WO2010050342A1 - Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity - Google Patents

Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity Download PDF

Info

Publication number
WO2010050342A1
WO2010050342A1 PCT/JP2009/067399 JP2009067399W WO2010050342A1 WO 2010050342 A1 WO2010050342 A1 WO 2010050342A1 JP 2009067399 W JP2009067399 W JP 2009067399W WO 2010050342 A1 WO2010050342 A1 WO 2010050342A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen trifluoride
vol
halogen
chlorine
contact
Prior art date
Application number
PCT/JP2009/067399
Other languages
French (fr)
Japanese (ja)
Inventor
亜紀応 菊池
勇 毛利
知之 平岡
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010050342A1 publication Critical patent/WO2010050342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride
    • C01B21/0837Purification

Definitions

  • the present invention relates to a method and system for purifying nitrogen trifluoride containing halogen or a halogen compound as an impurity.
  • the gas used in the semiconductor manufacturing process is generally supplied in a form filled in a container such as a gas cylinder.
  • These source gases usually have 5 vol.
  • hydrogen halide of about ppm or more is contained as an impurity, which causes troubles due to corrosion of manufacturing equipment such as gas supply pipes and defective products due to etching of semiconductor thin films.
  • contamination of halogen impurities in gases used in semiconductor manufacturing processes is a very serious problem, and it is necessary to reduce the concentration of hydrogen halide, which is an impurity, together with the purpose of preventing corrosion and defective products described above. It is desired to be removed.
  • Non-Patent Document 1 a method using a purification agent such as zeolite for purification of nitrogen trifluoride used in a semiconductor cleaning gas.
  • Patent Document 2 a method using a hydrochloric acid aqueous solution and water as a purification method for hydrogen chloride containing a fluorine-based compound (Patent Document 1), and a method using a reducing agent aqueous solution as a method for removing NO x have been reported. (Patent Document 2).
  • An object of the present invention is to provide a purification method and system capable of efficiently and inexpensively removing impurities by suppressing the generation of halogen oxides in the purification of nitrogen trifluoride containing halogen or a halogen compound as an impurity.
  • the step of bringing the nitrogen trifluoride into contact with water and the step of bringing the nitrogen trifluoride into contact with an aqueous base solution
  • a method for purifying nitrogen trifluoride comprising contacting the nitrogen trifluoride with a reducing agent aqueous solution.
  • a nitrogen trifluoride purification system containing halogen or a halogen compound as an impurity, means for bringing the nitrogen trifluoride into contact with water, and means for bringing the nitrogen trifluoride into contact with an aqueous base
  • a system for purifying nitrogen trifluoride comprising means for bringing the nitrogen trifluoride into contact with the reducing agent aqueous solution.
  • FIG. 1 is a schematic system diagram of a nitrogen trifluoride purification system according to an embodiment of the present invention.
  • nitrogen trifluoride containing halogen or a halogen compound as an impurity is purified by contacting with water, an aqueous base solution, or an aqueous reducing agent solution.
  • the configuration of the purification system is not particularly limited as long as the nitrogen trifluoride gas to be purified can be brought into contact with each of the three aqueous solutions of water, an aqueous base solution, and an aqueous reducing agent solution, and the purification device such as a gas purifier or a cleaning device Can be used arbitrarily to construct a purification system.
  • a bubbler device, a scrubber device or the like can be used.
  • countercurrent contact As the contact method between the gas to be purified and the aqueous solution, countercurrent contact or cocurrent contact can be used. However, in consideration of the gas-liquid contact efficiency, countercurrent contact is preferred.
  • the impurities to be removed by purification include halogens such as fluorine, chlorine, bromine and iodine, chlorine fluoride, chlorine trifluoride, chlorine pentafluoride, bromine fluoride, bromine trifluoride, bromine pentafluoride and iodine fluoride.
  • halogen compounds such as iodine pentafluoride and iodine heptafluoride. Among them, it is particularly effective for fluorine, chlorine, chlorine fluoride, and chlorine trifluoride.
  • the order in which the gas to be purified is brought into contact with the aqueous solution is not particularly limited. However, considering that it is possible to remove the halogen oxide generated in contact with water and in contact with the aqueous base solution, and further considering the efficiency of purification, it is preferable to contact with the reducing agent aqueous solution. In this case, with regard to the order of contact with water and contact with the aqueous base solution, halogen hydride is generated in contact with water, but since this can be removed by contact with the reducing agent aqueous solution in a later step, the order is not limited. The effect is obtained regardless of which one is performed first.
  • contact with an aqueous base solution is more preferable than contact with an aqueous base solution, because contact with an aqueous base solution has better chlorine removal efficiency and can remove halogen hydride.
  • a halogen oxide or a hydrogen hydride is generated during the purification process of the present invention, the effect of absorption of the halogen or halogen compound is greater. The effect of improving the purity of nitrogen fluoride is sufficiently obtained.
  • the base used in the aqueous base solution is preferably an inorganic base that does not react with nitrogen trifluoride.
  • potassium salt is particularly preferable in consideration of the solubility of the fluoride salt formed after the reaction.
  • the pH of the aqueous base solution is preferably 8 or more, more preferably 9 to 11, and still more preferably 11. This is because the purification efficiency under a certain temperature is improved by increasing the pH.
  • the contact reaction temperature with the aqueous base solution is not particularly specified.
  • the reducing agent used in the reducing agent aqueous solution is preferably one that does not react with nitrogen trifluoride when the standard electrode potential in the aqueous solution is ⁇ 0.092 V or less.
  • the lower the standard electrode potential the higher the effect.
  • the compounds described in the Dictionary of Chemistry can be mentioned.
  • potassium dithionite is particularly preferred, and potassium sulfite is particularly preferred.
  • a base is allowed to coexist in the reducing agent aqueous solution when used.
  • the effect of the coexisting base has a role of preventing deterioration of the reducing agent due to the acid generated after the reduction, and as the kind of base, those that do not directly react with nitrogen trifluoride and the reducing agent are preferable.
  • potassium salt is particularly preferable in consideration of the solubility of the fluoride salt formed after the reaction.
  • the mixing ratio of the coexisting base and reducing agent is not particularly limited.
  • the contact reaction temperature with the reducing agent aqueous solution Since it is considered that the purification capacity is lowered above the temperature at which the reducing agent decomposes, use at a temperature below the temperature at which the reducing agent decomposes is preferred.
  • a temperature below the temperature at which the reducing agent decomposes For example, in the case of potassium dithionite, the use at 60 ° C. or lower is desirable.
  • the concentration of the reducing agent is, for example, when potassium dithionite is used, and the lower limit of concentration is preferably 0.29 mol / l or less, and if it is less than that, sufficient purification ability cannot be exhibited.
  • the upper limit of the concentration of the reducing agent is not limited because a sufficient purification ability is exhibited even at 1.63 mol / l which is a saturated solution.
  • Example 1 The purification system of FIG. 1 was used to purify nitrogen trifluoride containing halogen and a halogen compound as impurities.
  • the purification system includes a cylinder 1 filled with a gas to be purified, a mass flow controller 2 that controls the flow rate of the gas to be purified to a predetermined value, and a wet purification device that causes the gas to be purified to contact with the reaction liquids 4, 9, and 14. It was composed of 5, 10, and 15.
  • the wet refining apparatuses 5, 10, 15 are packed towers 7, 12, 17 filled with a filler, liquid tanks 3, 8, 13 for storing reaction liquids 4, 9, 14, and liquid tanks 3, 8, 13
  • the liquids 6, 11, and 16 for feeding the reaction liquids 4, 9, and 14 above the packing material are respectively provided, and the gas to be purified is introduced from below the packed towers 7, 12, and 17, 7, 12, 17 in countercurrent contact with the reaction liquids 4, 9, 14 and discharged from the upper part of the packed towers 7, 12, 17. That is, the gas to be purified is introduced into the wet purification device 5 and brought into countercurrent contact with the reaction solution 4, then introduced into the wet purification device 10 and brought into countercurrent contact with the reaction solution 9, and further into the wet purification device 15. It was introduced and brought into countercurrent contact with the reaction solution 14. Thereafter, the gas released from the wet purification apparatus 15 was collected in the empty container 18.
  • the mass flow controller 2 was used to control the gas flow to 274 ml / min.
  • a SUS316-made packed tower 7 made of polytetrafluoroethylene having a length of 750 cm and an inner diameter of 25 mm was used, a 2 ⁇ polytetrafluoroethylene Raschig ring was used as a filler, and water was used as a reaction solution 4. .
  • a packed column 12 made of polyvinyl chloride having a length of 1500 cm and an inner diameter of 50 mm is used, a 6 mm SUS304 helipac as a filler, and a concentration of potassium dithionite as a reaction solution 14 is 1.5 mol / l, An aqueous solution having a potassium hydroxide concentration of 0.15 mol / l was used.
  • Halogen components (chloride ions, fluoride ions, chlorite ions, chlorate ions) in the collected gas are analyzed with an infrared spectrophotometer (Otsuka Electronics Co., Ltd. (IG-1000), ion chromatography) The purity of the purified nitrogen trifluoride gas was measured, and as a result of analysis by ion chromatography, chloride ion, fluoride ion, chlorite ion, and chlorate ion were detected at the lower limit of detection (chloride, fluoride ion).
  • the purification treatment was performed under the same conditions as in Example 1 except that a mixed gas adjusted to% was used.
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1.
  • IG-1000 infrared spectrophotometer
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared
  • chloride, fluoride ion: 1 mass ppm or less chlorite, chlorate ion: 0.2 mass ppm or less
  • infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
  • the purification treatment was performed under the same conditions as in Example 1 except that an aqueous solution having 5 mol / l and a potassium carbonate concentration of 0.15 mol / l was used.
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1.
  • IG-1000 infrared spectrophotometer
  • chloride ions and fluoride ions were analyzed.
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared
  • chloride, fluoride ion: 1 mass ppm or less chlorite, chlorate ion: 0.2 mass ppm or less
  • infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1.
  • IG-1000 infrared spectrophotometer
  • chloride ions and fluoride ions were analyzed.
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy
  • chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less chloride, fluoride ion: 1 mass ppm or less
  • chlorite, chlorate ion 0.2 mass ppm or less
  • infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1.
  • IG-1000 infrared spectrophotometer
  • chloride ions and fluoride ions were analyzed.
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared
  • chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less chloride, fluoride ion: 1 mass ppm or less
  • chlorite, chlorate ion 0.2 mass ppm or less
  • infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to at least 99.999% by mass. did.
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1.
  • IG-1000 infrared spectrophotometer
  • chloride ions and fluoride ions were analyzed.
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy
  • chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less chloride, fluoride ion: 1 mass ppm or less
  • chlorite, chlorate ion 0.2 mass ppm or less
  • infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
  • IG-1000 infrared spectrophotometer
  • Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy
  • chloride, fluoride ion: 1 mass ppm or less chlorite, chlorate ion: 0.2 mass ppm or less
  • infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd.
  • the collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd.
  • chloride ions were found to be 5. 3 mass ppm, 6.1 mass ppm of fluorine ions were confirmed, and chlorite ions and chlorate ions were confirmed to be below the lower limit of detection (chlorite, chlorate ions: 0.2 mass ppm or less).
  • chlorite, chlorate ions 0.2 mass ppm or less.
  • Table 1 describes the composition of the gas to be purified used in Examples 1 to 11 and Comparative Examples 1 and 2, and the main conditions of the wet purification apparatus.
  • Table 2 lists the analysis results.
  • nitrogen trifluoride containing halogen or a halogen compound can be purified at low cost and with higher purity.
  • the present invention for example, as a purification means in the production of chloride gas or fluoride gas, or exhaust gas from semiconductor factories or chemical factories using chloride gas or fluoride gas. It can be used as an abatement means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method for purifying nitrogen trifluoride containing a halogen or a halogen compound as an impurity, which comprises a step wherein the nitrogen trifluoride is brought into contact with water, a step wherein the nitrogen trifluoride is brought into contact with an aqueous base solution, and a step wherein the nitrogen trifluoride is brought into contact with an aqueous solution of a reducing agent.  By this method, impurities can be removed while suppressing production of halogen oxides, and nitrogen trifluoride can be purified with high purity at low cost.

Description

ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製方法及びシステムMethod and system for purifying nitrogen trifluoride containing halogen or halogen compounds as impurities
 本発明は、ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製方法及びシステムに関する。 The present invention relates to a method and system for purifying nitrogen trifluoride containing halogen or a halogen compound as an impurity.
 半導体製造プロセスなどで使用されるガスは、一般的にはガスボンベなどの容器に充填された形態で供給される。これらの原料ガスには通常、5 vol.ppm程度またはそれ以上のハロゲン化水素などが不純物として含有されている場合が多く、ガス供給配管など製造装置の腐食によるトラブルや半導体薄膜の食刻などによる不良製品発生の原因ともなっている。そのため半導体製造プロセスなどで使用されるガス中のハロゲン不純物のコンタミは非常に深刻な問題であり、上記の腐食や不良品発生防止の目的と合わせて不純物であるハロゲン化水素を低濃度になるまで除去することが望まれている。また、塩素またはフッ素などのハロゲン、フッ化塩素または三フッ化塩素などのハロゲン化合物を不純物として含む原料ガスを水と反応させるとハロゲン酸化物が発生し精製ガス中へのハロゲン酸化物のコンタミが発生するという問題がある。 The gas used in the semiconductor manufacturing process is generally supplied in a form filled in a container such as a gas cylinder. These source gases usually have 5 vol. In many cases, hydrogen halide of about ppm or more is contained as an impurity, which causes troubles due to corrosion of manufacturing equipment such as gas supply pipes and defective products due to etching of semiconductor thin films. For this reason, contamination of halogen impurities in gases used in semiconductor manufacturing processes is a very serious problem, and it is necessary to reduce the concentration of hydrogen halide, which is an impurity, together with the purpose of preventing corrosion and defective products described above. It is desired to be removed. In addition, when a raw material gas containing a halogen compound such as chlorine or fluorine, or a halogen compound such as chlorine fluoride or chlorine trifluoride as an impurity is reacted with water, halogen oxide is generated, and contamination of the halogen oxide in the purified gas is caused. There is a problem that occurs.
 これまで、ガス中の不純物の除去方法としては、例えば半導体のクリーニングガスに用いられる三フッ化窒素の精製にゼオライトなどの精製薬剤を用いた方法が報告されている(非特許文献1)。その他、湿式の精製方法としてフッ素系化合物を含む塩化水素の精製方法に塩酸水溶液、水を用いた方法(特許文献1)、NOXを除去する方法として還元剤水溶液を用いた方法が報告されている(特許文献2)。 Until now, as a method for removing impurities in a gas, for example, a method using a purification agent such as zeolite for purification of nitrogen trifluoride used in a semiconductor cleaning gas has been reported (Non-Patent Document 1). In addition, as a wet purification method, a method using a hydrochloric acid aqueous solution and water as a purification method for hydrogen chloride containing a fluorine-based compound (Patent Document 1), and a method using a reducing agent aqueous solution as a method for removing NO x have been reported. (Patent Document 2).
特開2007-91560公報JP 2007-91560 A 特開平9-108537号公報JP-A-9-108537
 しかしながら、上記の方法では非常に反応活性なハロゲンまたはハロゲン化合物の除去は困難である。 However, it is difficult to remove a very reactive halogen or halogen compound by the above method.
 本発明の目的は、ハロゲンまたはハロゲン化合物を不純物に含んだ三フッ化窒素の精製において、ハロゲン酸化物の発生を抑えて不純物を効率良く安価に除去できる精製方法及びシステムを提供することにある。 An object of the present invention is to provide a purification method and system capable of efficiently and inexpensively removing impurities by suppressing the generation of halogen oxides in the purification of nitrogen trifluoride containing halogen or a halogen compound as an impurity.
 すなわち、本発明によれば、ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製方法において、該三フッ化窒素を水と接触させる工程と、該三フッ化窒素を塩基水溶液と接触させる工程と、該三フッ化窒素を還元剤水溶液と接触させる工程を含む、三フッ化窒素の精製方法が提供される。 That is, according to the present invention, in the method for purifying nitrogen trifluoride containing halogen or a halogen compound as an impurity, the step of bringing the nitrogen trifluoride into contact with water, and the step of bringing the nitrogen trifluoride into contact with an aqueous base solution And a method for purifying nitrogen trifluoride, comprising contacting the nitrogen trifluoride with a reducing agent aqueous solution.
 また、本発明によれば、ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製システムにおいて、該三フッ化窒素を水と接触させる手段と、該三フッ化窒素を塩基水溶液と接触させる手段と、該三フッ化窒素を還元剤水溶液と接触させる手段を備えた、三フッ化窒素の精製システムが提供される。 Further, according to the present invention, in a nitrogen trifluoride purification system containing halogen or a halogen compound as an impurity, means for bringing the nitrogen trifluoride into contact with water, and means for bringing the nitrogen trifluoride into contact with an aqueous base And a system for purifying nitrogen trifluoride comprising means for bringing the nitrogen trifluoride into contact with the reducing agent aqueous solution.
本発明の実施形態に係る三フッ化窒素精製システムの概略系統図である。1 is a schematic system diagram of a nitrogen trifluoride purification system according to an embodiment of the present invention.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明では、ハロゲンまたはハロゲン化合物を不純物に含んだ三フッ化窒素を、水、塩基水溶液、還元剤水溶液とそれぞれ接触させて精製する。 In the present invention, nitrogen trifluoride containing halogen or a halogen compound as an impurity is purified by contacting with water, an aqueous base solution, or an aqueous reducing agent solution.
 精製対象の三フッ化窒素ガスを水、塩基水溶液、還元剤水溶液の三種の水溶液とそれぞれ接触反応させることができれば、精製システムの構成は特に限定されず、ガス精製器、洗浄装置等の精製装置を任意に使用して精製システムを構成することができる。例えば、バブラー装置、スクラバー装置等を用いることができる。 The configuration of the purification system is not particularly limited as long as the nitrogen trifluoride gas to be purified can be brought into contact with each of the three aqueous solutions of water, an aqueous base solution, and an aqueous reducing agent solution, and the purification device such as a gas purifier or a cleaning device Can be used arbitrarily to construct a purification system. For example, a bubbler device, a scrubber device or the like can be used.
 精製対象ガスと水溶液との接触の方式については、向流接触、又は並流接触を用いることができる。しかし、気液の接触効率を考えると、向流接触の方が好ましい。 As the contact method between the gas to be purified and the aqueous solution, countercurrent contact or cocurrent contact can be used. However, in consideration of the gas-liquid contact efficiency, countercurrent contact is preferred.
 精製による除去対象不純物としては、フッ素、塩素、臭素、沃素等のハロゲン、フッ化塩素、三フッ化塩素、五フッ化塩素、フッ化臭素、三フッ化臭素、五フッ化臭素、フッ化沃素、五フッ化沃素、七フッ化沃素等のハロゲン化合物が挙げられる。その中でもフッ素、塩素、フッ化塩素、三フッ化塩素に対して特に有効である。 The impurities to be removed by purification include halogens such as fluorine, chlorine, bromine and iodine, chlorine fluoride, chlorine trifluoride, chlorine pentafluoride, bromine fluoride, bromine trifluoride, bromine pentafluoride and iodine fluoride. And halogen compounds such as iodine pentafluoride and iodine heptafluoride. Among them, it is particularly effective for fluorine, chlorine, chlorine fluoride, and chlorine trifluoride.
 精製対象ガスを水溶液と接触させる順番は、特に限定されない。但し、水との接触および塩基水溶液との接触において発生するハロゲン酸化物の除去が可能なこと、更には精製の効率を考慮すると、第三に還元剤水溶液と接触させることが好ましい。この場合、水との接触および塩基水溶液との接触の順番については、水との接触において水素化ハロゲンが発生するが、これを後の工程の還元剤水溶液との接触により除去できるため、順不同でどちらを第一に行っても効果が得られる。より好ましくは、水よりも塩基水溶液との接触の方が、塩素の除去効率が良好なこと及び水素化ハロゲンの除去が可能なため、第二に塩基水溶液と接触させる方がより好ましい。尚、本発明の精製工程中に、ハロゲン酸化物または水素化ハロゲンが発生するものの、ハロゲンまたはハロゲン化合物の吸収の効果の方が大きいため、精製対象ガスを接触させる水溶液の順番によらず、三フッ化窒素の純度向上の効果は十分得られる。 The order in which the gas to be purified is brought into contact with the aqueous solution is not particularly limited. However, considering that it is possible to remove the halogen oxide generated in contact with water and in contact with the aqueous base solution, and further considering the efficiency of purification, it is preferable to contact with the reducing agent aqueous solution. In this case, with regard to the order of contact with water and contact with the aqueous base solution, halogen hydride is generated in contact with water, but since this can be removed by contact with the reducing agent aqueous solution in a later step, the order is not limited. The effect is obtained regardless of which one is performed first. More preferably, contact with an aqueous base solution is more preferable than contact with an aqueous base solution, because contact with an aqueous base solution has better chlorine removal efficiency and can remove halogen hydride. Although a halogen oxide or a hydrogen hydride is generated during the purification process of the present invention, the effect of absorption of the halogen or halogen compound is greater. The effect of improving the purity of nitrogen fluoride is sufficiently obtained.
 塩基水溶液に使用する塩基は、無機塩基で三フッ化窒素と反応しないものが好ましい。その中でも反応後に生成するフッ化物塩の溶解度を考慮するとカリウム塩が特に好ましい。塩基水溶液のpHについては8以上が好ましく、より好ましくは9~11、更に好ましくは11超である。一定の温度下での精製効率はpHの上昇で向上するためである。また塩基水溶液との接触反応温度については特に指定されない。 The base used in the aqueous base solution is preferably an inorganic base that does not react with nitrogen trifluoride. Among these, potassium salt is particularly preferable in consideration of the solubility of the fluoride salt formed after the reaction. The pH of the aqueous base solution is preferably 8 or more, more preferably 9 to 11, and still more preferably 11. This is because the purification efficiency under a certain temperature is improved by increasing the pH. The contact reaction temperature with the aqueous base solution is not particularly specified.
 還元剤水溶液に使用する還元剤は、水溶液中における標準電極電位が-0.092V以下で三フッ化窒素と反応しないものが好ましい。該標準電極電位が低いものほどより高い効果が得られる。例えば、化学大辞典(東京化学同人 第四版 II-465)に記載されている化合物が挙げられる。その中でも亜二チオン酸カリウムが特に好ましく、その他に好ましくは亜硫酸カリウムである。より好ましくは使用する際に還元剤水溶液に塩基を共存させることが望ましい。また共存させる塩基の効果について還元後に発生する酸による還元剤の劣化を防ぐ役割があり、塩基の種類としては三フッ化窒素及び、還元剤と直接反応しないものが好ましい。その中でも反応後に生成するフッ化物塩の溶解度を考慮するとカリウム塩が特に好ましい。また、共存させる塩基と還元剤との混合比については特に限定しない。 The reducing agent used in the reducing agent aqueous solution is preferably one that does not react with nitrogen trifluoride when the standard electrode potential in the aqueous solution is −0.092 V or less. The lower the standard electrode potential, the higher the effect. For example, the compounds described in the Dictionary of Chemistry (Tokyo Chemical Doujin, 4th edition, II-465) can be mentioned. Of these, potassium dithionite is particularly preferred, and potassium sulfite is particularly preferred. More preferably, a base is allowed to coexist in the reducing agent aqueous solution when used. Further, the effect of the coexisting base has a role of preventing deterioration of the reducing agent due to the acid generated after the reduction, and as the kind of base, those that do not directly react with nitrogen trifluoride and the reducing agent are preferable. Among these, potassium salt is particularly preferable in consideration of the solubility of the fluoride salt formed after the reaction. Further, the mixing ratio of the coexisting base and reducing agent is not particularly limited.
 還元剤水溶液との接触反応温度については特に指定しない。還元剤が分解する温度以上では、精製能力が低下すると考えられるので、還元剤が分解する温度以下での使用が好ましい。例えば、亜二チオン酸カリウムの場合は60℃以下での使用が望ましい。還元剤の濃度は例えば、亜二チオン酸カリウムを用いる場合で濃度下限としては0.29mol/l以上が好ましくそれ以下では十分な精製能力が発揮されない。また還元剤の濃度上限は、飽和溶液である1.63mol/lにおいても十分な精製能力を発揮するため限定されない。 No special specification is made for the contact reaction temperature with the reducing agent aqueous solution. Since it is considered that the purification capacity is lowered above the temperature at which the reducing agent decomposes, use at a temperature below the temperature at which the reducing agent decomposes is preferred. For example, in the case of potassium dithionite, the use at 60 ° C. or lower is desirable. The concentration of the reducing agent is, for example, when potassium dithionite is used, and the lower limit of concentration is preferably 0.29 mol / l or less, and if it is less than that, sufficient purification ability cannot be exhibited. Further, the upper limit of the concentration of the reducing agent is not limited because a sufficient purification ability is exhibited even at 1.63 mol / l which is a saturated solution.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 図1の精製システムを用い、不純物としてハロゲン及びハロゲン化合物を含有した三フッ化窒素の精製処理を行った。
[Example 1]
The purification system of FIG. 1 was used to purify nitrogen trifluoride containing halogen and a halogen compound as impurities.
 精製システムは、精製対象ガスが充填されたボンベ1と、精製対象ガスの流量を所定の値に制御するマスフローコントローラー2と、精製対象ガスを反応液4、9、14と接触反応させる湿式精製装置5、10、15で構成された。湿式精製装置5、10、15は、充填材を充填した充填塔7、12、17と、反応液4、9、14を溜める液釜3、8、13と、液釜3、8、13内の反応液4、9、14を充填材の上方に液送する液送ポンプ6、11、16をそれぞれ備えており、精製対象ガスは、充填塔7、12、17下部より導入され、充填塔7、12、17内で反応液4、9、14と向流接触し、充填塔7、12、17上部より放出される。すなわち、精製対象ガスは、湿式精製装置5に導入して反応液4と向流接触させた後、湿式精製装置10に導入して反応液9と向流接触させ、さらに、湿式精製装置15に導入して反応液14と向流接触させた。その後、湿式精製装置15から放出されるガスを空容器18に捕集した。 The purification system includes a cylinder 1 filled with a gas to be purified, a mass flow controller 2 that controls the flow rate of the gas to be purified to a predetermined value, and a wet purification device that causes the gas to be purified to contact with the reaction liquids 4, 9, and 14. It was composed of 5, 10, and 15. The wet refining apparatuses 5, 10, 15 are packed towers 7, 12, 17 filled with a filler, liquid tanks 3, 8, 13 for storing reaction liquids 4, 9, 14, and liquid tanks 3, 8, 13 The liquids 6, 11, and 16 for feeding the reaction liquids 4, 9, and 14 above the packing material are respectively provided, and the gas to be purified is introduced from below the packed towers 7, 12, and 17, 7, 12, 17 in countercurrent contact with the reaction liquids 4, 9, 14 and discharged from the upper part of the packed towers 7, 12, 17. That is, the gas to be purified is introduced into the wet purification device 5 and brought into countercurrent contact with the reaction solution 4, then introduced into the wet purification device 10 and brought into countercurrent contact with the reaction solution 9, and further into the wet purification device 15. It was introduced and brought into countercurrent contact with the reaction solution 14. Thereafter, the gas released from the wet purification apparatus 15 was collected in the empty container 18.
 実施例1では、精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=0 vol.%:1.0 vol.%:21.0 vol.%:0 vol.%:78.0 vol.%に調整した混合ガスを用い、マスフローコントローラー2にて274 ml/minに制御して導入した。湿式精製装置5では、長さ750cm、内径25mmのポリテトラフルオロエチレンライニングされたSUS316製の充填塔7を用い、充填剤として2φのポリテトラフルオロエチレン製のラシヒリング、反応液4として水を用いた。湿式精製装置10では、長さ750cm、内径50mmの塩ビ製の充填塔12を用い、充填剤として6mmのSUS304製のヘリパック、反応液9として水酸化カリウム濃度が0.5mol/l(pH=13)の水酸化カリウム水溶液を用いた。また、湿式精製装置15では、長さ1500cm、内径50mmの塩ビ製の充填塔12を用い、充填剤として6mmのSUS304製のヘリパック、反応液14として亜二チオン酸カリウムの濃度が1.5mol/l、水酸化カリウム濃度が0.15mol/lの水溶液を用いた。 In Example 1, as the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 0% vol. %: 1.0% vol. %: 21.0 vol. %: 0 vol. %: 78.0 vol. Using a mixed gas adjusted to%, the mass flow controller 2 was used to control the gas flow to 274 ml / min. In the wet refining apparatus 5, a SUS316-made packed tower 7 made of polytetrafluoroethylene having a length of 750 cm and an inner diameter of 25 mm was used, a 2φ polytetrafluoroethylene Raschig ring was used as a filler, and water was used as a reaction solution 4. . The wet refining apparatus 10 uses a packed column 12 made of polyvinyl chloride having a length of 750 cm and an inner diameter of 50 mm, a 6 mm SUS304 helipack as a filler, and a potassium hydroxide concentration of 0.5 mol / l (pH = 13) as a reaction solution 9. ) Was used. In addition, in the wet refining apparatus 15, a packed column 12 made of polyvinyl chloride having a length of 1500 cm and an inner diameter of 50 mm is used, a 6 mm SUS304 helipac as a filler, and a concentration of potassium dithionite as a reaction solution 14 is 1.5 mol / l, An aqueous solution having a potassium hydroxide concentration of 0.15 mol / l was used.
 捕集したガス中のハロゲン成分(塩化物イオン、フッ化物イオン、亜塩素酸イオン、塩素酸イオン)を赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析し、精製された三フッ化窒素ガスの純度を測定した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1 質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。 Halogen components (chloride ions, fluoride ions, chlorite ions, chlorate ions) in the collected gas are analyzed with an infrared spectrophotometer (Otsuka Electronics Co., Ltd. (IG-1000), ion chromatography) The purity of the purified nitrogen trifluoride gas was measured, and as a result of analysis by ion chromatography, chloride ion, fluoride ion, chlorite ion, and chlorate ion were detected at the lower limit of detection (chloride, fluoride ion). 1 ppm by mass or less, chlorous acid, chlorate ion: 0.2 mass ppm or less), and as a result of analysis with an infrared spectrophotometer, no peaks other than nitrogen trifluoride were confirmed. It was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass.
 [実施例2]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=0.5 vol.%:0.4 vol.%:18.0vol.%:0.5vol.%:80.6 vol.%に調整した混合ガスを使用したこと以外は、実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 2]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 0.5 vol. %: 0.4 vol. %: 18.0 vol. %: 0.5 vol. %: 80.6 vol. The purification treatment was performed under the same conditions as in Example 1 except that a mixed gas adjusted to% was used. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
 [実施例3]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=0.5 vol.%:0.4 vol.%:18.0vol.%:0.5vol.%:80.6 vol.%に調整した混合ガスを使用し、反応液9として、炭酸カリウム濃度が0.5mol/l(pH=9.7)の炭酸カリウム水溶液、反応液14として、亜二チオン酸カリウム濃度が1.5 mol/l、炭酸カリウム濃度が0.15 mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 3]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 0.5 vol. %: 0.4 vol. %: 18.0 vol. %: 0.5 vol. %: 80.6 vol. %, A potassium carbonate aqueous solution having a potassium carbonate concentration of 0.5 mol / l (pH = 9.7) as the reaction solution 9, and a potassium dithionite concentration of 1. as the reaction solution 14. The purification treatment was performed under the same conditions as in Example 1 except that an aqueous solution having 5 mol / l and a potassium carbonate concentration of 0.15 mol / l was used. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
 [実施例4]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=0 vol.%:0 vol.%:0 vol.%:5.7 vol.%:94.3 vol.%に調整した混合ガスを使用し、反応液14として、亜二チオン酸カリウムの濃度が溶解度量である1.63 mol/l、水酸化カリウム濃度が 0.15mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 4]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 0 vol. %: 0 vol. %: 0 vol. %: 5.7 vol. %: 94.3 vol. %, And the reaction solution 14 was an aqueous solution having a potassium dithionite concentration of 1.63 mol / l in terms of solubility and a potassium hydroxide concentration of 0.15 mol / l. Except for the above, purification was performed under the same conditions as in Example 1. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
 [実施例5]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=5.1 vol.%:0 vol.%:4.1 vol.%:2.5 vol.%:88.3 vol.%に調整した混合ガスを使用し、反応液9として、水酸化カリウム濃度が1.5mol/l(pH=13)の水酸化カリウム水溶液、反応液14として、亜二チオン酸カリウムの濃度が0.45 mol/l、水酸化カリウム濃度が 0.15mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 5]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 5.1 vol. %: 0 vol. %: 4.1 vol. %: 2.5 vol. %: 88.3 vol. %, The reaction solution 9 is a potassium hydroxide aqueous solution having a potassium hydroxide concentration of 1.5 mol / l (pH = 13), and the reaction solution 14 has a potassium dithionite concentration of 0. Purification was performed under the same conditions as in Example 1 except that an aqueous solution having a concentration of 0.45 mol / l and a potassium hydroxide concentration of 0.15 mol / l was used. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
 [実施例6]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=6.2 vol.%:0 vol.%:0 vol.%:0 vol.%:93.8 vol.%に調整した混合ガスを使用し、反応液9として、水酸化カリウム濃度が1.5mol/l(pH=13)の水酸化カリウム水溶液、反応液14として、亜二チオン酸カリウムの濃度が0.45 mol/l、水酸化カリウム濃度が0.15 mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 6]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 6.2 vol. %: 0 vol. %: 0 vol. %: 0 vol. %: 93.8 vol. %, The reaction solution 9 is a potassium hydroxide aqueous solution having a potassium hydroxide concentration of 1.5 mol / l (pH = 13), and the reaction solution 14 has a potassium dithionite concentration of 0. Purification was performed under the same conditions as in Example 1 except that an aqueous solution having a concentration of 0.45 mol / l and a potassium hydroxide concentration of 0.15 mol / l was used. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to at least 99.999% by mass. did.
 [実施例7]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.%に調整した混合ガスを使用し、反応液9として、水酸化カリウム濃度が1.5mol/l(pH=13)の水酸化カリウム水溶液、反応液14として、亜硫酸カリウムの濃度が1.0 mol/l、水酸化カリウム濃度が0.15 mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 7]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. %, And the reaction solution 9 is an aqueous potassium hydroxide solution having a potassium hydroxide concentration of 1.5 mol / l (pH = 13), and the reaction solution 14 has a potassium sulfite concentration of 1.0 mol. / L and purification treatment was performed under the same conditions as in Example 1 except that an aqueous solution having a potassium hydroxide concentration of 0.15 mol / l was used. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
 [実施例8]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=0.5 vol.%:0.4 vol.%:18.0vol.%:0.5vol.%:80.6 vol.% に調整した混合ガスを使用し、1.096l/min(空塔線速度 3.72×10-2m/sec)で導入したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 8]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 0.5 vol. %: 0.4 vol. %: 18.0 vol. %: 0.5 vol. %: 80.6 vol. % Was used under the same conditions as in Example 1 except that it was introduced at a rate of 1.096 l / min (empty linear velocity 3.72 × 10 −2 m / sec). The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
 [実施例9]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.% に調整した混合ガスを使用し、湿式精製装置5の反応液4として塩基水溶液、湿式精製装置10の反応液9として水、湿式精製装置15の反応液14として還元剤水溶液を用いたこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 9]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. %, A base aqueous solution as the reaction solution 4 of the wet purification device 5, water as the reaction solution 9 of the wet purification device 10, and an aqueous reducing agent solution as the reaction solution 14 of the wet purification device 15 are used. Was purified under the same conditions as in Example 1. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared spectroscopy As a result of analysis by a photometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. .
 [実施例10]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.% に調整した混合ガスを使用し、湿式精製装置5の反応液4として水、湿式精製装置10の反応液9として還元剤水溶液、湿式精製装置15の反応液14として塩基水溶液を用いたこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であったが、赤外分光光度計で分析した結果、不純物としてClO3Fが36 vol.ppm含まれていることを確認した。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.99質量%まで精製出来ることを確認した。
[Example 10]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. %, Except that water was used as the reaction solution 4 of the wet purification device 5, an aqueous reducing agent solution was used as the reaction solution 9 of the wet purification device 10, and an aqueous base solution was used as the reaction solution 14 of the wet purification device 15. Was purified under the same conditions as in Example 1. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion were below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), but infrared As a result of analysis with a spectrophotometer, it was confirmed that 36 vol.ppm of ClO 3 F was contained as an impurity, and nitrogen trifluoride containing halogen or a halogen compound as an impurity had a purity of at least 99.99 mass%. It was confirmed that purification was possible.
 [実施例11]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.% に調整した混合ガスを使用し、反応液14として、亜二チオン酸ナトリウムの濃度が溶解度量である1.63 mol/l、水酸化カリウム濃度が0.15 mol/lの水溶液を使用したこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオン、フッ化物イオン、亜塩素酸イオン、および塩素酸イオンは、検出下限(塩化物、フッ化物イオン:1質量ppm以下、亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であり、また、赤外分光光度計で分析した結果、三フッ化窒素の以外のピークは確認されなかった。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99.999質量%まで精製出来ることを確認した。
[Example 11]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. %, And the reaction solution 14 was an aqueous solution having a sodium dithionite concentration of 1.63 mol / l in terms of solubility and a potassium hydroxide concentration of 0.15 mol / l. Except for this, the purification treatment was performed under the same conditions as in Example 1. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions and fluoride ions were analyzed. , Chlorite ion, and chlorate ion are below the lower limit of detection (chloride, fluoride ion: 1 mass ppm or less, chlorite, chlorate ion: 0.2 mass ppm or less), and infrared As a result of analysis with a spectrophotometer, no peaks other than nitrogen trifluoride were confirmed, and it was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of at least 99.999% by mass. did.
 [比較例1]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.% に調整した混合ガスを使用し、湿式精製装置5、10、15の反応液4、9、14を全て水としたこと以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクロマトグラフィーで分析した結果、塩化物イオンを15920質量ppm、フッ素イオンを826質量ppm、亜塩素酸イオンを12.7質量ppm、塩素酸イオンを1.8質量ppm確認し、また、赤外分光光度計で分析した結果、不純物としてClO3Fが3128 vol.ppm含まれていることを確認した。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素は、純度95質量%まで精製出来ることを確認した。
[Comparative Example 1]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. % Was used, and the purification treatment was performed under the same conditions as in Example 1 except that the reaction liquids 4, 9, and 14 of the wet purification apparatuses 5, 10, and 15 were all water. The collected spectrophotometer (IG-1000, manufactured by Otsuka Electronics Co., Ltd.) was analyzed by ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, 15920 ppm by mass of chloride ions, As a result of confirming 826 mass ppm of fluorine ions, 12.7 mass ppm of chlorite ions and 1.8 mass ppm of chlorate ions, and analyzing with an infrared spectrophotometer, 3128 vol of ClO 3 F was found as an impurity. It was confirmed that nitrogen trifluoride containing halogen or a halogen compound as an impurity could be purified to a purity of 95% by mass.
 [比較例2]
 精製対象ガスとして、フッ素:塩素:フッ化塩素:三フッ化塩素:三フッ化窒素=2.3 vol.%:6.1 vol.%:1.5 vol.%:2.3 vol.%:87.8 vol.% に調整した混合ガスを使用し、湿式精製装置5、10のみを通過させ、湿式精製装置15を通過させず、湿式精製装置10から排出されるガスを空容器18に捕集する以外は実施例1と同条件で精製処理を行った。実施例1と同様に、捕集したガスを赤外分光光度計(大塚電子社製(IG-1000)、イオンクロマトグラフィーで分析した。イオンクトマトグラフィーで分析した結果、塩化物イオンを5.3質量ppm、フッ素イオンを6.1質量ppm確認し、亜塩素酸イオンと塩素酸イオンについては検出下限(亜塩素酸、塩素酸イオン:0.2質量ppm以下)以下であることを確認した。また、赤外分光光度計で分析した結果、不純物としてClO3Fが2816 vol.ppm含まれていることを確認した。不純物としてハロゲンまたはハロゲン化合物を含有する三フッ化窒素を、少なくとも純度99質量%まで精製出来ることを確認した。
[Comparative Example 2]
As the gas to be purified, fluorine: chlorine: chlorine fluoride: chlorine trifluoride: nitrogen trifluoride = 2.3 vol. %: 6.1 vol. %: 1.5 vol. %: 2.3 vol. %: 87.8 vol. %, Using only the wet refiner 5 and 10 and passing the wet refiner 5 and 10 without passing through the wet refiner 15 and collecting the gas discharged from the wet refiner 10 in the empty container 18 Purification was performed under the same conditions as in Example 1. The collected gas was analyzed by an infrared spectrophotometer (manufactured by Otsuka Electronics Co., Ltd. (IG-1000)) and ion chromatography in the same manner as in Example 1. As a result of analysis by ion chromatography, chloride ions were found to be 5. 3 mass ppm, 6.1 mass ppm of fluorine ions were confirmed, and chlorite ions and chlorate ions were confirmed to be below the lower limit of detection (chlorite, chlorate ions: 0.2 mass ppm or less). As a result of analysis with an infrared spectrophotometer, it was confirmed that 2816 vol.ppm of ClO 3 F was contained as an impurity Nitrogen trifluoride containing halogen or a halogen compound as an impurity had a purity of at least 99. It was confirmed that purification to mass% was possible.
 表1に、実施例1~11及び比較例1、2で用いた精製対象ガスの組成、湿式精製装置の主な条件を記載する。また、表2に、分析結果を記載する。 Table 1 describes the composition of the gas to be purified used in Examples 1 to 11 and Comparative Examples 1 and 2, and the main conditions of the wet purification apparatus. Table 2 lists the analysis results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述の通り、本発明によれば、ハロゲンまたはハロゲン化合物を含有する三フッ化窒素を安価、且つ、より高純度に精製することができる。 As described above, according to the present invention, nitrogen trifluoride containing halogen or a halogen compound can be purified at low cost and with higher purity.
 本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。 Although the present invention has been described based on specific embodiments, the present invention is not limited to the above embodiments, and includes various modifications and changes without departing from the spirit of the present invention.
 本発明は、三フッ化窒素の精製のほかに、例えば塩化物ガス、フッ化物ガスの製造時の精製手段として、または塩化物ガス、フッ化物ガスを使用する半導体工場や化学工場などの排出ガスの除害手段として利用可能である。 In addition to the purification of nitrogen trifluoride, the present invention, for example, as a purification means in the production of chloride gas or fluoride gas, or exhaust gas from semiconductor factories or chemical factories using chloride gas or fluoride gas. It can be used as an abatement means.

Claims (6)

  1. ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製方法において、該三フッ化窒素を水と接触させる工程と、該三フッ化窒素を塩基水溶液と接触させる工程と、該三フッ化窒素を還元剤水溶液と接触させる工程を含む、三フッ化窒素の精製方法。 In a method for purifying nitrogen trifluoride containing halogen or a halogen compound as an impurity, the step of bringing the nitrogen trifluoride into contact with water, the step of bringing the nitrogen trifluoride into contact with an aqueous base, and the nitrogen trifluoride A method for purifying nitrogen trifluoride, comprising a step of contacting with a reducing agent aqueous solution.
  2. 該ハロゲンがフッ素または塩素、該ハロゲン化合物がフッ化塩素または三フッ化塩素であることを特徴とする、請求項1に記載の三フッ化窒素の精製方法。 The method for purifying nitrogen trifluoride according to claim 1, wherein the halogen is fluorine or chlorine, and the halogen compound is chlorine fluoride or chlorine trifluoride.
  3. 第一に三フッ化窒素を水と接触させる工程、第二に三フッ化窒素を塩基水溶液と接触させる工程、第三に三フッ化窒素を還元剤水溶液と接触させる工程を行うことを特徴とする、請求項1または2に記載の三フッ化窒素の精製方法。 The first step is to contact nitrogen trifluoride with water, the second step is to contact nitrogen trifluoride with an aqueous base solution, and the third is the step of contacting nitrogen trifluoride with an aqueous reducing agent solution. The method for purifying nitrogen trifluoride according to claim 1 or 2.
  4. 還元剤水溶液として、水溶液中の標準電極電位が-0.092V以下である還元剤を溶解した還元剤水溶液を用いることを特徴とする、請求項1~3のいずれか1項に記載の三フッ化窒素の精製方法。 4. The reducing agent aqueous solution according to any one of claims 1 to 3, wherein a reducing agent aqueous solution in which a reducing agent having a standard electrode potential in the aqueous solution of −0.092 V or less is dissolved is used as the reducing agent aqueous solution. Nitrogen purification method.
  5. 還元剤水溶液に塩基を共存させることを特徴とする、請求項1~4のいずれか1項に記載の三フッ化窒素の精製方法。 The method for purifying nitrogen trifluoride according to any one of claims 1 to 4, wherein a base is allowed to coexist in the reducing agent aqueous solution.
  6. ハロゲンまたはハロゲン化合物を不純物として含む三フッ化窒素の精製システムにおいて、該三フッ化窒素を水と接触させる手段と、該三フッ化窒素を塩基水溶液と接触させる手段と、該三フッ化窒素を還元剤水溶液と接触させる手段を含む、三フッ化窒素の精製システム。 In a system for purifying nitrogen trifluoride containing halogen or a halogen compound as an impurity, means for bringing the nitrogen trifluoride into contact with water, means for bringing the nitrogen trifluoride into contact with an aqueous base, and the nitrogen trifluoride A system for purifying nitrogen trifluoride comprising means for contacting with an aqueous reducing agent solution.
PCT/JP2009/067399 2008-10-28 2009-10-06 Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity WO2010050342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008276262A JP2010105825A (en) 2008-10-28 2008-10-28 Method for purifying nitrogen trifluoride containing halogen or halogen compound as impurity
JP2008-276262 2008-10-28

Publications (1)

Publication Number Publication Date
WO2010050342A1 true WO2010050342A1 (en) 2010-05-06

Family

ID=42128708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067399 WO2010050342A1 (en) 2008-10-28 2009-10-06 Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity

Country Status (2)

Country Link
JP (1) JP2010105825A (en)
WO (1) WO2010050342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348850A (en) * 2015-12-01 2018-07-31 昭和电工株式会社 The processing method of exhaust gas containing fluorine element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280310A (en) * 1988-06-01 1990-03-20 Mitsui Toatsu Chem Inc Purifying method for gaseous nf3
JPH03217217A (en) * 1990-01-19 1991-09-25 Central Glass Co Ltd Treatment of waste gas containing chlorine trifluoride
JPH11349304A (en) * 1998-06-05 1999-12-21 Mitsui Chem Inc Purification of high-purity nitrogen trifluoride gas
JP2002068716A (en) * 2000-08-28 2002-03-08 Mitsui Chemicals Inc Method of refining high purity nf3 gas
JP2002284512A (en) * 2001-03-28 2002-10-03 Mitsui Chemicals Inc Method for manufacturing high-purity nitrogen trifluoride
JP2009136709A (en) * 2007-12-03 2009-06-25 Central Glass Co Ltd REMOVING METHOD OF ClO3F

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280310A (en) * 1988-06-01 1990-03-20 Mitsui Toatsu Chem Inc Purifying method for gaseous nf3
JPH03217217A (en) * 1990-01-19 1991-09-25 Central Glass Co Ltd Treatment of waste gas containing chlorine trifluoride
JPH11349304A (en) * 1998-06-05 1999-12-21 Mitsui Chem Inc Purification of high-purity nitrogen trifluoride gas
JP2002068716A (en) * 2000-08-28 2002-03-08 Mitsui Chemicals Inc Method of refining high purity nf3 gas
JP2002284512A (en) * 2001-03-28 2002-10-03 Mitsui Chemicals Inc Method for manufacturing high-purity nitrogen trifluoride
JP2009136709A (en) * 2007-12-03 2009-06-25 Central Glass Co Ltd REMOVING METHOD OF ClO3F

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348850A (en) * 2015-12-01 2018-07-31 昭和电工株式会社 The processing method of exhaust gas containing fluorine element
EP3384975A4 (en) * 2015-12-01 2019-08-07 Showa Denko K.K. Method for treating exhaust gas containing elemental fluorine

Also Published As

Publication number Publication date
JP2010105825A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
KR920010082B1 (en) Process for purifying nitrogen trifluoride gas
US20060075895A1 (en) Processing method of exhaust gas and processing apparatus of exhaust gas
JP7491222B2 (en) Method for removing halogen fluorides, and method and apparatus for quantitatively analyzing gas components contained in halogen fluoride mixed gas
WO2010050342A1 (en) Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity
JP5345676B2 (en) How to absorb chlorine from a gas stream
JP4843635B2 (en) Method for producing carbonyl fluoride with reduced hydrogen fluoride content
EP2218492B1 (en) METHOD FOR REMOVAL OF ClO3F
TWI624299B (en) Treatment method of exhaust gas containing fluorine element
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JP3260825B2 (en) How to purify harmful gases
JP2000119024A (en) Production of tungsten hexafluoride
JP2006231105A (en) Method for removing oxidizing gas
JP2002284512A (en) Method for manufacturing high-purity nitrogen trifluoride
JP3548135B2 (en) PFC mixed exhaust gas recovery pretreatment method
KR100432593B1 (en) A process for purifying nitrogen trifluoride gas
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP4010847B2 (en) Method for purifying nitrogen trifluoride gas
JPH0457368B2 (en)
JP2005111434A (en) Purifying material for removing moisture in nitric oxide gas and nitric oxide gas purifier
JP2001002402A (en) Process for collecting bromine
JPH11349304A (en) Purification of high-purity nitrogen trifluoride gas
JP2016019964A (en) Wet removal method for hypofluorite
JPS63162025A (en) Removing method for arsine and phosphine
JPH11128676A (en) Purification of harmful gas
JP2006282487A (en) Metal fluoride deoxidizer, method for producing the same, and method for producing gas with hydrogen fluoride concentration reduced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823455

Country of ref document: EP

Kind code of ref document: A1