JP2002361041A - Method for pretreating for recovering pfc mixed waste gas - Google Patents

Method for pretreating for recovering pfc mixed waste gas

Info

Publication number
JP2002361041A
JP2002361041A JP2001167216A JP2001167216A JP2002361041A JP 2002361041 A JP2002361041 A JP 2002361041A JP 2001167216 A JP2001167216 A JP 2001167216A JP 2001167216 A JP2001167216 A JP 2001167216A JP 2002361041 A JP2002361041 A JP 2002361041A
Authority
JP
Japan
Prior art keywords
exhaust gas
pfc
gas
mixed exhaust
perfluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001167216A
Other languages
Japanese (ja)
Other versions
JP3548135B2 (en
Inventor
Kozo Oya
浩三 大矢
Shuji Nagano
修次 永野
Hideki Ando
秀樹 安藤
Kenichi Hachitaka
賢一 八高
Takeshi Manabe
岳史 真鍋
Katsuto Edasawa
克人 枝澤
Akihiko Nitta
昭彦 新田
Masatoshi Goto
正敏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2001167216A priority Critical patent/JP3548135B2/en
Publication of JP2002361041A publication Critical patent/JP2002361041A/en
Application granted granted Critical
Publication of JP3548135B2 publication Critical patent/JP3548135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/155Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydrochlorofluorocarbons [HCFC]; Chlorofluorocarbons [CFC]

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for pretreating waste gas containing various perfluorocarbons(PFC) discharged from a semiconductor producing process or the like so as to easily and efficiently recover a useful perfluorocarbon from the waste gas. SOLUTION: PFC mixed waste gas containing at least one perfluorocarbon selected from methane tetrafluoride, ethane haxafluoride, propane octafluoride and butane octafluoride is brought into contact with an alkaline earth metal compound under the condition of 200-800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スなどから排出される種々のPFC(パ−フルオロコン
パウンド)を含有する排ガスより、四フッ化メタン(C
4 )、六フッ化エタン(C2 6 )、八フッ化プロパ
ン(C3 8 )及び八フッ化ブタン(C48 )などの
有用成分を効率的に回収するための当該排ガスの前処理
方法(分離・濃縮方法)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing methane tetrafluoride (C) from exhaust gases containing various PFCs (perfluoro compounds) discharged from a semiconductor manufacturing process or the like.
F 4 ), exhaust gas for efficiently recovering useful components such as ethane hexafluoride (C 2 F 6 ), propane octafluoride (C 3 F 8 ) and butane octafluoride (C 4 F 8 ) Pretreatment method (separation / concentration method).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】半導体
製造プロセスなどで使用されている各種のPFC(パー
フルオロコンパウンド)は、温室効果ガスであり、その
排出抑制が重要となっている。このような半導体製造プ
ロセスなどから排出されるガスは、一般に窒素などの不
活性ガスをキャリヤーガスとして多量に含み、その他、
原料ガスからの未反応ガス、反応により生じる酸性ガス
(例えば、HF、SiF4 、COF2 )、酸化性ガス
(例えば、O3 、F2 )及び副生物(例えば、窒素酸化
物、副生PFC)を含む複雑な組成のガス混合物であ
る。
2. Description of the Related Art Various PFCs (perfluorocompounds) used in semiconductor manufacturing processes and the like are greenhouse gases, and their emission control is important. Gases discharged from such semiconductor manufacturing processes and the like generally contain a large amount of an inert gas such as nitrogen as a carrier gas.
Unreacted gas from the raw material gas, acid gas generated by the reaction (eg, HF, SiF 4 , COF 2 ), oxidizing gas (eg, O 3 , F 2 ) and by-products (eg, nitrogen oxide, by-product PFC) ) Is a gas mixture of complex composition.

【0003】従来、このような排ガスについては、酸性
ガスや酸化性ガスを所定の薬剤や装置により処理し、排
ガス中の有用な成分を回収することが行われてきた。例
えば、公表特許公報2000−509653号には、ア
ルミニウム電解槽から出される排ガスからCF4 及びC
2 6 の少なくとも1つを回収する方法が、記載されて
いる。この方法では、無機フッ化物類並びにCF4 及び
2 6 の少なくとも1つを含んでいる排ガスから無機
フッ化物類を除去する工程が含まれており、該無機フッ
化物類は具体的にはF2 、HF及びNaAlF4 であ
り、これらを除去するためにソーダ石灰などのカセイス
クラバーを利用している。しかしながら、この方法で
は、無機フッ化物類をカセイスクラバーに吸収させるた
め、大量の廃液を抱えることになり、また装置構成が大
掛かりになるなどの問題がある。
[0003] Conventionally, with respect to such exhaust gas, an acidic gas or an oxidizing gas has been treated with a predetermined chemical or device to recover useful components in the exhaust gas. For example, Japanese Patent Publication No. 2000-509653 discloses that CF 4 and C are contained in exhaust gas discharged from an aluminum electrolytic cell.
Process for recovering at least one of 2 F 6 is described. The method includes a step of removing inorganic fluorides from an exhaust gas containing at least one of inorganic fluorides and CF 4 and C 2 F 6 , wherein the inorganic fluorides are specifically F 2 , HF and NaAlF 4 , and a caustic scrubber such as soda lime is used to remove them. However, in this method, since the inorganic fluorides are absorbed by the case scrubber, there are problems that a large amount of waste liquid is held and that the apparatus configuration becomes large.

【0004】また、公開特許公報2000−5561号
には、半導体製造プロセスからの排ガス中に含まれてい
るパーフルオロカーボン、ハイドロフルオロカーボン、
三フッ化窒素、六フッ化硫黄などの化学的に安定なフッ
化物以外の不純物成分、即ち、四フッ化ケイ素、二フッ
化カルボニル、フッ化水素などの不安定で反応性の高い
フッ化物を、あらかじめ除去した後に、上記化学的に安
定なフッ化物の濃縮を行い、濃縮された該フッ化物を回
収するとともに、濃縮処理後のガス成分中に残留する微
量のフッ化物を分解処理するというフッ化物の処理方法
が記載されている。しかしながら、この方法では、目的
とする成分が広範であり、化学的に安定な成分であれば
多種多様に回収されてしまう。リサイクルの目的で、特
定の成分のみを回収するためには、さらに分離精製工程
が必要となる方法である。
Further, Japanese Patent Laid-Open Publication No. 2000-5561 discloses perfluorocarbons, hydrofluorocarbons, and the like contained in exhaust gas from a semiconductor manufacturing process.
Impurity components other than chemically stable fluorides such as nitrogen trifluoride and sulfur hexafluoride, ie, unstable and highly reactive fluorides such as silicon tetrafluoride, carbonyl difluoride and hydrogen fluoride After removal in advance, the chemically stable fluoride is concentrated, the concentrated fluoride is recovered, and a small amount of fluoride remaining in the gas component after the concentration treatment is decomposed. A method of treating the compound is described. However, in this method, the target components are wide-ranging, and a wide variety of chemically stable components are collected. In order to recover only specific components for the purpose of recycling, this method requires an additional separation / purification step.

【0005】従って、本発明の目的は、半導体製造プロ
セスなどから排出される種々のPFCを含有する排ガス
より、有用なパ−フルオロカーボンを、簡単で効率良く
回収するための当該排ガスの前処理方法を提供すること
にある。
Accordingly, an object of the present invention is to provide a method for pretreatment of exhaust gas containing various PFCs discharged from a semiconductor manufacturing process or the like for simply and efficiently recovering useful perfluorocarbon from the exhaust gas. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は、PFC(パー
フルオロコンパウンド)混合排ガス中に含まれる四フッ
化メタン、六フッ化エタン、八フッ化プロパン及び八フ
ッ化ブタンより選ばれる少なくとも1種のパ−フルオロ
カーボンを回収するための当該排ガスの前処理方法であ
って、上記PFC混合排ガスを、アルカリ土類金属化合
物と200〜800℃の条件下で接触させ、上記パ−フ
ルオロカーボンを上記PFC混合排ガスから分離するこ
とを特徴とするPFC混合排ガスの回収前処理方法を提
供することにより、上記目的を達成したものである。
SUMMARY OF THE INVENTION The present invention provides at least one of methane tetrafluoride, ethane hexafluoride, propane octafluoride and butane octafluoride contained in a PFC (perfluoro compound) mixed exhaust gas. A pretreatment method of said exhaust gas for recovering said perfluorocarbon, wherein said PFC mixed exhaust gas is brought into contact with an alkaline earth metal compound at a temperature of 200 to 800 ° C., and said perfluorocarbon is mixed with said PFC mixed gas. The above object has been achieved by providing a method for pre-recovery recovery of a PFC mixed exhaust gas, which is characterized in that the exhaust gas is separated from the exhaust gas.

【0007】[0007]

【発明の実施の形態】以下、本発明のPFC混合排ガス
の回収前処理方法について詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The pretreatment method for recovery of PFC mixed exhaust gas according to the present invention will be described below in detail.

【0008】本発明の方法が適用されるPFC混合排ガ
スは、四フッ化メタン(CF4 )、六フッ化エタン(C
2 6 )、八フッ化プロパン(C3 8 )及び八フッ化
ブタン(C4 8 )より選ばれる少なくとも1種のパ−
フルオロカーボンを含む排ガスであり、本発明の方法
は、特に半導体製造プロセスからの排ガスに好適に適用
される。この半導体製造プロセスからの排ガスには、上
記パ−フルオロカーボンの他に、一般に、窒素などの不
活性ガスがキャリヤーガスとして多量に含まれており、
その他、原料ガスからの未反応ガス、反応により生じる
酸性ガス、酸化性ガス及び副生物(具体的には、三フッ
化メタン、四フッ化エチレン、三フッ化窒素、六フッ化
硫黄、フッ化水素、四フッ化ケイ素、二フッ化カルボニ
ル、二酸化炭素など)が含まれている。
The PFC mixed exhaust gas to which the method of the present invention is applied is methane tetrafluoride (CF 4 ), ethane hexafluoride (C
2 F 6), eight fluoride propane (C 3 F 8) and at least one path selected from eight fluoride butane (C 4 F 8) -
It is an exhaust gas containing a fluorocarbon, and the method of the present invention is suitably applied particularly to an exhaust gas from a semiconductor manufacturing process. Exhaust gas from this semiconductor manufacturing process generally contains a large amount of an inert gas such as nitrogen as a carrier gas, in addition to the above-mentioned perfluorocarbon,
In addition, unreacted gas from raw material gas, acid gas generated by the reaction, oxidizing gas, and by-products (specifically, methane trifluoride, ethylene tetrafluoride, nitrogen trifluoride, sulfur hexafluoride, fluoride Hydrogen, silicon tetrafluoride, carbonyl difluoride, carbon dioxide, etc.).

【0009】また、本発明の方法で用いられるアルカリ
土類金属化合物としては、水酸化カルシウム、ソーダラ
イム及び酸化カルシウムなどがあげられ、これらを単独
又はは組み合わせて使用することができる。これらのア
ルカリ土類金属化合物としては、適度の大きさに破砕又
は成形されることが圧力損失が小さくなるので好まし
く、加熱条件下で接触反応させることでは、比表面積が
大きいことが望ましい。具体的には2.0〜10.0mm
程度の粒度(比表面積約2.0〜20m2 /g)のもの
を使用するが、その形状、見掛け密度などは適宜選択す
れば良い。
The alkaline earth metal compound used in the method of the present invention includes calcium hydroxide, soda lime and calcium oxide, and these can be used alone or in combination. These alkaline earth metal compounds are preferably crushed or formed into an appropriate size because pressure loss is reduced, and when subjected to contact reaction under heating conditions, it is desirable that the specific surface area be large. Specifically, 2.0-10.0mm
Particles having a specific particle size (specific surface area of about 2.0 to 20 m 2 / g) are used, and the shape, apparent density, and the like may be appropriately selected.

【0010】而して、本発明は、上記PFC混合排ガス
を、上記アルカリ土類金属化合物と200〜800℃の
条件下で接触させるものである。上記接触により、PF
C混合排ガス中に含まれる三フッ化メタン、四フッ化エ
チレン、三フッ化窒素、六フッ化硫黄、フッ化水素、四
フッ化ケイ素、二フッ化カルボニル、二酸化炭素などの
成分が分解されてアルカリ土類金属化合物に固定化さ
れ、PFC混合排ガス中に含まれる有用成分(四フッ化
メタン、六フッ化エタン、八フッ化プロパン、八フッ化
ブタン)をキャリヤーガス若しくは不活性ガスとともに
PFC混合排ガスから分離する(取り出す)ことができ
る。
In the present invention, the PFC mixed exhaust gas is brought into contact with the alkaline earth metal compound at a temperature of 200 to 800 ° C. By the above contact, PF
Components such as methane trifluoride, ethylene tetrafluoride, nitrogen trifluoride, sulfur hexafluoride, hydrogen fluoride, silicon tetrafluoride, carbonyl difluoride, and carbon dioxide contained in the mixed exhaust gas are decomposed. PFC mixing useful components (methane tetrafluoride, ethane hexafluoride, propane octafluoride, butane octafluoride) immobilized on alkaline earth metal compounds and contained in PFC mixed exhaust gas together with carrier gas or inert gas It can be separated (extracted) from the exhaust gas.

【0011】上記接触温度は、使用するアルカリ土類金
属化合物のPFC分解性能と、回収目的の有用成分の種
類、PFC混合排ガス中に含まれるガス種などに応じ
て、上記温度範囲内で適宜決定される。また、使用する
アルカリ土類金属化合物も、そのPFC分解性能と、回
収目的の有用成分の種類、PFC混合排ガス中に含まれ
るガス種などに応じて、1種以上が適宜選択される。
The above-mentioned contact temperature is appropriately determined within the above-mentioned temperature range according to the PFC decomposition performance of the alkaline earth metal compound to be used, the kind of useful component for the purpose of recovery, the kind of gas contained in the PFC mixed exhaust gas, and the like. Is done. In addition, one or more alkaline earth metal compounds to be used are appropriately selected according to the PFC decomposition performance, the type of useful component for the purpose of recovery, the type of gas contained in the PFC mixed exhaust gas, and the like.

【0012】例えば、ソーダライムのPFC分解性能
は、キャリヤーガスに窒素ガスを使用して、各PFC濃
度1.0vol.%、混合ガス流速(空筒速度)1cm
/secの状態で、1000mm高のソーダライムの層
に混合ガスを通過(内径約200mm)させた場合、次
の通りである。まず、四フッ化エチレン(C2 4 )が
200℃で100%分解し、250℃で三フッ化メタン
(CHF3 )が実質上完全に分解する。さらに、400
℃で三フッ化窒素(NF3 )が、500℃で六フッ化硫
黄(SF6 )が、それぞれ実質上完全に分解する。しか
しながら、500℃において八フッ化ブタン(C
4 8 )の分解率は50%程度であり、四フッ化メタン
(CF4 )、六フッ化エタン(C2 6 )及び八フッ化
プロパン(C3 8 )に関しては600℃でも分解され
ない。尚、公知のように、ソーダライムは580℃以上
で脱水され、酸化カルシウムとなる。
For example, PFC decomposition performance of soda lime
Uses nitrogen gas as the carrier gas and concentrates each PFC.
1.0 vol. %, Mixed gas flow rate (cylinder speed) 1cm
/ Sec state, 1000mm high soda lime layer
When the mixed gas is passed through (the inner diameter is about 200 mm),
It is as follows. First, ethylene tetrafluoride (CTwoFFour)But
Decomposes 100% at 200 ° C and methane trifluoride at 250 ° C
(CHFThree) Decomposes substantially completely. In addition, 400
Nitrogen trifluoride (NFThree), At 500 ° C
Yellow (SF6) Each decompose substantially completely. Only
While heating at 500 ° C, butane octafluoride (C
FourF8) Is about 50% and methane tetrafluoride
(CFFour), Ethane hexafluoride (CTwoF6) And octafluoride
Propane (CThreeF 8Is decomposed even at 600 ° C
Absent. As is well known, soda lime is 580 ° C or higher.
Dehydrated into calcium oxide.

【0013】また、酸化カルシウムのPFC分解性能
は、上記のソーダライムの場合と同一の条件下で次の通
りである。300℃で三フッ化メタン(CHF3 )が1
00%分解し、500℃で三フッ化窒素(NF3 )及び
八フッ化ブタン(C4 8 )が実質上完全に分解する。
次いで、600℃で六フッ化硫黄(SF6 )が、さらに
700℃で八フッ化プロパン(C3 8 )が、それぞれ
実質上完全に分解する。しかしながら、700℃におい
て、六フッ化エタン(C2 6 )の分解率は7%にとど
まり、四フッ化メタン(CF4 )の分解率はほぼ0%で
ある。
The PFC decomposition performance of calcium oxide is as follows under the same conditions as in the case of the above-mentioned soda lime. Methane trifluoride (CHF 3 ) at 300 ° C
Decomposes by 00%, and at 500 ° C., nitrogen trifluoride (NF 3 ) and butane octafluoride (C 4 F 8 ) are substantially completely decomposed.
Then, sulfur hexafluoride (SF 6 ) at 600 ° C. and propane octafluoride (C 3 F 8 ) at 700 ° C. are substantially completely decomposed. However, at 700 ° C., the decomposition rate of ethane hexafluoride (C 2 F 6 ) is only 7%, and the decomposition rate of methane tetrafluoride (CF 4 ) is almost 0%.

【0014】また、水酸化カルシウムのPFC分解性能
は、上記ソーダライムのPFC分解性能と略同等であ
る。これはソーダライムの主成分が水酸化カルシウムで
あることによると考えられる。
The PFC decomposition performance of calcium hydroxide is substantially equal to the PFC decomposition performance of soda lime. This is considered to be because the main component of soda lime is calcium hydroxide.

【0015】このようなアルカリ土類金属化合物のPF
C分解性能に基づけば、アルカリ土類金属化合物として
ソーダライムを使用する場合は、上記接触温度を200
〜600℃、特に500℃以上580℃未満に設定する
ことが好ましく、それにより四フッ化メタン(C
4 )、六フッ化エタン(C2 6 )、八フッ化プロパ
ン(C3 8 )及び八フッ化ブタン(C4 8 )を効率
良く分離することができる。また、アルカリ土類金属化
合物として酸化カルシウムを使用する場合は、上記接触
温度を200〜700℃、特に600℃以上700℃未
満に設定することが好ましく、それにより四フッ化メタ
ン(CF4 )、六フッ化エタン(C2 6 )及び八フッ
化プロパン(C3 8 )を効率良く分離することができ
る。また、アルカリ土類金属化合物として水酸化カルシ
ウムを使用する場合は、ソーダライムの場合と同様、接
触温度を200〜600℃として実施することが好まし
く、それにより四フッ化メタン(CF4 )、六フッ化エ
タン(C2 6 )、八フッ化プロパン(C3 8 )及び
八フッ化ブタン(C4 8 )を効率良く分離することが
できる。
Such an alkaline earth metal compound PF
Based on the C decomposition performance, when soda lime is used as the alkaline earth metal compound, the contact temperature is set at 200.
To 600 ° C., especially 500 ° C. or higher and lower than 580 ° C., whereby methane tetrafluoride (C
F 4 ), ethane hexafluoride (C 2 F 6 ), propane octafluoride (C 3 F 8 ), and butane octafluoride (C 4 F 8 ) can be efficiently separated. When calcium oxide is used as the alkaline earth metal compound, the contact temperature is preferably set to 200 to 700 ° C., particularly 600 ° C. to less than 700 ° C., whereby methane tetrafluoride (CF 4 ) Ethane hexafluoride (C 2 F 6 ) and propane octafluoride (C 3 F 8 ) can be efficiently separated. When calcium hydroxide is used as the alkaline earth metal compound, the contact temperature is preferably set to 200 to 600 ° C. as in the case of soda lime, whereby methane tetrafluoride (CF 4 ) Ethane fluoride (C 2 F 6 ), propane octafluoride (C 3 F 8 ) and butane octafluoride (C 4 F 8 ) can be efficiently separated.

【0016】また、上記のアルカリ土類金属化合物のP
FC分解性能に基づけば、温度が低い状態、例えば20
0〜500℃でも、PFC混合排ガスをアルカリ土類金
属化合物と繰り返し接触させることにより、不用成分を
完全に分解することができる。
In addition, P of the above alkaline earth metal compound
Based on FC decomposition performance, low temperature conditions, for example, 20
Even at 0 to 500 ° C., unnecessary components can be completely decomposed by repeatedly contacting the PFC mixed exhaust gas with the alkaline earth metal compound.

【0017】上記のPFC混合排ガスとアルカリ土類金
属化合物との接触は、例えば、図1に示すような、反応
剤(3)としてアルカリ土類金属化合物がトレー(6)
上に充填されたカラムからなる反応筒(2)と、該反応
筒(2)を加熱する加熱装置(4)とからなるガス分解
装置により行うことが好ましい。該ガス分解装置におい
て、PFC混合排ガスは、反応筒(2)の下部より導入
され、加熱装置(4)により所定温度に保持された反応
剤(3)(アルカリ土類金属化合物)と接触する。接触
後のガスは、反応筒(2)の上部より導出される。
The contact between the PFC mixed exhaust gas and the alkaline earth metal compound is carried out, for example, by contacting the alkaline earth metal compound as a reactant (3) with a tray (6) as shown in FIG.
The reaction is preferably performed by a gas decomposer comprising a reaction tube (2) comprising a column filled above and a heating device (4) for heating the reaction tube (2). In the gas decomposition apparatus, the PFC mixed exhaust gas is introduced from the lower part of the reaction tube (2) and comes into contact with the reactant (3) (alkaline earth metal compound) maintained at a predetermined temperature by the heating device (4). The gas after the contact is led out from the upper part of the reaction tube (2).

【0018】また、上記のPFC混合排ガスとアルカリ
土類金属化合物との接触によりPFC混合排ガスから分
離された、有用成分のパーフルオロカーボン(四フッ化
メタン、六フッ化エタン、八フッ化プロパン、八フッ化
ブタン)並びにキャリヤーガス若しくは不活性ガス(主
に窒素ガスなど)を含む混合ガスは、例えばガス分離膜
に通すことにより、当該パーフルオロカーボンとキャリ
ヤーガス若しくは不活性ガスとを分離することができ
る。分離されたパ−フルオロカーボンは回収容器に充填
される。上記ガス分離膜としては、一般的に使用されて
いるポリイミド、ポリスルホン又はポリエーテルイミド
などの高分子膜の他に、炭素膜やγ−アルミナ又はゼオ
ライトなどの無機膜を使用することにより、容易に分離
することができる。
Also, useful components of perfluorocarbon (methane tetrafluoride, ethane hexafluoride, propane octafluoride, A mixed gas containing butane fluoride) and a carrier gas or an inert gas (mainly nitrogen gas or the like) can be separated from the perfluorocarbon and the carrier gas or the inert gas by passing through a gas separation membrane, for example. . The separated perfluorocarbon is filled in a collection container. As the gas separation membrane, commonly used polymer membranes such as polyimide, polysulfone or polyetherimide, as well as a carbon membrane or an inorganic membrane such as γ-alumina or zeolite, can be easily used. Can be separated.

【0019】また、キャリヤーガス若しくは不活性ガス
と分離されたパ−フルオロカーボンが2成分以上のパ−
フルオロカーボンを含む場合には、各成分をそれぞれの
沸点差を利用することにより容易に単離することもでき
る。
Further, the perfluorocarbon separated from the carrier gas or the inert gas contains two or more components.
When a fluorocarbon is contained, each component can be easily isolated by utilizing the respective boiling point differences.

【0020】[0020]

【実施例】以下に実施例をあげて本発明をさらに説明す
るが、本発明は以下の実施例に制限されるものではな
い。
EXAMPLES The present invention will be further described with reference to the following examples, but the present invention is not limited to the following examples.

【0021】実施例1 〈装置及び工程〉図1に示す装置を用いて、次のように
して、半導体製造プロセスから排出されたPFC混合排
ガスから有用なパ−フルオロカーボンを分離、回収し
た。図1において、半導体製造装置における平行平板型
シリコン酸化膜エッチング装置(1)から排出されたP
FC混合排ガスを反応筒(2)の下部より反応筒(2)
内に導入する。反応筒(2)は、アルカリ土類金属化合
物(ソーダライム)からなる反応剤(3)が充填された
カラムであり、加熱装置(4)により、その反応筒
(2)内の反応剤(3)が580℃未満の所定温度に保
たれるようにしてある。加熱装置(4)は、反応筒
(2)内に設置された温度計(5)の温度をもとに温度
制御され、反応剤(3)が反応熱により高温になりすぎ
たときには、加熱装置(4)を適切に制御することによ
り反応剤(3)の温度を安定に保持できる構成となって
いる。加熱された反応筒(3)にあっては、加熱装置
(4)中央部に最高温度となる均熱ゾーンを有した温度
勾配が管軸方向に生じるため、導入ガスが580℃未満
の所定温度で反応剤(3)と接触できるように、反応筒
(3)内にトレー(6)を設けて均熱ゾーンに反応剤
(3)を充填できるようにしてある。この反応筒におい
てPFC混合排ガス中のCF4 、C2 6 は素通りする
が、特定成分(CHF3 、C2 4 、SiF4 、HF)
はソーダライムに固定化され無害化される。
Example 1 <Apparatus and Process> Using the apparatus shown in FIG. 1, useful perfluorocarbon was separated and recovered from the PFC mixed exhaust gas discharged from the semiconductor manufacturing process as follows. In FIG. 1, P discharged from a parallel plate type silicon oxide film etching apparatus (1) in a semiconductor manufacturing apparatus.
FC mixed exhaust gas from the lower part of the reaction tube (2) to the reaction tube (2)
Introduce within. The reaction tube (2) is a column packed with a reaction agent (3) composed of an alkaline earth metal compound (soda lime), and the reaction device (3) in the reaction tube (2) is heated by the heating device (4). ) Is maintained at a predetermined temperature of less than 580 ° C. The heating device (4) is temperature-controlled based on the temperature of a thermometer (5) installed in the reaction tube (2). When the temperature of the reactant (3) becomes too high due to the heat of the reaction, the heating device is heated. By appropriately controlling (4), the temperature of the reactant (3) can be stably maintained. In the heated reaction tube (3), a temperature gradient having a soaking zone having the highest temperature in the center of the heating device (4) is generated in the tube axis direction. A tray (6) is provided in the reaction tube (3) so that the reactant (3) can be filled in the soaking zone so that the reactant (3) can be brought into contact with the reactant (3). In this reaction column, CF 4 and C 2 F 6 in the PFC mixed exhaust gas pass through, but specific components (CHF 3 , C 2 F 4 , SiF 4 , HF)
Is fixed to soda lime and rendered harmless.

【0022】反応筒(2)の下流にはPFC回収装置
(7)を設けてあり、該回収装置(7)内にはガス分離
膜用モジュール(図示せず)が装備されている。このガ
ス分離膜用モジュールにより、反応筒(2)からの導出
ガス中に含まれるPFC以外のガス(主にN2 )を膜透
過させ、PFCを濃縮分離するものである。濃縮分離後
のPFCは回収容器(図示せず)に充填される。
A PFC recovery unit (7) is provided downstream of the reaction tube (2), and a module (not shown) for a gas separation membrane is provided in the recovery unit (7). With this gas separation membrane module, gases (mainly N 2 ) other than PFC contained in the gas derived from the reaction tube ( 2 ) are permeated through the membrane, and PFC is concentrated and separated. The PFC after the concentration separation is filled in a collection container (not shown).

【0023】〈操作〉図1の装置において、反応筒
(2)である40AのSUS製カラムのトレー(6)よ
り上の部分に、層高300mmになるようにソーダライ
ムからなる反応剤(3)を300g充填した(筒の内径
約40mm)。加熱装置(4)により、反応筒(2)内
の反応剤(3)の温度を300℃に加熱保持し、エッチ
ング装置(1)から排出されたPFC混合排ガス〔PF
C(C2 4 、CHF3 、C2 6及びCF4 )、N2
ガス及びHF、SiF4 などの腐食性ガスを含む混合
物)を1リットル/minの流量で、反応筒(2)に導
入した。反応筒(2)の入口側及び出口側の配管には、
主排気ラインからサンプリングポートを設置し、サンプ
ルガスを採取した。サンプルの分析はフーリエ変換赤外
分光光度計(FTIR)によって行った。窒素(N2
ガス以外の成分の割合を下記表1に示す。下記表1中、
「N.D.」とあるのは分析装置の検出下限(10vo
l.ppm)以下であることを意味する。
<Operation> In the apparatus shown in FIG. 1, a reactant (3) made of soda lime having a layer height of 300 mm was placed above the tray (6) of a 40A SUS column, which is a reaction tube (2). ) (300 mm inside diameter of the cylinder). The temperature of the reactant (3) in the reaction tube (2) is maintained at 300 ° C. by the heating device (4), and the PFC mixed exhaust gas [PF
C (C 2 F 4 , CHF 3 , C 2 F 6 and CF 4 ), N 2
A mixture containing a gas and a corrosive gas such as HF and SiF 4 ) was introduced into the reaction tube (2) at a flow rate of 1 liter / min. The piping on the inlet side and the outlet side of the reaction tube (2) includes:
A sampling port was installed from the main exhaust line to sample gas. Analysis of the samples was performed with a Fourier transform infrared spectrophotometer (FTIR). Nitrogen (N 2)
Table 1 below shows the proportions of components other than gas. In Table 1 below,
"ND" means the lower limit of detection (10 vol.) Of the analyzer.
l. ppm) or less.

【0024】[0024]

【表1】 [Table 1]

【0025】上記表1から、特定成分(CHF3 、C2
4 、SiF4 、HF、COF2 及びCO2 )はもはや
検出されず、反応筒(2)に供給したPFC混合排ガス
は2種のPFC(CF4 及びC2 6 )に集約されたこ
とがわかる。
From the above Table 1, the specific components (CHF 3 , C 2
F 4 , SiF 4 , HF, COF 2 and CO 2 ) were no longer detected, and the PFC mixed exhaust gas supplied to the reaction tube (2) was collected into two types of PFC (CF 4 and C 2 F 6 ). I understand.

【0026】次に、反応筒(2)からの導出ガスをPF
C回収装置(7)に供給してガス分離膜用モジュールに
よりPFCを濃縮分離したところ、CF4 及びC2 6
はそれぞれ92%及び98%の収率で回収でき、CF4
及びC2 6 の回収濃度は、40%及び51%であっ
た。
Next, the gas discharged from the reaction tube (2) is PF
When the PFC was supplied to the C recovery device (7) and concentrated and separated by the gas separation membrane module, CF 4 and C 2 F 6
Can be recovered in 92% and 98% yields, respectively, and CF 4
And the recovery concentrations of C 2 F 6 were 40% and 51%.

【0027】参考例1〜8 PFCとしてのNF3 、SF6 、CHF3 、C2 4
CF4 、C2 6 、C 3 8 及びC4 8 のそれぞれを
窒素(N2 )ガス中に濃度1vol.%となるように含
有させ、実施例1と同様にして、1リットル/minの
流量でソーダライムを充填した反応筒(2)に供給し、
該筒を通過させた。その反応温度と反応筒(2)の入口
側及び出口側の各種PFCガス濃度を測定した。このと
きの結果を下記表2に示す。
Reference Examples 1 to 8 NF as PFCThree, SF6, CHFThree, CTwoFFour,
CFFour, CTwoF6, C ThreeF8And CFourF8Each of
Nitrogen (NTwo) Concentration of 1 vol. %
1 l / min in the same manner as in Example 1.
At a flow rate, it is supplied to a reaction tube (2) filled with soda lime,
The tube was passed. Reaction temperature and inlet of reaction tube (2)
The PFC gas concentrations at the outlet and outlet sides were measured. This and
The results are shown in Table 2 below.

【0028】[0028]

【表2】 [Table 2]

【0029】参考例9〜15 実施例1において、反応筒(2)に、層高が300mm
になるようにCaOからなる反応剤(3)を充填した。
加熱装置(4)により、反応筒(2)内の反応剤(3)
の温度条件を変え、PFCとしてのNF3 、SF6 、C
HF3 、CF4、C2 6 、C3 8 及びC4 8 のそ
れぞれを窒素(N2 )ガス中に濃度1vol.%となる
ように含有させ、流量が1リットル/minとなるよう
にマスフローコントローラーで制御して、反応筒(2)
に供給し、該筒を通過させた。その反応温度と反応筒
(2)の入口側及び出口側の各種PFCガス濃度を測定
した。このときの結果を下記表3に示す。
Reference Examples 9 to 15 In Example 1, the reaction tube (2) was provided with a layer height of 300 mm.
Was filled with the reactant (3) composed of CaO.
Reactant (3) in reaction tube (2) by heating device (4)
NF 3 , SF 6 , C as PFC
Each of HF 3 , CF 4 , C 2 F 6 , C 3 F 8 and C 4 F 8 was dissolved in nitrogen (N 2 ) gas at a concentration of 1 vol. %, And controlled by a mass flow controller so that the flow rate becomes 1 liter / min.
And passed through the tube. The reaction temperature and the concentration of various PFC gases at the inlet and outlet of the reaction tube (2) were measured. The results at this time are shown in Table 3 below.

【0030】[0030]

【表3】 [Table 3]

【0031】参考例16〜19 実施例1において、反応筒(2)に、層高が300mm
になるようにソーダライムからなる反応剤(3)を充填
した。加熱装置(4)により、反応筒(2)内の反応剤
(3)の温度条件を変え、HF及びSiF4 のそれぞれ
を窒素(N2 )ガス中に所定の濃度まで希釈させ、マス
フローコントローラーにて1リットル/minの流量に
制御して、反応筒(2)に供給し、該筒を通過させた。
このときの処理量について調べた結果を下記表4に示
す。尚、処理量は反応筒出口ガス中のHF及びSiF4
の濃度が入口ガス中の濃度に対し5%濃度(5%以下)
に達するとき(反応の終点)までのHF及びSiF 4
入量を処理量とした。
Reference Examples 16 to 19 In Example 1, the reaction tube (2) had a layer height of 300 mm.
Fill the reactant (3) consisting of soda lime so that it becomes
did. The reactant in the reaction tube (2) by the heating device (4)
By changing the temperature condition of (3), HF and SiFFourEach of
To nitrogen (NTwo) Dilute to a predetermined concentration in gas
Flow rate of 1 liter / min with flow controller
Under control, it was supplied to the reaction tube (2) and passed through the tube.
Table 4 below shows the results of the examination of the processing amount at this time.
You. The amount of treatment was HF and SiF in the reaction tube outlet gas.Four
Concentration is 5% of the concentration in the inlet gas (less than 5%)
And SiF up to the point where the reaction reaches (the end of the reaction) FourGuidance
The input amount was defined as the processing amount.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明の方法によれば、半導体製造プロ
セスなどから排出される種々のPFCを含有する排ガス
より、有用なパ−フルオロカーボンを、簡単で効率良く
回収することができる。
According to the method of the present invention, useful perfluorocarbon can be easily and efficiently recovered from various PFC-containing exhaust gases discharged from a semiconductor manufacturing process or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための装置の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of an apparatus for performing a method of the present invention.

【符号の説明】 1 エッチング装置 2 反応筒 3 反応剤 4 加熱装置 5 温度計 6 トレー 7 PFC回収装置[Description of Signs] 1 Etching device 2 Reaction tube 3 Reactant 4 Heating device 5 Thermometer 6 Tray 7 PFC recovery device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 秀樹 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 (72)発明者 八高 賢一 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 (72)発明者 真鍋 岳史 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 (72)発明者 枝澤 克人 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 (72)発明者 新田 昭彦 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 (72)発明者 後藤 正敏 東京都港区西新橋1丁目5番13号 第8東 洋海事ビル8F PFC回収・再利用プロ ジェクト室内 Fターム(参考) 4D002 AA22 AC10 BA12 CA11 CA13 DA04 DA05 EA02 FA10 GA01 GB03 HA02 4D006 GA41 KA01 KA02 KB30 KD17 MB04 PA03 PB19 PC01 4H006 AA02 AD19 BB61 BC10 BC13 BE11 EA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Ando 1-5-13 Nishishinbashi, Minato-ku, Tokyo 8th Toyo Maritime Building 8F PFC Collection and Reuse Project Room (72) Inventor Kenichi Yadaka Tokyo 8th Toyo Kaiji Building, 8F Toyo Nautical Building, 1-5-13 Nishishinbashi, Minato-ku Building 8F PFC Collection / Reuse Project Room (72) Inventor Katsato Esawa 1-8-13 Nishishinbashi, Minato-ku, Tokyo 8th Toyo Maritime Building 8F PFC Collection / Reuse Project Room (72) Invention Akihiko Nitta 1-5-13 Nishi-Shimbashi, Minato-ku, Tokyo 8th Oriental Maritime Building 8F PFC collection and reuse project room (72) After the inventor Masatoshi 1-5-13 Nishi-Shimbashi, Minato-ku, Tokyo 8th Oriental Maritime Building 8F PFC collection and reuse project room F term (reference) 4D002 AA22 AC10 BA12 CA11 CA13 DA04 DA05 EA02 FA10 GA01 GB03 HA02 4D006 GA41 KA01 KA02 KB30 KD17 MB04 PA03 PB19 PC01 4H006 AA02 AD19 BB61 BC10 BC13 BE11 EA02

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 PFC(パーフルオロコンパウンド)混
合排ガス中に含まれる四フッ化メタン、六フッ化エタ
ン、八フッ化プロパン及び八フッ化ブタンより選ばれる
少なくとも1種のパ−フルオロカーボンを回収するため
の当該排ガスの前処理方法であって、上記PFC混合排
ガスを、アルカリ土類金属化合物と200〜800℃の
条件下で接触させ、上記パ−フルオロカーボンを上記P
FC混合排ガスから分離することを特徴とするPFC混
合排ガスの回収前処理方法。
1. A method for recovering at least one kind of perfluorocarbon selected from methane tetrafluoride, ethane hexafluoride, propane octafluoride and butane octafluoride contained in a PFC (perfluoro compound) mixed exhaust gas. Wherein the PFC mixed exhaust gas is brought into contact with an alkaline earth metal compound at a temperature of 200 to 800 ° C. to convert the perfluorocarbon to the P gas.
A pretreatment method for recovering a PFC mixed exhaust gas, which is separated from an FC mixed exhaust gas.
【請求項2】 アルカリ土類金属化合物が、水酸化カル
シウム、ソーダライム及び酸化カルシウムより選ばれる
少なくとも1種である請求項1記載の前処理方法。
2. The pretreatment method according to claim 1, wherein the alkaline earth metal compound is at least one selected from calcium hydroxide, soda lime and calcium oxide.
【請求項3】 アルカリ土類金属化合物がソーダライム
であり、PFC混合排ガスをソーダライムと200〜6
00℃の条件下で接触させる請求項1記載の前処理方
法。
3. The alkaline earth metal compound is soda lime, and PFC mixed exhaust gas is mixed with soda lime by 200 to 6%.
The pretreatment method according to claim 1, wherein the contact is performed under a condition of 00 ° C.
【請求項4】 PFC混合排ガスをアルカリ土類金属化
合物と200〜500℃の条件下で繰り返し接触させる
請求項1記載の前処理方法。
4. The pretreatment method according to claim 1, wherein the PFC mixed exhaust gas is repeatedly contacted with the alkaline earth metal compound at a temperature of 200 to 500 ° C.
【請求項5】 PFC混合排ガスが、半導体製造プロセ
スから排出される、四フッ化メタン、六フッ化エタン、
八フッ化プロパン及び八フッ化ブタンより選ばれる少な
くとも1種のパ−フルオロカーボン並びにキャリヤーガ
スを含むPFC混合排ガスであり、上記パ−フルオロカ
ーボン並びに上記キャリヤーガスを上記PFC混合排ガ
スから分離する請求項1〜4の何れかに記載の前処理方
法。
5. A PFC mixed exhaust gas discharged from a semiconductor manufacturing process, comprising: methane tetrafluoride, ethane hexafluoride,
A PFC mixed exhaust gas containing at least one perfluorocarbon selected from propane octafluoride and butane octafluoride and a carrier gas, wherein the perfluorocarbon and the carrier gas are separated from the PFC mixed exhaust gas. 4. The pretreatment method according to any one of 4.
【請求項6】 PFC混合排ガスが、四フッ化メタン、
六フッ化エタン、八フッ化プロパン及び八フッ化ブタン
より選ばれる少なくとも1種のパ−フルオロカーボン並
びに不活性ガスを含むPFC混合排ガスであり、上記パ
−フルオロカーボン並びに上記不活性ガスを上記PFC
混合排ガスから分離する請求項1〜4の何れかに記載の
前処理方法。
6. The PFC mixed exhaust gas comprises methane tetrafluoride,
A PFC mixed exhaust gas containing at least one kind of perfluorocarbon selected from ethane hexafluoride, propane octafluoride and butane octafluoride and an inert gas, wherein the perfluorocarbon and the inert gas are mixed with the PFC.
The pretreatment method according to claim 1, wherein the pretreatment method is separated from the mixed exhaust gas.
【請求項7】 PFC混合排ガスが、さらに三フッ化メ
タン、四フッ化エチレン、三フッ化窒素、六フッ化硫
黄、フッ化水素、四フッ化ケイ素、二フッ化カルボニル
及び二酸化炭素からなる群より選ばれる少なくとも1種
の化合物を含む請求項5又は6記載の前処理方法。
7. The PFC mixed exhaust gas further comprises methane trifluoride, ethylene tetrafluoride, nitrogen trifluoride, sulfur hexafluoride, hydrogen fluoride, silicon tetrafluoride, carbonyl difluoride and carbon dioxide. The pretreatment method according to claim 5, comprising at least one compound selected from the group consisting of:
【請求項8】 不活性ガスが窒素ガスである請求項6記
載の前処理方法。
8. The pretreatment method according to claim 6, wherein the inert gas is nitrogen gas.
【請求項9】 PFC混合排ガス中に含まれる四フッ化
メタン、六フッ化エタン及び八フッ化プロパンより選ば
れる少なくとも1種のパ−フルオロカーボンを回収する
ための当該排ガスの前処理方法であって、上記PFC混
合排ガスを、酸化カルシウムと200〜700℃未満の
条件下で接触させ、上記パ−フルオロカーボンを上記P
FC混合排ガスから分離することを特徴とするPFC混
合排ガスの回収前処理方法。
9. A method for pretreating a PFC mixed exhaust gas to recover at least one kind of perfluorocarbon selected from methane tetrafluoride, ethane hexafluoride and propane octafluoride contained in the exhaust gas. And contacting the PFC mixed exhaust gas with calcium oxide under conditions of 200 to less than 700 ° C.
A pretreatment method for recovering a PFC mixed exhaust gas, which is separated from an FC mixed exhaust gas.
【請求項10】 PFC混合排ガスが、四フッ化メタ
ン、六フッ化エタン及び八フッ化プロパンより選ばれる
少なくとも1種のパ−フルオロカーボン並びに不活性ガ
スを含むPFC混合排ガスであり、上記パ−フルオロカ
ーボン並びに上記不活性ガスを上記PFC混合排ガスか
ら分離する請求項9記載の前処理方法。
10. The PFC mixed exhaust gas containing at least one kind of perfluorocarbon selected from methane tetrafluoride, ethane hexafluoride and propane octafluoride and an inert gas, wherein the PFC mixed exhaust gas is The pretreatment method according to claim 9, wherein the inert gas is separated from the PFC mixed exhaust gas.
【請求項11】 PFC混合排ガスが、さらに三フッ化
メタン、四フッ化エチレン、三フッ化窒素、六フッ化硫
黄、フッ化水素、四フッ化ケイ素、二フッ化カルボニル
及び二酸化炭素からなる群より選ばれる少なくとも1種
の化合物を含む請求項10記載の前処理方法。
11. The PFC mixed exhaust gas further comprises methane trifluoride, ethylene tetrafluoride, nitrogen trifluoride, sulfur hexafluoride, hydrogen fluoride, silicon tetrafluoride, carbonyl difluoride and carbon dioxide. The pretreatment method according to claim 10, comprising at least one compound selected from the group consisting of:
【請求項12】 不活性ガスが窒素ガスである請求項1
0記載の前処理方法。
12. The method according to claim 1, wherein the inert gas is nitrogen gas.
0 pretreatment method.
【請求項13】 請求項5、6及び10の何れかに記載
の前処理方法により分離した、パ−フルオロカーボン並
びにキャリヤーガス若しくは不活性ガスを、ガス分離膜
に通し、当該パ−フルオロカーボンとキャリヤーガス若
しくは不活性ガスとを分離し、その後、当該パ−フルオ
ロカーボンを回収容器に充填することを特徴とする回収
方法。
13. A perfluorocarbon and a carrier gas or an inert gas separated by the pretreatment method according to claim 5, passed through a gas separation membrane, and the perfluorocarbon and the carrier gas are separated. Alternatively, a recovery method characterized by separating an inert gas and then filling the perfluorocarbon in a recovery container.
【請求項14】 キャリヤーガス若しくは不活性ガスと
分離されたパ−フルオロカーボンが2成分以上のパ−フ
ルオロカーボンを含む場合、各成分をそれぞれの沸点差
を利用して単離する請求項13記載の回収方法。
14. The recovery according to claim 13, wherein, when the perfluorocarbon separated from the carrier gas or the inert gas contains two or more perfluorocarbons, each component is isolated by utilizing a difference in boiling point. Method.
【請求項15】 不活性ガスが窒素ガスである請求項1
3記載の回収方法。
15. The method according to claim 1, wherein the inert gas is nitrogen gas.
3. The collection method according to 3.
JP2001167216A 2001-06-01 2001-06-01 PFC mixed exhaust gas recovery pretreatment method Expired - Lifetime JP3548135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167216A JP3548135B2 (en) 2001-06-01 2001-06-01 PFC mixed exhaust gas recovery pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167216A JP3548135B2 (en) 2001-06-01 2001-06-01 PFC mixed exhaust gas recovery pretreatment method

Publications (2)

Publication Number Publication Date
JP2002361041A true JP2002361041A (en) 2002-12-17
JP3548135B2 JP3548135B2 (en) 2004-07-28

Family

ID=19009636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167216A Expired - Lifetime JP3548135B2 (en) 2001-06-01 2001-06-01 PFC mixed exhaust gas recovery pretreatment method

Country Status (1)

Country Link
JP (1) JP3548135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161863A (en) * 2006-12-27 2008-07-17 Ind Technol Res Inst Exhaust gas reducing method and system of exhaust gas produced in manufacturing semiconductor
JP2010005542A (en) * 2008-06-27 2010-01-14 Tosoh Corp Perfluorocarbon adsorbent and perfluorocarbon detoxifying process using the same
JP2011235216A (en) * 2010-05-07 2011-11-24 Kansai Univ Method for decomposing and treating fluorine-based gas by means of zeolite
JP2013542052A (en) * 2010-08-27 2013-11-21 エンパイア テクノロジー ディベロップメント エルエルシー Hydrofluorocarbon removal device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161863A (en) * 2006-12-27 2008-07-17 Ind Technol Res Inst Exhaust gas reducing method and system of exhaust gas produced in manufacturing semiconductor
JP2010005542A (en) * 2008-06-27 2010-01-14 Tosoh Corp Perfluorocarbon adsorbent and perfluorocarbon detoxifying process using the same
JP2011235216A (en) * 2010-05-07 2011-11-24 Kansai Univ Method for decomposing and treating fluorine-based gas by means of zeolite
JP2013542052A (en) * 2010-08-27 2013-11-21 エンパイア テクノロジー ディベロップメント エルエルシー Hydrofluorocarbon removal device

Also Published As

Publication number Publication date
JP3548135B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US7955578B2 (en) Method and apparatus for treating gas containing flourine-containing compounds
US20100095851A1 (en) Methods and systems for deacidizing gaseous mixtures
EP0980346B1 (en) Co 2? removal from fluorocarbons by semipermeable membrane
WO2006023110A3 (en) Reactive membrane process for the removal of vapor phase contaminants
JP4212106B2 (en) Gas separation device and gas separation method
JP2002035527A (en) Gas separation apparatus
WO2002022254A3 (en) Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
JP5216220B2 (en) Neon recovery method
US6530980B2 (en) Gas separation apparatus
JP2002361041A (en) Method for pretreating for recovering pfc mixed waste gas
KR100851591B1 (en) Two stage flash for hydrocarbon removal
JP4683543B2 (en) Gas separation method and gas separation apparatus
JP2000005561A (en) Treatment of fluoride
JP2007182359A (en) Recovery method of ammonia
JP2002273144A (en) Gas separation device
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JP3650588B2 (en) Perfluoro compound recycling method
JP2000117051A (en) Recovering method for fluoride
JP3463873B2 (en) How to recycle perfluoro compounds
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP3847106B2 (en) Recycling method of perfluoro compound by low temperature purification
CN114436259B (en) Method and device for recovering tail gas of ethylene oxide/ethylene glycol device
RU2669838C1 (en) Method for producing hydrogen fluoride from aqueous solution of hexafluorocromymic acid
JP2001000837A (en) Waste gas treating device for semiconductor production device
JP4683544B2 (en) Gas separation method and gas separation apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Ref document number: 3548135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term