JP2024071553A - Method for producing high purity nitric oxide - Google Patents

Method for producing high purity nitric oxide Download PDF

Info

Publication number
JP2024071553A
JP2024071553A JP2024049197A JP2024049197A JP2024071553A JP 2024071553 A JP2024071553 A JP 2024071553A JP 2024049197 A JP2024049197 A JP 2024049197A JP 2024049197 A JP2024049197 A JP 2024049197A JP 2024071553 A JP2024071553 A JP 2024071553A
Authority
JP
Japan
Prior art keywords
nitric oxide
gas
adsorbent
producing high
treated gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024049197A
Other languages
Japanese (ja)
Inventor
純一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2024049197A priority Critical patent/JP2024071553A/en
Publication of JP2024071553A publication Critical patent/JP2024071553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

【課題】 高純度の一酸化窒素を効率よく製造する方法を提供する。【解決手段】一酸化窒素を含む粗ガスとアルカリ水溶液とを接触させて、前記粗ガスに含まれる不純物を除去した処理ガスを得るアルカリ洗浄工程と、水を吸着する吸着剤が充填された吸着塔に、前記処理ガスを導入して、前記処理ガスに含まれる水を、吸着剤に吸着させて除去する乾燥工程と、を含む高純度一酸化窒素の製造方法。【選択図】なし[Problem] To provide a method for efficiently producing high-purity nitric oxide. [Solution] The method for producing high-purity nitric oxide includes an alkali washing step in which a crude gas containing nitric oxide is contacted with an alkaline aqueous solution to obtain a treated gas from which impurities contained in the crude gas have been removed, and a drying step in which the treated gas is introduced into an adsorption tower filled with an adsorbent that adsorbs water, and the water contained in the treated gas is adsorbed onto the adsorbent and removed. [Selected Figures] None

Description

本発明は、高純度一酸化窒素の製造方法に関する。 The present invention relates to a method for producing high-purity nitric oxide.

一酸化窒素は、例えば、半導体プロセスにおいてシリコン表面に酸窒化膜を形成するための材料ガスとして用いられる場合がある。一酸化窒素は、アンモニア酸化法、硫酸第一鉄と亜硝酸ナトリウムとを反応させる方法、硝酸と亜硫酸ガスとを反応させる方法など様々な方法で生成され得るが、一般に、生成した一酸化窒素を含む粗ガスには、二酸化窒素、亜酸化窒素が副生成物として含まれ、この他に原料、副原料由来の水、二酸化炭素、二酸化硫黄などが混入している。半導体プロセスにおいて、酸窒化膜を形成するうえでは、原料ガスとしての一酸化窒素については、より高純度であることが望まれる。また、近年問題視されている地球温暖化への対策として、原料使用量の削減やエネルギー原単位の改善など、効率的な一酸化窒素の製造方法が望まれる。
高純度の一酸化窒素を得るための手法のうち比較的簡易な方法として、活性アルミナ、ゼオライト、シリカゲルなどの無機系吸着剤に、所定条件で一酸化窒素を含む粗ガスを通流する手法が知られている。無機系吸着剤を利用するこのような手法は、例えば、下記の特許文献1に記載されている。
Nitric oxide may be used as a source gas for forming an oxynitride film on a silicon surface in a semiconductor process, for example. Nitric oxide can be produced by various methods, such as an ammonia oxidation method, a method of reacting ferrous sulfate with sodium nitrite, and a method of reacting nitric acid with sulfurous acid gas. In general, the crude gas containing nitric oxide produced contains nitrogen dioxide and nitrous oxide as by-products, and is also contaminated with water, carbon dioxide, sulfur dioxide, and other substances derived from the raw materials and auxiliary raw materials. In forming an oxynitride film in a semiconductor process, it is desirable for the nitric oxide used as a source gas to have a higher purity. In addition, as a measure against global warming, which has become a problem in recent years, an efficient method for producing nitric oxide is desired, such as reducing the amount of raw materials used and improving the energy consumption rate.
A relatively simple method for obtaining high-purity nitric oxide is known in which a crude gas containing nitric oxide is passed through an inorganic adsorbent such as activated alumina, zeolite, silica gel, etc., under predetermined conditions. Such a method using an inorganic adsorbent is described, for example, in Patent Document 1 listed below.

米国特許第4153429号明細書U.S. Pat. No. 4,153,429

しかしながら、従来の一酸化窒素の製造方法では、不純物が多く含まれており、半導体等の高純度を要求される用途の原料としては未だ十分とはいえなかった。従って、本発明は、高純度の一酸化窒素を効率よく製造する方法を提供することを目的とする。 However, conventional methods for producing nitric oxide contain a large amount of impurities, and are not yet sufficient as a raw material for applications that require high purity, such as semiconductors. Therefore, the object of the present invention is to provide a method for efficiently producing high-purity nitric oxide.

本発明は、一酸化窒素を含む粗ガスとアルカリ水溶液とを接触させて、前記粗ガスに含まれる不純物を除去した処理ガスを得るアルカリ洗浄工程と、
水を吸着する吸着剤が充填された吸着塔に、前記処理ガスを導入して、前記処理ガスに含まれる水を、吸着剤に吸着させて除去する乾燥工程と、を含む高純度一酸化窒素の製造方法である。
The present invention relates to a process for producing a treated gas by removing impurities contained in the crude gas, comprising:
and a drying step of introducing the treated gas into an adsorption tower filled with an adsorbent that adsorbs water, and removing the water contained in the treated gas by adsorbing it onto the adsorbent.

本発明によれば、高純度の一酸化窒素を効率よく製造する方法が提供される。 The present invention provides a method for efficiently producing high-purity nitric oxide.

以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 The following describes in detail an embodiment of the present invention. However, the present invention is not limited to the following embodiment.

本発明に係る高純度一酸化窒素の製造方法は、一酸化窒素を含む粗ガスとアルカリ水溶液とを接触させて、前記粗ガスに含まれる不純物を除去した処理ガスを得るアルカリ洗浄工程と、水を吸着する吸着剤が充填された吸着塔に、前記処理ガスを導入して、前記処理ガスに含まれる水を、吸着剤に吸着させて除去する乾燥工程と、を含む。 The method for producing high-purity nitric oxide according to the present invention includes an alkaline washing step in which a crude gas containing nitric oxide is contacted with an alkaline aqueous solution to obtain a treated gas from which impurities contained in the crude gas have been removed, and a drying step in which the treated gas is introduced into an adsorption tower filled with an adsorbent that adsorbs water, and the water contained in the treated gas is adsorbed by the adsorbent and removed.

(アルカリ洗浄工程)
アルカリ洗浄工程は、反応で得られた前記粗ガスをアルカリ水溶液に接触させ、前記粗ガスに同伴する酸性のミストや不純物などを除去する。
(Alkaline cleaning process)
In the alkaline washing step, the crude gas obtained by the reaction is brought into contact with an aqueous alkaline solution to remove acidic mist and impurities entrained in the crude gas.

アルカリ洗浄工程に用いられるアルカリは特に制限されるものではないが、例えば水酸化ナトリウムや水酸化カリウムが挙げられる。 The alkali used in the alkaline cleaning process is not particularly limited, but examples include sodium hydroxide and potassium hydroxide.

前記アルカリ水溶液と前記粗ガスとの接触は、例えば、ラシヒリングまたはベルルサドルなどの充填物が充填された充填塔へ、前記アルカリ水溶液を循環させて気液向流接触させる方法や、回転式ガス吸引装置などを用いて、前記アルカリ水溶液を貯留した吸収液槽に前記粗ガスをバブリングして気液接触させる方法などが挙げられる。 The contact between the alkaline aqueous solution and the crude gas can be achieved, for example, by circulating the alkaline aqueous solution through a packed tower filled with packing such as Raschig rings or Berl saddles to bring the gas-liquid into countercurrent contact, or by using a rotary gas suction device or the like to bubble the crude gas into an absorption tank that stores the alkaline aqueous solution to bring the gas-liquid into contact.

前記アルカリ洗浄工程で得られる処理ガスは、前記アルカリ水溶液のミストを含んでいるため、洗浄水と前記処理ガスとを接触させて、前記アルカリ水溶液のミストを除去する水洗装置を設けてもよい。前記洗浄水は、例えば水、濃硫酸などが挙げられる。 Since the treatment gas obtained in the alkaline cleaning process contains mist of the alkaline aqueous solution, a water washing device may be provided to bring cleaning water into contact with the treatment gas and remove the mist of the alkaline aqueous solution. Examples of the cleaning water include water and concentrated sulfuric acid.

(乾燥工程)
乾燥工程は、前記アルカリ洗浄工程で得られた前記処理ガスを吸着剤と接触させることにより行う。
(Drying process)
The drying step is carried out by contacting the treated gas obtained in the alkaline washing step with an adsorbent.

前記吸着剤は、水を吸着する吸着剤が用いられ、例えば、シリカゲル、活性アルミナまたはゼオライトが挙げられる。前記吸着剤は、単独で用いてもよいし、複数を混合して用いてもよい。
本発明において、前記処理ガスと前記吸着剤との接触は、前記吸着剤が充填された触媒槽に前記処理ガスを導入することにより好適に行われる。
The adsorbent is an adsorbent capable of adsorbing water, and examples of the adsorbent include silica gel, activated alumina, and zeolite. The adsorbents may be used alone or in combination.
In the present invention, the contact between the treatment gas and the adsorbent is suitably carried out by introducing the treatment gas into a catalyst tank filled with the adsorbent.

(充填工程)
充填工程は、乾燥塔に導入し、得られた一酸化窒素を含む精製ガスを昇圧させ、容器弁を備えた充填容器内に充填されることにより行う。
(Filling process)
The filling step is carried out by introducing the purified gas containing nitric oxide into a drying tower, increasing the pressure thereof, and filling the purified gas into a filling vessel equipped with a vessel valve.

前記充填容器の容量は、特に限定しないが、例えば、10L、47Lから選ばれる。 The capacity of the filling container is not particularly limited, but may be selected from, for example, 10 L and 47 L.

前記充填容器の材質は、特に限定はしないが、例えば、マンガン鋼、ステンレス鋼、アルミニウム合金、クロム-モリブデン鋼から選ばれる。この中でもマンガン鋼は特に好ましい。なお、マンガン鋼として、例えば、JIS G 4053:2016にて規定されるSSMn438や、JIS G 3429:2018にて規定されるSTH12などを使用することができる。 The material of the filling container is not particularly limited, but may be selected from manganese steel, stainless steel, aluminum alloy, and chromium-molybdenum steel. Among these, manganese steel is particularly preferred. As manganese steel, for example, SSMn438 as specified in JIS G 4053:2016 or STH12 as specified in JIS G 3429:2018 can be used.

前記充填容器内側の表面粗度は、特に限定はしないが、例えば、内表面の少なくとも一部の表面粗さRmax=1μm程度、25μm程度から選ばれる。この中でも、Rmax=1μm程度は特に好ましい。ここで、表面粗さRmaxは、JIS B 0601:1982にて規定される最大高さを表す。 The surface roughness of the inside of the filling container is not particularly limited, but is selected from, for example, a surface roughness Rmax of at least a portion of the inner surface of about 1 μm or about 25 μm. Among these, Rmax of about 1 μm is particularly preferable. Here, the surface roughness Rmax represents the maximum height defined in JIS B 0601:1982.

前記容器弁のバルブボディの材質は、特に限定しないが、例えば、ステンレス鋼が使われる。 The material of the valve body of the container valve is not particularly limited, but for example, stainless steel is used.

これらの工程によって前記不純物が除去され、生成物である一酸化窒素の純度を、99.99%以上とすることも可能である。このような高純度の一酸化窒素は、半導体製造分野を含む高純度を要求される種々の用途に利用可能である。
These steps remove the impurities, and the purity of the product nitric oxide can be increased to 99.99% or more. Such high-purity nitric oxide can be used in a variety of applications that require high purity, including the semiconductor manufacturing field.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
一酸化窒素を含む粗ガスを、アルカリ洗浄塔、次いで、水洗塔に導入し、水洗塔後段から排出された一酸化窒素を含む粗ガスを、活性アルミナが充填された第1の乾燥塔に導入した後、圧縮機で昇圧して、活性アルミナが充填された第2の乾燥塔に導入し、一酸化窒素を含む精製ガスを得た。得られた一酸化窒素を含む精製ガスを昇圧させ、ステンレス鋼製容器弁を備えた内容積47Lのマンガン鋼容器内に充填した。
Example 1
The crude gas containing nitric oxide was introduced into an alkali washing tower and then into a water washing tower, and the crude gas containing nitric oxide discharged from the latter stage of the water washing tower was introduced into a first drying tower packed with activated alumina, and then pressurized by a compressor and introduced into a second drying tower packed with activated alumina to obtain a purified gas containing nitric oxide. The obtained purified gas containing nitric oxide was pressurized and filled into a manganese steel vessel having an internal volume of 47 L and equipped with a stainless steel vessel valve.

容器内に充填したガスを容器弁および供給配管を介し分析計にて分析した結果、不純物である酸素は検出下限未満(20volppm未満)、窒素は220volppm、二酸化炭素は検出下限未満(0.1volppm未満)、二酸化窒素は55volppm、亜酸化窒素は108volppm、水分は0.1volppmであり、一酸化窒素の純度は99.9vol%以上であった。 The gas filled in the container was analyzed with an analyzer via the container valve and supply piping, and the impurities oxygen was below the lower limit of detection (less than 20 volppm), nitrogen was 220 volppm, carbon dioxide was below the lower limit of detection (less than 0.1 volppm), nitrogen dioxide was 55 volppm, nitrous oxide was 108 volppm, moisture was 0.1 volppm, and the purity of nitric oxide was 99.9 vol% or more.

なお、酸素および窒素はガスクロマトグラフィー、二酸化炭素、二酸化窒素および亜酸化窒素はフーリエ変換赤外分光法、水分分析はキャビティリングダウン分光法(CRDS:cavity ring-down spectroscopy)、で行った。 Oxygen and nitrogen were analyzed by gas chromatography, carbon dioxide, nitrogen dioxide, and nitrous oxide by Fourier transform infrared spectroscopy, and moisture analysis by cavity ring-down spectroscopy (CRDS).

(実施例2~10)
実施例1と同じ操作を繰り返し、得られたガス中の不純物を実施例1と同じ装置を用いて測定したところ、下表の結果を得た。

Figure 2024071553000001













(Examples 2 to 10)
The same operations as in Example 1 were repeated and the impurities in the resulting gas were measured using the same apparatus as in Example 1, with the results shown in the table below being obtained.
Figure 2024071553000001













(実施例11)
一酸化窒素を含む粗ガスを、アルカリ洗浄塔、次いで、水洗塔に導入し、脱気水に接触させた。そして、水洗塔後段から排出された一酸化窒素を含む粗ガスを、活性アルミナが充填された第1の乾燥塔に導入した後、圧縮機で昇圧して、ゼオライトが充填された第2の乾燥塔に導入し、一酸化窒素を含む精製ガスを得た。得られた一酸化窒素を含む精製ガスを昇圧させ、ステンレス鋼製容器弁を備えた内容積47Lのマンガン鋼容器内に充填した。
(Example 11)
The crude gas containing nitric oxide was introduced into an alkali washing tower and then into a water washing tower, where it was contacted with degassed water. The crude gas containing nitric oxide discharged from the latter stage of the water washing tower was introduced into a first drying tower packed with activated alumina, and then pressurized by a compressor and introduced into a second drying tower packed with zeolite, whereby a purified gas containing nitric oxide was obtained. The obtained purified gas containing nitric oxide was pressurized and filled into a manganese steel vessel having an internal volume of 47 L and equipped with a stainless steel vessel valve.

シリンダ内に充填したガスを容器弁および供給配管を介し分析した結果、不純物である酸素は0.2volppm、窒素は12volppm、二酸化炭素、水素と水分は検出下限未満(0.1volppm未満)、二酸化窒素は2volppm、亜酸化窒素は20volppm、一酸化炭素とTHC(Total HydroCarbon;不純物として含まれる全炭化水素)は検出下限未満(1volppm未満)、鉄は検出下限未満(0.5wtppb未満)、クロム、ニッケル、銅、亜鉛、ナトリウムおよびカルシウムは検出下限未満(1.0wtppb未満)であり、一酸化窒素の純度は99.99vol%以上であった。 Analysis of the gas filled in the cylinder through the container valve and supply piping showed that the impurities oxygen was 0.2 volppm, nitrogen was 12 volppm, carbon dioxide, hydrogen and moisture were below the detection limit (less than 0.1 volppm), nitrogen dioxide was 2 volppm, nitrous oxide was 20 volppm, carbon monoxide and THC (Total HydroCarbon; all hydrocarbons contained as impurities) were below the detection limit (less than 1 volppm), iron was below the detection limit (less than 0.5 wtppb), chromium, nickel, copper, zinc, sodium and calcium were below the detection limit (less than 1.0 wtppb), and the purity of nitric oxide was 99.99 vol% or more.

なお、水素、酸素および窒素はガスクロマトグラフィー、二酸化炭素、二酸化窒素、亜酸化窒素、一酸化炭素およびメタンはフーリエ変換赤外分光法、水分分析はキャビティリングダウン分光法(CRDS:cavity ring-down spectroscopy)、金属分析(鉄、クロム、ニッケル、銅、亜鉛、ナトリウムおよびカルシウム)は誘導結合プラズマ質量分析法で行った。 Hydrogen, oxygen and nitrogen were analyzed by gas chromatography, carbon dioxide, nitrogen dioxide, nitrous oxide, carbon monoxide and methane by Fourier transform infrared spectroscopy, moisture analysis by cavity ring-down spectroscopy (CRDS), and metal analysis (iron, chromium, nickel, copper, zinc, sodium and calcium) by inductively coupled plasma mass spectrometry.

(実施例12~25)
実施例11と同じ操作を繰り返し、得られたガス中の不純物を実施例11と同じ装置を用いて測定したところ、下表の結果を得た。

Figure 2024071553000002
(Examples 12 to 25)
The same procedure as in Example 11 was repeated and the impurities in the resulting gas were measured using the same apparatus as in Example 11, obtaining the results in the table below.
Figure 2024071553000002

Claims (1)

一酸化窒素を含む粗ガスとアルカリ水溶液とを接触させて、前記粗ガスに含まれる不純物を除去した処理ガスを得るアルカリ洗浄工程と、
水を吸着する吸着剤が充填された吸着塔に、前記処理ガスを導入して、前記処理ガスに含まれる水を、吸着剤に吸着させて除去する乾燥工程と、を含む高純度一酸化窒素の製造方法。
an alkali washing step of contacting a raw gas containing nitric oxide with an alkaline aqueous solution to obtain a treated gas from which impurities contained in the raw gas have been removed;
and a drying step of introducing the treated gas into an adsorption tower filled with an adsorbent that adsorbs water, and removing the water contained in the treated gas by adsorbing it onto the adsorbent.
JP2024049197A 2024-03-26 2024-03-26 Method for producing high purity nitric oxide Pending JP2024071553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024049197A JP2024071553A (en) 2024-03-26 2024-03-26 Method for producing high purity nitric oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024049197A JP2024071553A (en) 2024-03-26 2024-03-26 Method for producing high purity nitric oxide

Publications (1)

Publication Number Publication Date
JP2024071553A true JP2024071553A (en) 2024-05-24

Family

ID=91129219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024049197A Pending JP2024071553A (en) 2024-03-26 2024-03-26 Method for producing high purity nitric oxide

Country Status (1)

Country Link
JP (1) JP2024071553A (en)

Similar Documents

Publication Publication Date Title
JP2001089131A (en) Purification process and apparatus for boron trichloride
JP2008537720A (en) Purification of nitrogen trifluoride
KR101812532B1 (en) Purification process of nitrous oxide
JP2024071553A (en) Method for producing high purity nitric oxide
US9174853B2 (en) Method for producing high purity germane by a continuous or semi-continuous process
JP6196434B2 (en) Nitric oxide purification method
US9707507B2 (en) Oil removing device and ammonia purification apparatus using the same
JP2010537947A (en) Method for treating a gas stream containing silicon tetrafluoride and hydrogen chloride
JP7119064B2 (en) Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
JPH10130009A (en) Purifying method of gaseous carbon dioxide and device therefor
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP2000119024A (en) Production of tungsten hexafluoride
WO1999055620A1 (en) Reactive matrix for removing moisture from a fluorine containing gas and process
JP5495642B2 (en) Method for purifying carbonyl difluoride
TWI845497B (en) Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
JP2002284512A (en) Method for manufacturing high-purity nitrogen trifluoride
JPS62117612A (en) Regenerating method for adsorption tower
JP4859384B2 (en) Metal fluoride deoxidizer and method for producing the same
KR100356611B1 (en) Purification Method and Apparatus for Nitrogen
CN111991978A (en) Water removal device and method for hydrogen fluoride gas
JPH01290517A (en) Method and apparatus for raw gas treatment in high purity liquified co2 plant
JP2000034115A (en) Production of high-purity carbon monoxide
JPH01290518A (en) Method and apparatus for preliminary treatment of raw gas in liquified co2 plant
CN205435447U (en) Nitrous oxide separation and purification device in oxalic acid tail gas
JP2024519064A (en) Production of hydrogen from ammonia using pressure swing adsorption