JPH1197912A - High frequency transmission line - Google Patents

High frequency transmission line

Info

Publication number
JPH1197912A
JPH1197912A JP9257295A JP25729597A JPH1197912A JP H1197912 A JPH1197912 A JP H1197912A JP 9257295 A JP9257295 A JP 9257295A JP 25729597 A JP25729597 A JP 25729597A JP H1197912 A JPH1197912 A JP H1197912A
Authority
JP
Japan
Prior art keywords
conductor
thickness
frequency
transmission line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9257295A
Other languages
Japanese (ja)
Inventor
Yoshio Konno
舜夫 昆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9257295A priority Critical patent/JPH1197912A/en
Publication of JPH1197912A publication Critical patent/JPH1197912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a high freguency transmission circuit lowin loss and lowin cost by satisfying relation between use frequencies and the thickness of conductors with a specific expression, and using a microstrip line with specific high frequencies. SOLUTION: In the microstrip line, conductors 12 and 13 whose thickness is (t) are formed on the upper and lower faces of a dielectric 11. Relation between use frequencies (f) and the thickness (t) of the conductors 12 and 13 is selected so that 3/8×π<=τt<=7/8×π can be satisfied. The line is used with high frequencies in which outside impedance Zout decided by the structure of a transmission line can be more dominance than inside impedance Zin of the conductors 12 and 13. In the expression, τ=√(ωμσ/2), ω=2π fare angular frequencies, μis magnetic permeability, and σ is conductivity. Zin=Zs ×coth(τt)=Rin+j.Xin, and Zs=√(jωμ/σ). Zout=√(Lex/Cex).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マイクロ波、ミ
リ波もしくはそれ以上の高周波で使用する高周波伝送線
路の損失改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of loss of a high-frequency transmission line used at a high frequency of microwave, millimeter wave or higher.

【0002】[0002]

【従来の技術】マイクロ波、ミリ波などの高周波数で使
用する伝送線路は、同軸線路や平面信号線路のように、
TEM波を伝送波とする信号線路や、導波管や誘電体線
路等のように、TE波、TM波もしくはこれらが混在し
た電磁波を導く導波路に大別される(以下、総称して伝
送線路という)。これらの伝送線路では、信号の乱れ
と、伝送時の損失を少なくすることが求められている。
このうち信号の乱れを少なくするためには、広い周波数
に渡り、一定の特性インピーダンスと遅延特性を有する
ことが条件であり、これを満たす特殊な形態の線路が考
案されている。例えば、最近開発が盛んに行われている
マイクロ波ICでは、マイクロストリップ線路やコプレ
ーナ線路などの伝送線路がよく使われている。
2. Description of the Related Art Transmission lines used at high frequencies such as microwaves and millimeter waves, such as coaxial lines and planar signal lines,
It is broadly classified into a waveguide that guides a TE wave, a TM wave, or an electromagnetic wave in which these are mixed, such as a signal line that uses a TEM wave as a transmission wave, a waveguide, a dielectric line, and the like (hereinafter, collectively referred to as transmission). Tracks). These transmission lines are required to reduce signal disturbance and loss during transmission.
Among these, in order to reduce the disturbance of the signal, it is a condition that the characteristic impedance and the delay characteristic are maintained over a wide frequency range, and a special type of line satisfying these conditions has been devised. For example, in a microwave IC that has been actively developed recently, a transmission line such as a microstrip line or a coplanar line is often used.

【0003】このような伝送線路では、基本性能として
広い周波数範囲と低損失化が求められている。とくに、
広い周波数範囲を得るためには、伝送モード以外のモー
ドの発生を押さえる必要があり、この条件を満たすた
め、TEM波を使う伝送線路ではその大きさを最高使用
周波数の波長に比べて十分小さくする必要がある。例え
ば同軸線路を60GHzで用いるとすれば、最大でも直
径〜2.3mm(電気長換算)以下が必要となる。
[0003] In such a transmission line, a wide frequency range and low loss are required as basic performance. In particular,
In order to obtain a wide frequency range, it is necessary to suppress the generation of modes other than the transmission mode. To satisfy this condition, the transmission line using the TEM wave has a size sufficiently smaller than the wavelength of the highest frequency used. There is a need. For example, if a coaxial line is used at 60 GHz, a diameter of at most 2.3 mm (electrical length conversion) or less is required.

【0004】一般に、伝送線路内の伝送損失は誘電体損
と導体損の2つがあり、とくにミリ波領域では導体損が
支配的である。導体損(以下、損失という)は基本的に
使用する金属の導電率で決定され、表面安定性等の実用
面の関係から、MMIC等では金、もしくは金メッキし
た銅、同軸線路では銅などがよく用いられている。先に
説明したように、広い周波数範囲の伝送線路とするため
には、信号線路は小型にせざるを得ず、一般的には最高
使用周波数に逆比例した小型化が求められる。すなわ
ち、高い周波数まで使用する伝送線路ほど小型でなけれ
ばならず、結果として金属の有効表面積が減り、損失が
大きくなるという問題点があった。
In general, there are two types of transmission loss in a transmission line: dielectric loss and conductor loss. In the millimeter wave region, conductor loss is dominant. The conductor loss (hereinafter referred to as loss) is basically determined by the conductivity of the metal used. From the viewpoint of practical aspects such as surface stability, gold or gold-plated copper for MMIC or copper for coaxial line is often used. Used. As described above, in order to form a transmission line having a wide frequency range, the signal line must be reduced in size, and in general, a reduction in size in inverse proportion to the highest operating frequency is required. In other words, there is a problem that the transmission line used up to a higher frequency must be smaller, and as a result, the effective surface area of the metal decreases and the loss increases.

【0005】ところで、金属の高周波抵抗は、表面イン
ピーダンスとして知られその値は、導体の厚みtが使用
周波数の表皮に深さδsに比べ十分に厚いときには Zs=√(jωμ/σ) (4) 但し ω=2πf:角周波数、μ:透磁率、σ:導電率 で与えられる。この満たす条件として、一般には表皮の
深さ(δs) δs=√(2/(ωμσ)) (5) 但し ω=2πf:角周波数、μ:透磁率、σ:導電率 の3倍以上の導体厚みが必要と言われ、この厚みより薄
ければ抵抗値が上がり、またこれ以上導体の厚みを増し
ても、抵抗値は殆ど下がらず、低損失化は限界と言われ
ている。
The high-frequency resistance of a metal is known as surface impedance, and its value is Zs = √ (jωμ / σ) when the thickness t of the conductor is sufficiently thicker than the depth δs on the surface of the operating frequency. Where ω = 2πf: angular frequency, μ: magnetic permeability, σ: conductivity. In general, the conditions to be satisfied are as follows: depth of skin (δs) δs = √ (2 / (ωμσ)) (5) where ω = 2πf: angular frequency, μ: magnetic permeability, σ: a conductor having three times or more of conductivity It is said that the thickness is necessary. If the thickness is smaller than this, the resistance value increases, and even if the thickness of the conductor is further increased, the resistance value hardly decreases, and it is said that reduction in loss is a limit.

【0006】[0006]

【発明が解決しようとする課題】上述したように、高い
周波数まで使用する伝送線路ほど小型化の必要があるた
め、結果的に金属の有効断面積が減り、損失は大きくな
るという問題点がある。とくに、今後は情報量の増加に
比例した高周波化は必然であり、伝送線路の低損失化は
大きな技術的課題となっている。しかし、これら高周波
伝送線路の低損失化は、先に説明した通りの理由で物理
的には限界と言われている。ちなみに、伝送線路の形態
変更による低損失化の試みも盛んではあるが、いずれも
コストの点で実用的とは言えない。
As described above, the transmission line used up to a higher frequency needs to be miniaturized, and as a result, there is a problem that the effective area of the metal is reduced and the loss is increased. . In particular, in the future, higher frequency in proportion to the increase in the amount of information is inevitable, and reduction of the transmission line loss has become a major technical problem. However, the reduction in loss of these high-frequency transmission lines is said to be physically limited for the same reason as described above. By the way, attempts to reduce the loss by changing the form of the transmission line are also active, but none of them is practical in terms of cost.

【0007】この発明の目的は、高い周波数まで使用す
る伝送線路において、低損失化と低コストを実現するこ
とにある。
An object of the present invention is to realize low loss and low cost in a transmission line using up to a high frequency.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、先に述べた高周波抵抗となる表面インピーダンス
について検討した。文献 R.E.Collin“Field theory of
guided waves”, McGraw-Hill, New York によると、
金属内にしみ込んだ電磁波は
In order to solve the above-mentioned problems, the above-mentioned surface impedance as a high-frequency resistance was examined. Literature RECollin “Field theory of
guided waves ”, McGraw-Hill, New York states that
Electromagnetic waves that seep into metal

【数2】 特性インピーダンス Zs=√(jωμ/σ) (6) 伝搬定数 τ=√(jωμσ)=(1+j)/δs の条件で伝搬することが知られている。また伝搬の方向
は、金属の導電率が誘電率となり、等価的に金属の誘電
率は非常に大きいことから、誘電体部分から金属内に電
磁波が進入する際、スネルの法則に従った屈折が起こ
り、どの様な角度で金属面に電磁波が進入しても、金属
内では金属表面に対しほぼ直角の方向に進む。このた
め、厚みtの導体の表面インピーダンスZin(内部イ
ンピーダンスとも言う)は、終端開放で厚さtの伝送線
路モデルで表すことができ、次のようになる。
## EQU00002 ## It is known that the characteristic impedance Zs = .SIGMA. (J.omega ./. Sigma.) (6) Propagation is performed under the following condition: .tau. =. SIGMA. (J.omega..mu.) = (1 + j) /. Delta.s. In the direction of propagation, the conductivity of the metal becomes the dielectric constant, and the equivalent dielectric constant of the metal is extremely large.When electromagnetic waves enter the metal from the dielectric portion, refraction according to Snell's law is observed. As a result, no matter what angle the electromagnetic wave enters the metal surface, it travels in the metal in a direction substantially perpendicular to the metal surface. Therefore, the surface impedance Zin (also referred to as the internal impedance) of the conductor having the thickness t can be represented by a transmission line model having the thickness t with the ends open, and is as follows.

【0009】 Zin=Zs×coth(τt) (7) 厚みtの金属の高周波抵抗は、内部インピーダンスの実
部Re(Zin)であり、(7)に(6)を代入し、こ
れを求めると
Zin = Zs × coth (τt) (7) The high-frequency resistance of the metal having the thickness t is the real part Re (Zin) of the internal impedance, which is obtained by substituting (6) into (7).

【数3】 Zin=(1+j)×Zs×coth{(1+j)t/δs} より Re(Zin)=Rin =Zs×(sinh(x)+sin(x))/(cosh(x)−cos( x)) (8) 但し x=2×t/δs ここにZsは、先に述べた導体の厚みtが表皮の深さδ
sに比べ十分に厚い場合の表面インピーダンスであり、
高周波抵抗はこの値より下がらないと言われているもの
である。したがって、導体の厚みによる高周波抵抗Re
(Zin)=Rinの変化は、(7)のZs以外の項を
調べれば良い。
From the equation Zin = (1 + j) × Zs × coth {(1 + j) t / δs} Re (Zin) = Rin = Zs × (sinh (x) + sin (x)) / (cosh (x) −cos ( x)) (8) where x = 2 × t / δs where Zs is the thickness t of the conductor described above and the skin depth δ
s is the surface impedance when sufficiently thicker than s
The high-frequency resistance is said to not fall below this value. Therefore, the high-frequency resistance Re due to the thickness of the conductor
The change of (Zin) = Rin may be obtained by examining terms other than Zs in (7).

【0010】この関数 f(x)This function f (x)

【数4】 =(sinh(x)+sin(x))/(cosh(x)−cos(x))は x=π すなわち t=(π/2)×δsの時に、f(x)=0.917… (9) となる。したがって、高周波抵抗の最小値Rin mi
nは
= (Sinh (x) + sin (x)) / (cosh (x) -cos (x)) is x = π, that is, when t = (π / 2) × δs, f (x) = 0 .917 ... (9) Therefore, the minimum value Rin mi of the high-frequency resistance
n is

【数5】 Rin min =Zs×sinh(π)/(1+cosh(π))≒0.917×Zs (10) となる。すなわち、従来限界と言われてきた抵抗値Zs
より、約8%以上抵抗が下がることになる。
Rin min = Zs × sinh (π) / (1 + cosh (π)) ≒ 0.917 × Zs (10) That is, the resistance value Zs, which has been conventionally regarded as the limit,
Thus, the resistance is reduced by about 8% or more.

【0011】ここで、導体を金とした場合の高周波抵抗
の周波数に対する変化の様子を導体の厚みをパラメータ
として表したグラフを図5に示す。周波数の1/2乗に
比例したa線(√(ωμ/2σ)∝√f)は従来言われ
ていた低抵抗化の限界線で、b、c、d、e線はそれぞ
れ厚みを0.5、0.7、1.0、2.0μmとした時
のマイクロストリップ線路(w=69μm、h=100
μm、εs=12.9)の抵抗値を示している。それぞ
れのb〜e線では、いずれも周波数の1/2乗に比例し
た低抵抗化の限界線よりも低い抵抗値が得られている。
この抵抗値は、1.2倍弱導電率が高い導電材料を使用
したことに相当し、金の導電率(4.17×107 s/
m at 20℃)が5.0×107 s/mまで向上し
たことと等価である(ちなみに銅は5.8×107 s/
m)。
FIG. 5 is a graph showing how the high-frequency resistance changes with frequency when the conductor is made of gold, using the thickness of the conductor as a parameter. The a-line (√ (ωμ / 2σ) ∝√f), which is proportional to the 乗 power of the frequency, is the limit line for reducing the resistance, which has been conventionally known. The b, c, d, and e lines each have a thickness of 0.1 mm. Microstrip lines at 5, 0.7, 1.0 and 2.0 μm (w = 69 μm, h = 100
μm, εs = 12.9). In each of the b to e lines, a resistance value lower than the limit line for lowering the resistance in proportion to the half power of the frequency is obtained.
This resistance value is equivalent to using a conductive material having a conductivity 1.2 times lower than that of the conductive material, and the conductivity of gold (4.17 × 10 7 s /
(at 20 ° C.) is improved to 5.0 × 10 7 s / m (copper is 5.8 × 10 7 s / m.)
m).

【0012】以上検討したように、導体の厚みtを表皮
の深さのπ/2倍(約1.5倍)もしくはその前後に設
定することで、最大導電率が20%高い材料を使用した
と同様の効果を得ることができる。この結果は、導体の
厚みが従来信じられていた値より、約半分程度の時最適
な厚みとなることを示すもので、抵抗が8%以上下が
る。以後この効果を「高周波抵抗低減効果」と言う。こ
れによれば、導体の厚みを従来の約半分とした場合で
も、ほぼ従来と同等の抵抗値を得ることができるので、
省資源、材料コスト低減、プロセスコスト低減などが可
能となる。
As discussed above, by setting the thickness t of the conductor to π / 2 times (approximately 1.5 times) the depth of the skin or about the same, a material having a maximum conductivity of 20% higher is used. The same effect as described above can be obtained. This result indicates that the optimum thickness is obtained when the thickness of the conductor is about half the value conventionally believed, and the resistance is reduced by 8% or more. Hereinafter, this effect is referred to as a “high-frequency resistance reduction effect”. According to this, even when the thickness of the conductor is reduced to about half of the conventional thickness, the resistance value substantially equal to the conventional value can be obtained.
Resources can be saved, material costs can be reduced, and process costs can be reduced.

【0013】ここで、上記マイクロストリップ線路にお
いて、Gmax、伝送損αの周波数に対する変化の様子
を導体の厚みをパラメータとして表したグラフを図6に
示す(a線は図5と同じく周波数の1/2乗に比例した
線を示している)。図6において、導体tが厚い場合
(t=2.0μm)には、低い周波数域(この例では〜
6GHz)で伝導損αに高周波抵抗低減効果が現れる
が、Gmaxが損失を支配しているためこの効果が利用
できない。一方、導体の厚みtが薄い場合(t=0.5
μm)には、Gmaxと伝送損αがほぼ一致する高い周
波数域(〜100GHz程度)で高周波抵抗低減効果が
現れるため、この効果を利用することができる。すなわ
ち、Gmaxと伝送損αが10%以内の誤差で一致する
高い周波数域においてのみ高周波抵抗低減効果が利用で
きることになる。
FIG. 6 is a graph showing the change of Gmax and transmission loss α with respect to frequency in the above-mentioned microstrip line using the thickness of the conductor as a parameter. A line proportional to the square is shown). In FIG. 6, when the conductor t is thick (t = 2.0 μm), a low frequency range ((in this example)
At 6 GHz), the effect of reducing the high-frequency resistance appears on the conduction loss α, but this effect cannot be used because Gmax controls the loss. On the other hand, when the thickness t of the conductor is small (t = 0.5
μm), a high-frequency resistance reduction effect appears in a high frequency range (about 100 GHz) where Gmax and the transmission loss α almost match, and this effect can be used. That is, the effect of reducing the high-frequency resistance can be used only in a high frequency range where Gmax and the transmission loss α coincide with each other with an error of 10% or less.

【0014】すなわち、請求項1の発明は、誘電体を挟
んで配置された中心導体と外導体とから構成された高周
波伝送線路において、使用周波数fと導体との厚みtの
関係が下記(1)式を満足する様に選ばれており、 3/8×π≦τt≦7/8×π (1) ここに τ=√(ωμσ/2) 但し t:導体の厚み、ω=2πf:角周波数、μ:透
磁率、σ:導電率 しかも、下記(2)式に示す前記導体の内部インピーダ
ンスZin
That is, according to the first aspect of the present invention, in a high-frequency transmission line composed of a center conductor and an outer conductor disposed with a dielectric material interposed therebetween, the relationship between the operating frequency f and the thickness t of the conductor is as follows: 3) × π ≦ τt ≦ 7/8 × π (1) where τ = √ (ωμσ / 2), where t: thickness of the conductor, ω = 2πf: angle Frequency, μ: magnetic permeability, σ: electrical conductivity, and the internal impedance Zin of the conductor represented by the following equation (2)

【数6】 Zin=Zs×coth(τt)=Rin+j・Xin (2) ここに Zs=√(jωμ/σ) 但し t:導体の厚み、ω=2πf:角周波数、μ:透
磁率、σ:導電率 よりも、伝送線路の構造で決まる外部インピーダンスZ
out Zout=√(Lex/Cex) (3) が支配的となる高い周波数で使用することを特徴とす
る。
Zin = Zs × coth (τt) = Rin + j × Xin (2) where Zs = √ (jωμ / σ) where t: conductor thickness, ω = 2πf: angular frequency, μ: magnetic permeability, σ: External impedance Z determined by transmission line structure rather than conductivity
out Zout = √ (Lex / Cex) (3) It is characterized in that it is used at a high frequency in which:

【0015】また、請求項2の発明は、前記請求項1に
おいて、前記導体の厚みが0.5μm以下であることを
特徴とする。
Further, the invention according to claim 2 is characterized in that in claim 1, the thickness of the conductor is 0.5 μm or less.

【0016】さらに、請求項3の発明は、請求項1の条
件を満足する厚みを持つ導体で周囲を囲い、その閉じら
れた内部に特定の波を伝搬させる導波管として構成した
ことを特徴とする。
Furthermore, the invention according to claim 3 is characterized in that the waveguide is surrounded by a conductor having a thickness satisfying the condition of claim 1, and is configured to propagate a specific wave inside the closed interior. And

【0017】[0017]

【発明の実施の形態】以下、この発明に係わる高周波伝
送線路を、マイクロストリップ線路、同軸線路及び導波
管に適用した場合の実施形態を図面を参照しながら説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a high-frequency transmission line according to the present invention is applied to a microstrip line, a coaxial line and a waveguide will be described below with reference to the drawings.

【0018】[実施形態1]図1は、実施形態1に係わ
るマイクロストリップ線路の構成を示す概略断面図であ
る。このマイクロストリップ線路は、誘電体11(w=
10μm、h=2.7μm、εs=3、tand=0.
001)の上下に、厚さ0.55μm、の導体12及び
13を形成したものである。この実施形態1では、導体
12、13の厚みを、従来言われてた値より薄くし、前
出の(1)式を満たす様に従来の約半分にした場合のも
のである。導体層(金)の厚みは0.55μmである。
ただし、このマイクロストリップ線路では、導体12、
13と誘電体11間の密着を確保するため、誘電体11
の表裏の面にチタン50nm、白金50nmをそれぞれ
積層し(いずれも図示せず)、その上に先に述べた導体
12、13を形成している。チタンと白金からなる密着
導体層の導電率は金に比べ低いため、実際には「総合導
体」の導電率として実測による値(3.6×107 s/
m)を用い、厚さ(t)も全膜厚で0.65μmとして
用いた。
[First Embodiment] FIG. 1 is a schematic sectional view showing a configuration of a microstrip line according to a first embodiment. This microstrip line has a dielectric 11 (w =
10 μm, h = 2.7 μm, εs = 3, tan = 0.
001), conductors 12 and 13 having a thickness of 0.55 μm were formed on the upper and lower sides of the conductors. In the first embodiment, the thicknesses of the conductors 12 and 13 are made thinner than the conventionally-known values, and are reduced to about half of the conventional values so as to satisfy the above-mentioned formula (1). The thickness of the conductor layer (gold) is 0.55 μm.
However, in this microstrip line, the conductor 12,
In order to ensure the close contact between the dielectric 13 and the dielectric 11, the dielectric 11
50 nm of titanium and 50 nm of platinum are respectively laminated on the front and back surfaces (both are not shown), and the conductors 12 and 13 described above are formed thereon. Since the conductivity of the contact conductor layer made of titanium and platinum is lower than that of gold, the value obtained by actually measuring the conductivity of the “total conductor” (3.6 × 10 7 s /
m) and the thickness (t) was set to 0.65 μm in the total film thickness.

【0019】この場合の伝送損αの周波数に対する変化
を実測値と計算値とで表したグラフを図2に示す。図2
では計算値を細い線で、実測値を太い線でそれぞれ示し
ている。また、計算値も含めa線は図5と同じく周波数
の1/2乗に比例した線を示している。図2では、とく
にAで示す範囲において高周波抵抗低減効果が現れてお
り、従来考えられていた値より低い伝送損を、約1/2
薄い導体厚で得ることができた。
FIG. 2 is a graph showing the change of the transmission loss α with respect to the frequency in this case, using measured values and calculated values. FIG.
In the graph, the calculated values are indicated by thin lines, and the measured values are indicated by thick lines. The line a including the calculated value is a line proportional to the half power of the frequency as in FIG. In FIG. 2, the effect of reducing the high-frequency resistance appears particularly in the range indicated by A, and the transmission loss lower than the value considered conventionally is reduced by about 1 /.
A thin conductor thickness was obtained.

【0020】このように、MMICに使用する平面回路
に本発明の条件を適用すれば伝送損失が改善されるだけ
でなく、従来求められている厚みの半分でも損失低減効
果が高い。したがって、材料コストの低減や、これによ
りプロセス時間が節約され、また薄い導体で十分以上効
果が得られることから積層性が向上するなどの効果が期
待できる。
As described above, if the conditions of the present invention are applied to the planar circuit used in the MMIC, not only the transmission loss is improved, but also the loss reduction effect is high even at half the thickness conventionally required. Therefore, it is possible to expect an effect such as a reduction in the material cost, a saving of the processing time by this, and an effect that the laminating property is improved because a sufficient effect can be obtained with a thin conductor.

【0021】[実施形態2]図3は、実施形態2に係わ
る同軸線路の構成を示す概略断面図である。この同軸線
路は、中心導体21の心材としてファイバーグラスを用
い、その周囲に銅からなる導体22を厚さ(t)0.2
μmにコーティングしている。さらに、ファイバーグラ
スからなる外導体23の内面に同じく銅からなる導体2
4を厚さ(t)0.2μmにコーティングしたものであ
る。なお、導体22と25の間には、発泡性テフロンか
らなる中間層25が形成されている。
[Embodiment 2] FIG. 3 is a schematic sectional view showing a configuration of a coaxial line according to Embodiment 2. This coaxial line uses fiberglass as the core material of the center conductor 21 and surrounds the conductor 22 made of copper with a thickness (t) of 0.2 around the core.
Coated to μm. Further, a conductor 2 also made of copper is formed on the inner surface of the outer conductor 23 made of fiberglass.
4 was coated to a thickness (t) of 0.2 μm. Note that an intermediate layer 25 made of foamable Teflon is formed between the conductors 22 and 25.

【0022】この場合の伝送損αの周波数に対する変化
の様子は図2とほぼ同じであり、ここでは説明を省略す
る。この実施形態2の同軸線路においても、特性は10
0GHzにおいて従来品より約8%損失が改善された。
しかも、従来品に比べ構造材にファイバーグラスのよう
な軽く丈夫な材料が容易に使用できるため、高性能、軽
量安価な超高周波同軸線路を提供することができる。
The change of the transmission loss α with respect to the frequency in this case is almost the same as in FIG. 2, and the description is omitted here. Also in the coaxial line of the second embodiment, the characteristic is 10
At 0 GHz, the loss was improved by about 8% compared to the conventional product.
In addition, since a light and durable material such as fiberglass can be easily used as a structural material as compared with a conventional product, it is possible to provide a high-performance, lightweight, and inexpensive ultrahigh-frequency coaxial line.

【0023】[実施形態3]図4は、実施形態3に係わ
る導波管の構成を示す概略断面図である。この導波管
は、ファイバーグラスからなる筒部31の内面に、銅か
らなる導体32を上記実施形態2と同じ膜厚条件でコー
ティングしたものである。
Third Embodiment FIG. 4 is a schematic sectional view showing a configuration of a waveguide according to a third embodiment. In this waveguide, a conductor 32 made of copper is coated on the inner surface of a cylindrical portion 31 made of fiberglass under the same film thickness condition as in the second embodiment.

【0024】この場合も、伝送損αの周波数に対する変
化の様子は図2とほぼ同じであり、ここでは説明を省略
する。この実施形態3の導波管においても、従来品より
も約8%損失が改善された。しかも、従来品に比べて軽
量安価な導波管を提供することができる。なお、この導
波管で大きな電力を伝送する場合には放熱が問題となる
が、筒部31にAlNなどの筒状高放熱性セラミックを
用い、先の条件を満たす膜厚の導体32を形成すること
により、低損失電力用導波管とすることができる。本実
施形態では、既に実用化されているダイレクトボンド技
術を用い、先に示した膜厚条件の導体32をAlNから
なる筒部31に形成して導波管を作成した。これによ
り、高周波損失が従来より少なく、しかも放熱性に優れ
た導波管を提供することができた。
Also in this case, the manner of change of the transmission loss α with respect to the frequency is substantially the same as that of FIG. 2, and the description is omitted here. Also in the waveguide of the third embodiment, the loss was improved by about 8% as compared with the conventional product. In addition, it is possible to provide a lighter and cheaper waveguide than conventional products. In the case where a large amount of power is transmitted through this waveguide, heat dissipation becomes a problem. However, a cylindrical high heat radiation ceramic such as AlN is used for the cylindrical portion 31 to form the conductor 32 having a film thickness satisfying the above conditions. By doing so, a low-loss power waveguide can be obtained. In the present embodiment, the waveguide 32 is formed by forming the conductor 32 having the above-described film thickness condition on the cylindrical portion 31 made of AlN by using the direct bonding technology already put into practical use. As a result, a waveguide with less high-frequency loss and excellent heat dissipation can be provided.

【0025】なお、筒部31は用途により各種の材料を
用いることができる。例えば、一般用としてはファイバ
ーグラスもしくはプラスチックを用いることができ、電
力用としてはAlN、アルミナなどのセラミックスを用
いることができる。また、導波管の断面形状は、この実
施形態のように長方形であってもよいし、丸形であって
もよい。
It should be noted that various materials can be used for the cylindrical portion 31 depending on the application. For example, fiberglass or plastic can be used for general purposes, and ceramics such as AlN and alumina can be used for electric power. Further, the cross-sectional shape of the waveguide may be rectangular as in this embodiment, or may be round.

【0026】以上、この発明に係わる高周波伝送線を伝
送線路や導波管などに適用した実施形態について説明し
たが、先に述べた高周波抵抗低減効果は、ここに示した
各種の伝送線路だけでなく薄膜導体を使用する伝送線路
一般に適用可能であり、例えばストリップ線路、コプレ
ーナ線路などに適用しても程度の差はあっても、同等の
作用効果を得ることができる。
Although the embodiment in which the high-frequency transmission line according to the present invention is applied to a transmission line, a waveguide, and the like has been described above, the above-described high-frequency resistance reduction effect can be obtained only by the various transmission lines shown here. Instead, the present invention can be applied to transmission lines using thin film conductors in general. For example, even when applied to a strip line, a coplanar line, or the like, the same operation and effect can be obtained even if the degree is different.

【0027】[0027]

【発明の効果】以上説明したように、この発明に係わる
高周波伝送線路によれば、導体の厚みを従来の約半分と
した場合でも、ほぼ従来と同等の抵抗値を得ることがで
きるので、高い周波数まで使用する伝送線路において低
損失化と低コストを実現することができる。
As described above, according to the high-frequency transmission line according to the present invention, even when the thickness of the conductor is reduced to about half of the conventional thickness, a resistance value substantially equal to the conventional value can be obtained. It is possible to realize low loss and low cost in a transmission line used up to the frequency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1に係わるマイクロストリップ線路の
構成を示す概略断面図。
FIG. 1 is a schematic sectional view showing a configuration of a microstrip line according to a first embodiment.

【図2】実施形態1における伝送損の周波数に対する変
化を実測値と計算値とで表したグラフ。
FIG. 2 is a graph showing a change in transmission loss with respect to frequency in the first embodiment, which is represented by measured values and calculated values.

【図3】実施形態2に係わる同軸線路の構成を示す概略
断面図。
FIG. 3 is a schematic sectional view showing a configuration of a coaxial line according to a second embodiment.

【図4】実施形態3に係わる導波管の構成を示す概略断
面図。
FIG. 4 is a schematic sectional view showing a configuration of a waveguide according to a third embodiment.

【図5】導体を金とした場合の高周波抵抗の周波数に対
する変化の様子を導体の厚みをパラメータとして表した
グラフ。
FIG. 5 is a graph showing how a high-frequency resistance changes with frequency when a conductor is made of gold, using the thickness of the conductor as a parameter.

【図6】Gmax、伝送損αの周波数に対する変化の様
子を導体の厚みをパラメータとして表したグラフ。
FIG. 6 is a graph showing the state of change of Gmax and transmission loss α with respect to frequency, using the thickness of a conductor as a parameter.

【符号の説明】[Explanation of symbols]

11 誘電体 12、13 導体 21 中心導体 22、24 導体 23 外導体 31 筒部 32 導体 DESCRIPTION OF SYMBOLS 11 Dielectric 12, 13 conductor 21 Center conductor 22, 24 conductor 23 Outer conductor 31 Tubular part 32 Conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘電体を挟んで配置された中心導体と外
導体とから構成された高周波伝送線路において、 使用周波数fと導体との厚みtの関係が下記(1)式を
満足する様に選ばれており、 3/8×π≦τt≦7/8×π (1) ここに τ=√(ωμσ/2) 但し t:導体の厚み、ω=2πf:角周波数、μ:透
磁率、σ:導電率 しかも、下記(2)式に示す前記導体の内部インピーダ
ンスZin 【数1】 Zin=Zs×coth(τt)=Rin+j・Xin (2) ここに Zs=√(jωμ/σ) 但し t:導体の厚み、ω=2πf:角周波数、μ:透
磁率、σ:導電率よりも、伝送線路の構造で決まる外部
インピーダンスZout Zout=√(Lex/Cex) (3) が支配的となる高い周波数で使用することを特徴とする
高周波信号線路。
In a high-frequency transmission line composed of a center conductor and an outer conductor arranged with a dielectric material interposed therebetween, a relationship between a working frequency f and a thickness t of the conductor satisfies the following expression (1). 3/8 × π ≦ τt ≦ 7/8 × π (1) where τ = √ (ωμσ / 2), where t: conductor thickness, ω = 2πf: angular frequency, μ: magnetic permeability, σ: electrical conductivity, and the internal impedance Zin of the conductor represented by the following equation (2): Zin = Zs × coth (τt) = Rin + j × Xin (2) where Zs = √ (jωμ / σ) where t : The thickness of the conductor, ω = 2πf: angular frequency, μ: magnetic permeability, σ: higher than the conductivity, the external impedance Zout Zout = √ (Lex / Cex) (3) determined by the structure of the transmission line becomes higher. A high-frequency signal line used at a frequency.
【請求項2】 前記導体の厚みが0.5μm以下である
ことを特徴とする請求項1記載の高周波信号線路。
2. The high-frequency signal line according to claim 1, wherein said conductor has a thickness of 0.5 μm or less.
【請求項3】 請求項1の条件を満足する厚みを持つ導
体で周囲を囲い、その閉じられた内部に特定の波を伝搬
させることを特徴とする高周波伝送線路。
3. A high-frequency transmission line which is surrounded by a conductor having a thickness which satisfies the condition of claim 1, and propagates a specific wave inside the closed interior.
JP9257295A 1997-09-22 1997-09-22 High frequency transmission line Pending JPH1197912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9257295A JPH1197912A (en) 1997-09-22 1997-09-22 High frequency transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9257295A JPH1197912A (en) 1997-09-22 1997-09-22 High frequency transmission line

Publications (1)

Publication Number Publication Date
JPH1197912A true JPH1197912A (en) 1999-04-09

Family

ID=17304393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9257295A Pending JPH1197912A (en) 1997-09-22 1997-09-22 High frequency transmission line

Country Status (1)

Country Link
JP (1) JPH1197912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114696A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp High-frequency circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114696A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp High-frequency circuit board

Similar Documents

Publication Publication Date Title
Denlinger Losses of microstrip lines
Itoh Overview of quasi-planar transmission lines
KR100421621B1 (en) High Frequency Transmission Lines, Dielectric Resonators, Filters, Duplexers and Communicators
US3904997A (en) Trapped-radiation microwave transmission line
Yang et al. Mode composite waveguide based on hybrid substrate integrated waveguide and spoof surface plasmon polariton structure
Yoneyama et al. Nonradiative dielectric waveguide circuit components
EP0735604B1 (en) Planar dielectric line and integrated circuit using the same
US6741142B1 (en) High-frequency circuit element having means for interrupting higher order modes
CN110190371A (en) A kind of waveguide power divider
JP2000101311A (en) Transformer for microstrip line-to-waveguide
Quine et al. Characterization of via connections in silicon circuit boards
JPH1197912A (en) High frequency transmission line
JP2000216603A (en) Grounded coplanar waveguide suitable for millimeter wave band
JP3358570B2 (en) Non-reciprocal circuit device, non-reciprocal circuit device, and transmission / reception device
JP2014174156A (en) Dielectric property measuring device
Itoh et al. A Comparative Study of Millimeter-Wave Transmission LinestL
JP2000252712A (en) Connection structure between dielectric waveguide line and high frequency line conductor
JP3347640B2 (en) Transmission line for high frequency
JP4167187B2 (en) filter
JP6612803B2 (en) Waveguide and signal processing apparatus
Krishnan et al. A review on substrate integrated waveguide transitions
JP2000174515A (en) Coplanar waveguide - waveguide converter
JPWO2005020367A1 (en) Planar dielectric line, high-frequency active circuit, and transceiver
Liu et al. Wideband microstrip‐to‐air‐filled substrate integrated waveguide transition with controllable band‐pass performance
CN220400877U (en) Feed structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A02 Decision of refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A02