOx start a redox reaction (light-off temperature) on the catalyst increases as the catalyst deteriorates. Similarly, the deteriorated catalyst also decreases the ability to occlude and release NOx, so that the amount of NOx that reacts with the reducing agent per unit time on the catalyst is also reduced. That is, the oxidation-reduction reaction amount also decreases, and the decrease in the oxidation-reduction reaction amount also reduces the increase in the catalyst bed temperature due to the heat of reaction during the oxidation-reduction reaction, that is, the difference between the catalyst bed temperature and the catalyst inflow exhaust temperature. Become.
[0012]
Therefore, the deterioration determination method is performed using this characteristic, and a temperature equal to or higher than the light-off temperature of an undegraded catalyst is set as a predetermined determination temperature, and the reducing agent is used as a catalyst for determining deterioration at this determination temperature. Addition is performed, and the deterioration state of the catalyst is determined by the degree of the temperature rising reaction at this time. The determination temperature may be equal to or higher than the light-off temperature of the non-degraded catalyst and in the vicinity of the light-off temperature. The determination temperature may be a temperature that is equal to or higher than the light-off temperature of the non-degraded catalyst and lower than the light-off temperature of the degrading catalyst.
[0013]
If the catalyst is below the activation temperature at which the oxidation-reduction reaction starts when fuel is added to the exhaust passage of the internal combustion engine, and the temperature rise reaction does not occur, the exhaust emission control device having the catalyst is part of the exhaust passage. It becomes. In this state, the exhaust gas temperature upstream of the catalyst and the catalyst bed temperature are equal. Therefore, if the fuel is added below the activation temperature, the added fuel is attached to the catalyst or is directly discharged to the outside air. Therefore, it is possible to determine the deterioration of the catalyst by adding the fuel when the bed temperature of the catalyst to be determined rises above the temperature at which the oxidation-reduction reaction starts with the catalyst that has not deteriorated.
[0014]
As for the catalyst inflow exhaust gas temperature measuring means and the catalyst bed temperature measuring means, a method for measuring the exhaust gas temperature and the catalyst bed temperature directly by a thermocouple, etc. A measurement method in which the temperature is used as the catalyst bed temperature can be exemplified. Regarding the differential temperature detection means, a signal detected based on the temperature measured by the catalyst inflow exhaust gas temperature measurement means and the catalyst bed temperature measurement means is processed by an ECU (electronic control unit), and the temperature difference (Δt) is calculated. There is a method of detecting the generated exhaust gas temperature.
[0015]
The exhaust purifier stores nitrogen oxides present in the exhaust when the inflowing exhaust is in an oxygen concentration excess state, and the nitrogen oxidation stored in the precursor when the inflowing exhaust is in a lean oxygen concentration state. And a storage amount estimating means for estimating the storage amount of the nitrogen oxides, and the storage amount estimation means estimates that the storage amount of nitrogen oxides is less than or equal to a predetermined amount. In this case, the reducing agent is not added by the reducing agent addition means .
[0016]
The NOx catalyst is configured such that a NOx occlusion agent that occludes and releases NOx by an ambient atmosphere and a noble metal that reacts the released NOx and a reducing agent are supported on a carrier. Therefore, the temperature of the added fuel is raised by the reaction heat generated when an oxidation-reduction reaction is caused on the NOx released from the NOx storage agent and the noble metal, and the deterioration of the NOx catalyst is judged using this temperature rising reaction. is there. In order to perform the deterioration determination of the NOx catalyst by the above method, the NOx amount necessary for performing the deterioration determination is previously stored in the NOx catalyst, and this is stored when reacting with the reducing agent to perform the deterioration determination. It is necessary to release NOx. Therefore, the NOx occlusion amount of the NOx catalyst to be determined is estimated, and if the estimated NOx occlusion amount is not more than a predetermined amount necessary for performing the deterioration determination, the reducing agent is added to the NOx catalyst included in the exhaust purification device. It was decided not to perform the deterioration determination, that is, the deterioration determination.
[0017]
In each of the above determination methods, the most NOx occlusion amount is required for the determination, that is, the temperature rising reaction by the oxidation-reduction reaction of NOx and the reducing agent is required in the determination method of catalyst deterioration due to the difference in the maximum value of Δt. . Therefore, another determination method can be performed by using the NOx storage amount necessary for this determination method as the estimated storage amount. Further, as the storage amount estimation means, the maximum value of Δt is similarly determined in the new catalyst in a state where the load state of the internal combustion engine, the amount of fuel added to the combustion chamber, the exhaust temperature, the time required for NOx storage, etc. are grasped. The NOx occlusion amount necessary until the occurrence of NO is calculated in advance and stored in the ECU as a NOx occlusion amount map. There is a method of estimating the minimum NOx occlusion amount stored in the catalyst for determining deterioration from this map and using this value as the NOx occlusion amount.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which a deterioration determination device and method for an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied to a diesel engine system will be described.
[0019]
In FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 is an in-line four-cylinder diesel engine system that includes a fuel supply system 10, a combustion chamber 20, an intake system 30, an exhaust system 40, and the like as main parts. Hereinafter, the configuration of the diesel engine system will be described.
[0020]
The fuel supply system 10 includes a supply pump 11, a pressure accumulating chamber (common rail) 12, a fuel injection valve 13, a shutoff valve 14, a fuel addition nozzle 17, an engine fuel passage P1, an addition fuel passage P2, and the like.
[0021]
The supply pump 11 increases the pressure of the fuel pumped up from the fuel tank (not shown) and supplies it to the common rail 12 through the engine fuel passage P1. The common rail 12 has a function of holding (accumulating) high-pressure fuel supplied from the supply pump 11 at a predetermined pressure, and distributes the accumulated fuel to each fuel injection valve 13. The fuel injection valve 13 is an electromagnetic valve provided with an electromagnetic solenoid (not shown) therein, and is appropriately opened to supply and inject fuel into the combustion chamber 20.
[0022]
On the other hand, the supply pump 11 supplies a part of the fuel pumped up from the fuel tank to the fuel addition nozzle 17 via the added fuel passage P2. A shutoff valve 14 is disposed from the supply pump 11 toward the fuel addition nozzle 17 in the addition fuel passage P2 . In an emergency, the shutoff valve 14 shuts off the added fuel passage P2 and stops the fuel supply. The fuel addition nozzle 17 is an electromagnetic valve similar to the fuel injection valve 13 and injects and adds fuel as a reducing agent into the exhaust system 40.
[0023]
The intake system 30 forms a passage (intake passage) for intake air supplied into each combustion chamber 20. On the other hand, the exhaust system 40 forms a passage (exhaust passage) for exhaust gas discharged from each combustion chamber 20.
[0024]
The engine 1 is provided with a known supercharger (turbocharger) 50. The turbocharger 50 includes a turbine wheel 52 and a compressor 53 that are connected via a shaft 51. One compressor 53 is exposed to intake air in the intake system 30, and the other turbine wheel 52 is exposed to exhaust gas in the exhaust system 40. The turbocharger 50 having such a configuration has an effect of increasing the intake pressure (supercharging effect) by rotating the compressor 53 using the exhaust flow (exhaust pressure) received by the turbine wheel 52.
[0025]
In the intake system 30, an intercooler 31 provided in the turbocharger 50 forcibly cools the intake air whose temperature has been raised by supercharging. The throttle valve 32 provided further downstream than the intercooler 31 is an electronically controlled on-off valve whose opening degree can be adjusted in a stepless manner, and restricts the flow passage area of the intake passage under predetermined conditions. The function of adjusting (reducing) the supply amount of the intake air is provided.
[0026]
Further, an exhaust gas circulation passage (EGR passage) 60 that bypasses the upstream (intake system 30) and the downstream (exhaust system 40) of the combustion chamber 20 is formed in the engine 1. Specifically, the EGR passage 60 communicates the exhaust collecting pipe 40 a upstream of the turbocharger 50 in the exhaust system 40 and the downstream side of the throttle valve 32 in the intake system 30. The EGR passage 60 has a function of returning a part of the exhaust gas to the intake system 30 as appropriate. The EGR passage 60 is opened and closed steplessly by electronic control, and the exhaust gas flowing through the EGR passage 60 can be freely adjusted, and the exhaust gas passing through (circulating) the EGR passage 60 is cooled. EGR cooler 62 is provided.
[0027]
Further, in the exhaust system 40, an exhaust passage 40b along the exhaust gas flow path is provided downstream of the exhaust collecting pipe 40a connected from the combustion chamber and a portion where the turbine wheel 52 is provided, and a NOx catalyst casing 42 is provided downstream thereof. Further, the exhaust passage 40c is sequentially connected further downstream. The NOx catalyst casing 42 houses a NOx storage reduction catalyst 42b that purifies harmful components such as NOx contained in the exhaust gas, as will be described later.
[0028]
Further, various sensors are attached to each part of the engine 1, and signals related to the environmental conditions of the part and the operating state of the engine 1 are output.
[0029]
That is, the rail pressure sensor 70 outputs a detection signal corresponding to the fuel pressure stored in the common rail 12. The fuel pressure sensor 71 outputs a detection signal corresponding to the pressure (fuel pressure) of the fuel introduced into the fuel addition nozzle 17 among the fuel flowing through the added fuel passage P2. The air flow meter 72 outputs a detection signal corresponding to the flow rate (intake amount) of intake air upstream of the throttle valve 32 in the intake system 30. The air-fuel ratio (A / F) sensor 73 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas upstream of the catalyst casing 42 of the exhaust system 40. Similarly, the catalyst outflow exhaust temperature sensor 74 outputs a detection signal corresponding to the temperature of exhaust gas (exhaust temperature) downstream of the catalyst casing 42 of the exhaust system 40. The catalyst inflow exhaust gas temperature sensor 78 outputs a detection signal corresponding to the temperature of the exhaust gas flowing in at the catalyst casing 42 inlet.
[0030]
Further, the accelerator opening sensor 76 is attached to an accelerator pedal (not shown), and outputs a detection signal that is a basis of a work amount required in the engine 1 according to the depression amount of the pedal. The crank angle sensor 77 outputs a detection signal (pulse) every time the output shaft (crankshaft) of the engine 1 rotates by a certain angle. Each of these sensors 70 to 79 is electrically connected to an electronic control unit (ECU) 80.
[0031]
As shown in FIG. 2, the ECU 80 includes a central processing unit (CPU) 81, a read only memory (ROM) 82, a random access memory (RAM) 83, a backup RAM 84 in which stored information is not erased even after the operation is stopped, and a timer counter 85. , An input port 86 including an A / D converter, and an output port 87 are connected to each other by a bidirectional bus 88.
[0032]
The ECU 80 inputs the detection signals of the various sensors through the input port 86, and based on these signals, the CPU 81 included in the ECU 80 performs basic control on the fuel injection of the engine 1 from the program stored in the ROM 82. In addition to the control, various controls related to the operating state of the engine 1 such as determination of the supply amount of the fuel injection related to the addition of the reducing agent (fuel that functions as the reducing agent) and the reducing agent (fuel) addition control related to the addition timing and the like are performed.
[0033]
The fuel supply system 10 that supplies fuel to each cylinder through the fuel injection valve 13, the NOx catalyst provided in the exhaust system 40, the ECU 80 that controls the functions of the fuel supply system 10 and the NOx catalyst, etc. The exhaust emission control device of the engine 1 according to the embodiment is configured. The fuel addition control and the like are performed through the operation of various members constituting the exhaust gas purification apparatus, including the ECU 80 that outputs a command signal related to the control.
[0034]
Next, among the components of the engine 1 described above, the configuration and functions of the catalyst casing 42 provided in the exhaust system 40 will be described in detail.
[0035]
FIG. 3 is an enlarged sectional view of the catalyst casing 42 shown in FIG. 1 together with a part of its internal structure. The catalyst casing 42 accommodates the NOx storage reduction catalyst 42b therein.
[0036]
The NOx catalyst 42b is, for example, a carrier mainly composed of alumina (Al 2 O 3 ) , and functions as a NOx occlusion agent on the surface of the carrier, for example, potassium (K), sodium (Na), lithium (Li), cesium. An alkali metal such as (Cs), an alkaline earth metal such as barium (Ba), calcium (Ca), or a rare earth such as yttrium (Y) and an oxidation catalyst (noble metal catalyst), for example, platinum It is configured by supporting a noble metal such as (Pt).
[0037]
The NOx storage agent has a characteristic of retaining NOx when the oxygen concentration in the exhaust gas is high and releasing NOx when the oxygen concentration in the exhaust gas is low. In addition, when NOx is released into the exhaust gas, if HC, CO, or the like is present in the exhaust gas, the noble metal catalyst promotes an oxidation reaction of these HC and CO, thereby converting NOx into an oxidizing component, HC, A redox reaction using CO as a reducing component occurs between the two. That is, HC and CO are oxidized to CO 2 and H 2 O, and NOx is reduced to N 2 .
[0038]
Further, the noble metal catalyst constituting the NOx catalyst 42b promotes the oxidation of HC and raises the bed temperature by the heat of oxidation reaction of HC.
[0039]
Further, even when the NOx storage agent has a high oxygen concentration in the exhaust gas, if it retains a predetermined limit amount of NOx, it will no longer retain NOx. In the engine 1, before the NOx retention amount of the NOx catalyst 42b accommodated in the catalyst casing 42 reaches a limit, the NOx catalyst 42b is activated by adding and supplying a reducing agent upstream of the catalyst casing 42 in the exhaust passage. The control of reducing and purifying the held NOx and restoring the NOx holding ability of the NOx catalyst 42b is repeated at a predetermined interval.
[0040]
The NOx purification will be specifically described below.
[0041]
In general, in a diesel engine, the oxygen concentration of a mixture of fuel and air used for combustion in a combustion chamber is in a high concentration state in most operating regions. The oxygen concentration of the mixture used for combustion is usually reflected in the oxygen concentration in the exhaust gas as it is after subtracting the oxygen used for combustion, and the oxygen concentration (air-fuel ratio) in the mixture is high. For example, the oxygen concentration (air-fuel ratio) in the exhaust gas basically increases similarly.
[0042]
On the other hand, as described above, the NOx catalyst 42b has a characteristic of holding NOx if the oxygen concentration in the exhaust gas is high, and reducing NOx to NO 2 or NO if the oxygen concentration is low, so that the oxygen in the exhaust gas has a high concentration. Keep NOx as long as possible. However, there is a limit in the NOx retention amount of the NOx catalyst 42b, and in the state where the NOx catalyst 42b retains the limit amount of NOx, NOx in the exhaust gas is not retained by the NOx catalyst 42b and the catalyst casing 42 is Go through.
[0043]
In order to restore the NOx retention action of the NOx catalyst 42b, it is necessary to add a reducing agent to the NOx storage agent in the NOx catalyst 42b. However, due to the configuration of the engine, the oxygen concentration is low when normal fuel injection is performed. That is, the exhaust gas containing a large amount of fuel as a reducing agent is difficult to be discharged.
[0044]
Therefore, in addition to the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine, a method of performing secondary fuel injection that mainly injects fuel as unburned fuel, or provided in the exhaust passage, The fuel is added to the exhaust gas by, for example, a method of injecting the fuel into the exhaust gas to increase the amount of the reducing agent component in the exhaust gas, and the NOx holding action is restored and regenerated by this reducing component (NOx catalyst regeneration control).
[0045]
When this NOx catalyst regeneration control is performed, the amount of fuel added as the reducing agent, the timing of addition, and the like differ depending on the bed temperature (exhaust temperature) of the NOx catalyst 42b to be regenerated, the NOx occlusion amount, and the like. In addition, when determining the addition amount and the addition timing, values are set based on the purification ability of the NOx catalyst 42b when the vehicle is mounted. However, if the NOx catalyst 42b is used for a long period of time, the exhaust purification ability of the NOx catalyst 42b changes due to its aging and the like. Therefore, it is necessary to determine the degree of deterioration of the NOx catalyst 42b and change each control value of the NOx catalyst regeneration control in accordance with the degree of deterioration.
[0046]
Hereinafter, the catalyst deterioration determination for the NOx catalyst 42b will be described. As shown in FIG. 4, the problem that occurs when the exhaust gas purification performance of the catalyst declines is due to a reduction in oxidation-reduction capability, resulting in an oxidation-reduction reaction between the reducing agent added to the exhaust gas and NOx discharged from the NOx catalyst 42 b. Examples include an increase in starting temperature (light-off temperature), a decrease in the amount of NOx stored in the NOx catalyst 42b, and a decrease in NOx storage reaction performance such as the amount of NOx released. Thus, if NOx purification control is performed with a catalyst that has deteriorated with the light-off temperature or the like of the catalyst in a new state (new catalyst) as a predetermined temperature, sufficient NOx purification cannot be performed due to the difference in the light-off temperature. In other words, if fuel is added to a catalyst that has deteriorated near the light-off temperature of the new catalyst, the oxidation-reduction reaction does not proceed, so the fuel adheres to the catalyst or is directly released into the atmosphere as unburned gas. .
[0047]
Further, even when the oxidation-reduction reaction is performed, in the deteriorated catalyst, the maximum temperature reached by the oxidation-reduction reaction is lowered and the reaction rate is also lowered. When the catalyst regeneration control based on the new catalyst is performed based on the above matters, the catalyst based on the new catalyst is used even if the catalyst bed temperature of the deteriorated catalyst reaches the highest temperature generated in the oxidation-reduction reaction. In the regeneration control, it is determined that the temperature rise does not proceed because the fuel that reacts with the catalyst is insufficient. This determination may add a larger amount of fuel to the catalyst than is necessary to purify NOx. Therefore, in this case, after regeneration of the catalyst, the fuel remains attached to the catalyst as it is, or the attached fuel is released into the atmosphere as unburned gas.
[0048]
As a means for measuring the light-off temperature, a catalyst inflow exhaust gas temperature sensor 78 and a catalyst outflow exhaust gas temperature sensor 74 are used. If the reducing agent is not included in the exhaust gas or the NOx catalyst 42b is below the activation temperature even if the reducing agent is included, the NOx catalyst 42b does not perform the redox reaction with fuel and NOx. . Therefore, in this state, the inflow side exhaust temperature: Tin and the exhaust side exhaust temperature: Tex of the NOx catalyst 42b show substantially the same temperature.
[0049]
However, when NOx is purified by the fuel added to the exhaust gas by the NOx catalyst 42b, Tex increases due to the oxidation-reduction reaction accompanying this purification, and Tin <Tex, where a temperature difference between Tin and Tex: Δt is generated. Therefore, the temperature of Tin at the time when this Δt occurs becomes the light-off temperature.
[0050]
Next, after reaching the light-off temperature, attention is paid to the temperature difference Δt between Tin and Tex. With deteriorated catalysts, the NOx storage and release capacity required for oxidation-reduction reactions is reduced, especially when the catalyst atmosphere becomes rich due to a decrease in the release capacity per unit time of NOx released into the exhaust compared to the new catalyst. The amount of release is reduced. Since there is sufficient fuel in the exhaust gas to cause a redox reaction with the released NOx and raise the catalyst bed temperature, the reaction amount per unit time of the redox reaction is determined by the NOx emission amount.
[0051]
Therefore, due to the difference in the amount of oxidation-reduction reaction per unit time, a difference occurs in the catalyst bed temperature increase value during oxidation-reduction. That is, as shown in FIG. 5, Δt (Tex−Tin) between Tin and Tex is not so large in a deteriorated catalyst with a small amount of redox reaction, but Δt is large in a new catalyst with a large amount of redox reaction. Become.
[0052]
Further, since the redox ability of the deteriorated catalyst is also reduced, the deteriorated catalyst is deteriorated due to the synergistic effect of the reduction in the amount of NOx released for the redox reaction and the reduction in the redox ability. As a result, the maximum value of the catalyst bed temperature due to the oxidation-reduction reaction is lower than that of the catalyst without.
[0053]
Based on the above matters, the deterioration of the catalyst is judged based on the difference in temperature difference between the deteriorated catalyst and the undegraded catalyst at the light-off temperature. As a determination method, a light-off determination temperature, which is a determination criterion for deterioration, is set in advance, and fuel is added when the catalyst to be determined reaches the light-off determination temperature. The deterioration of the catalyst is judged depending on the degree.
[0054]
More specifically, a light-off determination temperature that serves as a criterion for determining deterioration is determined in advance, and a temperature rise value at the time of fuel addition in a catalyst at which the light-off determination temperature becomes the light-off temperature is measured. This is determined as a predetermined temperature rise value and stored in the ROM 82 in the ECU 80. On the other hand, exhaust gas is caused to flow into the NOx catalyst 42b for which the deterioration is determined, and Tin and Tex are measured by the catalyst inflow exhaust temperature sensor 78 and the catalyst outflow exhaust temperature sensor 74 before and after the NOx catalyst 42b. When the CPU 81 recognizes that Tin and Tex have reached the light-off determination temperature, a signal is sent to the fuel addition nozzle 17 to add a predetermined amount of fuel during exhaust.
[0055]
In performing this fuel addition, it is confirmed in advance that a predetermined amount of NOx is occluded in the NOx catalyst 42b. The predetermined amount is the NOx occlusion amount required for the oxidation-reduction reaction until the temperature of the NOx catalyst 42b is increased by the oxidation-reduction reaction due to the addition of fuel and the catalyst bed temperature reaches the maximum value due to the temperature increase. Therefore, the predetermined fuel addition amount is also an amount necessary for the oxidation / reduction reaction with the NOx storage amount.
[0056]
As a means for confirming the NOx occlusion amount, a map for calculating the NOx amount discharged from the engine 1 from information such as the fuel injection amount in the engine 1, the accelerator opening sensor 76, the air-fuel ratio sensor 73, etc. is stored in the ROM 82 in advance. Keep it. The amount of NOx that has flowed into the NOx catalyst 42b is calculated from this map and the time during which fuel is added this time from the time when fuel was added last time. When this value reaches a predetermined NOx storage amount, it is estimated that the predetermined NOx amount is stored in the NOx catalyst 42b.
[0057]
If there is no temperature difference Δt between Tin and Tex, which are temperatures detected by the catalyst inflow exhaust temperature sensor 78 and the catalyst outflow exhaust temperature sensor 74 after the fuel addition, the NOx catalyst 42b has deteriorated. Is determined by the CPU 81. Further, if the Δt is equal to or greater than a predetermined value, it is determined that the NOx catalyst 42b has not deteriorated.
[0058]
By the above method, the reducing agent is added at the light-off determination temperature to determine the deterioration of the catalyst. When fuel is added at the light-off determination temperature in the above determination method, a temperature rise reaction is observed, but if Δt is lower than a predetermined value, the NOx occlusion amount or the reducing agent addition amount is insufficient. Since there is a suspicion that the temperature raising reaction has not been performed, in this case, the determination is made without performing the determination, or the determination method is performed again by performing the determination method.
[0059]
Hereinafter, with respect to the “degraded catalyst determination control” performed by the ECU 80 of the engine 1 according to the present embodiment, a specific processing procedure will be described with reference to the flowchart shown in FIG.
[0060]
First, the catalyst bed temperature is set to the light-off determination temperature in S601 to S603. If the catalyst bed temperature at S601 is higher than the light-off determination temperature, repeat this step until the lower, the process proceeds to the next step when it becomes less than the light-off determination temperature. In S602, it is determined whether or not the catalyst bed temperature is equal to or lower than the light-off determination temperature. If a negative determination is made in S601, since the catalyst bed temperature is equal to or lower than the light-off determination temperature, an affirmative determination is made in S602, and the process proceeds to S603.
[0061]
In S603, it is determined the catalyst bed temperature = whether the light-off decision making temperature is, when a catalyst bed temperature = light-off determination temperature, the fuel is added in a predetermined amount proceeds to S604. If the catalyst bed temperature = light-off determination temperature is not confirmed in S603 , the process returns to S602, and the determinations of S602 and S603 are repeated until the catalyst bed temperature = light-off determination temperature. If the catalyst bed temperature is raised to a temperature higher than the light-off determination temperature while repeating the determinations of S602 and S603, a negative determination is made in S602 and the process returns to S601. After the catalyst bed temperature coincides with the light-off determination temperature by the processing of S601 to S603, the process proceeds to S604 and a predetermined amount of fuel is added.
[0062]
After fuel addition in S604, the temperature difference between the inflow exhaust temperature detected by the catalyst inflow exhaust temperature sensor 78 and the outflow exhaust temperature detected by the catalyst outflow exhaust temperature sensor 74 in S605 (outflow exhaust gas temperature-inflow exhaust gas temperature). Is determined whether the temperature is lower than the predetermined temperature . If the determination result is equal to or greater than the predetermined value, the process proceeds to S609, where it is determined that the catalyst has not deteriorated, and this chart ends. If the determination result is below a predetermined value, the process proceeds to the next step.
[0063]
In S606, the temperature difference is determined. If the temperature difference is 0 ° C. or less, the process proceeds to S608, where it is determined that the catalyst has deteriorated, and then this chart is terminated. If the temperature difference is higher than 0 ° C., the process proceeds to S607 and ends without making a clear determination due to insufficient redox reaction, or returns to S601 and the same determination is performed again.
[0064]
In this embodiment, when performing the determination, fuel is added at the light-off determination temperature, and the presence / absence of the temperature rising reaction and the temperature rising reaction amount at this time are determined at the same time. May be. That is, the temperature at which the catalyst starts the temperature rising reaction is detected first, Δt at the detected temperature is obtained, and the deterioration determination may be performed by comparing this value with the light-off determination temperature. At this time, as a method for detecting the temperature at which the catalyst starts a temperature rising reaction, the catalyst for detecting the light-off temperature is added at a low temperature, for example, at the time of the light-off temperature of the new catalyst, and is added to the catalyst bed. Adhere fuel . After that, there is a method of increasing the catalyst bed temperature and detecting the light-off temperature, which is the temperature at which the difference between Tin and Tex is caused by the attached fuel. Then, after detecting the light-off temperature, Δtmax is similarly detected. With this determination method, in addition to the presence or absence of deterioration, it is possible to determine the degree of deterioration of the catalyst for which deterioration is determined based on the degree of increase in light-off temperature.
[0065]
Further, in the present embodiment, the fuel addition nozzle 17 that is a fuel injection device is provided in the exhaust passage as the reducing agent addition means, and thereby the fuel is added to the exhaust gas. However, the addition means is not limited to this. . For example, when adding fuel into the combustion chamber, fuel may be added outside the combustion process, exhausted unburned, and the unburned fuel used as a reducing agent. In short, if the reducing agent can be added to the exhaust gas purification device, there is no particular limitation on the means.
[0066]
【The invention's effect】
By using the catalyst deterioration determination device and method according to the present invention, it is possible to determine the deterioration of the NOx purification ability of the catalyst without using the NOx sensor.
[0067]
Further, in the present invention, the configuration and method have been described focusing on the NOx storage reduction catalyst. However, the present invention is not limited to the NOx storage reduction catalyst, but a catalyst that raises the temperature when purifying NOx, for example, an exhaust of a gasoline engine. Even with a three-way catalyst or the like used for purification or the like, the NOx purification ability can be measured without using the NOx sensor with the same configuration.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a diesel engine system according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a configuration around an ECU according to the embodiment.
FIG. 3 is a conceptual cross-sectional view of a catalyst casing according to the same embodiment.
FIG. 4 is a graph showing the relationship between the light-off temperature and the catalyst bed temperature according to the embodiment.
FIG. 5 is a graph showing a relationship between Δt and catalyst deterioration according to the embodiment;
FIG. 6 is a flowchart showing catalyst deterioration determination control according to the embodiment;
[Explanation of symbols]
1 engine (internal combustion engine)
10 Fuel supply system 11 Supply pump 12 Common rail (accumulation chamber)
DESCRIPTION OF SYMBOLS 13 Fuel injection valve 14 Control valve 17 Fuel addition nozzle 20 Combustion chamber 30 Intake system 31 Intercooler 32 Throttle valve 40 Exhaust system 40a Exhaust collecting pipe 40b, c Exhaust passage 42 Catalyst casing 42b Occlusion reduction type NOx catalyst (NOx catalyst)
43 Injection fuel pool 50 Turbocharger 51 Shaft 52 Turbine wheel 53 Compressor 60 EGR passage 61 EGR valve 62 EGR cooler 70 Rail pressure sensor 71 Combustion sensor 72 Air flow meter 73 Air-fuel ratio (A / F) sensor 74 Catalyst exhaust temperature sensor 76 Accelerator Opening sensor 77 Crank angle sensor 78 Catalyst inflow exhaust gas temperature sensor 80 Electronic control unit (ECU)
81 Central processing unit (CPU)
82 Read-only memory (ROM)
83 Random access memory (RAM)
84 Backup RAM
85 Timer counter 86 Input port 87 Output port 88 Bidirectional bus P1 Engine fuel passage P2 Addition fuel passage

Claims (4)

内燃機関の排気通路に設けられて排出される排気を浄化する触媒と、この触媒に流入する排気温度を測定する触媒流入排気温度測定手段と、前記触媒の床温度を測定する触媒床温度測定手段と、劣化していない触媒のライトオフ温度以上である所定の判定温度に触媒床温度が達した時に前記触媒に還元剤を添加する還元剤添加手段と、前記還元剤添加手段により還元剤を触媒に添加した際の触媒流入排気温度に対する触媒床温度の差を検出する差分温度検出手段と、前記差分温度検出手段により検出された温度差が所定の温度差より小さい場合に該触媒が劣化していると判定する劣化判定手段と、を備え
前記劣化判定手段は、前記差分温度検出手段により検出された温度差が前記所定の温度差より小さく且つ零よりも大きい場合には前記触媒が劣化しているか否かの判定を行わず、前記差分温度検出手段により検出された温度差が零以下の場合には前記触媒が劣化していると判定することを特徴とする排気浄化装置の劣化判定装置。
A catalyst provided in an exhaust passage of an internal combustion engine for purifying exhaust gas discharged, catalyst inflow exhaust gas temperature measuring means for measuring the exhaust gas temperature flowing into the catalyst, and catalyst bed temperature measuring means for measuring the catalyst bed temperature A reducing agent adding means for adding a reducing agent to the catalyst when the catalyst bed temperature reaches a predetermined judgment temperature that is equal to or higher than a light-off temperature of an undegraded catalyst, and the reducing agent is added to the catalyst by the reducing agent adding means. Difference temperature detection means for detecting the difference in catalyst bed temperature relative to the catalyst inflow exhaust temperature when added to the catalyst, and when the temperature difference detected by the difference temperature detection means is smaller than a predetermined temperature difference, the catalyst deteriorates. Deterioration determining means for determining that the
The deterioration determination unit does not determine whether the catalyst has deteriorated when the temperature difference detected by the difference temperature detection unit is smaller than the predetermined temperature difference and larger than zero, and the difference is not determined. A deterioration determination device for an exhaust gas purification device, wherein when the temperature difference detected by the temperature detection means is less than or equal to zero, it is determined that the catalyst has deteriorated.
前記判定温度は、前記劣化していない触媒のライトオフ温度以上であって且つ該ライトオフ温度近傍の温度であることを特徴とする請求項1に記載の排気浄化装置の劣化判定装置。  2. The deterioration determination device for an exhaust gas purification apparatus according to claim 1, wherein the determination temperature is equal to or higher than a light-off temperature of the catalyst that has not deteriorated and is in the vicinity of the light-off temperature. 前記判定温度は、前記劣化していない触媒のライトオフ温度以上であって且つ劣化している触媒のライトオフ温度未満の温度であることを特徴とする請求項1に記載の排気浄化装置の劣化判定装置。  2. The deterioration of the exhaust emission control device according to claim 1, wherein the determination temperature is equal to or higher than a light-off temperature of the non-deteriorated catalyst and lower than a light-off temperature of the deteriorating catalyst. Judgment device. 前記排気浄化装置は、流入する排気が酸素濃度過剰状態の時に排気中に存在する窒素酸化物をその駆体に吸蔵し、同じく流入する排気が酸素濃度希薄状態の時に駆体に吸蔵した窒素酸化物を放出還元する吸蔵還元機能を有すると共に前記窒素酸化物の吸蔵量を推定する吸蔵量推定手段を有し、前記吸蔵量推定手段により窒素酸化物の吸蔵量が所定量以下と推定されたならば、還元剤添加手段による還元剤の添加が行われないことを特徴とする請求項1からの何れかに記載の排気浄化装置の劣化判定装置。The exhaust purifier stores nitrogen oxides present in the exhaust when the inflowing exhaust is in an oxygen concentration excess state, and the nitrogen oxidation stored in the precursor when the inflowing exhaust is in a lean oxygen concentration state. And a storage amount estimating means for estimating the storage amount of the nitrogen oxides, and the storage amount estimation means estimates that the storage amount of nitrogen oxides is less than or equal to a predetermined amount. The deterioration determination device for an exhaust gas purification device according to any one of claims 1 to 3 , wherein the reducing agent is not added by the reducing agent addition means.
JP2002013148A 2002-01-10 2002-01-22 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof Expired - Lifetime JP4114355B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002013148A JP4114355B2 (en) 2002-01-22 2002-01-22 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
DE10300555A DE10300555B4 (en) 2002-01-10 2003-01-09 A deterioration determination device for an engine exhaust gas control device and deterioration determination method
FR0300271A FR2834531B1 (en) 2002-01-10 2003-01-10 DETERMINATION DETERMINATION APPARATUS FOR AN EXHAUST GAS TREATMENT APPARATUS OF AN INTERNAL COMBUSTION ENGINE, AND DETERMINATION DEGRADATION DETERMINATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013148A JP4114355B2 (en) 2002-01-22 2002-01-22 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof

Publications (3)

Publication Number Publication Date
JP2003214153A JP2003214153A (en) 2003-07-30
JP2003214153A5 JP2003214153A5 (en) 2005-07-07
JP4114355B2 true JP4114355B2 (en) 2008-07-09

Family

ID=27650174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013148A Expired - Lifetime JP4114355B2 (en) 2002-01-10 2002-01-22 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof

Country Status (1)

Country Link
JP (1) JP4114355B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507957B2 (en) * 2005-04-06 2010-07-21 トヨタ自動車株式会社 Catalyst deterioration detection device for internal combustion engine
JP4710564B2 (en) 2005-11-22 2011-06-29 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP4781151B2 (en) * 2006-04-04 2011-09-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP5098479B2 (en) * 2007-07-18 2012-12-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2009209781A (en) * 2008-03-04 2009-09-17 Toyota Motor Corp Deterioration determination device of exhaust emission control catalyst for vehicle
US8171781B2 (en) 2008-06-11 2012-05-08 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for NOx catalyst
GB2472986B (en) * 2009-08-24 2016-09-07 Gm Global Tech Operations Llc Method and apparatus for monitoring the light-off temperature of a diesel oxidation catalyst
CN113803143B (en) * 2021-09-02 2022-09-23 潍柴动力股份有限公司 DOC sulfur poisoning judgment method and control device with same

Also Published As

Publication number Publication date
JP2003214153A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US7797927B2 (en) Method for control of exhaust gas purification system, and exhaust gas purification system
US7716918B2 (en) Method of exhaust gas purification and exhaust gas purification system
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
US8037675B2 (en) Exhaust gas purification system for internal combustion engine and method for exhaust gas purification
EP1174600B1 (en) Emission control system and method of internal combustion engine
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
EP1866529A1 (en) Device for detecting state of thermal degradation of exhaust purifying catalyst
JP2005140111A (en) Pressure monitor for diesel particulate filter
JP4114355B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
EP1536120B1 (en) Exhaust gas control apparatus for internal combustion engine and control method thereof
JP3858779B2 (en) Exhaust gas purification device
JP3925203B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP4103428B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP3656496B2 (en) Exhaust gas purification device for internal combustion engine
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device
JP2019167918A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP3624812B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255310A (en) Exhaust emission control device
JP4315121B2 (en) Exhaust purification catalyst deterioration judgment device
JP2019167920A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2019167938A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2019167935A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2017150326A (en) Exhaust gas treatment method using lnt, and apparatus therefor
JP2009024505A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4114355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

EXPY Cancellation because of completion of term