JP2012106200A - Removing method for halogen gas or fluoride gas by removing agent - Google Patents

Removing method for halogen gas or fluoride gas by removing agent Download PDF

Info

Publication number
JP2012106200A
JP2012106200A JP2010258094A JP2010258094A JP2012106200A JP 2012106200 A JP2012106200 A JP 2012106200A JP 2010258094 A JP2010258094 A JP 2010258094A JP 2010258094 A JP2010258094 A JP 2010258094A JP 2012106200 A JP2012106200 A JP 2012106200A
Authority
JP
Japan
Prior art keywords
gas
halogen
removing agent
fluoride
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010258094A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichimaru
広志 市丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010258094A priority Critical patent/JP2012106200A/en
Publication of JP2012106200A publication Critical patent/JP2012106200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method, which enables a further increase in throughput per unit mass of a removing agent by a method of reacting a removing agent with a halogen gas or a fluoride gas not evaporating rather than evaporating moisture contained in the removing agent in the case of removing the halogen gas which is a gas of a fluoride comprising halogen elements such as fluorine (F) and chlorine trifluoride (ClF), and the fluoride gas produced by the reaction with the halogen gas using the removing agent containing calcium hydroxide.SOLUTION: In the removing method for the halogen gas or the fluoride gas, an exhaust gas containing the halogen gas or the fluoride gas makes contact with the removing agent containing mainly calcium hydroxide and the halogen gas is fixed and removed. It is characterized in that the moisture is supplied to the removing agent.

Description

本発明は、特に、半導体製造、液晶製造、又は太陽電池製造工場において、クリーニングやエッチング時に排出されるガス中の、ハロゲンガス又は該ハロゲンガスと処理対象物との反応により生成するフッ化物ガスの除去に関するものである。   The present invention particularly relates to halogen gas in a gas discharged during cleaning or etching in a semiconductor manufacturing, liquid crystal manufacturing, or solar cell manufacturing factory, or a fluoride gas generated by a reaction between the halogen gas and a processing object. It is about removal.

ハロゲンガス、例えば、フッ素(F)ガスやハロゲン元素からなるフッ化物のガスである三フッ化塩素(ClF)ガスなどは、半導体製造、液晶製造、又は太陽電池製造工場において、珪素やタングステンを除去するためのクリーニングガスやエッチングガスとして使用されている。また、400℃以下の温度において反応性が低い三フッ化窒素(NF)ガスや六フッ化硫黄(SF)ガスもプラズマ分解によりフッ素(F)ガス等を発生するため、同様の目的で使用されている。 Halogen gas such as fluorine (F 2 ) gas or chlorine trifluoride (ClF 3 ) gas, which is a fluoride gas composed of a halogen element, is used for silicon or tungsten in semiconductor manufacturing, liquid crystal manufacturing, or solar cell manufacturing factories. It is used as a cleaning gas and an etching gas for removing water. Further, since nitrogen trifluoride (NF 3 ) gas and sulfur hexafluoride (SF 6 ) gas, which have low reactivity at a temperature of 400 ° C. or lower, generate fluorine (F 2 ) gas or the like by plasma decomposition, Used in.

ハロゲンガス又はフッ化物ガスの除去は、水酸化カルシウムを主成分とする固体アルカリ除去剤を充填した除去筒により処理される。   The removal of the halogen gas or fluoride gas is processed by a removal cylinder filled with a solid alkali removing agent mainly composed of calcium hydroxide.

半導体製造、液晶製造、又は太陽電池製造工場において、クリーニングやエッチングに使用されるフッ素(F)ガスや三フッ化塩素(ClF)ガスなどのハロゲンガスは、ウエハーの大口径化や液晶サイズの大型化に伴い、これらのガスの消費量及び生成されるフッ化物ガスが増大し、これらハロゲンガス又はフッ化物ガスを含有する排出ガスも増大する。したがって、排出されるこれらハロゲンガス及びフッ化物ガスの除去を、効率よく大量に行うことが必要になってきている。排出されるガスは、通常、窒素ガスやアルゴンガスなどの不活性ガスで希釈されており、これらハロゲンガス及びフッ化物ガスの濃度は1体積%以下であることがほとんどである。 In semiconductor manufacturing, liquid crystal manufacturing, or solar cell manufacturing factories, halogen gases such as fluorine (F 2 ) gas and chlorine trifluoride (ClF 3 ) gas used for cleaning and etching are used to increase the wafer diameter and liquid crystal size. With the increase in size, the consumption of these gases and the generated fluoride gas increase, and the exhaust gas containing these halogen gas or fluoride gas also increases. Therefore, it is necessary to efficiently remove a large amount of these halogen gas and fluoride gas discharged. The discharged gas is usually diluted with an inert gas such as nitrogen gas or argon gas, and the concentration of these halogen gas and fluoride gas is usually 1% by volume or less.

一般的に使用されている水酸化カルシウムを主成分とする固体アルカリ除去剤は、ソーダ石灰と呼ばれるものである。ソーダ石灰は、通常、生石灰を水酸化ナトリウムの濃厚溶液に浸し、加熱してつくった強い塩基性の白色粒状の固形物質である(非特許文献1)。ソーダ石灰は試薬としても日本工業規格K8603に規定されている。ソーダ石灰は、ソーダライムの名称で市販もされている。これらの市販のソーダライムは不定形の粒状や顆粒状であり、100〜200℃で遊離される水分を19質量%以下含んでいる。この水分を蒸発させて用いても良いが、弗化物ガスの浄化能力の点からみるとそのまま水分を保たせる方が好ましいことが報告されている(特許文献1)。   A commonly used solid alkali removing agent mainly composed of calcium hydroxide is called soda lime. Soda lime is a strong basic white granular solid substance usually produced by immersing quick lime in a concentrated solution of sodium hydroxide and heating (Non-patent Document 1). Soda lime is specified as a reagent in Japanese Industrial Standard K8603. Soda lime is also marketed under the name soda lime. These commercially available soda limes are in the form of irregular particles or granules, and contain 19% by mass or less of water released at 100 to 200 ° C. Although this water may be used after being evaporated, it has been reported that it is preferable to keep the water as it is in view of the purification ability of fluoride gas (Patent Document 1).

特許第3260825号公報Japanese Patent No. 3260825

「理化学辞典」,第4版,岩波書店,1983年, 761頁RIKEN Dictionary, 4th edition, Iwanami Shoten, 1983, p. 761

クリーニングガスやエッチングガスの使用後に排出されるガス中には、未反応のフッ素(F)又は三フッ化塩素(ClF)と、これらハロゲンガスとクリーニング又はエッチングの対象である物質との反応により生成するフッ化物ガス、例えば、クリーニング又はエッチングの対象が珪素やタングステンの場合、反応で得られる四フッ化珪素(SiF)や六フッ化タングステン(WF)、が含まれているため、排出ガスを大気に放出するにはこれらのガスを除去する必要がある。 In the gas discharged after using the cleaning gas or the etching gas, the reaction between unreacted fluorine (F 2 ) or chlorine trifluoride (ClF 3 ) and the halogen gas and the substance to be cleaned or etched In the case where the object of cleaning or etching is silicon or tungsten, for example, silicon tetrafluoride (SiF 4 ) or tungsten hexafluoride (WF 6 ) obtained by the reaction is included. In order to release exhaust gases to the atmosphere, these gases must be removed.

水酸化カルシウムを含有する除去剤を用いてフッ素(F)や三フッ化塩素(ClF)のようなハロゲン元素からなるフッ化物のガスであるハロゲンガスや該ハロゲンガスとの反応により生成するフッ化物ガスを排出ガスから除去する場合、特許文献1のように除去剤に含有する水分を蒸発させるよりも蒸発させずに除去剤と、ハロゲンガス又はフッ化物ガスとを、反応させることにより、充填される除去剤の単位質量あたりに処理できるハロゲンガス量を多くできる。 Produced by a reaction with a halogen gas, which is a fluoride gas composed of a halogen element such as fluorine (F 2 ) or chlorine trifluoride (ClF 3 ), using a removing agent containing calcium hydroxide. When removing the fluoride gas from the exhaust gas, by reacting the remover with the halogen gas or fluoride gas without evaporating rather than evaporating the water contained in the remover as in Patent Document 1, The amount of halogen gas that can be processed per unit mass of the removing agent to be filled can be increased.

本発明は、上記方法よりもさらに除去剤の単位質量あたりの処理量を多くできる除去方法を提供することを目的とする。   An object of this invention is to provide the removal method which can increase the processing amount per unit mass of a removal agent further than the said method.

本発明者は、かかる問題点を克服するために鋭意検討した結果、水酸化カルシウムを含有する除去剤を用いて、不活性ガスで希釈されたハロゲンガス又はフッ化物ガスを除去する処理を継続すると、除去剤中の水分が不活性ガス中に徐々に失われていくことにより、除去剤の水分を保たせることができなくなり、除去剤の単位質量あたりの除去できるハロゲンガス量は低下することを発見し、このことから、除去剤に水分を供給することにより処理量を向上できることを見いだし、本発明に至った。   As a result of intensive studies to overcome such problems, the present inventor continues to remove the halogen gas or fluoride gas diluted with an inert gas using a remover containing calcium hydroxide. The water in the removing agent is gradually lost in the inert gas, so that the moisture in the removing agent cannot be maintained, and the amount of halogen gas that can be removed per unit mass of the removing agent is reduced. As a result, it was found that the amount of treatment can be improved by supplying moisture to the removing agent, and the present invention has been achieved.

すなわち本発明は、ハロゲンガス又はフッ化物ガスを含有する排出ガスを、水酸化カルシウムを主成分とする除去剤に接触させて、ハロゲンガス又はフッ化物ガスを固定して除去する方法において、該除去剤に水分を供給することを特徴とするハロゲンガス又はフッ化物ガスの除去方法を提供するものである。   That is, the present invention relates to a method for removing an exhaust gas containing a halogen gas or a fluoride gas by bringing the exhaust gas into contact with a remover mainly composed of calcium hydroxide and fixing the halogen gas or the fluoride gas. The present invention provides a halogen gas or fluoride gas removal method characterized by supplying moisture to the agent.

また、水分を含有する不活性ガスを該除去剤に接触させることにより、該除去剤に水分を供給すること、さらには、2体積%以上10体積%以下の水分を含有する不活性ガスを用いること、又は、該除去剤と接触後の排出ガスの湿度を測定し、該測定値より供給する水分量を決定すること、を特徴とする、前記のハロゲンガス又はフッ化物ガスの除去方法を提供するものである。   In addition, by bringing an inert gas containing moisture into contact with the removing agent, moisture is supplied to the removing agent, and further, an inert gas containing 2 to 10% by volume of moisture is used. Or measuring the humidity of the exhaust gas after contact with the removal agent, and determining the amount of water to be supplied from the measured value. To do.

すなわち、水酸化カルシウムを含有する固体アルカリを充填した除去筒で処理される場合は、下記反応式(1)〜(4)のようにフッ化カルシウム(CaF)や塩化カルシウム(CaCl)として固定される。 That is, when treated with a removal cylinder filled with solid alkali containing calcium hydroxide, as calcium fluoride (CaF 2 ) or calcium chloride (CaCl 2 ) as shown in the following reaction formulas (1) to (4) Fixed.

2F+2Ca(OH)→2CaF+2H0+O (1)
2ClF+4Ca(OH)→3CaF+CaCl+4H0+2O (2)
SiF+2Ca(OH)→2CaF+SiO+2H0 (3)
WF+3Ca(OH)→3CaF+WO+3H0 (4)
2F 2 + 2Ca (OH) 2 → 2CaF 2 + 2H 2 0 + O 2 (1)
2ClF 3 + 4Ca (OH) 2 → 3CaF 2 + CaCl 2 + 4H 2 0 + 2O 2 (2)
SiF 4 + 2Ca (OH) 2 → 2CaF 2 + SiO 2 + 2H 2 0 (3)
WF 6 + 3Ca (OH) 2 → 3CaF 2 + WO 3 + 3H 2 0 (4)

本発明により、水酸化カルシウムを含有する除去剤を用いてハロゲンガス又はフッ化物ガスを除去する方法において、単位質量当たりの処理量を向上させることが可能となる。   According to the present invention, it is possible to improve the throughput per unit mass in a method of removing a halogen gas or a fluoride gas using a removing agent containing calcium hydroxide.

ハロゲンガス又はフッ化物ガスの除去処理の実験フローの概略図である。It is the schematic of the experimental flow of the removal process of halogen gas or fluoride gas. 実施例10に用いた実験フローの概略図である。10 is a schematic diagram of an experimental flow used in Example 10. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に用いる水酸化カルシウムを主成分とする除去剤は、ソーダ石灰などがあり、水酸化カルシウムを60質量%以上含有しているものであればよい。好ましくは、水酸化カルシウムを60質量%以上95質量%以下含有している。60質量%未満ではハロゲンガスとの反応成分が不足し、除去剤の単位質量当たりの処理量を高く維持できない。95質量%を超えると水分の割合が相対的に低くなり、同様に除去剤の単位質量当たりの処理量を多くすることが困難となる。   The removal agent mainly composed of calcium hydroxide used in the present invention may be soda lime and the like, and may be any as long as it contains 60% by mass or more of calcium hydroxide. Preferably, calcium hydroxide is contained in an amount of 60% by mass to 95% by mass. If it is less than 60% by mass, the reaction component with the halogen gas is insufficient, and the treatment amount per unit mass of the removal agent cannot be kept high. If it exceeds 95% by mass, the proportion of water becomes relatively low, and similarly, it becomes difficult to increase the treatment amount per unit mass of the removing agent.

さらに、供給する水分の量は、除去剤中の水分含有量が5質量%以上19質量%以下となる量が望ましい。5質量%未満では除去処理能力が著しく低下する虞がある。また、19質量%を超えると除去剤中で水分が保有できなくなり、水分が液体として除去剤表面に凝集し、ガスの流通を妨げる虞がある。さらには、ハロゲンガス又はフッ化物ガスが含有する排出ガスを除去剤に接触させるために除去剤を充填筒に充填する場合、該充填筒の内壁面で水分が凝集し、凝集した水分に該充填筒内を流通する排出ガス中のハロゲンガスが高濃度に吸着される虞がある。この場合、該充填筒の内壁面の腐食の原因となりうる。   Furthermore, the amount of water to be supplied is desirably such that the water content in the removing agent is 5% by mass or more and 19% by mass or less. If it is less than 5% by mass, there is a possibility that the removal treatment capacity is remarkably lowered. On the other hand, if the amount exceeds 19% by mass, moisture cannot be retained in the removing agent, and the moisture may be condensed as a liquid on the surface of the removing agent, thereby hindering the gas flow. Furthermore, when filling the removing cylinder with the removing agent in order to bring the exhaust gas contained in the halogen gas or fluoride gas into contact with the removing agent, moisture aggregates on the inner wall surface of the filling cylinder, and the aggregated moisture is filled with the removing agent. There is a possibility that the halogen gas in the exhaust gas flowing in the cylinder is adsorbed at a high concentration. In this case, it may cause corrosion of the inner wall surface of the filling cylinder.

除去剤に水分を供給する方法として、除去剤が充填筒に充填されている場合、充填筒内の除去剤に水を噴霧する方法がある。この方法では、水分が充填筒の入口側の内壁面で凝集した場合、先述したようにハロゲンガスが高濃度に吸着される虞がある。したがって、水分の供給は、水分を含有した不活性ガスを、除去剤に接触させて行なうことが好ましい。   As a method of supplying moisture to the removing agent, there is a method of spraying water onto the removing agent in the filling cylinder when the removing agent is filled in the filling cylinder. In this method, when moisture aggregates on the inner wall surface on the inlet side of the filling cylinder, the halogen gas may be adsorbed at a high concentration as described above. Therefore, it is preferable to supply the moisture by bringing an inert gas containing moisture into contact with the removing agent.

水分を供給するための不活性ガスは、水分を2体積%以上10体積%以下含有しているものが好ましい。水分濃度が2体積%未満では、除去剤に不活性ガスから供給される水分より、除去剤から処理ガス中に失われていく水分のほうが多くなり、供給不足になる虞がある。10体積%を超えると供給過多になり、水分が液体として除去剤表面に凝集し、ガスの流通を妨げる虞がある。   The inert gas for supplying moisture preferably contains 2% to 10% by volume of moisture. If the water concentration is less than 2% by volume, there is a possibility that the amount of water lost from the removing agent into the processing gas is more than the amount of water supplied from the inert gas to the removing agent, resulting in insufficient supply. If it exceeds 10% by volume, the supply will be excessive, and water will aggregate as a liquid on the surface of the remover, which may hinder the flow of gas.

水分を不活性ガスに含有させる方法としては、不活性ガスを水中でバブリングする加湿方法が最も簡便で安価であると考えられる。また、除去剤に供給する水分量を調節して供給することが望ましい。供給する水分量は、不活性ガスの加湿時に不活性ガスを加熱することや不活性ガスの流量を変化させることにより調節できる。   As a method for incorporating moisture into the inert gas, a humidifying method of bubbling the inert gas in water is considered to be the simplest and cheapest. In addition, it is desirable to adjust the amount of water supplied to the remover. The amount of water to be supplied can be adjusted by heating the inert gas when the inert gas is humidified or by changing the flow rate of the inert gas.

水分の供給に使用する不活性ガスは、単独に供給する方法もあるが、除去剤により除去処理された排出ガスの主成分が不活性ガスである場合、これを用いることもできる。除去処理後の排出ガスを用いるには、除去処理後の排出ガスをポンプ等で強制的に取り出し、これを、直接加湿して除去剤に供給する方法や、バッファータンクなどの密閉容器に加圧貯蔵してこれから取り出したガスを加湿して除去剤に供給する方法などがある。   There is a method of supplying the inert gas used for supplying moisture alone, but this can also be used when the main component of the exhaust gas removed by the removing agent is an inert gas. In order to use the exhaust gas after the removal treatment, the exhaust gas after the removal treatment is forcibly taken out with a pump or the like, and this is directly humidified and supplied to the removal agent, or pressurized to a closed container such as a buffer tank. There is a method in which the gas stored and taken out is humidified and supplied to the removing agent.

水分の供給量は、除去剤中の水分が、5質量%以上19質量%以下の範囲に入る程度にすることが好ましい。そのための最も直接的な方法として、使用前の除去剤全体の質量を計測し、除去処理時に該質量を所望の値に保つように、上記の供給方法で除去剤に水分を供給することにより行なえる。しかしながら、除去剤の質量はハロゲンガスやフッ化物ガスと除去剤成分との化学反応により変化するため、ハロゲンガスの処理量に応じて変化する。したがって、処理されたハロゲンガスの種類と量を把握しなければ供給する水分量を正確に得ることが困難である。   The amount of moisture supplied is preferably such that the moisture in the remover falls within the range of 5% by mass to 19% by mass. The most direct method for this is to measure the mass of the entire removal agent before use and to supply moisture to the removal agent by the above supply method so that the mass is maintained at a desired value during the removal process. The However, since the mass of the removing agent changes due to a chemical reaction between the halogen gas or fluoride gas and the removing agent component, it changes according to the amount of processing of the halogen gas. Therefore, it is difficult to accurately obtain the amount of water to be supplied unless the type and amount of the treated halogen gas are known.

一方、除去剤を通過した排出ガスの湿度と除去剤中の水分濃度には相関があり、除去剤を通過した不活性ガスの湿度を測定することにより、除去剤中の水分量を予測することが可能であることを見いだした。   On the other hand, there is a correlation between the humidity of the exhaust gas that has passed through the removal agent and the moisture concentration in the removal agent, and predicting the amount of moisture in the removal agent by measuring the humidity of the inert gas that has passed through the removal agent. Found that is possible.

具体的には、除去剤を通過した排出ガスの湿度が室温において50〜60%であれば、除去剤中の水分濃度は10〜15質量%に維持されており、一方通過した排出ガスの湿度が室温において0〜10%であれば、除去剤中の水分濃度は5質量%以下であることを見いだした。   Specifically, if the humidity of the exhaust gas that has passed through the removal agent is 50 to 60% at room temperature, the moisture concentration in the removal agent is maintained at 10 to 15% by mass, while the humidity of the exhaust gas that has passed through the removal agent Is found to be 5% by mass or less if the water content is 0 to 10% at room temperature.

除去剤中を通過した不活性ガスの湿度は、湿度計を用いて測定できる。その他、塩化コバルトを含浸させたシリカゲルの変色をモニタすることにより最も安価に測定できるが、定量的に把握することができず、また電気信号による自動化も困難である。   The humidity of the inert gas that has passed through the removing agent can be measured using a hygrometer. In addition, it can be measured at the lowest cost by monitoring the discoloration of the silica gel impregnated with cobalt chloride, but it cannot be quantitatively grasped, and it is difficult to automate with electric signals.

以上により、除去剤を通過した排出ガスの湿度を測定し、湿度に応じて補給する不活性ガスの流量と加湿器の温度を調整し、湿度の高い状態の不活性ガスで、除去剤中に均一に水分を分散させることが、最も安全で簡便と考えられる。   As described above, the humidity of the exhaust gas that has passed through the removal agent is measured, the flow rate of the inert gas to be replenished according to the humidity and the temperature of the humidifier are adjusted, and the inert gas in a high humidity state is used in the removal agent. It is considered safest and simple to disperse water uniformly.

除去対象となるハロゲンガスは、フッ素ガスやハロゲン元素からなるフッ化物のガスであり、例えば、Fガス、ClFガス、BrFガス、IFガス、IFガス等が挙げられる。また、除去対象となるフッ化物ガスは、ハロゲンガスとの反応により生成するガスであり、例えば、SiFガス、WFガス、GeFガス、UFガス等が挙げられる。 The halogen gas to be removed is a fluoride gas composed of fluorine gas or a halogen element, and examples thereof include F 2 gas, ClF 3 gas, BrF 3 gas, IF 5 gas, and IF 7 gas. Further, the fluoride gas to be removed is a gas generated by a reaction with a halogen gas, and examples thereof include SiF 4 gas, WF 6 gas, GeF 2 gas, and UF 6 gas.

本発明で処理する排出ガス中のハロゲンガス及びフッ化物ガスの濃度は、2体積%以下が望ましい。上記反応式(1)〜(4)にあるように、フッ素(F)ガス、三フッ化塩素(ClF)ガス、四フッ化珪素(SiF)ガス、又は六フッ化タングステン(WF)ガスが水酸化カルシウムと反応した場合、反応したフッ素(F)と同量の水、反応した三フッ化塩素(ClF)の2倍の量の水、反応した四フッ化珪素(SiF)の2倍の量の水、反応した六フッ化タングステン(WF)の3倍の量の水が発生する。 The concentration of the halogen gas and fluoride gas in the exhaust gas treated in the present invention is desirably 2% by volume or less. As shown in the reaction formulas (1) to (4), fluorine (F 2 ) gas, chlorine trifluoride (ClF 3 ) gas, silicon tetrafluoride (SiF 4 ) gas, or tungsten hexafluoride (WF 6). ) When the gas reacts with calcium hydroxide, the same amount of water as reacted fluorine (F 2 ), twice the amount of water reacted as chlorine trifluoride (ClF 3 ), reacted silicon tetrafluoride (SiF) 4 ) The amount of water twice as much as that of the reacted tungsten hexafluoride (WF 6 ) is generated.

発生した水は、ハロゲンガス及びフッ化物ガスの濃度が2体積%を超えると、除去剤表面に凝集し、排出ガスの流通を妨げる虞がある。さらには、ハロゲンガス又はフッ化物ガスが含有する排出ガスを除去剤に接触させるために除去剤を充填筒に充填する場合、凝集した水分に該充填筒内を流通する排出ガス中のハロゲンガス又はフッ化物ガスが高濃度に吸着される虞がある。この場合、該充填筒の内壁面の腐食の原因となりうる。   When the concentration of the halogen gas and fluoride gas exceeds 2% by volume, the generated water may aggregate on the surface of the remover and hinder the flow of exhaust gas. Further, when filling the removing cylinder with the removing agent in order to bring the exhaust gas contained in the halogen gas or fluoride gas into contact with the removing agent, the halogen gas in the exhaust gas flowing through the inside of the filling cylinder to the condensed moisture or There is a possibility that the fluoride gas is adsorbed at a high concentration. In this case, it may cause corrosion of the inner wall surface of the filling cylinder.

以下、実施例により本発明を具体的に説明する。図1に本例にもちいる実験フローの概略図を示す。ハロゲンガス又はフッ化物ガスを含有する処理対象ガス1は、不活性ガス希釈のフッ素(F)ガス、三フッ化塩素(ClF)ガス、四フッ化珪素(SiF)ガス、又は六フッ化タングステン(WF)ガスを使用する。この処理対象ガス1を、ハロゲンガス及びフッ化物ガスの除去剤3が充填されている充填筒2に導入し、除去剤3と接触させる。充填筒2は内径50mm、除去剤充填高さ100mmの筒状で、材質はステンレススチールである。 Hereinafter, the present invention will be described specifically by way of examples. FIG. 1 shows a schematic diagram of an experimental flow used in this example. The processing target gas 1 containing a halogen gas or a fluoride gas may be an inert gas diluted fluorine (F 2 ) gas, chlorine trifluoride (ClF 3 ) gas, silicon tetrafluoride (SiF 4 ) gas, or hexafluorocarbon. Tungsten halide (WF 6 ) gas is used. This processing target gas 1 is introduced into a filling cylinder 2 filled with a halogen gas and fluoride gas removing agent 3 and brought into contact with the removing agent 3. The filling cylinder 2 has a cylindrical shape with an inner diameter of 50 mm and a removal agent filling height of 100 mm, and is made of stainless steel.

処理対象ガス1は充填筒2の上方から下方に流通し、排出管12より外部に排出される。排出管12より分岐して循環ポンプ4(イワキ製型式BAN−0510H)が流量調節計5(コフロック製型式RK−1200)を介して接続されている。さらに、循環ポンプ4の下流は、水が充填されている加湿器6を介して充填筒2内の除去剤3の上部内に埋められているPTFEチューブ8に接続されている。   The processing target gas 1 flows from the upper side to the lower side of the filling cylinder 2 and is discharged to the outside through the discharge pipe 12. A circulation pump 4 (Iwaki model BAN-0510H) branches from the discharge pipe 12 and is connected via a flow rate controller 5 (Cofflock model RK-1200). Further, the downstream of the circulation pump 4 is connected to a PTFE tube 8 buried in the upper part of the removing agent 3 in the filling cylinder 2 through a humidifier 6 filled with water.

PTFEチューブ8の長さは30mmで、長さ方向に6箇所の穴が等間隔に空けられている。加湿器6は、PFA製の密閉容器で内部の水分量が目視で確認できる。加湿器6は外壁からヒータ7によって加熱でき、その外壁温度は室温〜80℃に調整できる。   The length of the PTFE tube 8 is 30 mm, and six holes are formed at equal intervals in the length direction. The humidifier 6 is a sealed container made of PFA, and the moisture content inside can be visually confirmed. The humidifier 6 can be heated from the outer wall by the heater 7, and the outer wall temperature can be adjusted to room temperature to 80 ° C.

また、佐藤計量器製作所製(型式SK−L200TH)の湿度計9は、排出管12より分岐して接続されている。湿度計9は、0.1〜99.9%の湿度が測定できる。   Further, a hygrometer 9 manufactured by Sato Meter Co., Ltd. (model SK-L200TH) is branched from the discharge pipe 12 and connected thereto. The hygrometer 9 can measure a humidity of 0.1 to 99.9%.

充填筒2より排出されるガスの一部は、循環ポンプ4により加湿器6内で水中を通過することにより加湿され、PTFEチューブ8より除去剤3中へ均一に分散され、循環される。このとき、流量調節計5と循環ポンプ4により循環流量を1〜100cm/minに調節できる。また、湿度計9により測定された湿度から、循環流量及びヒータ7の加熱温度が決定され、水分の供給量を制御できる。 A part of the gas discharged from the filling cylinder 2 is humidified by passing through the water in the humidifier 6 by the circulation pump 4 and is uniformly dispersed and circulated from the PTFE tube 8 into the removing agent 3. At this time, the circulation flow rate can be adjusted to 1 to 100 cm 3 / min by the flow rate controller 5 and the circulation pump 4. Further, the circulation flow rate and the heating temperature of the heater 7 are determined from the humidity measured by the hygrometer 9, and the amount of water supply can be controlled.

さらに、フッ素(F)ガスの除去状態を確認するため、上記分岐より下流に、排出管12より分岐して吸引式ガス検知管10が接続され、フッ素(F)ガスの濃度を測定できる。吸引式ガス検知管10には、ガステック製の型番17Lの検知管を用い、1〜200体積ppmのフッ素(F)ガスの濃度測定ができる。 Further, in order to confirm the removal state of the fluorine (F 2 ) gas, the suction type gas detection pipe 10 is branched from the discharge pipe 12 and connected to the downstream from the branch, and the concentration of the fluorine (F 2 ) gas can be measured. . As the suction-type gas detection tube 10, a type 17L detection tube manufactured by Gastec can be used to measure the concentration of 1 to 200 ppm by volume of fluorine (F 2 ) gas.

また、三フッ化塩素(ClF)ガス、四フッ化珪素(SiF)ガス、六フッ化タングステン(WF)ガスの除去状態を確認するため、更にその下流の排出管12より分岐して赤外線吸光分析計11が接続され、これらのガス濃度を測定できる。赤外線吸光分析計11は、MIDAC社製(型式IGA−2000)で、三フッ化塩素(ClF)ガスは0.1〜100体積ppm、四フッ化珪素(SiF)ガスは0.2〜100ppm、六フッ化タングステン(WF)ガスは0.5〜200ppmの濃度測定ができる。 Further, in order to confirm the removal state of chlorine trifluoride (ClF 3 ) gas, silicon tetrafluoride (SiF 4 ) gas, and tungsten hexafluoride (WF 6 ) gas, it is further branched from the discharge pipe 12 downstream thereof. An infrared absorption spectrometer 11 is connected to measure these gas concentrations. The infrared absorption spectrometer 11 is manufactured by MIDAC (model IGA-2000), chlorine trifluoride (ClF 3 ) gas is 0.1 to 100 ppm by volume, and silicon tetrafluoride (SiF 4 ) gas is 0.2 to The concentration of 100 ppm tungsten hexafluoride (WF 6 ) gas can be measured at 0.5 to 200 ppm.

上記の実験フローにおいて、不活性ガスとして水分濃度が1体積ppm未満の窒素ガス(大陽日酸株式会社製Bグレード)を用いて、F=10000体積ppmの濃度に希釈された、処理対象ガス1を用いた。処理対象ガス1の充填筒2での空間速度は毎時100とした。充填筒2の除去剤3は、水酸化カルシウムが81.5質量%、水酸化ナトリウムが2.0質量%、水酸化カリウムが1.5質量%、水分が15.0質量%の組成で、平均粒径が3.5mmの粒状のものを160g使用した。 In the above experimental flow, using nitrogen gas having a moisture concentration of less than 1 ppm by volume (B grade manufactured by Taiyo Nippon Sanso Corporation) as an inert gas, the treatment target was diluted to a concentration of F 2 = 10000 volume ppm. Gas 1 was used. The space velocity of the processing target gas 1 in the filling cylinder 2 was set to 100 per hour. The removal agent 3 of the filling cylinder 2 is composed of 81.5% by mass of calcium hydroxide, 2.0% by mass of sodium hydroxide, 1.5% by mass of potassium hydroxide, and 15.0% by mass of water, A granular material having an average particle diameter of 3.5 mm was used.

充填筒2から排出されるガスの一部は循環ポンプ4で加湿器6を通過し加湿されて充填筒入口側の除去剤3中に戻される。流量調節計5は30cm/minに調節し、加湿器6の外壁温度はヒータ7で40℃に調節した。また、このとき供給される不活性ガス中の水分濃度は7体積%となった。 A part of the gas discharged from the filling cylinder 2 passes through the humidifier 6 by the circulation pump 4, is humidified, and is returned to the removing agent 3 on the inlet side of the filling cylinder. The flow controller 5 was adjusted to 30 cm 3 / min, and the outer wall temperature of the humidifier 6 was adjusted to 40 ° C. with the heater 7. Further, the moisture concentration in the inert gas supplied at this time was 7% by volume.

充填筒2の出口ガスを吸引式ガス検知管10でフッ素(F)の濃度を測定した結果、処理開始から36時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、36時間で除去できた処理対象ガス1中のフッ素(F)の質量は11.0gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result of measuring the concentration of fluorine (F 2 ) at the outlet gas of the filling cylinder 2 with the suction type gas detection tube 10, the concentration of fluorine (F 2 ) is less than 1 ppm by volume of the detection lower limit until 36 hours from the start of the treatment. Thereafter, the mass of fluorine (F 2 ) in the gas 1 to be detected, which was detected and could be removed in 36 hours, was 11.0 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

処理対象ガス1の充填筒2での空間速度を毎時200、流量調節計5は50cm/minに調節し、加湿器6の外壁温度はヒータ7で50℃に調節する以外は実施例1と同様に行った。また、このとき供給される不活性ガス中の水分濃度は9体積%となった。 Example 1 except that the space velocity in the filling cylinder 2 of the gas 1 to be treated is 200 per hour, the flow rate controller 5 is adjusted to 50 cm 3 / min, and the outer wall temperature of the humidifier 6 is adjusted to 50 ° C. by the heater 7. The same was done. Further, the moisture concentration in the inert gas supplied at this time was 9% by volume.

その結果、処理開始から15時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、15時間で除去できた処理対象ガス1中のフッ素(F)の質量は9.2gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result, the concentration of fluorine from the process start until 15 hours (F 2) is less than 1 ppm by volume of the detection limit, thereafter will be detected, in the untreated gas 1 which can be removed in 15 hours fluorine (F 2 ) Became 9.2 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

の代わりにClFを用い、その他の条件は実施例1と同様に行った。除去筒2の出口ガスを赤外線吸光分析計11で三フッ化塩素(ClF)の濃度を測定した結果、処理開始から22時間までは三フッ化塩素(ClF)の濃度は検出下限の0.1体積ppm未満であり、それ以後は検出され、22時間で除去できた処理対象ガス1中の三フッ化塩素(ClF)の質量は16.4gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 ClF 3 was used instead of F 2 , and the other conditions were the same as in Example 1. As a result of measuring the concentration of chlorine trifluoride (ClF 3 ) at the outlet gas of the removal cylinder 2 with the infrared absorption spectrometer 11, the concentration of chlorine trifluoride (ClF 3 ) is 0 which is the lower limit of detection until 22 hours from the start of the treatment. The amount of chlorine trifluoride (ClF 3 ) in the gas 1 to be treated, which was detected after that and could be removed in 22 hours, was 16.4 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

処理対象ガス1の充填筒2での空間速度を毎時200、流量調節計5は50cm/minに調節し、加湿器6の外壁温度はヒータ7で50℃に調節する以外は実施例3と同様に行った。また、このとき供給される不活性ガス中の水分濃度は9体積%となった。 Example 3 except that the space velocity in the filling cylinder 2 of the gas 1 to be treated is 200 per hour, the flow rate controller 5 is adjusted to 50 cm 3 / min, and the outer wall temperature of the humidifier 6 is adjusted to 50 ° C. by the heater 7. The same was done. Further, the moisture concentration in the inert gas supplied at this time was 9% by volume.

その結果、処理開始から7時間までは三フッ化塩素(ClF)の濃度は検出下限の0.1体積ppm未満であり、それ以後は検出され、7時間で除去できた処理対象ガス1中の三フッ化塩素(ClF)の質量は10.4gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result, the concentration of chlorine trifluoride (ClF 3 ) is less than the detection lower limit of 0.1 ppm by volume until 7 hours from the start of the treatment, and is detected thereafter and can be removed in 7 hours in the gas to be treated 1 The mass of chlorine trifluoride (ClF 3 ) was 10.4 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

の代わりにSiFを用い、その他の条件は実施例1と同様に行った。除去筒2の出口ガスを赤外線吸光分析計11で四フッ化珪素(SiF)の濃度を測定した結果、処理開始から46時間までは四フッ化珪素(SiF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、46時間で除去できた処理対象ガス1中の四フッ化珪素(SiF)の質量は38.4gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 SiF 4 was used instead of F 2 , and other conditions were the same as in Example 1. As a result of measuring the concentration of silicon tetrafluoride (SiF 4 ) at the outlet gas of the removal cylinder 2 with the infrared absorption spectrometer 11, the concentration of silicon tetrafluoride (SiF 4 ) is at the detection lower limit of 0 until 46 hours from the start of the treatment. The volume of silicon tetrafluoride (SiF 4 ) in the gas 1 to be treated, which was detected after that and could be removed in 46 hours, was 38.4 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

処理対象ガス1の充填筒2での空間速度を毎時200、流量調節計5は50cm/minに調節し、加湿器6の外壁温度はヒータ7で50℃に調節する以外は実施例5と同様に行った。また、このとき供給される不活性ガス中の水分濃度は9体積%となった。 Example 5 except that the space velocity in the filling cylinder 2 of the gas 1 to be treated is 200 per hour, the flow rate controller 5 is adjusted to 50 cm 3 / min, and the outer wall temperature of the humidifier 6 is adjusted to 50 ° C. by the heater 7. The same was done. Further, the moisture concentration in the inert gas supplied at this time was 9% by volume.

その結果、処理開始から20時間までは四フッ化珪素(SiF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、20時間で除去できた処理対象ガス1中の四フッ化珪素(SiF)の質量は33.4gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result, the concentration of silicon tetrafluoride (SiF 4 ) is less than the detection lower limit of 0.2 ppm by volume from the start of the treatment to 20 hours, and thereafter, it is detected and removed in the treatment target gas 1 in 20 hours. The mass of silicon tetrafluoride (SiF 4 ) was 33.4 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

の代わりにWFを用い、その他の条件は実施例1と同様に行った。除去筒2の出口ガスを赤外線吸光分析計11で六フッ化タングステン(WF)の濃度を測定した結果、処理開始から7時間までは六フッ化タングステン(WF)の濃度は検出下限の0.5体積ppm未満であり、それ以後は検出され、7時間で除去できた処理対象ガス1中の六フッ化タングステン(WF)の質量は16.8gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 WF 6 was used instead of F 2 , and the other conditions were the same as in Example 1. As a result of measuring the concentration of tungsten hexafluoride (WF 6 ) at the outlet gas of the removal cylinder 2 with the infrared absorption spectrometer 11, the concentration of tungsten hexafluoride (WF 6 ) is 0 which is the lower detection limit until 7 hours from the start of the treatment. The mass of tungsten hexafluoride (WF 6 ) in the gas 1 to be treated, which was detected after that and could be removed in 7 hours, was 16.8 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

処理対象ガス1の充填筒2での空間速度を毎時200、流量調節計5は50cm/minに調節し、加湿器6の外壁温度はヒータ7で50℃に調節する以外は実施例7と同様に行った。また、このとき供給される不活性ガス中の水分濃度は9体積%となった。 Example 7 except that the space velocity in the filling cylinder 2 of the gas 1 to be treated is 200 per hour, the flow rate controller 5 is adjusted to 50 cm 3 / min, and the outer wall temperature of the humidifier 6 is adjusted to 50 ° C. by the heater 7. The same was done. Further, the moisture concentration in the inert gas supplied at this time was 9% by volume.

その結果、処理開始から3時間までは六フッ化タングステン(WF)の濃度は検出下限の0.5体積ppm未満であり、それ以後は検出され、3時間で除去できた処理対象ガス1中の六フッ化タングステン(WF)の質量は14.4gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result, the concentration of tungsten hexafluoride (WF 6 ) is lower than the detection lower limit of 0.5 ppm by volume until 3 hours from the start of the treatment, and after that, it is detected and removed in 3 hours. The mass of tungsten hexafluoride (WF 6 ) was 14.4 g. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

不活性ガスとして窒素ガスの代わりにアルゴンガス(大陽日酸株式会社製G3グレード)を使用する以外は、実施例1と同様に行った。その結果、処理開始から36時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、36時間で除去できた処理対象ガス1中のフッ素(F)の質量は11.0gとなり、実施例1と同様であった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 The same procedure as in Example 1 was performed except that argon gas (G3 grade manufactured by Taiyo Nippon Sanso Corporation) was used instead of nitrogen gas as the inert gas. As a result, the concentration of fluorine from the process start until 36 hours (F 2) is less than 1 ppm by volume of the detection limit, thereafter is detected, fluorine in untreated gas 1 which can be removed in 36 hours (F 2 ) Was 11.0 g, which was the same as in Example 1. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

図2に本例にもちいる実験フローの概略図を示す。実施例1に用いた実験フロー(図1)に対して、加湿器6に充填筒2からの排出ガスの一部を循環させるための分岐を行なわず、別途不活性ガス13が流量調節計5を介して接続されている以外は同様である。該不活性ガス13は、加湿器6で加湿しされ、流量調節計5により所定の流量で充填筒2に供給される。   FIG. 2 shows a schematic diagram of the experimental flow used in this example. In contrast to the experimental flow (FIG. 1) used in the first embodiment, the humidifier 6 is not branched to circulate a part of the exhaust gas from the filling cylinder 2, and the inert gas 13 is separately supplied from the flow controller 5. It is the same except that it is connected via. The inert gas 13 is humidified by the humidifier 6 and supplied to the filling cylinder 2 by the flow rate controller 5 at a predetermined flow rate.

不活性ガス13は窒素ガス(大陽日酸株式会社製Bグレード)を使用した。その他の条件は実施例1と同様である。また、このとき供給される不活性ガス中の水分濃度は7体積%となった。   As the inert gas 13, nitrogen gas (B grade manufactured by Taiyo Nippon Sanso Corporation) was used. Other conditions are the same as in the first embodiment. Further, the moisture concentration in the inert gas supplied at this time was 7% by volume.

その結果、処理開始から36時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、36時間で除去できた処理対象ガス1中のフッ素(F)の質量は11.0gとなり、実施例1と同様であった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理中において50〜60%となった。 As a result, the concentration of fluorine from the process start until 36 hours (F 2) is less than 1 ppm by volume of the detection limit, thereafter is detected, fluorine in untreated gas 1 which can be removed in 36 hours (F 2 ) Was 11.0 g, which was the same as in Example 1. Note that the humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% during the removal process.

加湿器6の外壁温度はヒータ7で30℃に調節する以外は実施例1と同様に行った。また、このとき供給される不活性ガス中の水分濃度は3体積%となった。   The outer wall temperature of the humidifier 6 was the same as in Example 1 except that the heater 7 was adjusted to 30 ° C. Further, the moisture concentration in the inert gas supplied at this time was 3% by volume.

その結果、処理開始から33時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、33時間で除去できた処理対象ガス1中のフッ素(F)の質量は10gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は40〜50%であった。 As a result, the concentration of the process start until 33 hours fluorine (F 2) is less than 1 ppm by volume of the detection limit, thereafter is detected, fluorine in untreated gas 1 which can be removed in 33 hours (F 2 ) Became 10 g. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but was 40 to 50% immediately before the end of the removal process.

加湿器6の外壁温度はヒータ7で20℃に調節する以外は実施例1と同様に行った。また、このとき供給される不活性ガス中の水分濃度は1体積%となった。   The outer wall temperature of the humidifier 6 was the same as in Example 1 except that the heater 7 was adjusted to 20 ° C. Further, the moisture concentration in the inert gas supplied at this time was 1% by volume.

その結果、処理開始から27時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、27時間で除去できた処理対象ガス1中のフッ素(F)の質量は8.2gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は20〜30%であった。 As a result, the concentration of fluorine from the process start until 27 hours (F 2) is less than 1 ppm by volume of the detection limit, thereafter is detected, fluorine in 1 untreated gas which can be removed in 27 hours (F 2 ) Became 8.2 g. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but was 20 to 30% immediately before the end of the removal process.

加湿器6の外壁温度はヒータ7で55℃に調節する以外は実施例1と同様に行った。また、このとき供給される不活性ガス中の水分濃度は15体積%となった。   The outer wall temperature of the humidifier 6 was the same as in Example 1 except that the heater 7 was adjusted to 55 ° C. Further, the moisture concentration in the inert gas supplied at this time was 15% by volume.

その結果、処理開始から30時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であったが、30時間経過後充填筒2入口の圧力が5kPaまで上昇し、ガスの流通が困難となった。30時間で除去できた処理対象ガス1中のフッ素(F)の質量は9.1gとなった。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は90〜1000%であった。 As a result, the fluorine (F 2 ) concentration was less than the detection lower limit of 1 ppm by volume until 30 hours from the start of the treatment, but after 30 hours, the pressure at the inlet of the filling cylinder 2 rose to 5 kPa, and the gas flow was It became difficult. The mass of fluorine (F 2 ) in the gas 1 to be treated that could be removed in 30 hours was 9.1 g. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but was 90 to 1000% immediately before the end of the removal process.

[比較例1]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例1と同様に行った。その結果、処理開始から24時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、24時間で除去できた処理対象ガス1中のフッ素(F)の質量は7.3gとなり、実施例1に比べ除去できるフッ素(F)は33%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of fluorine from the process start until 24 hours (F 2) is less than 1 ppm by volume of the detection limit, thereafter will be detected, in one processing target gas can be removed in 24 hours fluorine (F 2 ) Was 7.3 g, and fluorine (F 2 ) that could be removed was reduced by 33% compared to Example 1. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例2]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例2と同様に行った。その結果、処理開始から9時間まではフッ素(F)の濃度は検出下限の1体積ppm未満であり、それ以後は検出され、9時間で除去できた処理対象ガス1中のフッ素(F)の質量は5.5gとなり、実施例2に比べ除去できるフッ素(F)40%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 2]
The same procedure as in Example 2 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, from the start of processing to 9 hours the concentration of fluorine (F 2) is less than 1 ppm by volume of the detection limit, thereafter is detected, fluorine in untreated gas 1 which can be removed in 9 hours (F 2 ) Was 5.5 g, and the amount of fluorine (F 2 ) that can be removed was reduced by 40% compared to Example 2. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例3]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例3と同様に行った。その結果、処理開始から16時間までは三フッ化塩素(ClF)の濃度は検出下限の0.1体積ppm未満であり、それ以後は検出され、16時間で除去できた処理対象ガス1中の三フッ化塩素(ClF)の質量は11.9gとなり、実施例3に比べ除去できる三フッ化塩素(ClF)は27%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 3]
The same procedure as in Example 3 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removal agent 3 was not humidified. As a result, the concentration of chlorine trifluoride (ClF 3 ) is less than the detection lower limit of 0.1 ppm by volume from the start of treatment to 16 hours, and after that, it is detected and can be removed in 16 hours. The mass of chlorine trifluoride (ClF 3 ) was 11.9 g, and chlorine trifluoride (ClF 3 ) that can be removed was reduced by 27% compared to Example 3. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例4]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例4と同様に行った。その結果、処理開始から4時間までは三フッ化塩素(ClF)の濃度は検出下限の0.1体積ppm未満であり、それ以後は検出され、4時間で除去できた処理対象ガス1中の三フッ化塩素(ClF)の質量は5.9gとなり、実施例4に比べ除去できる三フッ化塩素(ClF)は43%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 4]
The same procedure as in Example 4 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of chlorine trifluoride (ClF 3 ) is less than the detection lower limit of 0.1 ppm by volume until 4 hours from the start of the treatment, and after that, it is detected and removed in 4 hours. It is the mass of the chlorine trifluoride (ClF 3) 5.9 g, and the chlorine trifluoride which can be removed as compared to example 4 (ClF 3) was reduced by 43%. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例5]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例5と同様に行った。その結果、処理開始から32時間までは四フッ化珪素(SiF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、32時間で除去できた処理対象ガス1中の四フッ化珪素(SiF)の質量は26.7gとなり、実施例5に比べ除去できる四フッ化珪素(SiF)は30%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 5]
The same procedure as in Example 5 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of silicon tetrafluoride (SiF 4 ) is less than the detection lower limit of 0.2 ppm by volume until 32 hours from the start of the treatment, and after that, it is detected and can be removed in 32 hours in the gas 1 to be treated. The mass of silicon tetrafluoride (SiF 4 ) was 26.7 g, and silicon tetrafluoride (SiF 4 ) that can be removed was reduced by 30% compared to Example 5. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例6]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例6と同様に行った。その結果、処理開始から13時間までは四フッ化珪素(SiF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、13時間で除去できた処理対象ガス1中の四フッ化珪素(SiF)の質量は21.7gとなり、実施例6に比べ除去できる四フッ化珪素(SiF)は43%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 6]
The same procedure as in Example 6 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of silicon tetrafluoride (SiF 4 ) is less than the detection lower limit of 0.2 ppm by volume from the start of the treatment to 13 hours, and thereafter, it is detected and can be removed in 13 hours in the gas 1 to be treated. The mass of silicon tetrafluoride (SiF 4 ) was 21.7 g, and silicon tetrafluoride (SiF 4 ) that can be removed was reduced by 43% compared to Example 6. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例7]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例7と同様に行った。その結果、処理開始から5時間までは六フッ化タングステン(WF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、5時間で除去できた処理対象ガス1中の六フッ化タングステン(WF)の質量は12.0gとなり、実施例7に比べ除去できる六フッ化タングステン(WF)は29%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 7]
The same procedure as in Example 7 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of tungsten hexafluoride (WF 6 ) is less than the detection lower limit of 0.2 ppm by volume until 5 hours from the start of the treatment, and after that, in the processing target gas 1 that was detected and removed in 5 hours. mass 12.0g next tungsten hexafluoride (WF 6), tungsten hexafluoride can be removed than in example 7 (WF 6) of decreased 29%. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

[比較例8]
充填筒2から排出されたガスを循環ポンプで戻さず除去剤3を加湿しない以外は実施例8と同様に行った。その結果、処理開始から2時間までは六フッ化タングステン(WF)の濃度は検出下限の0.2体積ppm未満であり、それ以後は検出され、2時間で除去できた処理対象ガス1中の六フッ化タングステン(WF)の質量は9.58gとなり、実施例8に比べ除去できる六フッ化タングステン(WF)は33%減少した。なお、充填筒2の排出管12に接続された湿度計9の湿度は、除去処理開始直後は50〜60%であったが、除去処理終了直前は0〜10%であった。
[Comparative Example 8]
The same procedure as in Example 8 was performed except that the gas discharged from the filling cylinder 2 was not returned by the circulation pump and the removing agent 3 was not humidified. As a result, the concentration of tungsten hexafluoride (WF 6 ) is less than the detection lower limit of 0.2 ppm by volume until 2 hours from the start of the treatment, and after that, it can be detected and removed in 2 hours in the gas 1 to be treated. mass 9.58g next tungsten hexafluoride (WF 6), tungsten hexafluoride can be removed compared to example 8 (WF 6) of decreased 33%. The humidity of the hygrometer 9 connected to the discharge pipe 12 of the filling cylinder 2 was 50 to 60% immediately after the start of the removal process, but 0 to 10% immediately before the end of the removal process.

本発明は、半導体製造、液晶製造、又は太陽電池製造工場において、クリーニングやエッチングとして使用されるハロゲンガスや、クリーニングやエッチングによって生成するフッ化物ガスを、除去剤中の水酸化カルシウムと反応させて排出ガスから除去する際に、除去剤の単位質量あたりの処理量を多くできる。   The present invention is to react halogen gas used for cleaning and etching and fluoride gas generated by cleaning and etching with calcium hydroxide in the remover in semiconductor manufacturing, liquid crystal manufacturing, or solar cell manufacturing factories. When removing from the exhaust gas, the amount of removal agent per unit mass can be increased.

1 ・・・処理対象ガス(不活性ガス希釈)
2 ・・・ 充填筒
3・・・ 除去剤
4 ・・・ 循環ポンプ
5 ・・・ 流量調節計
6 ・・・ 加湿器
7 ・・・ ヒータ
8 ・・・ PTFEチューブ
9 ・・・ 湿度計
10 ・・・吸引式ガス検知管
11・・・ 赤外線吸光分析計
12・・・排出管
13・・・不活性ガス
1 ... Process target gas (inert gas dilution)
2 ... Filling cylinder 3 ... Remover 4 ... Circulating pump 5 ... Flow rate controller 6 ... Humidifier 7 ... Heater 8 ... PTFE tube 9 ... Hygrometer 10 ..Suction gas detector tube 11 Infrared absorption spectrometer 12 Discharge tube 13 Inert gas

Claims (4)

ハロゲンガス又はフッ化物ガスを含有する排出ガスを、水酸化カルシウムを主成分とする除去剤に接触させて、ハロゲンガス又はフッ化物ガスを固定して除去する方法において、該除去剤に水分を供給することを特徴とするハロゲンガス又はフッ化物ガスの除去方法。 In a method in which an exhaust gas containing halogen gas or fluoride gas is brought into contact with a remover mainly composed of calcium hydroxide and the halogen gas or fluoride gas is fixed and removed, moisture is supplied to the remover. A method for removing a halogen gas or a fluoride gas. 水分を含有する不活性ガスを該除去剤に接触させることにより、該除去剤に水分を供給することを特徴とする、請求項1に記載のハロゲンガス又はフッ化物ガスの除去方法。 The method for removing halogen gas or fluoride gas according to claim 1, wherein moisture is supplied to the removing agent by bringing an inert gas containing moisture into contact with the removing agent. 2体積%以上10体積%以下の水分を含有する不活性ガスを用いることを特徴とする、請求項2に記載のハロゲンガス又はフッ化物ガスの除去方法。 The method for removing a halogen gas or a fluoride gas according to claim 2, wherein an inert gas containing 2 to 10% by volume of water is used. 該除去剤と接触後の排出ガスの湿度を測定し、該測定値より供給する水分量を決定することを特徴とする、請求項1〜3のいずれか1項に記載のハロゲンガス又はフッ化物ガスの除去方法。 The halogen gas or fluoride according to any one of claims 1 to 3, wherein the humidity of the exhaust gas after contact with the removing agent is measured, and the amount of water supplied is determined from the measured value. Gas removal method.
JP2010258094A 2010-11-18 2010-11-18 Removing method for halogen gas or fluoride gas by removing agent Pending JP2012106200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258094A JP2012106200A (en) 2010-11-18 2010-11-18 Removing method for halogen gas or fluoride gas by removing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258094A JP2012106200A (en) 2010-11-18 2010-11-18 Removing method for halogen gas or fluoride gas by removing agent

Publications (1)

Publication Number Publication Date
JP2012106200A true JP2012106200A (en) 2012-06-07

Family

ID=46492433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258094A Pending JP2012106200A (en) 2010-11-18 2010-11-18 Removing method for halogen gas or fluoride gas by removing agent

Country Status (1)

Country Link
JP (1) JP2012106200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080507A (en) * 2015-09-21 2015-11-25 北京矿迪科技有限公司 Acidic water fluorine and chlorine removal agent based on biomass waste and preparation method of removal agent
WO2020129726A1 (en) * 2018-12-21 2020-06-25 昭和電工株式会社 Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
JP7491222B2 (en) 2018-12-21 2024-05-28 株式会社レゾナック Method for removing halogen fluorides, and method and apparatus for quantitatively analyzing gas components contained in halogen fluoride mixed gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080507A (en) * 2015-09-21 2015-11-25 北京矿迪科技有限公司 Acidic water fluorine and chlorine removal agent based on biomass waste and preparation method of removal agent
WO2020129726A1 (en) * 2018-12-21 2020-06-25 昭和電工株式会社 Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
TWI731514B (en) * 2018-12-21 2021-06-21 日商昭和電工股份有限公司 Halogen fluoride removal method and quantitative analysis method and quantitative analysis device of gas components contained in halogen fluoride mixed gas
KR20210087083A (en) * 2018-12-21 2021-07-09 쇼와 덴코 가부시키가이샤 Halogen Fluoride Removal Method and Quantitative Analysis Method and Quantitative Analysis Apparatus for Gas Components Contained in Halogen Fluoride Mixed Gas
CN113164862A (en) * 2018-12-21 2021-07-23 昭和电工株式会社 Method for removing halogen fluoride, method for quantitatively analyzing gas-containing component in halogen fluoride mixed gas, and quantitative analyzer
EP3900810A4 (en) * 2018-12-21 2022-09-07 Showa Denko K.K. Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
US11779877B2 (en) 2018-12-21 2023-10-10 Resonac Corporation Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
KR102616989B1 (en) 2018-12-21 2023-12-27 가부시끼가이샤 레조낙 Halogen fluoride removal method, quantitative analysis method of gas components contained in halogen fluoride mixed gas, and quantitative analysis device
JP7491222B2 (en) 2018-12-21 2024-05-28 株式会社レゾナック Method for removing halogen fluorides, and method and apparatus for quantitatively analyzing gas components contained in halogen fluoride mixed gas

Similar Documents

Publication Publication Date Title
AU642432B2 (en) Method and apparatus for chlorine dioxide manufacture
TWI731514B (en) Halogen fluoride removal method and quantitative analysis method and quantitative analysis device of gas components contained in halogen fluoride mixed gas
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
JP2012106200A (en) Removing method for halogen gas or fluoride gas by removing agent
JP2004351364A (en) Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride
US20060065120A1 (en) Exhaust gas treatment
WO2017094417A1 (en) Method for treating exhaust gas containing elemental fluorine
WO2017094418A1 (en) Method for treating exhaust gas containing elemental fluorine
JP4699919B2 (en) Exhaust gas treatment method and treatment apparatus
JP2011143329A (en) Apparatus for detoxifying gas comprising chlorine trifluoride
JP5771896B2 (en) How to remove iodine fluoride
JP2010162437A (en) Detoxification apparatus and detoxification method of fluorine-containing waste liquid
JP5471313B2 (en) Methods for removing chlorine trifluoride
JP7491222B2 (en) Method for removing halogen fluorides, and method and apparatus for quantitatively analyzing gas components contained in halogen fluoride mixed gas
JP3649426B2 (en) How to clean harmful gases
JP2008086913A (en) Method for removing fluorine in fluorine-containing gas
WO2010050342A1 (en) Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity
JPH0230731B2 (en) SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI
JP2010264427A (en) Halogen gas removal agent
JPS6391128A (en) Method for decomposing waste gas containing ccl4
CN109966820A (en) The method of processing gas logistics
JP2018134571A (en) Removal method of iodine compound
JP2011025180A (en) Method and apparatus for recovering fluorine
JP2006035192A (en) Neutralization method