JP2012114696A - High-frequency circuit board - Google Patents

High-frequency circuit board Download PDF

Info

Publication number
JP2012114696A
JP2012114696A JP2010262327A JP2010262327A JP2012114696A JP 2012114696 A JP2012114696 A JP 2012114696A JP 2010262327 A JP2010262327 A JP 2010262327A JP 2010262327 A JP2010262327 A JP 2010262327A JP 2012114696 A JP2012114696 A JP 2012114696A
Authority
JP
Japan
Prior art keywords
circuit board
frequency circuit
lead
solder
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010262327A
Other languages
Japanese (ja)
Other versions
JP5480785B2 (en
Inventor
Shigehisa Mori
茂久 森
Hiroshi Ikematsu
寛 池松
Kenji Kawakami
憲司 川上
Hidetomo Onishi
秀知 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Tokki Systems Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Tokki Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Tokki Systems Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010262327A priority Critical patent/JP5480785B2/en
Publication of JP2012114696A publication Critical patent/JP2012114696A/en
Application granted granted Critical
Publication of JP5480785B2 publication Critical patent/JP5480785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-frequency circuit board capable of suppressing passage loss of a high-frequency transmission line, such as a microstrip line for transmitting a high-frequency signal, and achieving high productivity, as well as low noise from a low-noise amplifier, high saturation power of an amplifier for transmission and low phase noise from a voltage variable oscillator.SOLUTION: The high-frequency circuit board includes: a transmission line formed from a metal conductor on a surface of an insulator substrate and a solder layer formed from reflow solder on a surface of a transmission line.

Description

本発明は、高周波領域で使用する低損失な高周波回路基板に関する。 The present invention relates to a low-loss high-frequency circuit board used in a high-frequency region.

マイクロ波やミリ波などの高周波領域で使用される伝送線路はテフロン(登録商標)やガラスエポキシなどの絶縁体で構成された平面基板上に形成され、製造しやすいマイクロストリップ線路が用いられる。マイクロストリップ線路の表面導体には主として銅が使用されるが、銅は酸化、腐食して電気を通さなくなりやすいため銅の表面を保護する必要がある。 A transmission line used in a high frequency region such as a microwave and a millimeter wave is formed on a flat substrate made of an insulator such as Teflon (registered trademark) or glass epoxy, and a microstrip line that is easy to manufacture is used. Although copper is mainly used as the surface conductor of the microstrip line, it is necessary to protect the copper surface because copper is likely to be oxidized and corroded and not conduct electricity.

銅の表面保護としては、錫めっき、金、銀めっきを施す方法があるが、錫めっきは錫が細長い髭状に成長するウィスカーの問題があり、金および銀めっきは銅の拡散による劣化が問題となる。 For surface protection of copper, there are methods of tin plating, gold, and silver plating. However, tin plating has a problem of whiskers in which tin grows in an elongated bowl shape, and gold and silver plating have a problem of deterioration due to copper diffusion. It becomes.

また、銅の表面保護として基板を、溶融したはんだの中に浸漬した後、空気を吹きつけて銅以外の部分に付いた余分なはんだを飛ばすというはんだコートが用いられるが、基板を高温のはんだにくぐらせることによる基板の熱変形が問題となる。昨今は欧州連合(EU)による電気・電子機器における特定有害物質の使用制限の施行などの規制により、鉛を使わない電気・電子回路が必要となりつつあるが、錫、銀、銅を含む無鉛はんだは有鉛はんだよりも融点が高いため、無鉛はんだコートは基板の熱変形がさらに発生しやすくなる。 Also, as a copper surface protection, a solder coat is used in which the substrate is immersed in molten solder and then air is blown to blow off excess solder attached to parts other than copper. Thermal deformation of the substrate due to passing through becomes a problem. In recent years, regulations such as the enforcement of restrictions on the use of specific hazardous substances in electrical and electronic equipment by the European Union (EU) have led to the need for electrical and electronic circuits that do not use lead, but lead-free solder containing tin, silver, and copper Since lead has a higher melting point than leaded solder, the lead-free solder coat is more susceptible to thermal deformation of the substrate.

このため、特許文献1に示すように無鉛の高周波回路基板の銅の表面保護には、ニッケルめっきを施した後に金めっきを施す方法が用いられる。 For this reason, as shown in Patent Document 1, a method of performing gold plating after nickel plating is used to protect the copper surface of the lead-free high-frequency circuit board.

特開2003-318611号公報JP 2003-318611 A

しかしながら、金めっきの厚みは約0.1μmと薄く、電流は主にニッケルめっきを流れることになる。高周波では表皮効果により電流は導体の表面へ集中するが、ニッケルは錫、銅等に比べて表皮深さが浅いため電流が流れる部分が薄いため抵抗が増加し、通過損失が増加してしまう。   However, the thickness of the gold plating is as thin as about 0.1 μm, and the current mainly flows through the nickel plating. At high frequencies, the current concentrates on the surface of the conductor due to the skin effect, but since nickel has a shallow skin depth compared to tin, copper, etc., the portion through which the current flows is thin, so the resistance increases and the passage loss increases.

このため、特許文献1に示す構成のマイクロストリップ線路基板を用いた通信装置において、送信系の増幅器は出力後のマイクロストリップ線路の通過損失の増加により、飽和出力電力が低下してしまう。また、受信系の低雑音増幅器は入力部のマイクロストリップ線路の通過損失の増加により雑音指数が劣化してしまう。さらに、マイクロストリップ線路を共振器とする電圧制御発振器においては、マイクロストリップ線路の通過損失の増加により振動増大係数が低下し、位相雑音が劣化してしまう。 For this reason, in the communication device using the microstrip line substrate having the configuration shown in Patent Document 1, the transmission output amplifier has a reduced saturation output power due to an increase in the passage loss of the microstrip line after output. In addition, the low noise amplifier of the receiving system deteriorates the noise figure due to an increase in the passage loss of the microstrip line at the input section. Further, in a voltage controlled oscillator using a microstrip line as a resonator, the vibration increase coefficient is lowered due to an increase in passage loss of the microstrip line, and phase noise is deteriorated.

この発明はこのような問題点を解決するためになされたものであり、高周波信号を伝送するマイクロストリップ線路などの高周波伝送線路の通過損失が低減され、かつ生産性にすぐれた高周波回路基板を得ることを目的とする。さらには、このマイクロストリップ線路を用いた、増幅器を低雑音化、高飽和出力化し、電圧可変発振器を低位相雑音化することを目的とする。 The present invention has been made to solve such a problem, and obtains a high-frequency circuit board with reduced productivity and high productivity of a high-frequency transmission line such as a microstrip line for transmitting a high-frequency signal. For the purpose. Furthermore, an object of the present invention is to reduce the noise of the amplifier using the microstrip line and to achieve a high saturation output, and to reduce the phase noise of the voltage variable oscillator.

この発明に係る高周波回路基板は、絶縁体基板の表面に金属導体で形成された伝送線路と、この伝送線路の表面にリフローはんだで形成されたはんだ層とを備えたものである。   A high-frequency circuit board according to the present invention includes a transmission line formed of a metal conductor on the surface of an insulator substrate, and a solder layer formed of reflow solder on the surface of the transmission line.

本発明を実施することにより、マイクロストリップ線路の通過損失が低減され、また増幅器が低雑音化、高飽和出力化され、電圧可変発振器が低位相雑音化される。   By implementing the present invention, the passage loss of the microstrip line is reduced, the amplifier is reduced in noise and output is high, and the voltage variable oscillator is reduced in phase noise.

この発明の実施の形態1におけるマイクロストリップ線路を用いた高周波回路基板の斜視図である。It is a perspective view of the high frequency circuit board using the microstrip line in Embodiment 1 of this invention. 従来例のマイクロストリップ線路の断面図である。It is sectional drawing of the microstrip line | wire of a prior art example. この発明の実施の形態1におけるマイクロストリップ線路の断面図である。It is sectional drawing of the microstrip line in Embodiment 1 of this invention. この発明の実施の形態1における高周波回路基板の無鉛はんだの塗布工程図である。It is an application process figure of the lead-free solder of the high frequency circuit board in Embodiment 1 of this invention. 従来のプリント配線基板の製造工程・部品実装工程図である。It is a manufacturing process and component mounting process diagram of a conventional printed wiring board. 通信装置の構成例である。It is a structural example of a communication apparatus. この発明の実施の形態2における高周波回路基板の構成図である。It is a block diagram of the high frequency circuit board in Embodiment 2 of this invention. この発明の実施の形態3における高周波回路基板の構成図である。It is a block diagram of the high frequency circuit board in Embodiment 3 of this invention. この発明の実施の形態4における電圧制御発振器回路の構成図である。It is a block diagram of the voltage controlled oscillator circuit in Embodiment 4 of this invention.

実施の形態1.
図1は、この発明の実施の形態1におけるマイクロストリップ線路を用いた高周波回路基板の斜視図である。図1において、1は無鉛はんだ、2は金めっき、3はニッケルめっき、4は銅素地および銅めっきが施された導体パターン、5はテフロン(登録商標)やガラスエポキシなどの絶縁体、6は裏面グランドパターンである。
Embodiment 1 FIG.
1 is a perspective view of a high-frequency circuit board using a microstrip line according to Embodiment 1 of the present invention. In FIG. 1, 1 is a lead-free solder, 2 is gold plating, 3 is nickel plating, 4 is a copper substrate and a copper-plated conductor pattern, 5 is an insulator such as Teflon (registered trademark) or glass epoxy, 6 is It is a back surface ground pattern.

図2は、従来例のマイクロストリップ線路の断面図である。図2において、図1と同一の構成要素には同一符号を付し、その説明を省略する。図2において、7は高周波電流の伝送域である。   FIG. 2 is a cross-sectional view of a conventional microstrip line. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 2, 7 is a high frequency current transmission region.

図3は、この発明の実施の形態1におけるマイクロストリップ線路の断面図である。図3において、図1および図2と同一の構成要素には同一符号を付し、その説明を省略する。   FIG. 3 is a cross-sectional view of the microstrip line according to the first embodiment of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

高周波信号は高周波回路基板の表面に形成されたマイクロストリップ線路の表面導体を高周波電流として伝送し、この高周波電流が表面導体を流れるとき、表面導体の断面において、高周波電流の電流密度は表面導体の表面で大きく、表面から離れると小さくなる現象がある。この現象を表皮効果と呼ぶ。電流が表面の電流の1/e(約0.37)倍となる表面導体の断面方向の深さを表皮深さと呼び、表皮深さは√(1/(πσμf))メートルで表される。ここでσは導体の導電率、μは導体の透磁率、fは高周波信号の信号周波数を表す。   The high-frequency signal is transmitted as a high-frequency current through the surface conductor of the microstrip line formed on the surface of the high-frequency circuit board, and when this high-frequency current flows through the surface conductor, the current density of the high-frequency current in the cross-section of the surface conductor is There is a phenomenon that it is large on the surface and small when it is separated from the surface. This phenomenon is called the skin effect. The depth of the surface conductor in which the current is 1 / e (about 0.37) times the surface current is called the skin depth, and the skin depth is represented by √ (1 / (πσμf)) meters. Here, σ represents the conductivity of the conductor, μ represents the magnetic permeability of the conductor, and f represents the signal frequency of the high frequency signal.

ニッケルは金、銀、銅等に比べて透磁率が高いため、表皮深さが浅く、高周波電流が流れる表面導体の断面積が狭くなるので、高周波信号の通過損失が大きい。ニッケルめっき3、金めっき2の上に√(1/(πσμf))メートル以上の厚さの無鉛はんだ1を塗布することで、高周波電流はニッケルめっき3に流れず、表皮効果による高周波電流が流れる断面積が広い無鉛はんだ1を高周波電流が流れ、高周波信号の通過損失が低減される。 Since nickel has a higher magnetic permeability than gold, silver, copper, etc., the skin depth is shallow, and the cross-sectional area of the surface conductor through which high-frequency current flows is narrow, so that high-frequency signal passage loss is large. By applying the lead-free solder 1 with a thickness of √ (1 / (πσμf)) or more on the nickel plating 3 and the gold plating 2, the high frequency current does not flow to the nickel plating 3, but the high frequency current due to the skin effect flows. A high-frequency current flows through the lead-free solder 1 having a wide cross-sectional area, and a high-frequency signal passing loss is reduced.

例えば、高周波信号を12GHzの信号周波数としたときにおいて、表皮効果による金の表皮深さは0.72μmである。銅パターンの表面にめっきで形成された金めっき2の厚みL2は約0.1μm、ニッケルめっき3の厚みL3は約5μmであり、再上層の金めっき2の厚みは金の表皮深さに対して不足しているので、図2に示すように、ほとんどの電流はニッケルめっき3を流れることになる。しなしながら、ニッケルの表皮深さは0.05μmと浅いため、高周波電流が流れる断面積が狭いので、高周波信号の通過損失が大きくなる。 For example, when the high frequency signal is a signal frequency of 12 GHz, the skin depth of gold due to the skin effect is 0.72 μm. The thickness L2 of the gold plating 2 formed by plating on the surface of the copper pattern is about 0.1 μm, the thickness L3 of the nickel plating 3 is about 5 μm, and the thickness of the upper gold plating 2 is relative to the skin depth of the gold Therefore, most of the current flows through the nickel plating 3 as shown in FIG. However, since the skin depth of nickel is as shallow as 0.05 μm, the cross-sectional area through which the high-frequency current flows is narrow, so that the passage loss of the high-frequency signal increases.

錫:96.5%/銀:3%/銅:0.5%を標準組成とする無鉛はんだ1の表皮深さは1.53μmであり、1.53μm以上の厚さL1の無鉛はんだ1を金めっき2の表面に塗布することで、図3に示すように高周波電流は電流が流れる断面積がニッケルめっき3より広い無鉛はんだ1を流れるため、高周波信号の通過損失が低減される。 The skin depth of lead-free solder 1 having a standard composition of tin: 96.5% / silver: 3% / copper: 0.5% is 1.53 μm, and lead-free solder 1 having a thickness L1 of 1.53 μm or more is used. By applying to the surface of the gold plating 2, as shown in FIG. 3, the high-frequency current flows through the lead-free solder 1 having a wider cross-sectional area than the nickel plating 3, so that the high-frequency signal passing loss is reduced.

無鉛はんだ1の形成方法について説明する。図4は、この発明の実施の形態1における高周波回路基板の無鉛はんだの塗布工程図である。無鉛はんだ1の塗布は、はんだ印刷工程(S1)とリフロー工程(S2)で実施される。   A method for forming the lead-free solder 1 will be described. FIG. 4 is a process diagram for applying lead-free solder to the high-frequency circuit board according to Embodiment 1 of the present invention. The lead-free solder 1 is applied in a solder printing process (S1) and a reflow process (S2).

はんだ印刷工程(S1)において、ニッケルめっき3および金メッキ2が施された導体パターン4のはんだを塗布したい部分に穴を開けたはんだ印刷マスクを基板上に載置し、この印刷マスクの上からペースト状の無鉛はんだ1を塗ることにより穴の開いた部分の導体パターン4に無鉛はんだ1を印刷する工程である。リフロー工程(S2)において、はんだ印刷工程(S1)において無鉛はんだ1が印刷された高周波回路基板が炉内温度が245℃のリフロー炉内を搬送され、印刷された無鉛はんだ1を溶融させて、無鉛はんだ1を導体パターン4に密着させる。 In the solder printing step (S1), a solder printing mask having a hole formed in a portion of the conductor pattern 4 to which the nickel plating 3 and the gold plating 2 are applied is provided on the substrate, and paste is applied from above the printing mask. This is a step of printing the lead-free solder 1 on the conductor pattern 4 in the holed portion by applying the lead-free solder 1 in the shape of a hole. In the reflow step (S2), the high-frequency circuit board on which the lead-free solder 1 is printed in the solder printing step (S1) is conveyed in a reflow furnace having a furnace temperature of 245 ° C., and the printed lead-free solder 1 is melted. The lead-free solder 1 is brought into close contact with the conductor pattern 4.

溶融した無鉛はんだの浸漬させるはんだコートでは、250℃の温度で溶融した無鉛はんだに8秒間高周波基板を浸漬させる必要があるが、リフロー工程による無鉛はんだ塗布方法においては、はんだコートより5℃低い245℃の温度で無鉛はんだを溶融させるため、高周波基板の熱変形がはんだコートによる方法に比べて、緩和される。また、リフロー工程においては、高周波回路基板を金属製の固定治具に固定してリフロー炉内を搬送できるため、高周波回路基板の変形を抑止することができる。   In the solder coating in which the molten lead-free solder is immersed, it is necessary to immerse the high-frequency substrate in the lead-free solder melted at a temperature of 250 ° C. for 8 seconds. Since lead-free solder is melted at a temperature of ° C., thermal deformation of the high-frequency substrate is mitigated as compared with the method using solder coating. Further, in the reflow process, the high frequency circuit board can be fixed to a metal fixing jig and conveyed in the reflow furnace, so that deformation of the high frequency circuit board can be suppressed.

リフロー工程は、図5に示すように、表面実装部品の端子実装部に無鉛はんだを塗布して、表面実装部品を基板に実装する工程であるため、表面実装部品の実装と同時にマイクロストリップ線路に無鉛はんだが塗布されることにより、生産性を損なわずに無鉛はんだの塗布が実施される効果がある。   As shown in FIG. 5, the reflow process is a process in which lead-free solder is applied to the terminal mounting portion of the surface mount component and the surface mount component is mounted on the substrate. By applying the lead-free solder, there is an effect that the lead-free solder is applied without impairing the productivity.

この発明の実施の形態1では、マイクロストリップ線路を用いた高周波回路基板について説明したが、コプレーナ線路を用いても良い。   In the first embodiment of the present invention, a high frequency circuit board using a microstrip line has been described, but a coplanar line may be used.

実施の形態2.
図6は、通信装置の構成例である。9は通信用アンテナ、10は送受信信号分配/合成器、11は送信用増幅器、12は受信用低雑音増幅器、13は帯域通過フィルタ、14はミキサ、15は電圧制御発信器、16は位相比較器である。
Embodiment 2. FIG.
FIG. 6 is a configuration example of a communication apparatus. 9 is a communication antenna, 10 is a transmission / reception signal distributor / synthesizer, 11 is a transmission amplifier, 12 is a low-noise amplifier for reception, 13 is a band-pass filter, 14 is a mixer, 15 is a voltage-controlled oscillator, and 16 is a phase comparison. It is a vessel.

この発明の実施の形態2は、送受信信号分配/合成器10と、受信用低雑音増幅器12との間のマイクロストリップ線路にこの発明の実施の形態1に示す処理を施すものである。図7は、この発明の実施の形態2における高周波回路基板の構成図である。17はこの発明の実施の形態1に示すマイクロストリップ線路を用いた、送受信信号分配/合成器10と受信用低雑音増幅器12とを接続する受信用低雑音増幅器の入力部である。 In the second embodiment of the present invention, the process shown in the first embodiment of the present invention is performed on the microstrip line between the transmission / reception signal distributor / combiner 10 and the low noise amplifier 12 for reception. FIG. 7 is a configuration diagram of a high-frequency circuit board according to Embodiment 2 of the present invention. Reference numeral 17 denotes an input section of a reception low noise amplifier that connects the transmission / reception signal distributor / combiner 10 and the reception low noise amplifier 12 using the microstrip line shown in the first embodiment of the present invention.

この発明の実施の形態2の高周波回路基板の製造方法について説明する。送受信信号分配/合成器10と、受信用低雑音増幅器12は表面実装部品である。図5は従来のプリント配線基板の製造工程・部品実装工程図である。 A method for manufacturing a high-frequency circuit board according to Embodiment 2 of the present invention will be described. The transmission / reception signal distributor / synthesizer 10 and the reception low noise amplifier 12 are surface-mounted components. FIG. 5 is a manufacturing process / component mounting process diagram of a conventional printed wiring board.

図5において、はんだ印刷工程(S11)は、ニッケルめっき3および金メッキ2が施された導体パターン4に送受信信号分配/合成器10や受信用低雑音増幅器12などの表面実装部品を実装したい部分に穴を開けたはんだ印刷マスクを基板上に載置し、この印刷マスクの上からペースト状の無鉛はんだ1を塗ることにより穴の開いた部分の導体パターン4に無鉛はんだ1を印刷する工程である。 In FIG. 5, in the solder printing step (S11), a surface mounting component such as a transmission / reception signal distributor / synthesizer 10 or a receiving low noise amplifier 12 is mounted on a conductor pattern 4 on which nickel plating 3 and gold plating 2 are applied. This is a process of printing the lead-free solder 1 on the conductor pattern 4 in the holed portion by placing a solder print mask with a hole on the substrate and applying a paste-like lead-free solder 1 over the print mask. .

部品装着工程(S20)において、塗布された無鉛はんだ1の所定の位置に表面実装部品の端子が載置されるように、表面実装部品を装着する。   In the component mounting step (S20), the surface mounting component is mounted so that the terminal of the surface mounting component is placed at a predetermined position of the applied lead-free solder 1.

リフロー工程(S30)において、部品装着工程(S20)において表面実装部品が装着されたプリント配線基板が炉内温度が245℃のリフロー炉内を搬送され、印刷された無鉛はんだ1を溶融させて、表面実装部品の端子を導体パターン4に密着させる。 In the reflow step (S30), the printed wiring board on which the surface mounting components are mounted in the component mounting step (S20) is transported in a reflow furnace having a furnace temperature of 245 ° C., and the printed lead-free solder 1 is melted. The terminal of the surface mount component is brought into close contact with the conductor pattern 4.

図4で示すこの発明の実施の形態1における高周波回路基板の無鉛はんだの塗布工程図および図5で示すプリント配線基板の製造工程・部品実装工程図において、はんだ印刷工程(S11)とはんだ印刷工程(S1)とは基板上に載置した印刷マスク上からペースト状の無鉛はんだを塗布する作業であり、リフロー工程(S30)とリフロー工程(S3)とは印刷された無鉛はんだをリフロー炉内で溶融させる作業であり、それぞれ共に同じ作業である。   In the lead-free solder application process diagram of the high-frequency circuit board according to the first embodiment of the present invention shown in FIG. 4 and the printed wiring board manufacturing process / component mounting process chart shown in FIG. 5, the solder printing process (S11) and the solder printing process (S1) is an operation of applying a paste-free lead-free solder on a printing mask placed on a substrate, and the reflow process (S30) and the reflow process (S3) are performed in a reflow furnace. These are melting operations, both of which are the same.

したがって、はんだ印刷工程(S10)で基板上に載置する印刷マスクに、ニッケルめっき3および金メッキ2が施された導体パターン4のはんだを塗布したい部分にも穴を開けておくことにより、高周波電子部品の導体パターン4への無鉛はんだ付けと導体パターン4の所定の表面への無鉛はんだ1の塗布が同時に実施されるため、従来のプリント配線基板の製造工程・部品実装工程でこの発明の実施の形態2の高周波回路基板が製造され、生産性を損なわない効果がある。 Therefore, by making a hole in a portion of the conductor pattern 4 on which the nickel plating 3 and the gold plating 2 are applied to the printing mask placed on the substrate in the solder printing step (S10), Since the lead-free soldering of the component to the conductor pattern 4 and the application of the lead-free solder 1 to a predetermined surface of the conductor pattern 4 are performed at the same time, the present invention is implemented in the conventional printed wiring board manufacturing process and component mounting process. The high-frequency circuit board of Mode 2 is manufactured, and there is an effect that productivity is not impaired.

すなわち、印刷マスクおいて、送受信信号分配/合成器10と受信用低雑音増幅器12とが実装される部分および送受信信号分配/合成器10と受信用低雑音増幅器12との間の導体パターン4の全面の部分に穴を開けておくことにより、送受信信号分配/合成器10と受信用低雑音増幅器12の無鉛はんだ付けおよび無鉛はんだが塗布された入力部17が同時に形成される。 That is, in the print mask, the portion where the transmission / reception signal distributor / combiner 10 and the reception low noise amplifier 12 are mounted and the conductor pattern 4 between the transmission / reception signal distributor / combiner 10 and the reception low noise amplifier 12 are arranged. By making holes in the entire surface, lead-free soldering of the transmission / reception signal distributor / synthesizer 10 and the receiving low-noise amplifier 12 and the input portion 17 coated with lead-free solder are formed simultaneously.

受信用低雑音増幅器12の入力部17にこの発明の実施の形態1に示すマイクロストリップ線路を用いることにより、通過損失が低減され、通信装置の雑音指数が低減される。 By using the microstrip line shown in the first embodiment of the present invention for the input unit 17 of the reception low noise amplifier 12, the passage loss is reduced and the noise figure of the communication device is reduced.

実施の形態3.
図8は、この発明の実施の形態3における高周波回路基板の構成図である。図8において、図6および図7と同一の構成要素には同一符号を付し、その説明を省略する。21はこの発明の実施の形態1に示すマイクロストリップ線路を用いた送信用増幅器11と送受信信号分配/合成紀器10とを接続する送信用増幅器の出力部である。
Embodiment 3 FIG.
FIG. 8 is a configuration diagram of a high-frequency circuit board according to Embodiment 3 of the present invention. 8, the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 21 denotes an output portion of a transmission amplifier for connecting the transmission amplifier 11 using the microstrip line shown in Embodiment 1 of the present invention and the transmission / reception signal distribution / synthesis unit 10.

この発明の実施の形態3における高周波回路基板の製造方法については、この発明の実施の形態2の高周波回路基板の製造方法と同じである。なお、印刷マスクは送受信信号分配/合成器10と送信用増幅器11とが実装される部分および送信用増幅器11と送受信信号分配/合成器10との間の導体パターン4の全面の部分に穴を開けている。 The method for manufacturing a high-frequency circuit board according to Embodiment 3 of the present invention is the same as the method for manufacturing a high-frequency circuit board according to Embodiment 2 of the present invention. The print mask has holes in the portion where the transmission / reception signal distributor / combiner 10 and the transmission amplifier 11 are mounted and the entire surface of the conductor pattern 4 between the transmission amplifier 11 and the transmission / reception signal distributor / combiner 10. Open.

送信用増幅器11の出力部21に実施の形態1に示すマイクロストリップ線路を用いることにより、通過損失が低減され、通信装置の飽和出力電力が増加される。 By using the microstrip line shown in the first embodiment for the output unit 21 of the transmission amplifier 11, the passage loss is reduced and the saturated output power of the communication device is increased.

実施の形態4.
図9は、実施の形態4における電圧制御発振器回路の構成図である。図9において、図6と同一の構成要素には同一符号を付し、その説明を省略する。22はこの発明の実施の形態1に示すマイクロストリップ線路で形成された共振器、23は電圧制御発振器の能動素子、24は同調素子、25は共振器22と能動素子23とを接続するこの発明の実施の形態1に示すマイクロストリップ線路で形成された伝送線路である。
Embodiment 4 FIG.
FIG. 9 is a configuration diagram of a voltage controlled oscillator circuit according to the fourth embodiment. 9, the same components as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted. 22 is a resonator formed of the microstrip line shown in the first embodiment of the present invention, 23 is an active element of a voltage controlled oscillator, 24 is a tuning element, and 25 is a resonator connecting the resonator 22 and the active element 23. This is a transmission line formed by the microstrip line shown in the first embodiment.

この発明の実施の形態4における高周波回路基板の製造方法については、この発明の実施の形態2の高周波回路基板の製造方法と同じである。なお、印刷マスクは能動素子23と同調素子24とが実装される部分および共振器22の導体パターン4の全面と共振器22と能動素子23との間の導体パターン4の全面の部分に穴を開けている。 The method for manufacturing a high-frequency circuit board according to Embodiment 4 of the present invention is the same as the method for manufacturing a high-frequency circuit board according to Embodiment 2 of the present invention. The print mask has holes in the portion where the active element 23 and the tuning element 24 are mounted, the entire surface of the conductor pattern 4 of the resonator 22, and the entire surface of the conductor pattern 4 between the resonator 22 and the active element 23. Open.

電圧制御発振器23の共振器22の損失が大きいと、系から散逸する電力が大きくなり振動増大係数が低下、位相雑音が劣化してしまうが、電圧制御発振器23の共振器22に実施の形態1に示すマイクロストリップ線路を用いることにより、共振器22の通過損失が低減し、位相雑音が低下される。 If the loss of the resonator 22 of the voltage controlled oscillator 23 is large, the power dissipated from the system is increased, the vibration increasing coefficient is lowered, and the phase noise is deteriorated. By using the microstrip line shown in FIG. 2, the passage loss of the resonator 22 is reduced and the phase noise is reduced.

1 無鉛はんだ 2 金めっき 3 ニッケルめっき
4 導体パターン 5 絶縁体
6 裏面グランドパターン 7 高周波電流が流れる範囲
9 通信用アンテナ 10 送受信信号分配/合成器
11 送信用増幅器 12 受信用低雑音増幅器 13 帯域通過フィルタ
14 ミキサ 15 電圧制御発信器 16 位相比較器
17 入力部
21 出力部
22 共振器
23 能動素子 24 同調素子 25 伝送線路
DESCRIPTION OF SYMBOLS 1 Lead-free solder 2 Gold plating 3 Nickel plating 4 Conductor pattern 5 Insulator 6 Back surface ground pattern 7 Range in which high-frequency current flows 9 Communication antenna 10 Transmission / reception signal distributor / synthesizer 11 Transmitter amplifier 12 Receiver low noise amplifier 13 Band pass filter DESCRIPTION OF SYMBOLS 14 Mixer 15 Voltage control transmitter 16 Phase comparator 17 Input part 21 Output part 22 Resonator 23 Active element 24 Tuning element 25 Transmission line

Claims (3)

絶縁体基板の表面に金属導体で形成された伝送線路と、この伝送線路の表面にリフローはんだで形成されたはんだ層とを備えた高周波回路基板。 A high-frequency circuit board comprising a transmission line formed of a metal conductor on a surface of an insulator substrate, and a solder layer formed of reflow solder on the surface of the transmission line. 絶縁体基板の表面に金属導体で形成された伝送線路と、この伝送線路の表面に電気的接続手段で端子が接続された高周波電子部品と、この高周波電子部品の端子が接続された前記伝送線路の表面にリフローはんだで形成されたはんだ層とを備えた高周波回路基板。 A transmission line formed of a metal conductor on the surface of the insulator substrate, a high-frequency electronic component having a terminal connected to the surface of the transmission line by electrical connection means, and the transmission line to which a terminal of the high-frequency electronic component is connected A high frequency circuit board having a solder layer formed by reflow soldering on the surface of the substrate. 前記はんだは、組成が錫:96.5%/銀:3%/銅:0.5%の無鉛はんだで形成されている請求項1または請求項2に記載の高周波回路基板。 The high-frequency circuit board according to claim 1 or 2, wherein the solder is formed of a lead-free solder having a composition of tin: 96.5% / silver: 3% / copper: 0.5%.
JP2010262327A 2010-11-25 2010-11-25 High frequency circuit board Active JP5480785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262327A JP5480785B2 (en) 2010-11-25 2010-11-25 High frequency circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262327A JP5480785B2 (en) 2010-11-25 2010-11-25 High frequency circuit board

Publications (2)

Publication Number Publication Date
JP2012114696A true JP2012114696A (en) 2012-06-14
JP5480785B2 JP5480785B2 (en) 2014-04-23

Family

ID=46498415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262327A Active JP5480785B2 (en) 2010-11-25 2010-11-25 High frequency circuit board

Country Status (1)

Country Link
JP (1) JP5480785B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185403A (en) * 1984-03-05 1985-09-20 Matsushita Electric Ind Co Ltd Circuit board
JPH04368005A (en) * 1991-06-14 1992-12-21 Sanyo Electric Co Ltd Microwave transmission line
JPH0555746A (en) * 1991-08-29 1993-03-05 Hitachi Chem Co Ltd High frequency copper clad laminated board and printed circuit board
JPH0685436A (en) * 1992-02-14 1994-03-25 Rockwell Internatl Corp Uniform solder coating on electrically conductive substrate and method for achieving it
JPH07326910A (en) * 1994-05-31 1995-12-12 Nec Corp Waveguide
JPH1197912A (en) * 1997-09-22 1999-04-09 Toshiba Corp High frequency transmission line
JP2001057886A (en) * 1999-08-19 2001-03-06 Japan Tobacco Inc New dna fragment enhancing expression amount of gene
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line
JP2010059445A (en) * 2008-09-01 2010-03-18 Shikoku Chem Corp Surface treating agent for copper or copper alloy and use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185403A (en) * 1984-03-05 1985-09-20 Matsushita Electric Ind Co Ltd Circuit board
JPH04368005A (en) * 1991-06-14 1992-12-21 Sanyo Electric Co Ltd Microwave transmission line
JPH0555746A (en) * 1991-08-29 1993-03-05 Hitachi Chem Co Ltd High frequency copper clad laminated board and printed circuit board
JPH0685436A (en) * 1992-02-14 1994-03-25 Rockwell Internatl Corp Uniform solder coating on electrically conductive substrate and method for achieving it
JPH07326910A (en) * 1994-05-31 1995-12-12 Nec Corp Waveguide
JPH1197912A (en) * 1997-09-22 1999-04-09 Toshiba Corp High frequency transmission line
JP2001057886A (en) * 1999-08-19 2001-03-06 Japan Tobacco Inc New dna fragment enhancing expression amount of gene
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line
JP2010059445A (en) * 2008-09-01 2010-03-18 Shikoku Chem Corp Surface treating agent for copper or copper alloy and use thereof

Also Published As

Publication number Publication date
JP5480785B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
KR101616625B1 (en) Semiconductor package and method of manufacturing the same
US20130012145A1 (en) Radio module and manufacturing method therefor
KR100284620B1 (en) Microwave Oscillator and Manufacturing Method
US8072279B2 (en) Crystal oscillator with pedestal
CN113839193A (en) Chip antenna, and antenna module and electronic device including the same
JPH06283881A (en) High frequency module device and its manufacture
JP4903738B2 (en) Electronic component storage package and electronic device
US20090086461A1 (en) Shielding Apparatus and Manufacturing Method Thereof
JP5480785B2 (en) High frequency circuit board
JP2010028800A (en) Structure, connection terminal, package, and electronic device
JP2006211620A (en) Filter and duplexer
JPH1117063A (en) Circuit board for mounting semiconductor chip, package for accommodating semiconductor chip, and semiconductor device
TW200428614A (en) Electronic device and semiconductor device
US10931006B2 (en) Chip antenna
JP2005080229A (en) Chip antenna and manufacturing method thereof
JP2013048198A (en) Package for housing electronic component and electronic equipment using the same
JPH0746007A (en) Substrate for electric power and electric power amplifier for high frequency
JPH06151231A (en) Electric part
JP2008085699A (en) Terminating resistance substrate for high frequency and electronic device
JPH0385904A (en) Dielectric resonator
JP5355468B2 (en) Input / output terminal, element storage package, and mounting structure
JP2011238641A (en) Input and output terminal, package for housing element, and packaging structure
JP2007149955A (en) Terminal resistance substrate for high frequency and electronic device
JP4206321B2 (en) Semiconductor element storage package and semiconductor device
KR20050053828A (en) Communication module measurement apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250