JP2012106899A - Furnace material and method for producing the furnace material - Google Patents

Furnace material and method for producing the furnace material Download PDF

Info

Publication number
JP2012106899A
JP2012106899A JP2010261310A JP2010261310A JP2012106899A JP 2012106899 A JP2012106899 A JP 2012106899A JP 2010261310 A JP2010261310 A JP 2010261310A JP 2010261310 A JP2010261310 A JP 2010261310A JP 2012106899 A JP2012106899 A JP 2012106899A
Authority
JP
Japan
Prior art keywords
mgo
furnace material
mass
furnace
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261310A
Other languages
Japanese (ja)
Other versions
JP5732680B2 (en
Inventor
Toshiharu Kinoshita
寿治 木下
Yasuhisa Nakanishi
泰久 中西
koji Hieda
耕士 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2010261310A priority Critical patent/JP5732680B2/en
Publication of JP2012106899A publication Critical patent/JP2012106899A/en
Application granted granted Critical
Publication of JP5732680B2 publication Critical patent/JP5732680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/05Refractories by fusion casting
    • C04B35/051Refractories by fusion casting containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide

Abstract

PROBLEM TO BE SOLVED: To provide a furnace material which is excellent in lithium-proof reactivity and is light in weight.SOLUTION: The content of MgO is 33-99.5 mass%, the total content of MgO and AlOis MgO+AlO=(95 to 99.9 mass%), the content ratio of MgO and AlOis AlO/MgO=(0.003 to 2.1) in mass% ratio, and the bulk specific gravity is set to be 1.0-2.5.

Description

本発明は特に、耐リチウム反応性に優れた軽量の炉材に関するものである。   The present invention particularly relates to a lightweight furnace material excellent in lithium resistance.

金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等に代表される二次電池の正極材料としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO)、ニッケル酸リチウム(LiNiO)、リン酸鉄リチウム(LiFePO)等のリチウム遷移金属が挙げられる。現在用いられている正極材料としては、コバルト酸リチウムが主流である。 As positive electrode materials of secondary batteries represented by metal lithium batteries, lithium ion batteries, lithium polymer batteries, etc., lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium nickelate (LiNiO 2 ), phosphorus Examples thereof include lithium transition metals such as lithium iron oxide (LiFePO 4 ). As the positive electrode material currently used, lithium cobaltate is the mainstream.

例えば、LiCoOを製造する場合、原料として水酸化リチウム又は硝酸リチウムと、酸化コバルト、水酸化コバルト又は炭酸コバルトとの混合物を、容器に入れて固定炉又はトンネル炉等で焼成するか、又は直接回転炉に入れて焼成する。この焼成は、酸素雰囲気にて1000℃付近の温度で行われる。 For example, when producing LiCoO 2 , a mixture of lithium hydroxide or lithium nitrate and cobalt oxide, cobalt hydroxide or cobalt carbonate as raw materials is put in a container and fired in a fixed furnace or a tunnel furnace, or directly Place in a rotary furnace and fire. This firing is performed at a temperature around 1000 ° C. in an oxygen atmosphere.

該焼成を行う焼成炉を構成する炉材としては、一般的に、通常工業用の耐火炉で使用されるアルミナ、ムライト、コーディエライト等の耐熱セラミックス材料が使用されている。   As the furnace material constituting the firing furnace for performing the firing, generally, a heat-resistant ceramic material such as alumina, mullite, cordierite and the like which are usually used in an industrial refractory furnace is used.

しかし、該耐熱セラミックス材料を炉材とする焼成炉を使用して、前記焼成温度条件下でLiCoOを製造すると、その焼成中にリチウム化合物が融解し、更に、該化合物由来のリチウム元素が炉内の高温条件下で蒸発し、該耐熱セラミックス材料に浸入する現象が生じる。このため、焼成炉の繰り返しの使用を経て、炉材にひび割れや剥離が生じ、炉材の頻繁な交換が必要であるという問題があった。 However, when LiCoO 2 is produced under the firing temperature condition using a firing furnace using the heat-resistant ceramic material as a furnace material, the lithium compound melts during the firing, and the lithium element derived from the compound is further transformed into the furnace. Evaporation occurs under high temperature conditions, and the phenomenon of entering the heat-resistant ceramic material occurs. For this reason, after repeated use of the firing furnace, there was a problem that cracks and peeling occurred in the furnace material, and frequent replacement of the furnace material was necessary.

なお、焼成用耐火物の耐反応性の向上を図る技術として、骨材としてMgO質燒結体を使用する各種の技術が開示されている(例えば、特許文献1、特許文献2)。   In addition, as a technique for improving the reaction resistance of the refractory for firing, various techniques using an MgO sintered body as an aggregate are disclosed (for example, Patent Document 1 and Patent Document 2).

しかし、従来のMgO質燒結体では、骨材がガラス質の結合層で結合された構造を有しており、炉材の軽量化を目的として焼結体の気孔率を上昇させた場合、ガラス質の結合層がLi成分によって浸食されやすくなるため、当該現象を回避するため、焼結体の気孔率を低く抑えた重量が大きいものが通常であり、例えば、複数階構造の焼成炉には採用できない問題があった。   However, the conventional MgO sintered body has a structure in which the aggregate is bonded with a glassy bonding layer, and when the porosity of the sintered body is increased for the purpose of reducing the weight of the furnace material, In order to avoid this phenomenon, the bonded layer of the quality is likely to be eroded by the Li component, so that the sintered body has a large weight while keeping the porosity of the sintered body low. There was a problem that could not be adopted.

特開2007−112670号公報JP 2007-112670 A 特開2007−284314号公報JP 2007-284314 A

本発明の目的は前記問題を解決し、骨材部分および結合層部分共に耐リチウム反応性に優れ、かつ、軽量の炉材および炉材の製造方法を提供することである。尚、炉材とは、炉体を構成する煉瓦と粉末処理用に用いられる匣鉢を表す。   An object of the present invention is to solve the above-mentioned problems and to provide a lightweight furnace material and a method for producing the furnace material, which are excellent in lithium resistance resistance in both the aggregate part and the bonding layer part. In addition, a furnace material represents the brick which comprises a furnace body, and the mortar used for powder processing.

上記課題を解決するためになされた本発明の炉材は、MgOの含有率が33〜99.5質量%、MgO と Al23 との合計含有率がMgO +Al23=95質量%以上、MgO とAl23との含有比率が、各質量%比で、Al23 / MgO=0.003 〜 2.1、嵩比重が1.0〜2.5であることを特徴とするものである。 The furnace material of the present invention made to solve the above problems has an MgO content of 33 to 99.5% by mass, and a total content of MgO and Al 2 O 3 is MgO + Al 2 O 3 = 95 mass. % Or more, the content ratio of MgO and Al 2 O 3 is Al 2 O 3 /MgO=0.003 to 2.1, and the bulk specific gravity is 1.0 to 2.5 in each mass% ratio. It is a feature.

請求項2記載の発明は、請求項1記載の炉材において、MgO成分の2〜92%がスピネルであることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the furnace material according to claim 1, 2 to 92% of the MgO component is spinel.

請求項3記載の発明は、請求項1記載の炉材において、該炉材がCo、Mn、Ni、Fe、Pから選択された1種類以上の元素とリチウムとの複合酸化物の熱処理に用いる、リチウム複合酸化物の熱処理用炉材であることを特徴とするものである。   The invention according to claim 3 is the furnace material according to claim 1, wherein the furnace material is used for heat treatment of a composite oxide of lithium and one or more elements selected from Co, Mn, Ni, Fe, and P. It is a furnace material for heat treatment of lithium composite oxide.

請求項4記載の発明は、請求項1記載の炉材において、SiOの含有率が、0.1〜3.0質量%であることを特徴とするものである。 The invention according to claim 4 is characterized in that, in the furnace material according to claim 1, the content of SiO 2 is 0.1 to 3.0% by mass.

請求項5記載の発明は、請求項1記載の炉材において、常温圧縮強度が1.0〜50MPaであることを特徴とするものである。   A fifth aspect of the present invention is the furnace material according to the first aspect, wherein the normal temperature compressive strength is 1.0 to 50 MPa.

請求項6記載の発明は、請求項2記載の炉材を製造する方法であって、骨材原料として、平均粒径0.8〜2mmのペリクレースまたはスピネルを用い、全原料中5〜20質量%を、平均粒径10〜100μmのAl23粉末とし、造孔材とともに全原料を混練および成形後、1400〜1700℃で焼成することを特徴とするものである。 Invention of Claim 6 is a method of manufacturing the furnace material of Claim 2, Comprising: As an aggregate raw material, the average particle diameter of 0.8-2 mm uses a periclase or spinel, 5-20 mass in all the raw materials % Is an Al 2 O 3 powder having an average particle diameter of 10 to 100 μm, and all the raw materials are kneaded and molded together with the pore former, and then fired at 1400 to 1700 ° C.

本発明に係る炉材は、MgOの含有率が33〜99.5質量%、MgO と Al23 との合計含有率がMgO +Al23=95質量%以上、MgO とAl23との含有比率がAl23 / MgO(質量%比)=0.003 〜 2.1、嵩比重が1.0〜2.5の構成を有する。当該構成によれば、ガラス質の結合層が形成されないため、従来、ガラス質の結合層がLi成分によって浸食されていた問題が回避可能となり、かつ、軽量の炉材を実現できる。 The furnace material according to the present invention has a MgO content of 33 to 99.5% by mass, a total content of MgO and Al 2 O 3 of MgO + Al 2 O 3 = 95% by mass, MgO and Al 2 O 3 and Al 2 O 3 / MgO (mass% ratio) = 0.003 to 2.1, and the bulk specific gravity is 1.0 to 2.5. According to this configuration, since the vitreous bonding layer is not formed, it is possible to avoid the problem that the vitreous bonding layer has been eroded by the Li component in the past, and a lightweight furnace material can be realized.

炉材は、通常、骨材がガラス質の結合層で結合された構造を有するが、請求項6記載の発明では、平均粒径0.8〜2mmのペリクレースまたはスピネルを用い、全原料中5〜20質量%を、平均粒径10〜100μmのAl23粉末とし、造孔材とともに全原料を混練および成形後、1400〜1700℃で焼成することにより、ペリクレース又はスピネルからなる骨材の骨材表面でスピネル型結晶構造を有する結合層を形成している。従来のように、粒界部分がガラス質の結合層で構成された炉材では、該炉材を使用してLiを含む原料を焼成後、更に水蒸気雰囲気に暴露すると、時間の経過とともに、炉材を構成する骨材間の結合が崩壊し、炉材がバラバラになる現象が観察される。これに対し、請求項6記載の発明の方法によって、骨材間の粒界部分に、焼成反応によってスピネル層を形成させた場合、該炉材を使用してLiを含む原料を焼成後、更に水蒸気雰囲気に暴露した場合であっても、炉材の崩壊を抑制することができる。 The furnace material usually has a structure in which aggregates are bonded by a vitreous bonding layer, but in the invention according to claim 6, periclase or spinel having an average particle diameter of 0.8 to 2 mm is used, and 5% of all raw materials are used. ~ 20% by mass of Al 2 O 3 powder having an average particle diameter of 10 to 100 µm, and kneading and forming all the raw materials together with the pore former, followed by firing at 1400 to 1700 ° C, whereby the aggregate made of periclase or spinel A bonding layer having a spinel crystal structure is formed on the aggregate surface. In a furnace material in which the grain boundary part is composed of a glassy bonding layer as in the prior art, after firing the raw material containing Li using the furnace material and further exposing to a steam atmosphere, It is observed that the bond between aggregates constituting the material is broken and the furnace material is broken apart. On the other hand, when a spinel layer is formed by a firing reaction at the grain boundary portion between aggregates by the method of the invention of claim 6, after firing the raw material containing Li using the furnace material, Even when exposed to a steam atmosphere, the furnace material can be prevented from collapsing.

本発明は、Co、Mn、Ni、Fe、Pから選択された1種類以上の元素とリチウムとの複合酸化物の熱処理に用いるのに適した炉材および炉材の製造方法に係る発明である。   The present invention relates to a furnace material suitable for use in heat treatment of a complex oxide of one or more elements selected from Co, Mn, Ni, Fe, and P and lithium, and a method for manufacturing the furnace material .

以下、本発明に係る炉材の一実施形態について説明する。   Hereinafter, an embodiment of a furnace material according to the present invention will be described.

該リチウム複合酸化物の熱処理用炉材は、MgOの含有率が33〜99.5質量%、MgO と Al23 との合計含有率がMgO +Al23=95質量%以上、MgO とAl23との含有比率がAl23 / MgO(質量%比)=0.003 〜 2.1の化学組成を有し、スピネル(Al23・MgO)の存在比率が2〜92%の結晶構造を有している。 The furnace material for heat treatment of the lithium composite oxide has a MgO content of 33 to 99.5% by mass, a total content of MgO and Al 2 O 3 of MgO + Al 2 O 3 = 95% by mass, MgO And Al 2 O 3 have a chemical composition of Al 2 O 3 / MgO (mass% ratio) = 0.003 to 2.1, and an abundance ratio of spinel (Al 2 O 3 .MgO) is 2 It has a crystal structure of ˜92%.

炉材は、通常、骨材がガラス質の結合層で結合された構造を有するが、本発明のリチウム複合酸化物の熱処理用炉材は、炉材の焼成過程において、ペリクレースまたはスピネルからなる骨材の骨材表面でスピネル型結晶構造を有する結合層を形成し、骨材間の粒界部分にスピネル層を有する構造を備えている。   The furnace material usually has a structure in which the aggregate is bonded by a vitreous bonding layer, but the furnace material for heat treatment of the lithium composite oxide of the present invention is a bone made of periclase or spinel in the firing process of the furnace material. A bonding layer having a spinel crystal structure is formed on the aggregate surface of the aggregate, and a structure having a spinel layer at a grain boundary portion between the aggregates is provided.

従来のように、粒界部分がガラス質の結合層で構成された炉材では、該炉材を使用してLiを含む原料を焼成後、更に水蒸気雰囲気に暴露すると、時間の経過とともに、炉材を構成する骨材間の結合が崩壊し、炉材がバラバラになる現象が観察されていた。本発明者の推測によると、MgOを骨材とし、結合層をMgCaSiO4とする炉材の場合、該炉材を使用してLiを含む原料を焼成すると、結合層が、MgO・CaO・SiO2(Li2O)の化学組成からなるアモルファスに変化し、このうち、Li2Oの部分が、大気中の水蒸気およびCOを吸収しやすく、Li2Oのカーボネート化により結合層から炉材の崩壊が生じるものと考えられる。これに対し、本発明では、骨材間の粒界部分に、焼成反応によってスピネル層を形成させておくことにより、Liとの反応による結合層のアモルファス化、および、その後の水蒸気暴露によるLi2Oのカーボネート化を抑制し、前記メカニズムによる炉材の崩壊を効果的に抑制可能としている。 In a furnace material in which the grain boundary part is composed of a glassy bonding layer as in the prior art, after firing the raw material containing Li using the furnace material and further exposing to a steam atmosphere, It was observed that the bond between aggregates constituting the material collapsed and the furnace material was broken apart. According to the inventor's guess, in the case of a furnace material in which MgO is an aggregate and the bonding layer is MgCaSiO 4 , when the raw material containing Li is fired using the furnace material, the bonding layer becomes MgO · CaO · SiO. 2 (Li 2 O) is changed to an amorphous material having a chemical composition, and among these, the Li 2 O portion is easy to absorb water vapor and CO 2 in the atmosphere, and from the tie layer to the furnace material by carbonation of Li 2 O It is thought that the collapse of. On the other hand, in the present invention, a spinel layer is formed by a firing reaction at the grain boundary portion between the aggregates, thereby amorphizing the bonding layer by reaction with Li and subsequent Li 2 exposure by water vapor exposure. Carbonation of O is suppressed, and collapse of the furnace material due to the mechanism can be effectively suppressed.

なお、該炉材の嵩比重は1.0〜2.5である。嵩比重が2.5以上になると、炉材の重量が大きくなり、複数階構造の焼成炉には採用困難となるため好ましくない。一方、嵩比重が1.0以下の場合、炉を昇温する際発生する熱応力により、炉材が破損する危険性があり好ましくない。   The bulk density of the furnace material is 1.0 to 2.5. When the bulk specific gravity is 2.5 or more, the weight of the furnace material increases, and it becomes difficult to employ it in a firing furnace having a multi-story structure. On the other hand, when the bulk specific gravity is 1.0 or less, there is a risk that the furnace material may be damaged by the thermal stress generated when the furnace is heated.

該炉材の常温圧縮強度は、1.0MPa以上とすることは必要である。一方、嵩比重を1.0〜2.5とするための気孔率との関係から、常温圧縮強度50MPaが工業的に実現可能な強度の上限となっている。   It is necessary that the normal temperature compressive strength of the furnace material be 1.0 MPa or more. On the other hand, the normal temperature compressive strength of 50 MPa is the upper limit of the industrially realizable strength from the relationship with the porosity for setting the bulk specific gravity to 1.0 to 2.5.

該炉材は、MgOの含有率が33〜99.5質量%、MgO と Al23 との合計含有率がMgO +Al23=95質量%以上、MgO とAl23との含有比率がAl23 / MgO(質量%比)=0.003 〜 2.1、嵩比重が1.0〜2.5とすることでMgO本来の耐食性を保持しつつ軽量化を実現している。 Furnace material, the content of MgO is 33 to 99.5 wt%, the total content of MgO and Al 2 O 3 is MgO + Al 2 O 3 = 95 wt% or more, of MgO and Al 2 O 3 By making the content ratio Al 2 O 3 / MgO (mass% ratio) = 0.003 to 2.1 and the bulk specific gravity 1.0 to 2.5, weight reduction is achieved while maintaining the original corrosion resistance of MgO. ing.

MgOの割合が33%以下の場合、耐リチウム反応性が低下するため好ましくない。   When the proportion of MgO is 33% or less, lithium resistance reactivity is lowered, which is not preferable.

前記MgOの含有率は高いほど望ましいが、MgOはコストが高く、MgOのみから炉材を構成することは現実的ではない。そこで、Al23 との混合で使用し、該Al23とMgO との合計含有率がMgO +Al23=95質量%以上、かつ、含有比率がAl23 / MgO(質量%比)=0.003 〜 2.1となる構成にすることで、耐反応性を確保することができる。Al23とMgO との合計含有率が95質量%未満である場合には、MgOの特性である耐食性が有効に発揮されなくなるため好ましくない。また、含有比率がAl23 / MgO(質量%比)=0.003未満の場合には 、MgO粒子の焼結が進みにくく、1650℃以上の高温焼成が必要となる。Al23 / MgO(質量%比)=2.1を超える場合には 、MgOの含有量が少なく、耐食性が十分に発揮されない。 The higher the content of MgO, the better. However, MgO is expensive, and it is not realistic to construct the furnace material from MgO alone. Therefore, used in admixture with Al 2 O 3, the Al 2 O 3 and the total content of the MgO is MgO + Al 2 O 3 = 95 wt% or more, and the content ratio of Al 2 O 3 / MgO ( Reaction resistance can be ensured by adopting a structure in which the mass% ratio) = 0.003 to 2.1. When the total content of Al 2 O 3 and MgO is less than 95% by mass, the corrosion resistance, which is a characteristic of MgO, cannot be effectively exhibited, which is not preferable. When the content ratio is less than Al 2 O 3 / MgO (mass% ratio) = 0.003, the sintering of MgO particles is difficult to proceed, and high-temperature firing at 1650 ° C. or higher is required. When Al 2 O 3 / MgO (mass% ratio) exceeds 2.1, the content of MgO is small and the corrosion resistance is not sufficiently exhibited.

以下に、嵩比重が1.0〜2.5である該炉材の製造方法を説明する。   Below, the manufacturing method of this furnace material whose bulk specific gravity is 1.0-2.5 is demonstrated.

(原料)
MgO原料として、平均粒径0.8〜2mmのペリクレースまたはスピネルを用い、全原料中5〜20質量%を、平均粒径10〜100μmのAl23粉末とし、造孔材とともに全原料を混練および成形後、1400〜1700℃で焼成することにより、ペリクレースまたはスピネルからなる骨材の表面でスピネル型結晶構造を有する結合層を形成する。平均粒子径は、使用前に予め粉砕処理を行って調整する。
(material)
As the MgO raw material, periclase or spinel with an average particle diameter of 0.8 to 2 mm is used, and 5 to 20% by mass of the total raw material is made into Al 2 O 3 powder with an average particle diameter of 10 to 100 μm. After kneading and forming, firing at 1400 to 1700 ° C. forms a bonding layer having a spinel crystal structure on the surface of the aggregate made of periclase or spinel. The average particle diameter is adjusted by pulverization before use.

MgO原料粉末は、MgO純度が95質量%以上であることが好ましく、平均粒子径が0.8mmの粗粒と、平均粒子径が0.1mmの細粒を組み合せとすることが好ましい。   The MgO raw material powder preferably has a MgO purity of 95% by mass or more, and a combination of coarse particles having an average particle size of 0.8 mm and fine particles having an average particle size of 0.1 mm is preferable.

Al23原料粉末としては、Al23純度が99質量%以上であることが好ましい。気孔率を向上させるために、Al23バブル用いることもできる。該Al23とMgO との合計含有率は、MgO +Al23=95質量%以上、かつ、含有比率がAl23 / MgO(質量%比)=0.003 〜 2.1であることが好ましい。 The Al 2 O 3 raw material powder preferably has an Al 2 O 3 purity of 99% by mass or more. In order to improve the porosity, Al 2 O 3 bubbles can also be used. The total content of the Al 2 O 3 and MgO is MgO + Al 2 O 3 = 95% by mass or more and the content ratio is Al 2 O 3 / MgO (mass% ratio) = 0.003 to 2.1. It is preferable that

各原料には、SiOが不純物として含有されるが、含有するSiOは3質量%未満であることが好ましく、より好ましくは1質量%未満である。これらの成分の合計量が3質量%以上の場合、結晶粒界に第2相やガラス相を多く生成し、耐食性が低下するため好ましくない。尚、SiO含有量を0.1質量%以下にまで低下させるためには、極めて高純度の原料の使用が必要となり、コストの観点から工業的には好ましくない。 Each raw material contains SiO 2 as an impurity, and the contained SiO 2 is preferably less than 3% by mass, and more preferably less than 1% by mass. When the total amount of these components is 3% by mass or more, a large amount of the second phase or glass phase is generated at the crystal grain boundary, and the corrosion resistance is lowered, which is not preferable. In order to reduce the SiO 2 content to below 0.1% by weight, it requires the use of very high purity of the raw material is not preferable for industrial view of cost.

(製法)
以上の原料を用いて所定の組成になるように配合し、更に、炉材に気孔を形成するための造孔材として発泡スチロール等の有機物を添加し、湿式で混練を行う混練機(カントーミキサー等)により水または有機溶媒中で混合する。造孔材としての有機物添加量は、表2〜3において、前記の全原料を100質量%として、ここに更に追加して添加する量として記載しており、これを「外配」と記載している。なお、前記のように、気孔率を向上させるために、Al23バブル用いる場合には、発泡スチロール等の有機物の添加は必須要件ではない。
(Manufacturing method)
A kneader (such as a can-to-mixer) that is blended so as to have a predetermined composition using the above raw materials, and further added with an organic substance such as polystyrene foam as a pore former for forming pores in the furnace material, and kneaded in a wet manner ) In water or an organic solvent. In Tables 2 and 3, the amount of organic substance added as a pore former is described as an amount to be added in addition to 100% by mass of the total raw materials, and this is described as “external distribution”. ing. As described above, in order to improve the porosity, when Al 2 O 3 bubbles are used, addition of an organic substance such as expanded polystyrene is not an essential requirement.

成形方法として油圧プレス成形、フリクションプレス成形等の方法を採用する場合、混合スラリーに、必要により公知の成形助剤(例えばアクリル系樹脂、PVA等)を添加し、スプレードライヤー等の公知の方法で乾燥させて成形用粉体を作製し、この成形用粉体を金型やゴム型などに充填して成形する。また、鋳込み成形法を採用する場合には、混合スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を添加し、石膏型あるいは樹脂型を用いて排泥鋳込法、充填鋳込法、加圧鋳込法などにより成形する。   When adopting a method such as hydraulic press molding or friction press molding as a molding method, a known molding aid (for example, acrylic resin, PVA, etc.) is added to the mixed slurry as necessary, and a known method such as a spray dryer is used. A molding powder is produced by drying, and the molding powder is filled into a mold or a rubber mold and molded. In addition, when adopting a casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the mixed slurry as required, and a waste mud casting method or a filling casting using a gypsum mold or a resin mold. Molding is performed by squeeze method or pressure casting method.

以上のようにして得た成形体を1300〜1700℃、より好ましくは1450〜1650℃で焼成することによって耐リチウム反応性に優れた軽量の、MgO質焼結体からなる炉材を得る。   The molded body obtained as described above is fired at 1300 to 1700 ° C., more preferably 1450 to 1650 ° C., to obtain a light-weight furnace material made of a MgO-based sintered body excellent in lithium resistance.

Figure 2012106899
上記の表1では、MgO原料の添加による耐Li反応性を評価している。
Figure 2012106899
In Table 1 above, the Li resistance resistance due to the addition of the MgO raw material is evaluated.

表1に示す割合で各原料を配合し、更に、造孔材を添加し、湿式で混練を行う混練機(カントーミキサー等)により水または有機溶媒中で混合後、1450℃で焼成して200mm×200mm、高さ30mmのサンプルを作製した。使用したMgO原料としては粒度が0.8mm、0.1mmの何れかで、純度が95%以上のものを使用した。成形はPVAを添加した後、油圧プレス成形で行った。焼成は1450℃で行った。
(耐Li反応性評価)
得られた各サンプルより切り出した試験片(20×20×5t)と10gのLiCOをアルミナ坩堝に入れ、大気中1100℃、5時間保持を3サイクル繰り返した。加熱前後での試験片の寸法を測定し、外観と、反応後の膨張率により耐Li反応性を評価した。
Each raw material is blended in the proportions shown in Table 1, and further, a pore former is added, mixed in water or an organic solvent by a kneader (such as a Canto mixer) that performs wet kneading, and then fired at 1450 ° C. to 200 mm. A sample having × 200 mm and a height of 30 mm was produced. As the MgO raw material used, one having a particle size of 0.8 mm or 0.1 mm and a purity of 95% or more was used. Molding was performed by hydraulic press molding after adding PVA. Firing was performed at 1450 ° C.
(Li reactivity evaluation)
A test piece (20 × 20 × 5 t) cut out from each sample obtained and 10 g of Li 2 CO 3 were put in an alumina crucible, and maintained at 1100 ° C. in the atmosphere for 5 hours for 3 cycles. The dimensions of the test piece before and after heating were measured, and the Li resistance was evaluated based on the appearance and the expansion rate after the reaction.

(実施例1〜4)
MgO原料として、粒度が0.8mmの粗粒と0.1mmの細粒とを、各々表1の割合で混合して使用した。いずれも、優れた耐Li反応性を示した。
(比較例1、2)
MgO質を添加しない例であり、いずれも、耐Li反応性に問題があった。
(Examples 1-4)
As MgO raw materials, coarse particles having a particle size of 0.8 mm and fine particles having a size of 0.1 mm were mixed and used in the ratios shown in Table 1. All showed excellent Li reaction resistance.
(Comparative Examples 1 and 2)
This is an example in which no MgO material is added, and in all cases, there was a problem in Li resistance.

Figure 2012106899
上記の表2では、MgO原料の平均粒子径による成形性および焼結性への影響を示している。
Figure 2012106899
Table 2 above shows the influence of the average particle size of the MgO raw material on the moldability and sinterability.

表2に示す割合で各原料を配合し、更に、造孔材を添加し、湿式で混練を行う混練機(カントーミキサー等)により水または有機溶媒中で混合後、1450℃で焼成して200mm×200mm、高さ30mmのサンプルを作製した。Alは、電融Al23を使用した。実施例5では、発泡スチロールも添加した。MgO原料は粒度が2mm、0.8mm、0.1mm、0.005mmの何れかで、純度が95%以上のものを使用した。成形はPVAを添加した後、油圧プレス成形で行った。
(耐Li反応性評価)
得られた各サンプルより切り出した試験片(20×20×5t)と10gのLiCOをアルミナ坩堝に入れ、大気中1100℃、5時間保持を3サイクル繰り返した。加熱前後での試験片の寸法を測定し、反応による膨張率を評価した。
(成形性評価)
所定の配合に秤量し混合した坏土を、試験用金型(底板:100×100×10t)に入れ、10MPaの圧力をかけた。金型から取り出す際、成形体に破損が生じるかを評価した。評価は以下の3段階で行った。○:破損なし。△:一部破損。×:取り出せず。無理やり取り出した場合破損。
(焼成評価)
プレス成形後、100℃の乾燥を行い水分除去した乾燥体を、電気炉にて1450℃〜1650℃で焼成を行った。焼成後外観を観察し、クラックの有無を検査した。評価は以下の2段階で行った。○:クラック無し。×:クラック有り。
(比重評価)
煮沸法(JIS R2205)にてカサ比重を測定評価した。評価は以下の2段階で行った。○:カサ比重 1.0〜2.5。×:それ以外。
Each raw material is blended in the proportions shown in Table 2, and further, a pore former is added, mixed in water or an organic solvent by a kneader (such as a Canto mixer) that performs wet kneading, and then fired at 1450 ° C. to 200 mm. A sample having × 200 mm and a height of 30 mm was produced. As Al 2 O 3 , electrofused Al 2 O 3 was used. In Example 5, styrofoam was also added. The MgO raw material used had a particle size of 2 mm, 0.8 mm, 0.1 mm, or 0.005 mm and a purity of 95% or more. Molding was performed by hydraulic press molding after adding PVA.
(Li reactivity evaluation)
A test piece (20 × 20 × 5 t) cut out from each sample obtained and 10 g of Li 2 CO 3 were put in an alumina crucible, and maintained at 1100 ° C. in the atmosphere for 5 hours for 3 cycles. The dimensions of the test piece before and after heating were measured, and the expansion rate due to the reaction was evaluated.
(Formability evaluation)
The kneaded clay weighed and mixed in a predetermined composition was put into a test mold (bottom plate: 100 × 100 × 10 t), and a pressure of 10 MPa was applied. When taking out from the mold, it was evaluated whether or not the molded body was damaged. Evaluation was performed in the following three stages. ○: No damage. Δ: Partially damaged. X: Not taken out. Damaged when forced exchange.
(Firing evaluation)
After press molding, the dried body from which moisture was removed by drying at 100 ° C. was fired at 1450 ° C. to 1650 ° C. in an electric furnace. After firing, the appearance was observed and the presence or absence of cracks was inspected. Evaluation was performed in the following two stages. ○: No crack. X: There is a crack.
(Specific gravity evaluation)
The bulk density was measured and evaluated by the boiling method (JIS R2205). Evaluation was performed in the following two stages. ○: Bulk specific gravity 1.0-2.5. X: Other than that.

(実施例5〜9)
MgO原料として、粒度が2mm又は0.8mmの粗粒と0.1mm又は0.005mmの細粒とを、各々表2の割合で混合して使用した。いずれも、優れた耐Li反応性・成形性を示した。また、焼成によるクラック発生の問題は生じなかった。比重も小さく、軽量化が実現された。
(比較例3)
MgO原料として、粒度が0.005mmの細粒のみを使用した。耐Li反応性には問題がなかったが、成形性に劣り、焼成時にクラックが観察された。
(比較例4)
MgO原料として、粒度が2mmの粗粒のみを使用した。耐Li反応性がやや劣り、成形中に取り扱い中の欠けが観察された。
(Examples 5 to 9)
As MgO raw materials, coarse particles having a particle size of 2 mm or 0.8 mm and fine particles having a size of 0.1 mm or 0.005 mm were mixed and used in the ratios shown in Table 2, respectively. All showed excellent Li reaction resistance and moldability. Moreover, the problem of the crack generation by baking did not arise. The specific gravity is small and light weight is realized.
(Comparative Example 3)
As the MgO raw material, only fine particles having a particle size of 0.005 mm were used. Although there was no problem in Li resistance, the moldability was inferior and cracks were observed during firing.
(Comparative Example 4)
As the MgO raw material, only coarse particles having a particle size of 2 mm were used. The Li reactivity was slightly inferior, and chipping during handling was observed during molding.

Figure 2012106899
Figure 2012106899

表3に示す割合で各原料を配合し、更に、造孔材を添加し、湿式で混練を行う混練機(カントーミキサー等)により水または有機溶媒中で混合後、1450℃で焼成して200mm×200mm、高さ30mmのサンプルを作製した。実施例10〜12および比較例5では、Alは、Al23バブル使用した。実施例13および比較例6では、発泡スチロールを添加した。MgO原料は粒度が2mm、0.8mm、0.1mm、0.005mmの何れかで、純度が95%以上のものを使用した。実施例14では、フリクションプレスで、200mm×200mm、で高さ50mmの匣鉢成形を行った。焼成は1450℃で行った。
(XRD測定)
焼成後のサンプルについてXRD測定を行い、MgO質がスピネル型結晶構造として存在する割合を評価した。XRD測定は、RINT−1100 X−ray diffracmeter(Rigaku製)を用いて行い、測定条件は下記の通りとした。(2θ:25〜45°、ステップ幅:0.04、係数時間:2、電圧:40kV、電流:20mA)
(耐Li反応性評価)
得られた各サンプルより切り出した試験片(20×20×5t)と10gのLiCOをアルミナ坩堝に入れ、大気中1100℃、5時間保持を繰り返した。加熱前後での試験片の寸法を測定し、試験片の寸法が10%膨張した通窯回数を測定した。評価は以下の◎、○、×で行った。◎:7回以上、○:4回〜7回未満、×:4回未満。
(比重評価)
煮沸法(JIS R2205)に準拠しカサ比重を測定した。評価は以下の○、×で行った。○:カサ比重 1.0〜2.5。×:それ以外。
(圧縮強度評価)
2000KN圧縮試験機(JTトーシ株式会社製)にて最大荷重を測定し、JIS R2206に準拠し圧縮強度を測定した。評価は以下の○、×で行った。○:圧縮強度 1.0MPa以上。×:圧縮強度 1.0MPaよりも下。
Each raw material is blended in the proportions shown in Table 3, and further, a pore former is added, mixed in water or an organic solvent by a kneader (such as a Canto mixer) that performs wet kneading, and then fired at 1450 ° C. to 200 mm. A sample having × 200 mm and a height of 30 mm was produced. In Examples 10 to 12 and Comparative Example 5, Al 2 O 3 were used Al 2 O 3 bubbles. In Example 13 and Comparative Example 6, styrene foam was added. The MgO raw material used had a particle size of 2 mm, 0.8 mm, 0.1 mm, or 0.005 mm and a purity of 95% or more. In Example 14, mortar molding of 200 mm × 200 mm and a height of 50 mm was performed by a friction press. Firing was performed at 1450 ° C.
(XRD measurement)
The XRD measurement was performed on the sample after firing, and the proportion of the MgO material present as a spinel crystal structure was evaluated. The XRD measurement was performed using a RINT-1100 X-ray diffractometer (manufactured by Rigaku), and the measurement conditions were as follows. (2θ: 25 to 45 °, step width: 0.04, coefficient time: 2, voltage: 40 kV, current: 20 mA)
(Li reactivity evaluation)
A test piece (20 × 20 × 5 t) cut out from each sample obtained and 10 g of Li 2 CO 3 were put in an alumina crucible, and the holding at 1100 ° C. in the atmosphere for 5 hours was repeated. The dimension of the test piece before and after heating was measured, and the number of times the kiln was expanded by 10% was measured. Evaluation was performed by the following ◎, ○, ×. (Double-circle): 7 times or more, (circle): 4 times-less than 7 times, x: less than 4 times.
(Specific gravity evaluation)
The bulk density was measured according to the boiling method (JIS R2205). Evaluation was performed by the following (circle) and x. ○: Bulk specific gravity 1.0-2.5. X: Other than that.
(Compressive strength evaluation)
The maximum load was measured with a 2000 KN compression tester (manufactured by JT Toshi Co., Ltd.), and the compressive strength was measured according to JIS R2206. Evaluation was performed by the following (circle) and x. ○: Compressive strength 1.0 MPa or more. X: Compressive strength Below 1.0 MPa.

(実施例10〜14)
MgO原料として、粒度が2mm又は0.8mmの粗粒と0.1mm又は0.005mmの細粒とを、各々表3の割合で混合して使用した。いずれも、良好な耐Li反応性・圧縮強度を示した。比重も小さく、軽量化が実現された。
(実施例15)
MgO原料として、粒度が0.8mmの粗粒を使用し、さらにスピネルを、表3の割合で混合して使用した。良好な耐Li反応性・圧縮強度を示した。比重も小さく、軽量化が実現された。
(実施例16〜18)
MgO原料として、粒度が0.8mmの粗粒と0.1mmの細粒とを、各々表3の割合で混合して使用、さらにAl23原料として、粒度が0.05mmの微粉末、(実施例16では更にスピネル)を、表3の割合で混合して使用した。いずれも、極めて良好な耐Li反応性を示した。その他、圧縮強度も良好であり、比重も小さく、軽量化が実現された。
(実施例19)
MgO原料として、粒度が0.1mmの細粒を使用し、さらにAl23原料として、粒度が0.05mmの微粉末、および、Al23バブルを、各々表3の割合で混合して使用した。いずれも、良好な耐Li反応性・圧縮強度を示した。比重も小さく、軽量化が実現された。
(比較例5)
MgO原料として、粒度が0.005mmの細粒のみを使用した。耐Li反応性には問題がなかったが、圧縮強度に劣る問題があった。
(比較例6)
Al23バブル使用せず、代わりに発泡スチロールのみを使用した。耐Li反応性には問題がなかったが、圧縮強度に劣る問題があった。
(比較例7)
Al23バブルも発泡スチロールも使用しなかった。耐Li反応性・圧縮強度には問題がなかったが、比重が大きくなる問題があった。
(比較例8)
ペリクレースあるいはスピネルの何れも使用せず、MgO原料を無添加とした。耐Li反応性に欠ける問題があった。
(比較例9)
スピネルを1%添加した。添加量が少ないため、耐Li反応性に欠ける問題があった。
(Examples 10 to 14)
As MgO raw materials, coarse particles having a particle size of 2 mm or 0.8 mm and fine particles having a particle size of 0.1 mm or 0.005 mm were mixed and used in the ratios shown in Table 3, respectively. All showed good Li reaction resistance and compressive strength. The specific gravity is small and light weight is realized.
(Example 15)
As the MgO raw material, coarse particles having a particle size of 0.8 mm were used, and spinel was further mixed at a ratio shown in Table 3. Good Li reaction resistance and compressive strength were exhibited. The specific gravity is small and light weight is realized.
(Examples 16 to 18)
As MgO raw material, and a fine coarse and 0.1mm particle size is 0.8 mm, used in a ratio of each table 3, as further Al 2 O 3 raw material, fine powder of particle size 0.05 mm, (Further spinel in Example 16) was mixed and used at the ratio shown in Table 3. All showed extremely good Li reaction resistance. In addition, the compression strength was good, the specific gravity was small, and the weight was reduced.
(Example 19)
Fine particles with a particle size of 0.1 mm are used as the MgO raw material, and fine powder with a particle size of 0.05 mm and Al 2 O 3 bubbles are mixed as the Al 2 O 3 raw material in the proportions shown in Table 3, respectively. Used. All showed good Li reaction resistance and compressive strength. The specific gravity is small and light weight is realized.
(Comparative Example 5)
As the MgO raw material, only fine particles having a particle size of 0.005 mm were used. Although there was no problem in Li resistance, there was a problem inferior in compressive strength.
(Comparative Example 6)
Al 2 O 3 bubbles were not used, and only styrene foam was used instead. Although there was no problem in Li resistance, there was a problem inferior in compressive strength.
(Comparative Example 7)
Neither Al 2 O 3 bubbles nor styrofoam was used. Although there was no problem in Li resistance and compressive strength, there was a problem that specific gravity increased.
(Comparative Example 8)
Neither periclase nor spinel was used, and no MgO raw material was added. There was a problem of lack of resistance to Li reaction.
(Comparative Example 9)
1% of spinel was added. Since the amount added was small, there was a problem of lack of resistance to Li reaction.

以上を考察すると、
表1に示すように、耐Li反応性を確保する観点から、MgO質は必須要件である。表2に示すように、成形性を確保する観点から、MgO原料は粗粒と細粒を組み合わせて使用することが好ましい。表3に示すように、長期間にわたって極めて良好な耐Li反応性を確保する観点から、MgO原料に添加して使用するAl23原料として微粉末のものを選択することが好ましい。また、同じく、長期間にわたって極めて良好な耐Li反応性を確保する観点から、XRD測定での結果として、MgO質がスピネル型結晶構造として存在する割合が0.5〜8%であることが好ましい。
Considering the above,
As shown in Table 1, MgO quality is an indispensable requirement from the viewpoint of ensuring Li resistance. As shown in Table 2, from the viewpoint of ensuring moldability, the MgO raw material is preferably used in combination of coarse particles and fine particles. As shown in Table 3, it is preferable to select a finely powdered Al 2 O 3 raw material to be used by adding to the MgO raw material from the viewpoint of ensuring extremely good Li resistance over a long period of time. Similarly, from the viewpoint of ensuring extremely good Li-reactivity over a long period of time, it is preferable that the ratio of MgO quality present as a spinel crystal structure is 0.5 to 8% as a result of XRD measurement. .

Claims (6)

MgOの含有率が33〜99.5質量%、
MgO と Al23 との合計含有率がMgO +Al23=95〜99.9質量%、
MgO とAl23との含有比率が、各質量%比で、Al23 / MgO=0.003 〜 2.1、嵩比重が1.0〜2.5であることを特徴とする炉材。
MgO content is 33-99.5 mass%,
The total content of MgO and Al 2 O 3 is MgO + Al 2 O 3 = 95 to 99.9% by mass,
The content ratio of MgO and Al 2 O 3 is, in each mass% ratio, Al 2 O 3 /MgO=0.003 to 2.1, and the bulk specific gravity is 1.0 to 2.5. Furnace material.
MgO成分の2〜92%がスピネルであることを特徴とする請求項1記載の炉材。   The furnace material according to claim 1, wherein 2 to 92% of the MgO component is spinel. 該炉材がCo、Mn、Ni、Fe、Pから選択された1種類以上の元素とリチウムとの複合酸化物の熱処理に用いる、リチウム複合酸化物の熱処理用炉材であることを特徴とする請求項1記載の炉材。   The furnace material is a furnace material for heat treatment of a lithium composite oxide used for heat treatment of a composite oxide of at least one element selected from Co, Mn, Ni, Fe, and P and lithium. The furnace material according to claim 1. SiOの含有率が、0.1〜3.0質量%であることを特徴とする請求項1記載の炉材。 The furnace material according to claim 1, wherein the content of SiO 2 is 0.1 to 3.0% by mass. 常温圧縮強度が1.0〜50MPaであることを特徴とする請求項1記載の炉材。   The furnace material according to claim 1, wherein the normal temperature compressive strength is 1.0 to 50 MPa. 請求項2記載の炉材を製造する方法であって、骨材原料として、平均粒径0.8〜2mmのペリクレースまたはスピネルを用い、全炉材原料中5〜20質量%を、平均粒径10〜100μmのAl23粉末とし、造孔材とともに全原料を混練および成形後、1400〜1700℃で焼成することを特徴とする炉材の製造方法。 It is a method of manufacturing the furnace material according to claim 2, wherein as the aggregate material, periclase or spinel having an average particle diameter of 0.8 to 2 mm is used, and 5 to 20% by mass in the total furnace material material has an average particle diameter. A method for producing a furnace material, characterized in that the Al 2 O 3 powder is 10 to 100 μm, all raw materials are kneaded and molded together with the pore former, and then fired at 1400 to 1700 ° C.
JP2010261310A 2009-12-01 2010-11-24 Brick and mortar and method for producing the same Expired - Fee Related JP5732680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261310A JP5732680B2 (en) 2009-12-01 2010-11-24 Brick and mortar and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009273111 2009-12-01
JP2009273111 2009-12-01
JP2010237168 2010-10-22
JP2010237168 2010-10-22
JP2010261310A JP5732680B2 (en) 2009-12-01 2010-11-24 Brick and mortar and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012106899A true JP2012106899A (en) 2012-06-07
JP5732680B2 JP5732680B2 (en) 2015-06-10

Family

ID=44395931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261310A Expired - Fee Related JP5732680B2 (en) 2009-12-01 2010-11-24 Brick and mortar and method for producing the same

Country Status (4)

Country Link
JP (1) JP5732680B2 (en)
KR (1) KR101719823B1 (en)
CN (1) CN102167599B (en)
TW (1) TW201130777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478474A (en) * 2014-12-23 2015-04-01 山东鲁阳股份有限公司 Light refractory brick and preparation method thereof
CN111718203A (en) * 2020-07-28 2020-09-29 中国一冶集团有限公司 Refractory castable for converter sublance and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557680B (en) * 2011-11-24 2015-04-08 中钢集团耐火材料有限公司 Super-micro powder combined impervious spinel brick for refining furnace lining and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165767A (en) * 2001-11-28 2003-06-10 Noritake Co Ltd Spinel refractory and use of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126061A (en) * 1993-09-10 1995-05-16 Kounoshima Kagaku Kogyo Kk Magnesia-based sintered material and production thereof
CN1382665A (en) * 2001-04-26 2002-12-04 河南省登封市第二耐火材料总厂 Synthetic MgAl spinal and its preparing process
JP2007112670A (en) 2005-10-21 2007-05-10 Toshiba Ceramics Co Ltd Firing vessel
JP4721947B2 (en) 2006-04-19 2011-07-13 株式会社ニッカトー Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
CN101712554B (en) * 2009-10-28 2012-04-04 郑州真金耐火材料有限责任公司 Production method of magnesium-aluminum spinel bricks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165767A (en) * 2001-11-28 2003-06-10 Noritake Co Ltd Spinel refractory and use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478474A (en) * 2014-12-23 2015-04-01 山东鲁阳股份有限公司 Light refractory brick and preparation method thereof
CN111718203A (en) * 2020-07-28 2020-09-29 中国一冶集团有限公司 Refractory castable for converter sublance and preparation method thereof

Also Published As

Publication number Publication date
CN102167599B (en) 2015-08-19
JP5732680B2 (en) 2015-06-10
KR101719823B1 (en) 2017-03-24
KR20110061484A (en) 2011-06-09
TW201130777A (en) 2011-09-16
CN102167599A (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN105698542B (en) A kind of anti-lithium battery high temperature corrosion stratiform saggar and preparation method thereof
JP5039640B2 (en) Pot for producing positive electrode active material for lithium ion battery and method for producing the same
JP5241868B2 (en) sheath
CN103570364B (en) One does not burn Mg-Al spinel brick
JP2012224487A (en) Kiln tool for manufacturing positive electrode active material of lithium secondary battery, and method for manufacturing the same
CN107108376B (en) Heat insulating unshaped refractory
CN103755363A (en) Lightweight siliceous mullite composite brick and preparation method thereof
CN106167398A (en) honeycomb ceramic heat accumulator and preparation method thereof
CN108424124B (en) Spinel reinforced magnesium oxide base crucible synthesized in situ by magnesium oxide whisker and preparation method thereof
CN109400137A (en) Anode material of lithium battery firing fire-clay crucible and preparation method thereof
JP6386801B2 (en) Alumina fusion cast refractory and method for producing the same
CN108546093B (en) Alumina short fiber reinforced magnesium oxide base crucible and preparation method thereof
JP5732680B2 (en) Brick and mortar and method for producing the same
JP2003165767A (en) Spinel refractory and use of the same
CN106365654B (en) A kind of anti-lithium electric material erosion fire-clay crucible adding ZrN-SiAlON
CN115417658A (en) Novel magnesium aluminate spinel brick for cement kiln burning zone and production method thereof
CN113716940A (en) Novel heat storage brick and preparation method thereof
CN112250423A (en) Anti-seepage high-strength forsterite light heat-insulating brick and preparation method thereof
JP2006206338A (en) Highly corrosion-resistant refractory
JP4488444B2 (en) Method for producing porous ceramics and porous ceramics
KR20130051290A (en) Kiln furniture and its composition for sintering cathode material of secondary battery
CN110452009A (en) A kind of preparation method of in-situ preparation magnesium aluminate spinel whisker skeletal porous ceramics
EP3421571B1 (en) Precast refractory block for coke oven
CN109095902A (en) A kind of glass furnace paving brick and its production technology
CN114105630A (en) Petalite combined calcium hexaluminate sagger and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R150 Certificate of patent or registration of utility model

Ref document number: 5732680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees