JP2012107851A - 追設熱交換器の暖房切替装置 - Google Patents

追設熱交換器の暖房切替装置 Download PDF

Info

Publication number
JP2012107851A
JP2012107851A JP2010272984A JP2010272984A JP2012107851A JP 2012107851 A JP2012107851 A JP 2012107851A JP 2010272984 A JP2010272984 A JP 2010272984A JP 2010272984 A JP2010272984 A JP 2010272984A JP 2012107851 A JP2012107851 A JP 2012107851A
Authority
JP
Japan
Prior art keywords
heat exchanger
additional heat
arrow
outdoor unit
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010272984A
Other languages
English (en)
Inventor
Atsuo Morikawa
淳夫 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010272984A priority Critical patent/JP2012107851A/ja
Publication of JP2012107851A publication Critical patent/JP2012107851A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】空気調和機の室外機内凝縮器に追加で配管系統内に設置する追設熱交換器に対し、これまでこの追設熱交換器は冷房時のみ消費電力削減効果があったが、暖房時は効果が無く逆に冬季外気温が低い時は室外機の凝縮器が凍り着霜のためヒートカット運転が頻繁に発生するという課題があった。
【解決手段】上記解決手段として追設熱交換器に対し、冷房時はこれまでと同じ凝縮機と膨張弁の間に位置し、暖房時は室内機側の蒸発器と膨張弁との間に追設熱交換器が位置するように、逆止弁とパイロット弁の組み合わせによるバルブ切替によって、冷媒の圧力の差で自動的に切替る追設熱交換器の暖房切替装置を提供し、追設熱交換器2枚を並列に動作するため配管の分岐管内に絞りを設けて圧力バランスを取ることのできる絞り分岐管を持った追設熱交換器を提供する。
【選択図】図3

Description

本発明は、空調機・冷凍機の室外機及に於ける追設熱交換器に関する。
近年、空調機・冷凍機などで経年劣化したものに室外機に追加で凝縮器を取付けて機能を蘇らせたり消費電力を削減するものが出ている。例えば特許第3218289号公報(特許文献1)、或いは特許第3492422号公報(特許文献2)に開示されている。
図1のa図にその冷凍サイクルに於ける冷媒の流れと追設熱交換器の配置の概略を示す。図のように特許文献1、2では圧縮機から送られた高温高圧冷媒ガスを室外機の凝縮器で凝縮液化し、配管経路の後に追加で熱交換器を取付け、室外機の凝縮器で凝縮できなかった飽和状態の冷媒ガスを再凝縮し完全な液化冷媒として室内機に送り冷房効果を向上させ、或いは空調機・冷凍機の消費電力を削減するものである。
特許第3218289号公報 特許第3492422号公報
しかしながら、これらの発明による空調機では冷房時は効果はあるものの暖房時では全く効果が無いという課題があった。一般の空調機では暖房時は冷媒の流れが冷房時とは逆になる。すなわち室外機の熱交換器では冷房時は凝縮器たが暖房時は蒸発器として作用し、例えば暖房時では冬季に外気温が10℃以下の場合は室外機本体の熱交換器に入る冷媒ガスの温度も追設熱交換器を通る事により冷却されて大気温度に近くなる。
このため室外機本体の熱交換器が蒸発器として作用した場合、冷媒ガスは0℃以下になることが多く、この室外機の熱交換器のフィンが凍りつき着霜することからファンの風が通らなくなるため、空調機は一時的に冷房運転に切替え凝縮器に高温高圧冷媒ガスを通して霜を溶かすデフロスト運転を頻繁に行うようになり運転効率が非常に悪くなるという問題があった。
冬季の暖房時に於ける着霜作用の解決策としてこの追設熱交換器の配管に逆止弁を設け、暖房時は追設熱交換器に冷媒ガスを通さないように設置したものもある。しかし年間を通して日本の気候の中で、夏季で冷房運転のみを行う期間は少なく、この少ない期間のみの節電効果では設置経費に対する効果の割合が少ないという問題もあった。
また、これまでの追設熱交換器は1枚で使用していたが製作できる大きさが限定しているため大型の室外機には対応できず、且つ圧力損失も大きく圧縮機に余分な負荷を掛ける事となり、場合によっては消費電力の増大を招くこともあった。
これらの問題を鑑み上記課題を解決するために、本発明である追設熱交換器の暖房切替装置では以下の手段を採用する。
すなわち、上記図1のb図に示す様に追設熱交換器の配置を冷房時とは逆に暖房時は室内機から戻る配管と膨張弁との間に位置するようにバルブで切替える機構を設ける。
通常、暖房時では圧縮機から発生した高温高圧冷媒ガスは室内機で冷媒ガスの持つ高温エネルギーを室内に放出すると同時に、室内の空気の温度で冷やされ凝縮液化し室内機から出て室外機の膨張弁で減圧され室外機内熱交換器で蒸発して冷媒ガスとなるが、この室内機から出た凝縮液化冷媒にはまだ熱エネルギーが残っている。本発明ではこの余剰熱エネルギーを追設熱交換器を通して室外機の熱交換器に吸収させる方法をとり、冷房暖房それぞれの状態に合わせてバルブの切替を自動的に行うものである。
また、追設熱交換器を2枚対で使用し圧力損失を減らす方法として、配管経路の分岐管の枝管に絞りを設けることで圧力バランスが生じ2枚の追設熱交換器に均等に冷媒ガスを流すことができる。また、この分岐管を複数連結して大型冷凍機にも対応できる。
本発明の追設熱交換器の暖房切替装置によれば、前記追設熱交換器に対して冷房時の効率向上効果のみならず暖房運転でも効率向上ができ、且つ暖房運転時の除霜対策にも効果的に機能する。
しかも、この暖房時の効果向上によって空調機の電力削減に寄与し、地球温暖化対策に寄与する。
また、この配管の分岐管に絞りを設けることにより2枚の追設熱交換器に均等な量の冷媒ガスを流すことができる。これは冷媒ガスを流す圧力損失を押さえることができ、何枚もの追設熱交換器を並列に動作することができ大型冷凍機にも対応できる。
本発明機能の概略図を示す。 本発明の追設熱交換器の暖房切替装置を設置するにあたり室外機内膨張弁逆流不可の場合の冷房サイクル図である。 本発明の追設熱交換器の暖房切替装置を設置するにあたり室外機内膨張弁逆流不可の場合の暖房サイクル図である。 本発明の追設熱交換器の暖房切替装置を設置するにあたり室外機内膨張弁逆流可の場合の冷房サイクル図である。 本発明の追設熱交換器の暖房切替装置を設置するにあたり室外機内膨張弁逆流可の場合の暖房サイクル図である。 本発明に於ける追設熱交換器を室外機に取付けた概観図である。 本発明に於ける追設熱交換器を二枚合わせた概観図である。 分岐管19の内部構造例を示す。 本発明である追設熱交換器の暖房切替装置の冷凍サイクルとモリエル線図である。
以下、本発明の実施の形態について、図面に基いて説明する。ただし、本発明の暖房切替装置に於ける切替機本体を追設熱交換器制御装置8と呼び、追設熱交換器7を含み分岐管19、カバー20、追設熱交換器制御装置8を含んだものを本発明である追設熱交換器の暖房切替装置と呼ぶ。
(実施の形態1)
本発明による追設熱交換器の暖房切替装置について、図2,3を参照しながら実施の形態1として膨張弁の冷媒の流れ方向が暖房時通常の流れ方の反対方向が不可の場合の冷媒の流れを説明する。
図2で冷房運転でのサイクルを表すと、室外機1の中にある圧縮機2から出力する高温高圧の冷媒ガスは矢印c1を通り四方弁3を出て矢印c2の方向に流れ凝縮器6で凝縮液化し矢印c3を経由して追設熱交換器制御装置8に入る。この制御装置ではまず逆止弁15が流れを止め矢印c4の方向に液化冷媒ガスを流す。また、この流れc4からはパイロット弁17の制御ポートにも冷媒ガスの高圧の圧力が掛かりこのパイロット弁17は動通状態となる。
続いてc4の流れは逆止弁18を通り矢印c5になり開放状態のストップ弁9を通り追設熱交換器7に入り追加凝縮を行って矢印c7になる。このc7では上記パイロット弁17が動通状態になっているためであり、パイロット弁14は制御ポートが高圧になっていないため動通状態ではなく、冷媒の流れは必然的にこのc7となって流れてゆく。また、逆止弁15も流れの方向は矢印c4側になるが、先のc4が高圧の冷媒のため冷媒圧力は同じであり抜ける方向は矢印c8の方向しかない。よってc8を通り膨張弁4へと流れてゆく。
この膨張弁4では矢印c9の方向が正規の冷房時の流れ方向であり、この流れで今度は矢印c10の通り再び追設熱交換器制御装置8に入る。このときの冷媒ガスは膨張弁を通過後の低圧の気液二相飽和状態の冷媒ガスとなっている。この低圧冷媒ガスは逆止弁12を抜け矢印c11の方向に流れる。
ここで、上記パイロット弁14はこの制御ポートに掛かる冷媒の圧力が低圧のため動通状態ではない。
また逆止弁13では、この反対側の圧力が高圧の液化冷媒であり押し開くことができないため動通しない。そのため矢印c11の方向に冷媒ガスは流れ矢印12を経て室外機1に再び戻り、矢印c13の後、矢印c14にて室内機10に入る。この後、矢印c15を経て四方弁3を経由する矢印c16の後圧縮機2に戻るサイクルを繰り返す。
また、上記追設熱交換器制御装置8では追設熱交換器7に冷媒ガスを通す場合と通さない場合を選択できるようにバイパス弁を持つ。この追設熱交換器7に冷媒ガスを通し再凝縮あるいは過冷却を行うときはバイパス弁11及びバイパス弁16を閉じ、且つストップ弁9を開くことにより冷媒ガスを追設熱交換器7に通すことができる。逆にこのバイパス弁11及びバイパス弁16を開き、且つストップ弁9を閉じることにより冷媒ガスはバイパス弁11及びバイパス弁16を抜けてバイパスとなり、且つストップ弁9を閉じることにより追設熱交換器7に冷媒ガスが流れないことになる。
この機能を持つことにより、従来は追設熱交換器7を取り付けた時の1週間前と取付け工事後の1週間の使用電力差で効果の判定を行っているが、例えば取り付け工事前と工事後の気候の差が著しい場合には電力削減効果が判定し辛いという課題があった。このバイパス弁機構があればいつでも追設熱交換器7の取付け効果が比較できることと、万一不具合が発生した場合、本体と追設熱交換器とを切り離すことができる。以下、実施の形態2でも同様の機能を持つ。
この冷房サイクルで、各部位の温度変化を述べると、圧縮機2から出た高温高圧冷媒ガスの温度は矢印c2から後の位置で約80℃、この温度で室外機の凝縮器6を通過後の矢印c3では55℃となり、この後追設熱交換器通過後の矢印c7では大気温度に近い38℃まで下がる。この温度で膨張弁4を通過後の矢印c10以降では10℃位である。矢印c14でもこの10℃近辺の温度で室内機に入り室内機の蒸発器では気化熱を奪って冷媒ガスはマイナスになる。このときの室内機から吹き出す風の温度も通常のエアコンでは正常なもので15℃位であるが追設熱交換器を装着すると10℃以下にさがり設定温度に到達しやすくなる。
蒸発器を出た冷媒ガスは室内の空気の温度を吸収してマイナスから5℃程になり室外機の圧縮機に戻る。空調機ではこの蒸発器から後の冷媒ガスの湿り度と温度を見て膨張弁の開度を制御しており、一般的な蒸発器後の温度が5℃である。
このように追設熱交換器を取付けて過冷却を増して膨張弁への進入温度を下げることは、室内機での蒸発温度を下げ、蒸発器後の適正温度に早く到達することから膨張弁の開度を下げ冷凍サイクル中の冷媒の流量を少なくするようにインバータが圧縮機を制御し、消費電力の削減に貢献する。
また、このサイクルでの室外機1の外気からの風の流れを表すaL→aM→aHの温度変化では、まずファン5で吸い込んだ空気の外気温は夏場ではaLは34℃として、追設熱交換器7を通過後のaMは40℃、次に室外機1の凝縮器6後では60℃となる。
次に本発明による追設熱交換器の暖房機能による実施の形態1に於ける暖房運転のサイクルを図3に示す。
上述と同様暖房サイクルでも図3の室外機1の中にある圧縮機2から出力する高温高圧の冷媒ガスは矢印h1を通り四方弁3を出て矢印h2の方向に流れ今度は矢印h3方向に流れ室内機10に入って、上記冷房サイクルでは蒸発器となっていた室内機は今度は凝縮器となって高温高圧冷媒ガスの、その持てる熱エネルギーを室内に放出して且つ冷され凝縮液化して室外機に戻る。
次にこの凝縮液化冷媒ガスは追設熱交換器制御装置8に入り、まず矢印h4の流れで逆止弁12を流れず、矢印h5にて逆止弁13を通過する。この時、パイロット弁14の制御ポートにも冷媒ガスの圧力が掛かりこのパイロット弁14は動通状態となる。その後矢印h6のように逆止弁18には流れずストップ弁9を通過後追設熱交換器7に入る。
ここで追設熱交換器7に入った高圧液化冷媒ガスは室内機で室内に放出した熱エネルギーを室内で全て放出したわけではなくまだ十分な熱エネルギーを残したまま送出される。この余剰熱エネルギーをこの追設熱交換器7で放出し、室外機1の凝縮器6では暖房時蒸発器となる熱交換器で吸熱することにより、より吸熱効果を得ることができ、且つ着霜を防ぐことができる。
この追設熱交換器7で余剰熱エネルギーを放出した液化冷媒ガスは矢印h8を通り矢印h9の方向に流れる。ここではパイロット弁17は制御ポートに高圧が掛かっていないため動通せず矢印h8の如く通過し、パイロット弁14は先に矢印h4で制御ポートに高圧液化冷媒ガスによって動通状態となっていたため矢印h9の如く流通する。
この後矢印h10のように流れる。このとき逆止弁12も動通可能の方向にあるがこの冷媒ガスは矢印h4と同一圧力の高圧であるため流出せず矢印h11の方向に流れ、室外機1に戻り膨張弁4で矢印h12の方向にて減圧する。
減圧した気液二相飽和冷媒ガスは矢印h13のように再び追設熱交換器制御装置8に入り逆止弁15を通過して矢印h14の流れ追設熱交換器制御装置8を出てゆく。この時の矢印h13の流れはパイロット弁17では制御ポートに高圧は掛からないため動通状態ではなく、且つ逆止弁15を通過した冷媒ガスは低圧であり、逆止弁18の反対側は矢印h6の高圧液化冷媒ガスが閉じているため押し広げる力も無く逆止弁18は閉じたままである。そのため矢印h14となり矢印h15を経て室外機1の凝縮器6で蒸発し温度を下げて矢印h16後、四方弁3を通過し矢印h17となって圧縮機2に戻る。
ここでも先の室内機からでた余剰熱エネルギーで追設熱交換器制御装置8そのものが暖められ、この制御装置を通過する矢印h14では、マニホールド内熱交換器22で矢印h6の高温冷媒ガスの熱を受け取り、膨張弁4を通過した飽和状態の冷媒ガスを暖め、室外機の凝縮器6で蒸発するときの温度を上げ着霜を防止する。
また、追設熱交換器7を通過するファン5の吸い込み風量を追設熱交換器7から放出する熱エネルギーを無駄なく凝縮器6で吸熱するために凝縮器6をカバー20で囲むことが望ましい。
この実施の形態1における暖房サイクルでの各部の温度を示すと、圧縮機2から出た高圧高温冷媒ガスの温度は矢印h1〜3にて85℃であり室内機10で放熱凝縮後の液化冷媒ガスの温度は40℃で矢印h4まで到達する。この温度で追設熱交換器7に入り冷却すると20℃まで下がり矢印h9〜11を経て膨張弁4では矢印12後10℃くらいまで下げられ、矢印h14でマニホールド内熱交換器22を通過後の矢印h15では16℃まで暖められて室外機1の凝縮器6に入り、この凝縮器で蒸発しながら吸熱し矢印h16以降で5℃に達し圧縮機2へ戻る。
前記同様に、このサイクルでの室外機1の外気からの風の流れを表すaL→aM→aHの温度変化では、まずファン5で吸い込んだ空気の外気温は冬場ではaLは5℃として、追設熱交換器7を通過後のaMは10℃まで暖められ、次に室外機1の凝縮器6後では5℃となり着霜にはなりにくい。
(実施の形態2)
前述の実施の形態1に対し、実施の形態2では室外機中の膨張弁の冷媒の流れが暖房時でも冷房時と同じ方向の流れが可能な、つまり暖房時では通常の流れの反対方向に流すことが可能な空調機に対して追設熱交換器制御装置8の機器構成が異なる方法を図4及び図5を参照しながらそれぞれ冷房サイクル、暖房サイクルに分けて説明する。
このような実施の形態1と実施の形態2のように形式を分けた理由は実施の形態2のように膨張弁の流れ方向が暖房時は通常の冷媒の流れの反対方向から流すことが可能な場合、追設熱交換器制御装置8の機器構成の中で実施の形態1で説明したパイロット弁が不要になるため安価に構成できるためである。
この実施の形態2に於ける冷房サイクルについて図4を参照しつつ説明すると、室外機1の圧縮機2から出力する高温高圧の冷媒ガスは矢印c1を通り四方弁3を出て矢印c2の方向に流れ凝縮器6で凝縮液化し矢印c3を経由して追設熱交換器制御装置8に入る。この制御装置ではまず逆止弁15が流れを止め矢印c4の方向に高圧液化冷媒ガスを流す。
続いてc4の流れは逆止弁18を通り逆止弁13は流れを止め、矢印c5になり開放状態のストップ弁9を通る。その後矢印c6を経て追設熱交換器7に入り追加凝縮及び過冷却を行って矢印c7になり矢印c8を通り膨張弁4へと流れてゆく。
この膨張弁4では矢印c9の方向が正規の冷房時の流れ方向であり、この流れで今度は矢印c10の通り再び追設熱交換器制御装置8に入る。このときの冷媒ガスは膨張弁を通過後の低圧の気液二相飽和状態の冷媒ガスとなっている。この低圧冷媒ガスは逆止弁12を抜け矢印c11の方向に流れる。この矢印c11ではこの後逆止弁13の方向が動通状態の方向であるが、先に矢印c5で高圧液化冷媒ガスがこの後逆止弁13にも掛かることから膨張弁を通過した低圧冷媒ガスでは押し広げることができず、矢印c12へと流れて行く。
また、逆止弁15でも矢印c10からの流れは逆止弁15を通過可能な方向であるが、先に矢印c4の高温高圧冷媒ガスが堰き止めているため矢印c10の低圧冷媒ガスでは押し広げる力は無く、矢印c11の方向に流れざるを得ない状況となる。
次に矢印12を経て室外機1に再び戻り、矢印c13の後、矢印c14にて室内機10に入る。この後、矢印c15を経て四方弁3を経由する矢印c16の後圧縮機2に戻るサイクルを繰り返す。
このときの各部位での冷媒ガスの温度或いはファン5で送る送風温度は実施の形態1で示した冷房サイクルの温度経緯と同じであるため割愛する。
次に本発明による追設熱交換器の暖房機能による実施の形態2に於ける暖房運転のサイクルを図5に示す。
上述と同様暖房サイクルでも図4の室外機1の中にある圧縮機2から出力する高温高圧の冷媒ガスは矢印h1を通り四方弁3を出て矢印h2の方向に流れ今度は矢印h3方向に流れ室内機10に入り、上記冷房サイクルでは蒸発器となっていた室内機は今度は凝縮器となって高圧高温冷媒ガスの、その持てる熱エネルギーを室内に放出して冷却し凝縮液化して室外機に戻る。
次にこの凝縮液化冷媒ガスは高圧のまま追設熱交換器制御装置8に入り、まず矢印h4の流れで逆止弁12に流れず矢印h5にて逆止弁13を通過する。その後矢印h6のように逆止弁18には流れず追設熱交換器7に入る。
ここで追設熱交換器7に入った高圧液化冷媒ガスは室内機で室内に放出した熱エネルギーをここでも室内に全て放出したわけではなく、まだ十分な熱エネルギーを残したまま送出される。この余剰熱エネルギーをこの追設熱交換器7で放出し、室外機1の凝縮器6では暖房時蒸発器となる熱交換器で吸熱することにより、より吸熱効果を得ることができ、着霜を防ぐことができる。
この追設熱交換器7で余剰熱エネルギーを放出した液化冷媒ガスは矢印h8を通り矢印h9の方向に流れる。
この後膨張弁4入るが、先の実施の形態1の暖房時の膨張弁に入る方向とは逆の冷房時の方向と同じ方向から入り矢印h10の流れで減圧し矢印h11に抜けて再び追設熱交換器制御装置8に入る。
このとき逆止弁12も動通可能の方向にあるが矢印h4は高圧のため流出できず矢印h12の方向に流れ、今度は逆止弁15を通って矢印h13の方向に流れ、室外機1に戻る。
この逆止弁15を通過した冷媒ガスは低圧であり、逆止弁18の反対側は矢印h6の高圧液化冷媒ガスが逆止弁を閉じているため押し広げる力は無く、そのため矢印h13となり矢印h14を経て室外機1の凝縮器6で蒸発し温度を下げて矢印h15後四方弁3を通過し矢印h16となって圧縮機2に戻る。
このときの各部位での冷媒ガスの温度或いはファン5で送る送風温度は実施の形態1で示した暖房サイクルの温度経緯とほぼ同じであるため割愛する。
(実施の形態3)
上記、実施の形態1及び実施の形態2に於ける冷房サイクル、暖房サイクルの追設熱交換器の効果を図9冷凍サイクルとモリエル線図にて説明すると、同図では通常のサイクルではa→b→c→dと状態が変化し図中の様に
冷房サイクル COP=(h1−h4)/(h2−h1)
暖房サイクル COP=(h2−h3)/(h2−h1)
というCOPの計算式が成り立つ。
次に、冷房時は本発明による追設熱交換器を備えた凝縮器の場合、この追設熱交換器は図中の過冷却部として作用しd→d’、a→a’矢印101と膨張弁の絞りは完全に液相に入り膨張弁にとっては好ましい状態となり、尚且つ冷媒の冷却が進みCOP向上に貢献する。
本発明によれば、このCOPの状況は同図より
冷房サイクル COP=(h1−h4’)/(h2−h1)
と表せる。
また暖房時は冷媒のサイクルが逆の流れから室外機の凝縮器は蒸発器となり外気からの熱を吸収するが、この蒸発器の前面に追設熱交換器を備え、余剰熱エネルギーを吸収すると共にこの追設熱交換器は図中の過熱部として作用しb→b’、c→c’矢印102のように断熱圧縮の等エントロピー線はシフトし熱サイクルに於けるCOPの向上に貢献する。
本発明によれば、このCOPの状況は同図より
暖房サイクル COP=(h2’−h3)/(h2’−h1’)
と表せる。
このように、追設熱交換器を本発明による暖房機能制御機器によって制御を行うと通常の冷房時のCOP向上のみならず暖房時に於いてもCOPの向上が期待できる。特に暖房時は一般に室外機の経年劣化の状態に左右されず、新しい室外機にも安定した機能向上が図れる。
上記、図9に於ける冷凍サイクルという用語に関して、一般に空調・冷凍機の冷媒ガスの循環サイクルを総して冷凍サイクルと呼び、この冷凍サイクルの中でも冷房、冷凍など温度を下げることについては冷凍サイクル、暖房や給湯など温度を上げることについてはヒートポンプと熱力学では呼んでいる。
また、冷凍サイクルの中に冷房サイクルと暖房サイクルを含み、本発明ではこの冷凍サイクルと冷房サイクル、暖房サイクルを区別して扱う。
一般的に、基本的な冷凍サイクルやヒートポンプの機能の中で、低温から高温への昇温や逆の降温時の高低差を短くすることが圧縮機の負荷を減らすことに繋がり節電に繋がる。本発明の暖房効果は室内機からの余剰熱エネルギーを室外機の吸熱に回し、外気が低温時にもこの温度差を縮める作用となり省エネに大きく貢献する。
実験では暖房時の室外機の吸熱温度が通常の外気温5℃の時、本発明の暖房切替装置を追設熱交換器に取付けて室外機の凝縮機の吸熱温度を10℃まで上げると使用電力量は10%削減され、15℃まで上げると使用電力量は20%削減された。
(実施の形態4)
図6では本発明に於ける追設熱交換器の室外機取り付け状態を表す。本発明に於ける追設熱交換器ではアルミ押出材で構成する多穴管チューブとアルミコルゲートフィンを組み合わせヘッダ管で連結したパラレルフロー型熱交換器を使用する。この熱交換器では圧力損失を減らすため同一熱交換器を2枚一組で構成する。
同図は縦に1枚ずつ2枚を分岐管19で入口管、出口管それぞれを繋ぐ。また図7では同じ熱交換器を2枚合わせて入口管、出口管をそれぞれY管である分岐管19で連結する。
このように2枚一組で使用する場合、2枚と同じ熱容量に相当する熱交換器1枚を単独で使用する場合と比べて配管の圧力損失は4分の1に抑えることができる。
図8に分岐管19の内部構造を示す。この分岐管19の内部では両方に分かれた枝管それぞれに絞り21を設け、冷媒の通過に抵抗を与えることにより冷媒の流れは抵抗の無いところへ向かうが、もう片方の枝管にも同じ口径の絞り抵抗があることで圧力バランスが取れ、それぞれの枝管全体に均等な圧力が掛かる状態で圧送できる仕組みを作り、2本の枝管に均等に冷媒が流れる作用を構成する。また、この絞り21の代わりに口径の小さい細管を枝管に使用してもよい。
また、この絞り分岐管と同じ効果を持たせるために追設熱交換器本体の入口管内に絞りを設けても良い。この時2枚の熱交換器を図7のように一体として形成し、入口管、出口管をY管で繋ぎこのY管内部にそれぞれ絞りを設けてもよい。
この成果は、数組の枝管に対しても有効に働き、同じ容量の追設熱交換器であれば何組でも並列接続して同様に均等に冷媒を流すことができる。この効果により大容量の室外機にも適切な数量の熱交換器を追加することにより対応できる。
上記実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1室外機、2圧縮機、3四方弁、4膨張弁、5ファン、6凝縮器、7追設熱交換器、8追設熱交換器制御装置、9ストップ弁、10室内機、11バイパス弁、12、13逆止弁、14パイロット弁、15逆止弁、16バイパス弁、17パイロット弁、18逆止弁、19分岐管、20カバー、21絞り、22マニホールド内熱交換器

Claims (5)

  1. 空気調和機、冷凍機の室外機内凝縮器に繋がる配管系統内に追加で設置する追設熱交換器7に対し、冷房時はこれまでと同じ凝縮機6と膨張弁4の間の配管系統に位置し、暖房時は室内機側の蒸発器と膨張弁4との間に追設熱交換器7が位置するように、逆止弁とパイロット弁の組み合わせによるバルブ切替によって、冷媒の圧力の差で自動的に切替る追設熱交換器制御装置。
  2. 請求項1の追設熱交換器制御装置8を使い、追設熱交換器7を室外機の凝縮器6の前面に貼りつける様に取り付け、且つカバー20で追設熱交換器7以外の空気取込み通路を塞ぎ、暖房時に於いてファン5によって外気を室外機内凝縮器6に入る前に追設熱交換器7を通し、室内機からの余剰熱エネルギーを追設熱交換器7に通す事によりこの熱エネルギーを放出させ室外機内凝縮器6で吸熱することを特徴とする追設熱交換器。
  3. 請求項1の追設熱交換器制御装置8であって、この制御装置内にマニホールド内熱交換器22を設置し、暖房時室内機から出た余剰熱エネルギーを持った高圧液化冷媒をこの熱交換器を通し、膨張弁を通過した飽和冷媒ガスに熱を伝えることにより室外機の凝縮器の着霜を抑え暖房効率を上げる追設熱交換器制御装置内熱交換器。
  4. 請求項1の追設熱交換器7に取付ける配管であって、同じ熱交換器を2枚並列に動作させるための分岐管19内に絞り21を設けることによって冷媒の流れの抵抗となり、この抵抗が冷媒ガスの圧力でバランスを取り、分岐管19に接続された2枚の追設熱交換器それぞれに均等に冷媒ガスを流すことのできる絞り分岐管。
  5. 請求項4の絞り分岐管と同じ作用を成し、追設熱交換器本体の入口管内に絞りを設けた追設熱交換器。
JP2010272984A 2010-11-18 2010-11-18 追設熱交換器の暖房切替装置 Pending JP2012107851A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272984A JP2012107851A (ja) 2010-11-18 2010-11-18 追設熱交換器の暖房切替装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272984A JP2012107851A (ja) 2010-11-18 2010-11-18 追設熱交換器の暖房切替装置

Publications (1)

Publication Number Publication Date
JP2012107851A true JP2012107851A (ja) 2012-06-07

Family

ID=46493658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272984A Pending JP2012107851A (ja) 2010-11-18 2010-11-18 追設熱交換器の暖房切替装置

Country Status (1)

Country Link
JP (1) JP2012107851A (ja)

Similar Documents

Publication Publication Date Title
JP6685409B2 (ja) 空気調和装置
JP5357418B2 (ja) ヒートポンプ式空気調和機
JP5847366B1 (ja) 空気調和装置
US9970688B2 (en) Regenerative air-conditioning apparatus and method of controlling the same
JP6909889B2 (ja) 電気自動車用ヒートポンプシステム及びその制御方法
CN108151350B (zh) 三管制多联机系统及其控制方法
JP6038382B2 (ja) 空気調和装置
EP3483523A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
WO2013031591A1 (ja) 超臨界サイクルおよびそれを用いたヒートポンプ給湯機
KR20180031256A (ko) 공기조화기
JP2012132586A (ja) 冷凍サイクル装置
US20160252290A1 (en) Heat-source-side unit and air-conditioning apparatus
EP2771627B1 (en) Regenerative air-conditioning apparatus
JP6420677B2 (ja) 空気調和機
JP4665560B2 (ja) 冷凍装置
WO2014087584A1 (ja) 冷蔵庫
US10429111B2 (en) Integrated suction header assembly
JP6242289B2 (ja) 冷凍サイクル装置
JP2012042193A (ja) 冷蔵庫
KR101392856B1 (ko) 수냉식 열교환 구조를 갖는 실외기 없는 냉,난방장치
JP2006170536A (ja) 蒸気圧縮式ヒートポンプ
KR100562836B1 (ko) 히트펌프 사이클
US9109845B2 (en) Outdoor heat exchanger and air conditioner including the same
JP2012107851A (ja) 追設熱交換器の暖房切替装置
KR101146783B1 (ko) 냉매시스템