JP2012114110A - Method for manufacturing multilayer wiring board - Google Patents

Method for manufacturing multilayer wiring board Download PDF

Info

Publication number
JP2012114110A
JP2012114110A JP2010259184A JP2010259184A JP2012114110A JP 2012114110 A JP2012114110 A JP 2012114110A JP 2010259184 A JP2010259184 A JP 2010259184A JP 2010259184 A JP2010259184 A JP 2010259184A JP 2012114110 A JP2012114110 A JP 2012114110A
Authority
JP
Japan
Prior art keywords
metal layer
layer
wiring board
semiconductor element
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010259184A
Other languages
Japanese (ja)
Inventor
Eiji Yabuta
英二 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010259184A priority Critical patent/JP2012114110A/en
Publication of JP2012114110A publication Critical patent/JP2012114110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a multilayer wiring board, capable of manufacturing semiconductor element connection terminals to be jointed to electrodes of a semiconductor element at low cost and with high quality, and improving reliability in mounting the semiconductor element.SOLUTION: A method for manufacturing a multilayer wiring board 61 having semiconductor element connection terminals 54, comprises: separating from a temporary base plate a multilayer wiring board 60 having a first metal layer 13 formed on its outermost layer as a joint surface of a semiconductor element; then forming a photosensitive resin layer 51 on the first metal layer 13 of the outermost layer; then forming connection terminal openings 52 of the semiconductor element in the photosensitive resin layer 51 by patterning so as to correspond to a wiring pattern of the first wiring layer 15; then forming a second metal layer 53 in the openings 52 by electroplating, using the first metal layer 13 as a power-supply layer; and then removing the photosensitive resin layer 51, and finally removing the first metal layer 13 other than the first metal layer 13 located directly under the second metal layer 53 to form the semiconductor element connection terminals 54.

Description

本発明は、半導体パッケージに使用される多層配線基板の製造方法に関する。さらに詳しくは、半導体素子の電極と接合するための半導体素子用接続端子の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer wiring board used in a semiconductor package. More specifically, the present invention relates to a method for manufacturing a connection terminal for a semiconductor element for joining with an electrode of the semiconductor element.

従来、半導体素子が実装される多層配線基板の製造方法として、仮基板上に、分離できる状態で所要の配線層と絶縁層を交互に積層形成した後、その多層配線層を仮基板から分離することで多層配線基板を得る方法がある。このような先行技術として特許文献1が知られている。   Conventionally, as a method of manufacturing a multilayer wiring board on which a semiconductor element is mounted, a required wiring layer and an insulating layer are alternately stacked on a temporary substrate in a state where they can be separated, and then the multilayer wiring layer is separated from the temporary substrate. Thus, there is a method for obtaining a multilayer wiring board. Patent Document 1 is known as such a prior art.

特許文献1に示す多層配線基板の製造方法について図1〜図3を参照して説明する。
多層配線基板の製造に際しては、図1(a)に示すように、半硬化状態プリプレグ71の表裏両面の配線形成領域に下地層72を積層配置し、さらに下地層72より大きさが一回り大きな金属箔73を重ね合わせた後、これらを加熱・加圧することにより、図1(b)に示す仮基板90を製造する。次いで、図1(c)及び(d)に示すように、金属箔73上に配線基板の構成に必要な所要の貴金属めっき層74、第1配線層75、絶縁層76、ビアホール77、配線層78を形成する。以下同様にして絶縁層76、ビアホール77、配線層78からなる配線層を図2(e)に示すように多段に積層する。そして、ソルダーレジスト層79を形成することにより多層配線基板を形成する。次に、図2(f)に示すように、プリプレグ71と金属箔73が接着している外周領域よりも内側の箇所を破線で示す位置から切断することにより、仮基板90から最外層に金属箔73が密着している多層配線基板91を図2(g)に示すように分離する。次いで、図3(h)に示すように最外層の金属箔73を全面エッチングし、最後に図3(i)に示すように半導体素子接続パッド88に半田バンプ81を形成することにより多層配線基板92を製造する。
The manufacturing method of the multilayer wiring board shown in patent document 1 is demonstrated with reference to FIGS.
When manufacturing a multilayer wiring board, as shown in FIG. 1A, a base layer 72 is laminated in the wiring formation regions on both the front and back surfaces of the semi-cured prepreg 71, and the size is slightly larger than the base layer 72. After the metal foils 73 are overlaid, the temporary substrates 90 shown in FIG. 1B are manufactured by heating and pressing them. Next, as shown in FIGS. 1C and 1D, the required noble metal plating layer 74, the first wiring layer 75, the insulating layer 76, the via hole 77, and the wiring layer necessary for the configuration of the wiring board are formed on the metal foil 73. 78 is formed. In the same manner, wiring layers including insulating layers 76, via holes 77, and wiring layers 78 are laminated in multiple stages as shown in FIG. Then, a multilayer wiring board is formed by forming a solder resist layer 79. Next, as shown in FIG. 2 (f), the inner side of the outer peripheral region where the prepreg 71 and the metal foil 73 are bonded is cut from the position indicated by the broken line, so that the metal is transferred from the temporary substrate 90 to the outermost layer. The multilayer wiring board 91 to which the foil 73 is in close contact is separated as shown in FIG. Next, as shown in FIG. 3 (h), the outermost metal foil 73 is entirely etched, and finally, as shown in FIG. 3 (i), solder bumps 81 are formed on the semiconductor element connection pads 88, thereby providing a multilayer wiring board. 92 is manufactured.

特開2009−32918JP2009-32918

しかしながら、上記した特許文献1では、金属箔73を有した多層配線基板91を分離した後、最外層の金属箔73を全面エッチングする必要がある。そのため、エッチング液に耐性を持つ貴金属めっき層74を金属箔73と第1配線層の界面に形成しておく必要があり、このことは、工程の増加によるコストアップにつながる。また、他の製造方法として、金属箔73と第1配線層75の界面に貴金属めっき層74を形成せずにエッチングを行う方法も考えられるが、この場合、結果として第1配線層75も同時にエッチングされてしまう。そのため、エッチングばらつきにより絶縁層76の最外面から第1配線層の最外面までの高さが制御することが困難となる。結果として、その後の工程となる半導体素子の電極と接合するための半田バンプの高さにばらつきが生じ、半導体素子の実装信頼性を低下させることとなる。   However, in Patent Document 1 described above, it is necessary to etch the entire surface of the outermost metal foil 73 after separating the multilayer wiring board 91 having the metal foil 73. Therefore, it is necessary to form a noble metal plating layer 74 resistant to the etching solution at the interface between the metal foil 73 and the first wiring layer, which leads to an increase in cost due to an increase in the number of steps. As another manufacturing method, a method of performing etching without forming the noble metal plating layer 74 at the interface between the metal foil 73 and the first wiring layer 75 is conceivable. In this case, however, the first wiring layer 75 is also simultaneously formed. It will be etched. For this reason, it is difficult to control the height from the outermost surface of the insulating layer 76 to the outermost surface of the first wiring layer due to etching variations. As a result, the height of the solder bumps for joining with the electrodes of the semiconductor element, which will be the subsequent process, varies, and the mounting reliability of the semiconductor element is reduced.

本発明は、上記のような問題を解決するために創作されたものであり、仮基板の上に分離できる状態で所要の配線層及び絶縁層を積層形成した後、その多層配線層を仮基板から分離して多層配線基板を得る製造方法において、半導体素子の電極と接合する半導体素子用接続端子を低コスト且つ高品質に製造することを可能とし、結果として半導体素子の実装の信頼性を向上させることが可能となる多層配線基板の製造方法を提供することを目的とする。   The present invention has been created to solve the above-described problems. After a required wiring layer and an insulating layer are laminated on a temporary substrate in a state where they can be separated, the multilayer wiring layer is formed on the temporary substrate. In a manufacturing method for obtaining a multilayer wiring board separated from a semiconductor device, it is possible to manufacture a semiconductor device connection terminal to be bonded to an electrode of a semiconductor device at low cost and high quality, and as a result, improve the reliability of mounting of the semiconductor device. It is an object of the present invention to provide a method for manufacturing a multilayer wiring board that can be made to operate.

上記の目的を達成するため、本発明にかかる多層配線基板の製造方法は、絶縁層と配線層とが交互に複数積層され、前記各配線層がビアホールを介して接続された多層配線基板の最外層上に第一金属層が形成され、前記第一金属層が半導体素子の接合面となる多層配線基板において、前記第一金属層上に感光性樹脂層を形成する工程と、前記感光性樹脂層に前記半導体素子の接続端子用開口部を前記配線層の配線パターンに対応して形成する工程と、前記第一金属層を給電層として前記接続端子用開口部内に電解めっきにより第二金属層を形成する工程と、前記感光性樹脂層を除去し、前記第二金属層の直下に位置する箇所の前記第一金属層を除いた他の第一金属層を除去して半導体素子用接続端子を形成する工程とを備えることを特徴とする。   In order to achieve the above object, a manufacturing method of a multilayer wiring board according to the present invention includes a multi-layered wiring board in which a plurality of insulating layers and wiring layers are alternately stacked, and the wiring layers are connected via via holes. Forming a photosensitive resin layer on the first metal layer in a multilayer wiring board in which a first metal layer is formed on an outer layer, and the first metal layer is a bonding surface of a semiconductor element; and the photosensitive resin Forming a connection terminal opening of the semiconductor element in the layer corresponding to the wiring pattern of the wiring layer, and using the first metal layer as a power feeding layer, the second metal layer by electrolytic plating in the connection terminal opening And the semiconductor resin connection terminal by removing the photosensitive resin layer and removing the other first metal layer except for the first metal layer located immediately below the second metal layer. And a step of forming .

請求項2の発明は、請求項1記載の多層配線基板の製造方法において、前記第一金属層の厚さは1〜50μmであることを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a multilayer wiring board according to the first aspect, the thickness of the first metal layer is 1 to 50 μm.

請求項3の発明は、請求項1または2記載の多層配線基板の製造方法において、前記第二金属層の厚さは1〜50μmであることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a multilayer wiring board according to the first or second aspect, the thickness of the second metal layer is 1 to 50 μm.

請求項4の発明は、請求項1乃至3に何れか1項記載の多層配線基板の製造方法において、前記第一金属層と第二金属層の厚さの総和は2〜50μmであることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing a multilayer wiring board according to any one of the first to third aspects, the total thickness of the first metal layer and the second metal layer is 2 to 50 μm. Features.

請求項5の発明は、請求項1乃至4に何れか1項記載の多層配線基板の製造方法において、前記第二金属層は錫、錫銀、錫銀銅、錫銅、錫ビスマス、錫鉛の何れからなることを特徴とする。   The invention according to claim 5 is the method for producing a multilayer wiring board according to any one of claims 1 to 4, wherein the second metal layer is tin, tin silver, tin silver copper, tin copper, tin bismuth, tin lead. It consists of any of these.

以上のように、本発明に係わる多層配線基板の製造方法によれば、仮基板上に多層配線基板を形成する従来の製造方法において必要とされていた、多層配線基板の最外層の第一金属層の全面エッチング工程、及び前記第一金属層のエッチングから第一配線層を保護するために必要な第一金属層上の貴金属めっき工程が不要となるため工程を削減でき、結果としてコストダウンにつながることとなる。   As described above, according to the method for manufacturing a multilayer wiring board according to the present invention, the first metal in the outermost layer of the multilayer wiring board, which is required in the conventional manufacturing method for forming a multilayer wiring board on a temporary substrate, is provided. Since the entire surface etching process of the layer and the precious metal plating process on the first metal layer necessary for protecting the first wiring layer from the etching of the first metal layer are not required, the process can be reduced, resulting in cost reduction. Will be connected.

また本発明によれば、前記第一金属層をそのまま半導体素子と電極と接続する半導体素子用接続端子の一部として使用することが可能となるため、従来の多層配線基板に多く適用されている半田のみの半導体素子用接続端子と比較して半導体素子用接続端子の強度が増し結果として半導体素子の実装の信頼性が大きく向上する効果をもたらす。
また本発明によれば、錫系合金を用いることにより、低融点で且つ高い流動性、濡れ性を有した第二金属層を形成することが可能となる。その結果、半導体素子の電極との接続信頼性が向上し半導体素子との実装の信頼性を向上できる。
In addition, according to the present invention, the first metal layer can be used as it is as a part of a connection terminal for a semiconductor element that connects the semiconductor element and the electrode as it is, so that the first metal layer is often applied to a conventional multilayer wiring board. The strength of the connection terminal for the semiconductor element is increased as compared with the connection terminal for the semiconductor element using only solder, and as a result, the reliability of mounting the semiconductor element is greatly improved.
According to the present invention, the second metal layer having a low melting point and high fluidity and wettability can be formed by using a tin-based alloy. As a result, the connection reliability with the electrode of the semiconductor element is improved, and the mounting reliability with the semiconductor element can be improved.

(a)〜(d)は従来の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(A)-(d) is sectional drawing for description which shows the process sequence by the manufacturing method of the multilayer wiring board using the conventional temporary board | substrate. (e)〜(g)は従来の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(E)-(g) is sectional drawing for description which shows the process procedure by the manufacturing method of the multilayer wiring board using the conventional temporary board | substrate. (h),(i)は従来の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(H), (i) is sectional drawing for description which shows the process procedure by the manufacturing method of the multilayer wiring board using the conventional temporary board | substrate. (a)〜(d)は本発明の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(A)-(d) is sectional drawing for description which shows the process sequence by the manufacturing method of the multilayer wiring board using the temporary board | substrate of this invention. (e)〜(g)は本発明の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(E)-(g) is sectional drawing for description which shows the process procedure by the manufacturing method of the multilayer wiring board using the temporary board | substrate of this invention. (a)〜(c)は本発明の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(A)-(c) is sectional drawing for description which shows the process sequence by the manufacturing method of the multilayer wiring board using the temporary board | substrate of this invention. (d),(e)は本発明の仮基板を用いた多層配線基板の製造方法による工程手順を示す説明用断面図である。(D), (e) is sectional drawing for description which shows the process sequence by the manufacturing method of the multilayer wiring board using the temporary board | substrate of this invention.

以下、本発明の実施の形態について、図4〜図7を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.

本実施の形態に示す多層配線基板の製造方法においては、図4(a)に示すように、まず、ガラスクロス、ガラス不織布などに熱硬化性樹脂などの樹脂を含浸させることにより形成されるプリプレグ11を用意する。その際、プリプレグ11は半硬化状態のものを使用する。次にプリプレグ11の両面側に5〜100μmの金属箔12と厚さが5〜35μmの第一金属層13とを用意する。この場合、金属箔12の大きさはプリプレグ11と同等の大きさであるが、第一金属層13の大きさはプリプレグ11、金属箔12よりも一回り小さい大きさとする。   In the method for manufacturing a multilayer wiring board shown in the present embodiment, as shown in FIG. 4A, first, a prepreg formed by impregnating a glass cloth, a glass nonwoven fabric, or the like with a resin such as a thermosetting resin. 11 is prepared. At that time, the prepreg 11 is in a semi-cured state. Next, a metal foil 12 having a thickness of 5 to 100 μm and a first metal layer 13 having a thickness of 5 to 35 μm are prepared on both sides of the prepreg 11. In this case, the size of the metal foil 12 is the same size as the prepreg 11, but the size of the first metal layer 13 is slightly smaller than the prepreg 11 and the metal foil 12.

次に、プリプレグ11の両面側からそれぞれ上から順に第一金属層13、金属箔12を積層する。すなわち第一金属層13は金属箔12上で重なると共に、その外周部はプリプレグ11と接した状態で積層される。図4(a)に示す状態にて両面から真空雰囲気中にて150〜250℃の温度でプレスを行う。その結果、プリプレグ11中の熱硬化性樹脂が硬化することにより、プリプレグ11と金属箔12の全面、プリプレグ11と第一金属層13の外周部がそれぞれ接着される。すなわち図4(b)に示すような仮基板30が形成されることとなる。第一金属層13は、後述する図7(e)に示すように半導体素子用接続端子54として機能する。   Next, the first metal layer 13 and the metal foil 12 are laminated in this order from the both sides of the prepreg 11. That is, the first metal layer 13 is stacked on the metal foil 12 and the outer peripheral portion thereof is laminated in contact with the prepreg 11. In the state shown in FIG. 4A, pressing is performed at a temperature of 150 to 250 ° C. in a vacuum atmosphere from both sides. As a result, when the thermosetting resin in the prepreg 11 is cured, the entire surfaces of the prepreg 11 and the metal foil 12 and the outer peripheral portions of the prepreg 11 and the first metal layer 13 are bonded to each other. That is, a temporary substrate 30 as shown in FIG. 4B is formed. The first metal layer 13 functions as a semiconductor element connection terminal 54 as shown in FIG.

次に、図示省略したが、仮基板30の両面に、後述する第一配線層15の配線パターンに対応する所要部に第一配線層形成用の開口部が設けられためっき用レジストを形成する。その際使用するレジストは液状またはドライフィルムタイプのレジストが使用される。その後、図4(c)に示すように、第一金属層13をめっきの給電層として電解めっきにより第一配線層15を形成する。その場合、第一配線層15の材料としては電解Cuめっきが望ましい。   Next, although not shown in the drawing, a plating resist in which openings for forming a first wiring layer are provided in required portions corresponding to a wiring pattern of the first wiring layer 15 described later is formed on both surfaces of the temporary substrate 30. . The resist used at this time is a liquid or dry film type resist. Thereafter, as shown in FIG. 4C, the first wiring layer 15 is formed by electrolytic plating using the first metal layer 13 as a power feeding layer for plating. In that case, as a material of the first wiring layer 15, electrolytic Cu plating is desirable.

次いで、図4(d)に示すように、仮基板30の両面に第一配線層15及び第一金属層15を被覆する絶縁層16を形成する。絶縁層16の材料としては、エポキシ系樹脂、ポリイミド系樹脂などが使用される。絶縁層16の形成方法としては、仮基板30の両面に樹脂フィルムをそれぞれラミネートした後に、樹脂フィルムをプレスしながら80〜130℃の温度で仮硬化、その後160〜200℃のオーブンにて本硬化することにより絶縁層16を得る。   Next, as illustrated in FIG. 4D, insulating layers 16 that cover the first wiring layer 15 and the first metal layer 15 are formed on both surfaces of the temporary substrate 30. As a material of the insulating layer 16, an epoxy resin, a polyimide resin, or the like is used. The insulating layer 16 is formed by laminating resin films on both surfaces of the temporary substrate 30 and then temporarily curing the resin film while pressing the resin film at a temperature of 80 to 130 ° C., followed by main curing in an oven at 160 to 200 ° C. Thus, the insulating layer 16 is obtained.

次いで、同じく図4(d)に示すように、仮基板30上の第一配線層13を狙ってレーザー加工等により絶縁層16に開口部としてのビアホール17を形成する。これにより、ビアホール17の底面に第一配線層15を露出させる。その後、例えば、セミアディティブ法等にビアホール17の底面及び壁面を含む領域を覆う金属層としてビア及び配線パターンからなる配線層18を形成する。   Next, as shown in FIG. 4D, via holes 17 as openings are formed in the insulating layer 16 by laser processing or the like aiming at the first wiring layer 13 on the temporary substrate 30. Thereby, the first wiring layer 15 is exposed on the bottom surface of the via hole 17. Thereafter, for example, a wiring layer 18 made of a via and a wiring pattern is formed as a metal layer covering a region including the bottom surface and the wall surface of the via hole 17 by a semi-additive method or the like.

同様にして図5(e)に示しているように、絶縁層16の積層、ビアホール17の形成、配線層18の形成の各工程を所要の多層配線基板を形成するのに必要な回数だけ繰り返し形成する。そして、最上層の絶縁層16及び配線層18を覆って誘電体層としてのソルダーレジスト層19を形成し、パターニングする。パターニングの方法としては、例えば、外部接続端子用パッド20に対応する位置に開口を有するマスク(図示せず)を利用して露光、現像することにより、露光されていない部分のソルダーレジストを除去し、最上層の配線層18の外部接続端子用パッド20が露出するように開口部19aを形成する。   Similarly, as shown in FIG. 5E, the steps of laminating the insulating layer 16, forming the via hole 17, and forming the wiring layer 18 are repeated as many times as necessary to form a required multilayer wiring board. Form. Then, a solder resist layer 19 as a dielectric layer is formed so as to cover the uppermost insulating layer 16 and wiring layer 18 and patterned. As a patterning method, for example, by exposing and developing using a mask (not shown) having an opening at a position corresponding to the external connection terminal pad 20, the solder resist in an unexposed portion is removed. The opening 19a is formed so that the external connection terminal pad 20 of the uppermost wiring layer 18 is exposed.

次いで、図5(f)に示すように、図4(b)の仮基板30の金属箔12の周縁に対応する部分で破線に沿って切断する。これにより、金属箔12と第一金属層13とが単に接触する多層配線形成領域が得られ、金属箔12と第一金属層13とを容易に分離することができる。これによって、仮基板30の両面側から図5(g)に示すように第一金属層13とその上に形成された多層配線層とからなる金属層を有した多層配線基板60がそれぞれ得られる。   Next, as shown in FIG. 5F, cutting is performed along the broken line at a portion corresponding to the peripheral edge of the metal foil 12 of the temporary substrate 30 in FIG. Thereby, the multilayer wiring formation area | region where the metal foil 12 and the 1st metal layer 13 only contact is obtained, and the metal foil 12 and the 1st metal layer 13 can be isolate | separated easily. As a result, as shown in FIG. 5G, multilayer wiring boards 60 each having a metal layer composed of the first metal layer 13 and the multilayer wiring layer formed thereon are obtained from both sides of the temporary board 30, respectively. .

その後に、図6(a)に示すように、仮基板30の第一金属層13上に感光性樹脂51を形成する。その際使用するレジストはめっき耐性を有するレジストであり、液状、またはドライフィルムタイプのレジストが使用される。   Thereafter, as shown in FIG. 6A, a photosensitive resin 51 is formed on the first metal layer 13 of the temporary substrate 30. The resist used at that time is a resist having plating resistance, and a liquid or dry film type resist is used.

次に、図6(b)に示すように、感光性樹脂51に半導体素子の接続端子用開口部52を第一配線層15(配線層18)の配線パターンに対応してパターニングする。このパターニングの方法としては、前述と同様、例えば、開口部52に対応する位置に開口を有するマスク(図示せず)を利用して露光、現像することにより、露光された部分の感光性樹脂51を除去し、第一金属層13が露出するように開口部52を形成する。   Next, as shown in FIG. 6B, the connection terminal opening 52 of the semiconductor element is patterned in the photosensitive resin 51 corresponding to the wiring pattern of the first wiring layer 15 (wiring layer 18). As the patterning method, as described above, for example, the exposed portion of the photosensitive resin 51 is exposed and developed using a mask (not shown) having an opening at a position corresponding to the opening 52. And an opening 52 is formed so that the first metal layer 13 is exposed.

次に、図6(c)に示すように、第一金属層13を給電層として開口パターン52に電解めっきを施し、第二金属層53を形成する。この場合第二金属層53の材料としては、錫、錫銀、錫銀銅、錫銅、錫ビスマス、錫鉛があげられる。その後、図7(d)に示すように、感光性樹脂層51を除去する。   Next, as shown in FIG. 6C, electrolytic plating is performed on the opening pattern 52 using the first metal layer 13 as a power feeding layer to form a second metal layer 53. In this case, examples of the material of the second metal layer 53 include tin, tin silver, tin silver copper, tin copper, tin bismuth, and tin lead. Thereafter, as shown in FIG. 7D, the photosensitive resin layer 51 is removed.

最後に、図7(d)に示すように、感光性樹脂層51を除去し、さらに第二金属層53の直下に位置する箇所の第一金属層13を除いた他の第一金属層13を除去する。第一金属層13を選択的に除去する方法としては、第二金属層53をエッチングマスクとしてアルカリエッチャント液などを用いたウェットエッチングにより、第二金属層53の直下に位置する箇所の第一金属層13を除いた他の第一金属層13を除去する。その結果、図7(e)に示すように、第一金属層13と第二金属層53からなる半導体素子用接続端子54が形成される。以上により、半導体素子用接続端子54を有した多層配線基板61が製造されることとなる。   Finally, as shown in FIG. 7 (d), the photosensitive resin layer 51 is removed, and the first metal layer 13 other than the first metal layer 13 located immediately below the second metal layer 53 is removed. Remove. As a method for selectively removing the first metal layer 13, the first metal at a position located immediately below the second metal layer 53 is obtained by wet etching using an alkaline etchant liquid or the like using the second metal layer 53 as an etching mask. The first metal layer 13 other than the layer 13 is removed. As a result, as shown in FIG. 7E, a semiconductor element connection terminal 54 composed of the first metal layer 13 and the second metal layer 53 is formed. Thus, the multilayer wiring board 61 having the semiconductor element connection terminals 54 is manufactured.

本実施の形態において、第一金属層13の厚さは1〜50μmであることが好ましい。この場合、第一金属層13の厚さが1μm以下であると金属箔メーカーからの材料調達が非常に困難となり、且つ仮基板の製造の際に金属箔のハンドリングが非常に困難となる。また第一金属層13の厚さが50μmを超えると第二金属層53を加えた厚さの総和は50μmを超えることとなる。その結果、多層配線基板上に半導体素子を実装した際に、半導体素子と多層配線基板とのギャップが大きくなり、そのためアンダーフィルボイドが発生しやすくなり、結果として半導体素子の実装の信頼性が低下することとなる。   In this Embodiment, it is preferable that the thickness of the 1st metal layer 13 is 1-50 micrometers. In this case, if the thickness of the first metal layer 13 is 1 μm or less, it is very difficult to procure materials from the metal foil manufacturer, and it is very difficult to handle the metal foil when manufacturing the temporary substrate. When the thickness of the first metal layer 13 exceeds 50 μm, the total thickness including the second metal layer 53 exceeds 50 μm. As a result, when a semiconductor element is mounted on a multilayer wiring board, the gap between the semiconductor element and the multilayer wiring board becomes large, so that underfill voids are likely to occur, resulting in a decrease in the reliability of mounting the semiconductor element. Will be.

また、本実施の形態において、第二金属層53の厚さは1〜50μmであることが好ましい。この場合、第二金属層53の厚さが1μm以下であると半導体素子の電極と第二金属層53との濡れ性が低下し、半導体素子の電極との接続が不安定となる。結果として半導体素子の実装の信頼性が低下することとなる。また第二金属層53の厚さが50μmを超えると第一金属層を加えた厚さの総和は50μmを超えることとなる。その結果、多層配線基板上に半導体素子を実装した際に、半導体素子と多層配線基板とのギャップが大きくなり、そのためアンダーフィルボイドが発生しやすくなり、結果として半導体素子の実装の信頼性が低下することとなる。   Moreover, in this Embodiment, it is preferable that the thickness of the 2nd metal layer 53 is 1-50 micrometers. In this case, if the thickness of the second metal layer 53 is 1 μm or less, the wettability between the electrode of the semiconductor element and the second metal layer 53 decreases, and the connection between the electrode of the semiconductor element becomes unstable. As a result, the reliability of mounting the semiconductor element is lowered. When the thickness of the second metal layer 53 exceeds 50 μm, the total thickness including the first metal layer exceeds 50 μm. As a result, when a semiconductor element is mounted on a multilayer wiring board, the gap between the semiconductor element and the multilayer wiring board becomes large, so that underfill voids are likely to occur, resulting in a decrease in the reliability of mounting the semiconductor element. Will be.

また、本実施の形態において、第一金属層13と第二金属層53の厚さの総和は2〜50μmであるが好ましい。この場合、第一金属層13と第二金属層53の厚さの総和が2μm以下であると、金属箔メーカーからの材料調達が非常に困難となり、且つ仮基板の製造の際に金属箔のハンドリングが非常に困難となる。加えて半導体素子の電極と第二金属層53との濡れ性が低下し、半導体素子の電極との接続が不安定となり、結果として半導体素子の実装の信頼性が低下することとなる。また第一金属層13と第二金属層53の厚さの総和が50μm超えると、多層配線基板上に半導体素子を実装した際に、半導体素子と多層配線基板とのギャップが大きくなり、そのためアンダーフィルボイドが発生しやすくなり、結果として半導体素子の実装の信頼性が低下することとなる。   In the present embodiment, the total thickness of the first metal layer 13 and the second metal layer 53 is preferably 2 to 50 μm. In this case, if the sum of the thicknesses of the first metal layer 13 and the second metal layer 53 is 2 μm or less, it is very difficult to procure materials from the metal foil manufacturer, and the metal foil of the temporary substrate is manufactured when the temporary substrate is manufactured. Handling becomes very difficult. In addition, the wettability between the electrode of the semiconductor element and the second metal layer 53 is lowered, the connection between the electrode of the semiconductor element becomes unstable, and as a result, the reliability of mounting the semiconductor element is lowered. If the sum of the thicknesses of the first metal layer 13 and the second metal layer 53 exceeds 50 μm, the gap between the semiconductor element and the multilayer wiring board becomes large when the semiconductor element is mounted on the multilayer wiring board. Fill voids are likely to occur, and as a result, the reliability of mounting the semiconductor element is lowered.

以上のように、本発明によれば、多層配線基板の最外層の第一金属層の全面エッチング工程、且つ前記第一金属層のエッチングから第一配線層を保護するために必要な第一金属層上の貴金属めっき工程が不要となるため、工程を削減でき、結果としてコストダウンにつながることとなる。加えて第一金属層をそのまま半導体素子と電極と接続する半導体素子用接続端子の一部として使用することが可能となるため、従来の多層配線基板に多く適用されている半田のみの半導体素子用接続端子と比較して半導体素子用接続端子の強度が増し、半導体素子の実装の信頼性が大きく向上する効果をもたらす。これに加えて、品質の向上につながり、このような特徴を有する多層配線基板として、例えば、MPU、チップセット、メモリー等を含む半導体パッケージ、或いはコアレスパッケージ等として広く適用することができる。   As described above, according to the present invention, the entire surface of the outermost first metal layer of the multilayer wiring substrate is etched, and the first metal necessary for protecting the first wiring layer from the etching of the first metal layer. Since the noble metal plating step on the layer is not necessary, the number of steps can be reduced, resulting in cost reduction. In addition, since the first metal layer can be used as part of a connection terminal for a semiconductor element that connects the semiconductor element and the electrode as it is, for a solder-only semiconductor element that is often applied to conventional multilayer wiring boards. Compared with the connection terminal, the strength of the connection terminal for the semiconductor element is increased, and the reliability of mounting the semiconductor element is greatly improved. In addition to this, quality can be improved and the multilayer wiring board having such characteristics can be widely applied as, for example, a semiconductor package including an MPU, a chip set, a memory, or a coreless package.

11…プリプレグ
12…金属箔
13…第一金属層
15…第一配線層
16…絶縁層
17…ビアホール
18…配線層
19…ソルダーレジスト層
20…外部接続端子用パッド
30…仮基板
51…感光性樹脂層
52…開口部
53…第二金属層
54…半導体素子用接続端子
60…多層配線基板
61…金属層を有した多層配線基板
DESCRIPTION OF SYMBOLS 11 ... Prepreg 12 ... Metal foil 13 ... 1st metal layer 15 ... 1st wiring layer 16 ... Insulating layer 17 ... Via hole 18 ... Wiring layer 19 ... Solder resist layer 20 ... External connection terminal pad 30 ... Temporary substrate 51 ... Photosensitivity Resin layer 52 ... Opening 53 ... Second metal layer 54 ... Connection terminal for semiconductor element 60 ... Multi-layer wiring board 61 ... Multi-layer wiring board having metal layer

Claims (5)

絶縁層と配線層とが交互に複数積層され、前記各配線層がビアホールを介して接続された多層配線基板の最外層上に第一金属層が形成され、前記第一金属層が半導体素子の接合面となる多層配線基板において、
前記第一金属層上に感光性樹脂層を形成する工程と、
前記感光性樹脂層に前記半導体素子の接続端子用開口部を前記配線層の配線パターンに対応して形成する工程と、
前記第一金属層を給電層として前記接続端子用開口部内に電解めっきにより第二金属層を形成する工程と、
前記感光性樹脂層を除去し、前記第二金属層の直下に位置する箇所の前記第一金属層を除いた他の第一金属層を除去して半導体素子用接続端子を形成する工程と、
を備えることを特徴とした多層配線基板の製造方法。
A plurality of insulating layers and wiring layers are alternately stacked, and a first metal layer is formed on the outermost layer of a multilayer wiring board in which each wiring layer is connected via a via hole, and the first metal layer is formed of a semiconductor element. In the multilayer wiring board that becomes the bonding surface,
Forming a photosensitive resin layer on the first metal layer;
Forming a connection terminal opening of the semiconductor element in the photosensitive resin layer corresponding to the wiring pattern of the wiring layer;
Forming the second metal layer by electrolytic plating in the connection terminal opening using the first metal layer as a power feeding layer;
Removing the photosensitive resin layer, removing the first metal layer other than the first metal layer located immediately below the second metal layer to form a semiconductor element connection terminal;
A method for producing a multilayer wiring board, comprising:
前記第一金属層の厚さは1〜50μmであることを特徴とする請求項1記載の多層配線基板の製造方法。   2. The method of manufacturing a multilayer wiring board according to claim 1, wherein the first metal layer has a thickness of 1 to 50 [mu] m. 前記第二金属層の厚さは1〜50μmであることを特徴とする請求項1または2記載の多層配線基板の製造方法。   3. The method for manufacturing a multilayer wiring board according to claim 1, wherein the thickness of the second metal layer is 1 to 50 [mu] m. 前記第一金属層と第二金属層の厚さの総和は2〜50μmであることを特徴とする請求項1乃至3に何れか1項記載の多層配線基板の製造方法。   4. The method of manufacturing a multilayer wiring board according to claim 1, wherein a total thickness of the first metal layer and the second metal layer is 2 to 50 μm. 5. 前記第二金属層は錫、錫銀、錫銀銅、錫銅、錫ビスマス、錫鉛の何れからなることを特徴とする請求項1乃至4に何れか1項記載の多層配線基板の製造方法。   5. The method of manufacturing a multilayer wiring board according to claim 1, wherein the second metal layer is made of any one of tin, tin silver, tin silver copper, tin copper, tin bismuth, and tin lead. .
JP2010259184A 2010-11-19 2010-11-19 Method for manufacturing multilayer wiring board Pending JP2012114110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259184A JP2012114110A (en) 2010-11-19 2010-11-19 Method for manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259184A JP2012114110A (en) 2010-11-19 2010-11-19 Method for manufacturing multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2012114110A true JP2012114110A (en) 2012-06-14

Family

ID=46498034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259184A Pending JP2012114110A (en) 2010-11-19 2010-11-19 Method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2012114110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194367A1 (en) * 2017-04-18 2018-10-25 (주)잉크테크 Method for manufacturing printed circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019591A (en) * 2004-07-02 2006-01-19 Ngk Spark Plug Co Ltd Method for manufacturing wiring board and wiring board
JP2009032918A (en) * 2007-07-27 2009-02-12 Shinko Electric Ind Co Ltd Wiring substrate, manufacturing method thereof, electronic component device, and manufacturing method thereof
JP2010226075A (en) * 2009-03-23 2010-10-07 Ibiden Co Ltd Wiring board and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019591A (en) * 2004-07-02 2006-01-19 Ngk Spark Plug Co Ltd Method for manufacturing wiring board and wiring board
JP2009032918A (en) * 2007-07-27 2009-02-12 Shinko Electric Ind Co Ltd Wiring substrate, manufacturing method thereof, electronic component device, and manufacturing method thereof
JP2010226075A (en) * 2009-03-23 2010-10-07 Ibiden Co Ltd Wiring board and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194367A1 (en) * 2017-04-18 2018-10-25 (주)잉크테크 Method for manufacturing printed circuit board
KR20180117550A (en) * 2017-04-18 2018-10-29 주식회사 잉크테크 Manufacturing method of printed circuit board
TWI768029B (en) * 2017-04-18 2022-06-21 韓商印可得股份有限公司 Manufacturing method of printed circuit board
KR102414959B1 (en) * 2017-04-18 2022-07-05 주식회사 잉크테크 Manufacturing method of printed circuit board

Similar Documents

Publication Publication Date Title
JP4055717B2 (en) Semiconductor device and manufacturing method thereof
JP4897281B2 (en) Wiring board manufacturing method and electronic component mounting structure manufacturing method
JP4635033B2 (en) Wiring board manufacturing method and electronic component mounting structure manufacturing method
US9899235B2 (en) Fabrication method of packaging substrate
CN109788666B (en) Circuit substrate and manufacturing method thereof
JP2011199077A (en) Method of manufacturing multilayer wiring board
JP2010130003A (en) Multi-layer printed circuit board, and manufacturing method thereof
JP2013135080A (en) Manufacturing method of multilayer wiring board
KR101701380B1 (en) Device embedded flexible printed circuit board and manufacturing method thereof
JP2008182039A (en) Multilayer wiring board and its manufacturing method
JP2018032661A (en) Printed wiring board and method for manufacturing the same
JP4863076B2 (en) Wiring board and manufacturing method thereof
CN109788664B (en) Circuit substrate and manufacturing method thereof
JP5530955B2 (en) Multilayer wiring board
TW201927090A (en) Wiring board and manufacturing method thereof
JP4549692B2 (en) Wiring board manufacturing method
JP4549695B2 (en) Wiring board manufacturing method
JP2008227538A (en) Method for fabricating wiring board and the same
JP2012186270A (en) Manufacturing method of semiconductor package
JP2014220402A (en) Method of semiconductor package substrate
KR101441466B1 (en) Ultra-thin package board and manufacturing method thereof
JP2012114110A (en) Method for manufacturing multilayer wiring board
TWI658557B (en) Load circuit board and methord for manufacturing the same
JP4549693B2 (en) Wiring board manufacturing method
JP5625412B2 (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407