JP2000119024A - Production of tungsten hexafluoride - Google Patents

Production of tungsten hexafluoride

Info

Publication number
JP2000119024A
JP2000119024A JP10291056A JP29105698A JP2000119024A JP 2000119024 A JP2000119024 A JP 2000119024A JP 10291056 A JP10291056 A JP 10291056A JP 29105698 A JP29105698 A JP 29105698A JP 2000119024 A JP2000119024 A JP 2000119024A
Authority
JP
Japan
Prior art keywords
gas
moisture
sulfuric acid
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10291056A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Takeshi Yasutake
剛 安武
Sadaichi Kohara
定一 菰原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10291056A priority Critical patent/JP2000119024A/en
Publication of JP2000119024A publication Critical patent/JP2000119024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the corrosion of pipes with produced metallic tungsten and the deterioration of the gas purity accompanying the corrosion and produce high-purity tungsten hexafluoride by bringing the metallic tungsten into contact with nitrogen trifluoride gas at a specified moisture concentration in a reactional vessel at a specific temperature. SOLUTION: The moisture concentration in NF3 gas is <=1 vol.ppm and a vessel made of nickel or Monel metal is used as a reactional vessel. The contact temperature is 200-400 deg.C. Two methods i.e., a method for condensing moisture at a low temperature and a method for chemically or physically adsorbing the moisture with a drying agent are used as a method for removing the moisture in the NF3 gas. Furthermore, the NF3 gas is passed through a flocculator cooled to -78 to -130 deg.C temperature to remove the moisture. Otherwise, moisture absorbing operations are carried out by using concentrated sulfuric acid. A bubbler type or a scrubber type is used as an apparatus and the moisture is absorbed by subjecting the concentrated sulfuric acid to gas-liquid contact with the NF3 gas. The concentration of the sulfuric acid is >=80%. A method for using a dehydrated synthetic zeolite is industrially suitable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度の六弗化タ
ングステン(WF)の製造方法に関する。特に、高純
度六弗化タングステンは、半導体製造用の配線材料とし
て注目されている。
The present invention relates to a method for producing high-purity tungsten hexafluoride (WF 6 ). In particular, high-purity tungsten hexafluoride has attracted attention as a wiring material for semiconductor manufacturing.

【0002】[0002]

【従来技術】原料として使用する三弗化窒素(NF
ガスは、NHF・χHF(χ=1〜2)の電解液を用
い、これを電気分解する直接電解法と、HFを電解液と
する電気分解で発生するFガスにNHを接触させる
化学法によって得ることができる。しかしこれらの方法
で得られたNFには不純物を多く含んでいるので、こ
れを除去する必要がある。
2. Description of the Related Art Nitrogen trifluoride (NF 3 ) used as a raw material
As a gas, an NH 4 F · χHF (χ = 1 to 2) electrolytic solution is used, and NH 3 is brought into contact with F 2 gas generated by electrolysis using an electrolytic solution or HF as an electrolytic solution. Can be obtained by chemical methods. However, since NF 3 obtained by these methods contains many impurities, it is necessary to remove it.

【0003】そこで、直接電解法や化学法によって得ら
れたNF中に含まれる、HFやOF、N、N
、CO、NOなどの不純物を、アルカリ水溶
液を用いて除去する方法や、NOをチオ硫酸ナトリウ
ム水溶液を用いて除去する方法(特公平5−05372
5号公報)等によって除去し、このNFを用い金属タ
ングステンと反応させた場合もやはり、反応管から捕集
器の間に設けられた金属製のガス配管と反応して内部に
青色の生成物が確認される。また捕集したWF 中に
も、ガス配管に使用する金属の成分が微量含まれる結果
となる。
[0003] Therefore, it is difficult to obtain by direct electrolysis or chemical methods.
NF3HF and OF contained in2, N2F2, N
2F4, CO2, N2Impurities such as O
Liquid removal method, N2O for sodium thiosulfate
Using aqueous solution (Japanese Patent Publication No. 5-05372)
No. 5 gazette) and the like.3Using metal
When reacting with Ngustene, also collected from the reaction tube
Reacts with the metal gas piping provided between
A blue product is observed. WF collected 6inside
Also contains trace amounts of metal components used in gas piping
Becomes

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高純
度WFを安定的に製造することにある。
OBJECTS OF THE INVENTION It is an object of the present invention to produce high purity WF 6 stably.

【0005】[0005]

【課題を解決するための手段】本発明者らは、WF
安定的に高純度に精製する方法について鋭意検討を重ね
た結果、洗浄処理された後のNFガス中に微量の水分
が含まれていることに着目し、この水分を限界まで除去
することことで、純度の高いWFが得られることを見
いだし、本発明を完成させるに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for stably purifying WF 6 to a high purity, and as a result, a small amount of water has been found in the NF 3 gas after the cleaning treatment. Paying attention to the fact that it is contained, it has been found that by removing this water to the limit, WF 6 with high purity can be obtained, and the present invention has been completed.

【0006】即ち、本発明は三弗化窒素ガス中の水分の
濃度が、1容量ppm以下であり、該三弗化窒素ガスを
用い、反応容器内で金属タングステンと200〜400
℃で接触させることを特徴とする高純度六弗化タングス
テンの製造方法に関する。
That is, according to the present invention, the concentration of water in the nitrogen trifluoride gas is 1 ppm by volume or less.
The present invention relates to a method for producing high-purity tungsten hexafluoride, which is characterized by contacting at a temperature of ℃.

【0007】[0007]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明は、NFガスと金属タングステン(W)の
主反応で高純度WF6を得る方法である。使用する金属
材料のうち、白金、ニッケル、モネル等の高価な金属材
料を接ガスする全ての部分に用いれば何ら問題はない
が、設備費用に膨大なコストがかかる。NFガスと金
属タングステン(W)の反応部分は200〜400℃と
比較的高温であることから、反応器には、白金、ニッケ
ル、モネルを使用せざるを得ないが、配管、バルブ、捕
集容器等の接ガス部には安価なステンレス製の金属の使
用が好まれる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention is a method for obtaining high-purity WF6 by a main reaction between NF 3 gas and metal tungsten (W). If expensive metal materials such as platinum, nickel, and monel are used for all the parts that come into contact with the gas, there is no problem, but the equipment cost is enormous. Since the reaction portion between NF 3 gas and metal tungsten (W) is relatively high at 200 to 400 ° C., platinum, nickel, and monel must be used in the reactor. It is preferable to use inexpensive stainless steel metal for the gas contact part such as a collecting container.

【0008】しかし、このステンレスの場合、反応で得
られるWF中に水分を含むと、ステンレスを侵し、こ
のステンレスの金属成分がWFにコンタミし、純度低
下の原因となってしまうことが明らかとなった。WF
中に水分が混入する原因は、金属タングステンの付着
水、反応管、配管、バルブ内のパージ不足、空気の漏れ
込み等も原因の一つであり、十分な注意が必要である。
が、最も重要なことは、原料であるNF中の水分量を
1容量ppm以下、好ましくは0.1容量ppm以下と
することである。NF中の水分量が1容量ppmを越
える場合、前述したようにステンレスの金属成分がWF
にコンタミし、純度低下の原因となってしまうので好
ましくない。
However, in the case of this stainless steel, if water is contained in the WF 6 obtained by the reaction, the stainless steel is eroded, and the metal component of the stainless steel becomes contaminated with the WF 6 , thereby causing a decrease in purity. It became. WF 6
The cause of water contamination is one of the causes, such as water adhering to metallic tungsten, insufficient purging of the reaction tube, piping, and valve, and leakage of air, and requires careful attention.
Most importantly, however, the amount of water in the raw material NF 3 should be 1 ppm by volume or less, preferably 0.1 ppm by volume or less. When the water content in NF 3 exceeds 1 ppm by volume, the metal component of stainless steel is WF as described above.
No. 6 , which is not preferable because it causes contamination and lowers the purity.

【0009】また、コンタミした金属を除去するため
に、精密蒸留や高性能フィルターを使用し除去すること
も可能であるが、コストアップとなるので好ましい方法
とは言えない。むしろ、精密蒸留塔に使用される材質、
フィルターの材質によっては更に純度低下を招く恐れが
ある。
Although it is possible to remove contaminated metals by using precision distillation or a high-performance filter, it is not a preferable method because the cost is increased. Rather, the materials used for precision distillation columns,
Depending on the material of the filter, the purity may be further reduced.

【0010】次に、NF中の水分の除去方法について
説明する。水分の除去方法には種々の方法があり、大別
すると低温で凝縮させる方法と、乾燥剤を用いた化学的
吸湿または物理的吸着による方法の2種類がある。本発
明は、これらのいずれの方法でも実施可能であるが、特
に除去効果の優れている以下の方法が好適に採用され
る。
Next, a method of removing water from the NF 3 will be described. There are various methods for removing water, and roughly classified into two methods: a method of condensing at a low temperature and a method of chemical moisture absorption or physical adsorption using a desiccant. The present invention can be carried out by any of these methods. However, the following method having particularly excellent removal effect is suitably employed.

【0011】一つは低温で凝縮させる方法であるが、N
を−78〜−130℃の温度で冷却した凝集器に通
気することによって水分を除去する。冷却温度が−78
℃を越えると水分濃度を1容量ppm以下に低減するこ
とが出来ない。また、−130℃未満で凝集器を冷却す
ると、NFが液化するので好ましくない。
One method is to condense at a low temperature.
To remove moisture by bubbling the agglomerator was cooled F 3 at a temperature of -78 to-130 ° C.. Cooling temperature is -78
When the temperature exceeds ℃, the water concentration cannot be reduced to 1 ppm by volume or less. Cooling the aggregator at a temperature lower than -130 ° C is not preferable because NF 3 is liquefied.

【0012】もう一つの方法は、乾燥剤による方法であ
るが、乾燥剤には優れた吸湿力をもつ五酸化リン、過塩
素酸マグネシウム、濃硫酸、合成ゼオライトが好適に使
用される。中でも、濃硫酸は液体であり循環ポンプを使
用し絶えず高濃度を維持することができるので工業的に
有利な方法である。
Another method is a method using a desiccant. As the desiccant, phosphorus pentoxide, magnesium perchlorate, concentrated sulfuric acid and synthetic zeolite having excellent hygroscopicity are preferably used. Among them, concentrated sulfuric acid is an industrially advantageous method because it is liquid and can constantly maintain a high concentration using a circulation pump.

【0013】本発明において使用する濃硫酸は、硫酸濃
度80%以上の工薬または試薬が用いられる。また、濃
硫酸中にHSやSOの含まないものが望ましい。濃
硫酸を用いる吸湿操作では、さまざまな形式の装置が使
用されるが、一般的なものでは、バブラー方式、または
スクラバー方式が寛容に用いられ、NFと気液接触さ
せて吸湿させる。
The concentrated sulfuric acid used in the present invention is a chemical or a reagent having a sulfuric acid concentration of 80% or more. It is desirable that concentrated sulfuric acid does not contain H 2 S or SO 3 . Various types of devices are used in the moisture absorption operation using concentrated sulfuric acid. In general, a bubbler system or a scrubber system is used generously, and NF 3 is brought into contact with gas and liquid to absorb moisture.

【0014】これらの装置の材質は、ステンレス、ハス
テロイなどの金属材料や、ポリプロピレンやテフロンと
いった樹脂材料が使用できる。濃硫酸とNFを接触さ
せる際の温度は、濃硫酸が凍結しない温度であれば特に
限定はないが、通常室温で行われる。冬場に於いては、
濃硫酸が凍結することがあるので、20℃程度に保温し
ておくなどの処置が必要がある。また脱水された合成ゼ
オライトを用いる方法も工業的に適しており、更にはこ
れらを併用する方法も可能である。
As a material for these devices, a metal material such as stainless steel or Hastelloy, or a resin material such as polypropylene or Teflon can be used. The temperature at which concentrated sulfuric acid is brought into contact with NF 3 is not particularly limited as long as the concentrated sulfuric acid does not freeze, but is usually performed at room temperature. In winter,
Since concentrated sulfuric acid may freeze, it is necessary to take measures such as keeping the temperature at about 20 ° C. Further, a method using a dehydrated synthetic zeolite is industrially suitable, and a method using these together is also possible.

【0015】上記で述べたように、金属タングステンを
接触させる反応容器に、ニッケル、またはモネル製の容
器を用い、NF中の水分を1容量ppm以下、好まし
くは0.1容量ppm以下とすることで、該NFと金
属タングステンを200〜400℃で接触させ高純度六
弗化タングステンを製造することが可能となった。
As described above, a nickel or monel vessel is used as the reaction vessel to be brought into contact with metal tungsten, and the water content in NF 3 is adjusted to 1 ppm by volume or less, preferably 0.1 ppm by volume or less. This made it possible to produce high-purity tungsten hexafluoride by bringing the NF 3 and metal tungsten into contact at 200 to 400 ° C.

【0016】[0016]

【実施例】以下、本発明を実施例及び比較例をもって説
明する。尚、%は重量基準で、ppm及びppbは容量
基準で表す。 実施例1 1L容量のニッケル製反応容器に金属タングステンを2
00g仕込み、300℃に加熱した。一方6.5ppm
の水分を含むNFガスを100cc/minで−12
0℃に冷却された500ccの脱水用トラップに通気さ
せて水分を0.3ppmまで減少させた。このガスを上
記反応管に通気し、金属タングステンと反応させてWF
を生成させた。この生成ガスを、電解研磨されたSU
S316のステンレス配管を導管に用い、テフロン製の
吸収瓶まで導いた。吸収瓶には、超純水100gを吸収
液として用い、これに2時間吸収させた。この吸収液を
加熱乾固させWO↓を析出させた後、希硝酸にて抽出
した処理液をICP−MSにて分析を行った。結果を表
1に示すが、SUS316のステンレス配管内の腐食は
見られず、また分析結果からも腐食に起因する金属成分
は10ppb以下であった。
The present invention will be described below with reference to examples and comparative examples. In addition,% is based on weight and ppm and ppb are based on volume. Example 1 Metal tungsten was placed in a 1 L nickel reaction vessel.
00g was charged and heated to 300 ° C. On the other hand, 6.5 ppm
NF 3 gas containing water at a rate of -12 at 100 cc / min.
The water was reduced to 0.3 ppm by ventilating a 500 cc dehydration trap cooled to 0 ° C. This gas is passed through the above-mentioned reaction tube and reacted with metallic tungsten to form WF.
6 was produced. This generated gas is supplied to the electrolytically polished SU
Using the stainless steel pipe of S316 as a conduit, it was led to a Teflon absorption bottle. In the absorption bottle, 100 g of ultrapure water was used as an absorption liquid, and absorbed into the absorption bottle for 2 hours. After the absorbent was heated to dryness to precipitate WO 3 ↓, the treated liquid extracted with diluted nitric acid was analyzed by ICP-MS. The results are shown in Table 1. No corrosion was observed in the stainless steel pipe of SUS316, and the analysis results showed that the metal component caused by the corrosion was 10 ppb or less.

【0017】実施例2 6.5ppmの水分を含むNFガスを100cc/m
inで98%硫酸500ccにバブリングさせて水分を
0.7ppmまで減少させた。このガスを実施例1と同
様に上記反応管に通気し、生成ガスを電解研磨されたS
US316のステンレス配管を導管に用い、テフロン製
の吸収瓶まで導いた。吸収瓶には、超純水100gを吸
収液として用い、これに2時間吸収させた。この吸収液
を実施例1と同様の操作で得られた処理液をICP−M
Sにて分析を行った。結果を表1に示すが、SUS31
6のステンレス配管内の腐食は見られず、また分析結果
からも腐食に起因する金属成分は10ppb以下であっ
た。
Example 2 100 cc / m of NF 3 gas containing 6.5 ppm of water
The water was reduced to 0.7 ppm by bubbling 500 cc of 98% sulfuric acid in. This gas was passed through the reaction tube in the same manner as in Example 1, and the product gas was electropolished to S
US316 stainless steel tubing was used as a conduit and led to a Teflon absorption bottle. In the absorption bottle, 100 g of ultrapure water was used as an absorption liquid, and absorbed into the absorption bottle for 2 hours. The treatment solution obtained by the same operation as in Example 1 was used for this absorption solution, and then treated with ICP-M.
The analysis was performed at S. Table 1 shows the results.
No corrosion was observed in the stainless steel pipe of No. 6, and the analysis result showed that the metal component caused by the corrosion was 10 ppb or less.

【0018】実施例3 6.5ppmの水分を含むNFガスを100cc/m
inで98%硫酸500ccにバブリングさせ、更に脱
水された合成ゼオライト(4Å)100ccに通気して
水分を0.08ppmまで減少させた。このガスを実施
例1と同様に上記反応管に通気し、生成ガスを電解研磨
されたSUS316のステンレス配管を導管に用い、テ
フロン製の吸収瓶まで導いた。吸収瓶には、超純水10
0gを吸収液として用い、これに2時間吸収させた。こ
の吸収液を実施例1と同様の操作で得られた処理液をI
CP−MSにて分析を行った。結果を表1に示すが、S
US316のステンレス配管内の腐食は見られず、また
分析結果からも腐食に起因する金属成分は10ppb以
下であった。
Example 3 100 cc / m of NF 3 gas containing 6.5 ppm of water
The solution was bubbled through 500 cc of 98% sulfuric acid, and then passed through 100 cc of dehydrated synthetic zeolite (4%) to reduce the water content to 0.08 ppm. This gas was passed through the reaction tube in the same manner as in Example 1, and the produced gas was led to a Teflon-made absorption bottle using a stainless steel SUS316 pipe electropolished as a conduit. Ultrapure water 10 in the absorption bottle
0 g was used as the absorbing solution and absorbed into it for 2 hours. The treated solution obtained by the same operation as in Example 1 was
Analysis was performed by CP-MS. The results are shown in Table 1, where S
No corrosion was observed in the stainless steel pipe of US316, and the analysis result showed that the metal component caused by the corrosion was 10 ppb or less.

【0019】比較例1 6.5ppmの水分を含むNFガスを実施例1と同様
に上記反応管に通気し、生成ガスを電解研磨されたSU
S316のステンレス配管を導管に用い、テフロン製の
吸収瓶まで導いた。吸収瓶には、超純水100gを吸収
液として用い、これに2時間吸収させた。この吸収液を
実施例1と同様の操作で得られた処理液をICP−MS
にて分析を行った。結果を表1に示すが、SUS316
のステンレス配管内には腐食が見られ、また分析結果か
らも腐食に起因する金属成分濃度が高い値を示してい
る。
Comparative Example 1 NF 3 gas containing 6.5 ppm of water was passed through the above-mentioned reaction tube in the same manner as in Example 1, and the produced gas was subjected to electrolytically polished SU.
Using the stainless steel pipe of S316 as a conduit, it was led to a Teflon absorption bottle. In the absorption bottle, 100 g of ultrapure water was used as an absorption liquid, and absorbed into the absorption bottle for 2 hours. The processing solution obtained by the same operation as in Example 1 was subjected to ICP-MS
Was analyzed. The results are shown in Table 1. SUS316
Corrosion was observed in the stainless steel pipe, and the analysis results showed that the concentration of the metal component caused by the corrosion was high.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明は、金属タングステンの製造原料
として用いられるNFガス中の水分の管理値を1pp
m以下とすることで、従来のような生成した金属タング
ステン自身による配管の腐食と、これに伴うガス純度の
低下を防止することで高純度な金属タングステンの製造
が可能となった。
According to the present invention, the control value of moisture in NF 3 gas used as a raw material for producing metal tungsten is 1 pp.
By setting the value to m or less, it is possible to manufacture high-purity metal tungsten by preventing the conventional corrosion of piping caused by the generated metal tungsten itself and the accompanying decrease in gas purity.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 三弗化窒素ガス中の水分の濃度が、1
容量ppm以下であり、該三弗化窒素ガスを用い、反応
容器内で金属タングステンと200〜400℃で接触さ
せることを特徴とする高純度六弗化タングステンの製造
方法。
1. The method according to claim 1, wherein the concentration of water in the nitrogen trifluoride gas is 1
A method for producing high-purity tungsten hexafluoride having a capacity of not more than ppm and contacting metal tungsten at 200 to 400 ° C. in a reaction vessel using said nitrogen trifluoride gas.
【請求項2】 三弗化窒素ガス中の水分の濃度が、
0.1容量ppm以下である請求項1記載の方法。
2. The concentration of water in nitrogen trifluoride gas is as follows:
2. The method according to claim 1, wherein the amount is 0.1 ppm by volume or less.
【請求項3】 三弗化窒素ガスと、金属タングステン
を接触させる反応容器に、ニッケル、またはモネル製の
容器を用いる請求項1記載の方法。
3. The method according to claim 1, wherein a container made of nickel or monel is used as a reaction container for bringing the nitrogen trifluoride gas into contact with the metal tungsten.
【請求項4】 三弗化窒素ガスを、−78〜−130
℃の温度で冷却した凝集器に通気する請求項1記載の方
法。
4. A nitrogen trifluoride gas of -78 to -130.
The method according to claim 1, wherein the gas is passed through a coagulator cooled at a temperature of ° C.
【請求項5】 室温に於いて三弗化窒素ガスを、硫酸
濃度80%以上の濃硫酸と接触する請求項1記載の方
法。
5. The method according to claim 1, wherein the nitrogen trifluoride gas is brought into contact with concentrated sulfuric acid having a sulfuric acid concentration of 80% or more at room temperature.
【請求項6】 三弗化窒素ガスを、脱水した合成ゼオ
ライトに通気する請求項1記載の方法。
6. The method of claim 1 wherein nitrogen trifluoride gas is passed through the dehydrated synthetic zeolite.
JP10291056A 1998-10-13 1998-10-13 Production of tungsten hexafluoride Pending JP2000119024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291056A JP2000119024A (en) 1998-10-13 1998-10-13 Production of tungsten hexafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291056A JP2000119024A (en) 1998-10-13 1998-10-13 Production of tungsten hexafluoride

Publications (1)

Publication Number Publication Date
JP2000119024A true JP2000119024A (en) 2000-04-25

Family

ID=17763869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291056A Pending JP2000119024A (en) 1998-10-13 1998-10-13 Production of tungsten hexafluoride

Country Status (1)

Country Link
JP (1) JP2000119024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042815A (en) * 2005-08-02 2007-02-15 Ulvac Japan Ltd Catalyst line chemical vapor phase growing apparatus and regenerating method of catalyst line in same
KR100727272B1 (en) 2005-11-15 2007-06-13 주식회사 소디프신소재 Preparation of high purity tungsten hexafluoride
KR101376827B1 (en) 2013-01-24 2014-03-20 최병구 Method for the production of tungsten hexafluoride
CN106587159A (en) * 2016-12-31 2017-04-26 山东飞源科技有限公司 Preparation method of high-purity tungsten hexafluoride
KR20200087848A (en) 2017-12-19 2020-07-21 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of tungsten fluoride
KR20210041079A (en) 2018-08-17 2021-04-14 샌트랄 글래스 컴퍼니 리미티드 Method for producing tungsten hexafluoride
CN116425202A (en) * 2023-02-23 2023-07-14 福建德尔科技股份有限公司 Preparation method of tungsten hexafluoride gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042815A (en) * 2005-08-02 2007-02-15 Ulvac Japan Ltd Catalyst line chemical vapor phase growing apparatus and regenerating method of catalyst line in same
KR100727272B1 (en) 2005-11-15 2007-06-13 주식회사 소디프신소재 Preparation of high purity tungsten hexafluoride
KR101376827B1 (en) 2013-01-24 2014-03-20 최병구 Method for the production of tungsten hexafluoride
CN106587159A (en) * 2016-12-31 2017-04-26 山东飞源科技有限公司 Preparation method of high-purity tungsten hexafluoride
CN106587159B (en) * 2016-12-31 2018-09-25 山东飞源科技有限公司 The preparation method of high-purity tungsten hexafluoride
KR20200087848A (en) 2017-12-19 2020-07-21 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of tungsten fluoride
KR20210041079A (en) 2018-08-17 2021-04-14 샌트랄 글래스 컴퍼니 리미티드 Method for producing tungsten hexafluoride
CN116425202A (en) * 2023-02-23 2023-07-14 福建德尔科技股份有限公司 Preparation method of tungsten hexafluoride gas
CN116425202B (en) * 2023-02-23 2023-11-21 福建德尔科技股份有限公司 Preparation method of tungsten hexafluoride gas

Similar Documents

Publication Publication Date Title
US3725530A (en) Method of removing mercury vapor from gases
US4980144A (en) Process for purifying nitrogen trifluoride gas
EP0280439A1 (en) Manufacture of high purity low arsenic anhydrous hydrogen fluoride
US4156598A (en) Purification of nitrogen trifluoride atmospheres
JP2000119024A (en) Production of tungsten hexafluoride
US7691351B2 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
JP3171058B2 (en) Hydrogen peroxide water purification method
US4009241A (en) Method of removing mercury vapor from gases contaminated therewith
US5233098A (en) Method for removing and recovering fluorinated alcohol from waste gas
JP2002284512A (en) Method for manufacturing high-purity nitrogen trifluoride
KR101171023B1 (en) METHOD FOR REMOVAL OF ClO3F
EP0714849B1 (en) Production process for refined hydrogen iodide
US6764670B2 (en) Removal of thiothionylfluoride from sulfur tetrafluoride
JPH11349304A (en) Purification of high-purity nitrogen trifluoride gas
KR100553987B1 (en) Purification of nitrogen trifluoride gas
WO2010050342A1 (en) Method and system for purifying nitrogen trifluoride containing halogen or halogen compound as impurity
KR100432593B1 (en) A process for purifying nitrogen trifluoride gas
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
CN111991978A (en) Water removal device and method for hydrogen fluoride gas
JP3512285B2 (en) Method for producing purified hydrogen iodide
TW201938487A (en) Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas
JP2002361041A (en) Method for pretreating for recovering pfc mixed waste gas
CN112707372A (en) Method for removing water in hydrogen chloride by using thionyl chloride
JPS623762B2 (en)
JP2024071553A (en) Method for producing high purity nitric oxide