JPH0230731B2 - SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI - Google Patents
SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHIInfo
- Publication number
- JPH0230731B2 JPH0230731B2 JP61078863A JP7886386A JPH0230731B2 JP H0230731 B2 JPH0230731 B2 JP H0230731B2 JP 61078863 A JP61078863 A JP 61078863A JP 7886386 A JP7886386 A JP 7886386A JP H0230731 B2 JPH0230731 B2 JP H0230731B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction
- reaction tube
- nitrogen trifluoride
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002341 toxic gas Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
Landscapes
- Treating Waste Gases (AREA)
Description
[産業上の利用分野]
本発明は三フツ化窒素ガス(NF3)を含有する
排ガス等の処理方法および処理装置に関する。
[従来の技術]
最近、LSI素子は年々高集積化され、製造プロ
セスの精密化と新技術の導入が進み、新しい半導
体用ガスの利用の重要性が強調されている。半導
体用のドライエツチングガス、あるいはクリーニ
ングガスとして有望なひとつの特別なガスはNF3
である。例えば、NF3放電中でイオン化した反応
性ガスがシリコンをエツチングすると、反応生成
物は揮発性物質となるので、従来のフロロカーボ
ンプラズマ中でのエツチングに較べ、C或はSに
よるウエハー表面の反応残渣汚染がない。又反応
残渣がないためエツチング速度が速くなる。一般
に上に挙げた利点が、ドライエツチングガスある
いはクリーニングガスとして、NF3が有望視され
ている理由である。
[発明が解決しようとする問題点]
上記NF3は、常温では非常に安定で、不燃性の
ガスであるが、許容濃度10ppmの毒性ガスであるた
め、その毒性ガス対策が急がれていた。しかしな
がら、NF3は水、アルカリ、酸水溶液と反応しな
いため、これらの水溶液では処理できず、大量の
窒素、空気で稀釈排出されているのが実情であ
る。一方、稀釈排出されたNF3は、自然界では分
解されないことが証明されており、生物に対する
悪影響が懸念されている。
本発明は、NF3排ガスの稀釈処理法の問題点を
解決すべくなされたもので、有毒なNF3を無害な
CF4とN2ガスに変換して処理するものである。
[問題点を解決するための手段]
上記問題点を解決するため本発明は次のような
処理方法と処理装置を提供する。
すなわち、本発明にかかる三フツ化窒素ガス
(NF3)の処理方法は、三フツ化窒素ガスNF3を
含有する排ガスを活性炭、木炭等の炭素塊と反応
温度300〜600℃で反応させ、毒性のないCF4ガス
とN2ガスに変ることを特徴としている。
また、発明にかかる処理装置は、炭素塊が充填
される反応筒、該反応筒に三フツ化窒素ガスを導
く流通用配管、および前記反応筒に並列に設けら
れているバイパスをそなえ、前記反応筒の温度が
設定値以上となつたとき、または反応筒の圧力が
設定値以上になつたときは反応筒へ供給される三
フツ化窒素ガスをバイパスを通して放出するよう
にバルブを開閉操作する制御装置が設けられてい
ることを特徴としている。
[実施例]
以下、実施例を拳げつつより詳細に説明する。
本発明においてNF3を炭素塊と反応させると、
次の反応によりNF3がCF4とN2ガスに変換され
る。
4NF3+3C→3CF4+2N2
このときの反応温度は300〜600℃とするのが望
ましい。この温度が低すぎるとNF3が炭素塊に吸
着され、四フツ化炭素CF4として脱着しなくな
る。逆にこの温度が高すぎると、対腐触性の反応
筒を使用しても腐触が急激に進行する。さらに、
高い温度での反応は急激に進行するため、反応熱
の制御が困難となる。
NF3の濃度は、低濃度から100%の濃度まで処
理が可能であるが、上記の反応は発熱反応である
ので、高濃度のNF3を処理する場合は反応温度を
制御するのが困難となる。したがつて、反応温度
の制御の観点から、処理すべきNF3の濃度は10〜
30%とするのが望ましい。
つぎに、反応筒への充填剤である炭素塊につい
て述べれば、この炭素塊の粒度は4〜8メツシユ
とするのが好ましい。反応の面からは粒度が小さ
いほど表面積が大きくなるので有利であるが、圧
力損失が大きくなるのであまり細いものは実用的
ではない。また、粒度が4メツシユよりも大きく
なると、表面積が小さくなり、所望の効果が得ら
れなくなる。
炭素塊としては、例えば活性炭や木炭等が使用
されるが、この種の炭素塊には通常15〜20%の水
分が含有されており、このように水分を含有する
炭素塊とNF3とを反応させるとHFが発生し、装
置材料の腐触の原因となる。したがつて、反応筒
に炭素塊を最初に充填したときは、予め炭素塊中
の水分を加熱除去するのが好ましい。
水分除去のための加熱処理を例示すれば、例え
ば第1図のような処理が実用的に好ましい。先ず
反応筒内に不活性ガス(N2、Ar、またはHe)を
2l/minの流量で流し、反応筒温度コントローラ
の温度を200℃に設定する。200%に昇温後約30分
間この温度を保持するが、この間に大部分の水分
が除去される。つぎに反応筒の温度を400℃まで
昇温し、約60分間この温度を保つ。この保持によ
り、炭素塊中の含有水分を完全に脱着させ、NF3
と炭素塊の反応時におけるHF生成を防ぐことが
できる。一旦乾燥させた後は、NF3の処理を行な
わない時でも常時乾燥不活性ガス例えばN2ガス
(通常は露点−69℃)を流しておくことにより乾
燥状態を保つことができる。この場合、反応筒の
温度は昇温したままでもよく、室温で保持しても
よい。なお、上記乾燥処理条件を例示すれば、第
1図の加熱時間中に流す乾燥用不活性ガス量は、
例えば炭素塊1.3Kgにつき360以上とするのが好
ましく、当該不活性ガスの露点は−60℃以下で、
O2濃度は100ppm以下とするのが好ましい。また、
乾燥圧力は大気圧で温度は400℃とするのが好ま
しい。
つぎに、上記NF3ガス処理に用いられる処理装
置について説明する。
第2図は本装置の構成をあらわすもので、この
処理装置1は、装置本体2とコントロールボツク
ス3をそなえている。装置本体2は、切換使用さ
れる1対の反応筒4,5をそなえ、各反応筒には
100Vの伝熱ヒータ6,7が設けられている。一
方の反応筒4を使用する場合を例にとつて説明す
ると、処理されるべきNF3は、入口10からバル
ブ11、オイルセパレータ12、三方切換弁13
を経由して左側の反応筒4に供給され、該反応筒
内に充填されている炭素塊と反応してCF4とN2と
なり、冷却コイル14、バルブ15,16を通つ
て排出される。一方稀釈用N2ガスは、フロメー
タ19から供給され、NF3濃度が好ましい濃度す
なわち10〜30%になるようにNF3を稀釈する。こ
の定常運転時には、空気作動バイパス弁20は閉
じられている。
つぎに、温度が異常上昇した場合について説明
する。処理中に反応筒温度が設定値以上になる
と、反応筒入口の空気作動弁22が自動的に閉と
なり、バイパス空気作動弁23が自動的に開とな
つて、NF3含有ガスはバイパス回路24を通つて
排出される。また、緊急用不活性ガス供給バルブ
26が自動的に開き、反応筒4をパージしながら
筒内温度を降温させる。同様に、圧力異状上昇時
の動作について説明すれば、装置内の圧力が設定
値以上になると、圧力スイツチ30が作動し、反
応筒入口空気作動弁22が自動的に閉となり、メ
インバイパス空気作動弁20が自動的に開となつ
て装置内の圧力を設定値以下に下げるようになつ
ている。
つぎに、停電時の作動について説明すると、処
理中に停電したときは、反応筒入口の空気作動弁
22が自動的に閉となると同時に、バイパス空気
作動弁22,23が開となり、停電による反応筒
4の温度降下によるNF3の吸着を防ぐようになつ
ている。NF3の吸着は、反応開始時に大きな発熱
を伴い温度制御が困難となるが、停電時にその吸
着が防止されるので、吸着によるこのような事故
が生じない。
なお、図中、32は圧力計、33はレギユレー
タ、34はストツプ弁、35はサンプルプラグ、
36はソレノイドバルブ、37はバルブヘツドお
よびドレンプラグをあらわす。
なお運転に必要な反応筒、弁、計器、配管類は
処理ボツクス内に機能的に納められている。この
処理ボツクスには排気フアンと空気吸込口および
排気口が設けられており、排気口は設置場所の排
気ダクトに接続されるようになつている。
配管継手類等からNF3ガスの漏洩が生じた場合
は、排気フアンによつて処理ボツクスの下部に設
けられている空気吸込口から外部空気を吸込み、
排気口から排出することにより、処理ボツクス外
への漏洩が防止される。また、この排気フアンの
働きにより反応筒4,5の冷却を効率的に行なわ
しめて、反応筒の温度制御を容易にしている。
反応筒はフツ素系ガスに対する耐蝕性の良行な
モネル、ニツケル等の材質で製作される。この反
応筒は円筒形の本体、NF3導入口、排出口、充填
材(炭素塊)補給口、充填材取出口、ヒーター、
熱電対、保温剤、保温ケース等をそなえ、充填材
取出口と排出口には炭素微紛の漏出を防止するフ
イルタとドレン抜きがそれぞれ設けられている。
NF3排出口は冷却コイル14に接続される。
つぎに、本発明を実施してNF3ガス処理を行つ
た具体例について説明する。
具体的実施例 1
濃度100%のNF3を反応温度400℃、反応圧力1
気圧、流量SV15〜170l/Hrで処理した結果をダ
1表に示す。ここでSV=流量(l/Hr)/充填
容積()である。同表からわかる通り、NF3は
5ppm以下(ガスクロマトグラフイー検出限界)ま
で処理されている。
具体的実施例 2
NF3をN2ガスで濃度3%まで稀釈して反応処
理を行なつた結果を第2表に示す。本発明によれ
ばこのような低濃度のものも完全に処理できるこ
とがわかる。
具体的実施例 3
NF3の濃度を4%とし、1%の塩素ガス(Cl2)
と1%の塩酸(HCl)を加えたものを処理した結
果を第3表に示す。同表から、塩素系のガスが混
入しても反応が阻害されずに処理が行なわれるこ
とがわかる。
[発明の効果]
以上の説明から明らかなように、本発明によれ
ば常温で非常に安定で毒性の高いNF3を毒性のな
いガスに変換させることが可能となつた。
本発明の処理方法は他の方法に較べてランニン
グコストが非常に安く工業的規模の処理に適した
ものであり、その装置は構造的に簡単で実用性の
高いものである。
[Industrial Field of Application] The present invention relates to a method and apparatus for treating exhaust gas and the like containing nitrogen trifluoride gas (NF 3 ). [Prior Art] Recently, LSI devices have become more highly integrated year by year, manufacturing processes have become more precise and new technologies have been introduced, and the importance of using new semiconductor gases has been emphasized. One particular gas that shows promise as a dry etching or cleaning gas for semiconductors is NF 3
It is. For example, when silicon is etched by ionized reactive gas in NF 3 discharge, the reaction products become volatile substances, so compared to etching in conventional fluorocarbon plasma, reaction residues on the wafer surface due to C or S are reduced. No pollution. Furthermore, since there are no reaction residues, the etching rate becomes faster. Generally, the above-mentioned advantages are the reasons why NF 3 is viewed as a promising dry etching gas or cleaning gas. [Problems to be solved by the invention] The above-mentioned NF 3 is a very stable and nonflammable gas at room temperature, but it is a toxic gas with a permissible concentration of 10 ppm, so countermeasures against this toxic gas have been urgently needed. . However, since NF 3 does not react with water, alkali, or acid aqueous solutions, it cannot be treated with these aqueous solutions, and the reality is that it is diluted with large amounts of nitrogen and air and then discharged. On the other hand, it has been proven that diluted and discharged NF 3 is not decomposed in nature, and there are concerns that it may have negative effects on living organisms. The present invention was made to solve the problems of the dilution treatment method for NF 3 exhaust gas, and converts toxic NF 3 into a harmless one.
It is processed by converting it into CF 4 and N 2 gas. [Means for Solving the Problems] In order to solve the above problems, the present invention provides the following processing method and processing apparatus. That is, the method for treating nitrogen trifluoride gas (NF 3 ) according to the present invention involves reacting exhaust gas containing nitrogen trifluoride gas NF 3 with a carbon mass such as activated carbon or charcoal at a reaction temperature of 300 to 600°C; It is characterized by converting into non-toxic CF 4 gas and N 2 gas. Further, the processing apparatus according to the invention includes a reaction tube filled with carbon lumps, a flow pipe for introducing nitrogen trifluoride gas into the reaction tube, and a bypass provided in parallel with the reaction tube, Control that opens and closes the valve so that when the temperature of the cylinder exceeds a set value or the pressure of the reaction cylinder exceeds a set value, the nitrogen trifluoride gas supplied to the reaction cylinder is released through the bypass. It is characterized by the fact that it is equipped with a device. [Example] Hereinafter, an example will be explained in more detail. In the present invention, when NF 3 is reacted with carbon mass,
The following reaction converts NF3 into CF4 and N2 gas. 4NF 3 +3C→3CF 4 +2N 2The reaction temperature at this time is preferably 300 to 600°C. If this temperature is too low, NF 3 will be adsorbed by the carbon mass and will not be desorbed as carbon tetrafluoride CF 4 . On the other hand, if this temperature is too high, corrosion will rapidly progress even if a corrosion-resistant reaction tube is used. moreover,
Since the reaction proceeds rapidly at high temperatures, it becomes difficult to control the reaction heat. The concentration of NF 3 can be treated from a low concentration to 100% concentration, but since the above reaction is an exothermic reaction, it is difficult to control the reaction temperature when treating a high concentration of NF 3 . Become. Therefore, from the viewpoint of controlling the reaction temperature, the concentration of NF3 to be treated should be 10~
It is desirable to set it to 30%. Next, regarding the carbon mass which is a filler for the reaction column, it is preferable that the particle size of this carbon mass is 4 to 8 mesh. From the viewpoint of reaction, the smaller the particle size, the larger the surface area, which is advantageous, but the smaller the particle size, the greater the pressure loss, so it is not practical. Furthermore, if the particle size is larger than 4 meshes, the surface area becomes small and the desired effect cannot be obtained. For example, activated carbon or charcoal is used as the carbon mass, but this type of carbon mass usually contains 15 to 20% water, and in this way, the water-containing carbon mass and NF 3 are combined. When reacted, HF is generated and causes corrosion of equipment materials. Therefore, when the carbon mass is first filled into the reaction column, it is preferable to heat the moisture in the carbon mass to be removed in advance. As an example of heat treatment for removing moisture, the treatment shown in FIG. 1 is practically preferable. First, inert gas (N 2 , Ar, or He) is introduced into the reaction tube.
Flow at a flow rate of 2 l/min and set the temperature of the reaction tube temperature controller to 200°C. After increasing the temperature to 200%, this temperature is maintained for about 30 minutes, during which time most of the moisture is removed. Next, the temperature of the reaction column was raised to 400°C and maintained at this temperature for about 60 minutes. This retention allows the moisture contained in the carbon mass to be completely desorbed, resulting in NF 3
This can prevent HF generation during the reaction between carbon and carbon blocks. Once dried, the dry state can be maintained by constantly flowing a dry inert gas such as N 2 gas (usually with a dew point of -69° C.) even when the NF 3 treatment is not performed. In this case, the temperature of the reaction column may remain elevated or may be maintained at room temperature. In addition, to illustrate the above drying processing conditions, the amount of drying inert gas flowed during the heating time in Fig. 1 is as follows:
For example, it is preferable to set it to 360 or more per 1.3 kg of carbon mass, and the dew point of the inert gas is −60°C or less,
The O 2 concentration is preferably 100 ppm or less. Also,
It is preferable that the drying pressure is atmospheric pressure and the temperature is 400°C. Next, a processing apparatus used for the above-mentioned NF 3 gas processing will be explained. FIG. 2 shows the configuration of this apparatus. This processing apparatus 1 includes an apparatus main body 2 and a control box 3. As shown in FIG. The apparatus body 2 is equipped with a pair of reaction tubes 4 and 5 that are used selectively, and each reaction tube has a
100V heat transfer heaters 6 and 7 are provided. Taking as an example the case where one reaction tube 4 is used, the NF 3 to be treated flows from the inlet 10 to the valve 11, the oil separator 12, and the three-way switching valve 13.
It is supplied to the reaction tube 4 on the left side via the reaction tube, reacts with the carbon mass filled in the reaction tube to become CF 4 and N 2 , and is discharged through the cooling coil 14 and valves 15 and 16. On the other hand, N2 gas for dilution is supplied from the flow meter 19, and dilutes the NF3 so that the NF3 concentration becomes a preferable concentration, that is, 10 to 30%. During this steady operation, the air-operated bypass valve 20 is closed. Next, a case where the temperature rises abnormally will be explained. When the reaction cylinder temperature exceeds the set value during processing, the air-operated valve 22 at the inlet of the reaction cylinder automatically closes, the bypass air-operated valve 23 automatically opens, and the NF 3 -containing gas flows into the bypass circuit 24. is discharged through. Further, the emergency inert gas supply valve 26 is automatically opened, and the temperature inside the cylinder is lowered while purging the reaction cylinder 4. Similarly, to explain the operation when the pressure abnormally increases, when the pressure inside the device exceeds the set value, the pressure switch 30 is activated, the reaction cylinder inlet air-operated valve 22 is automatically closed, and the main bypass air-operated valve is activated. Valve 20 automatically opens to reduce the pressure within the device below the set point. Next, to explain the operation during a power outage, if a power outage occurs during processing, the air-operated valve 22 at the inlet of the reaction cylinder will automatically close, and at the same time, the bypass air-operated valves 22 and 23 will open, and the reaction caused by the power outage will be automatically closed. This is designed to prevent adsorption of NF 3 due to temperature drop in the cylinder 4. Adsorption of NF 3 generates a large amount of heat at the start of the reaction, making temperature control difficult, but since adsorption is prevented during a power outage, such accidents due to adsorption do not occur. In addition, in the figure, 32 is a pressure gauge, 33 is a regulator, 34 is a stop valve, 35 is a sample plug,
36 represents a solenoid valve, and 37 represents a valve head and a drain plug. The reaction cylinders, valves, instruments, and piping necessary for operation are functionally housed within the processing box. This processing box is provided with an exhaust fan, an air suction port, and an exhaust port, and the exhaust port is connected to an exhaust duct at the installation location. If NF 3 gas leaks from piping joints, etc., use an exhaust fan to suck in outside air from the air intake port provided at the bottom of the treatment box.
By discharging from the exhaust port, leakage to the outside of the processing box is prevented. In addition, the exhaust fan works to efficiently cool the reaction tubes 4 and 5, making it easy to control the temperature of the reaction tubes. The reaction tube is made of a material such as monel or nickel that has good corrosion resistance against fluorine gases. This reaction tube has a cylindrical body, an NF 3 inlet, an outlet, a filler (carbon lump) replenishment port, a filler outlet, a heater,
It is equipped with thermocouples, heat insulators, heat insulating cases, etc., and the filler outlet and outlet are each equipped with a filter and drain to prevent leakage of fine carbon particles.
The NF 3 outlet is connected to the cooling coil 14 . Next, a specific example in which NF 3 gas treatment was performed according to the present invention will be described. Specific Example 1 NF 3 at a concentration of 100% was reacted at a reaction temperature of 400°C and a reaction pressure of 1
Table 1 shows the results of processing at atmospheric pressure and flow rate SV15 to 170l/Hr. Here, SV=flow rate (l/Hr)/filling volume (). As can be seen from the table, NF 3 is processed to 5 ppm or less (gas chromatography detection limit). Specific Example 2 Table 2 shows the results of reaction treatment after diluting NF 3 with N 2 gas to a concentration of 3%. It can be seen that according to the present invention, even such low concentrations can be completely treated. Specific Example 3 The concentration of NF 3 is 4%, and 1% chlorine gas (Cl 2 )
Table 3 shows the results of treatment with 1% hydrochloric acid (HCl). From the same table, it can be seen that even if chlorine-based gas is mixed in, the reaction is not inhibited and the treatment is carried out. [Effects of the Invention] As is clear from the above explanation, according to the present invention, it has become possible to convert NF 3 , which is very stable and highly toxic at room temperature, into a non-toxic gas. The processing method of the present invention has a very low running cost compared to other methods and is suitable for industrial-scale processing, and its apparatus is structurally simple and highly practical.
【表】【table】
【表】【table】
第1図は炭素塊の乾燥処理をあらわすグラフ、
第2図は処理装置の1例をあらわす構成説明図で
ある。
1……処理装置、2……装置本体、3……コン
トロールボツクス、4,5……反応筒。
Figure 1 is a graph showing the drying process of carbon lumps.
FIG. 2 is a configuration explanatory diagram showing one example of a processing device. 1... Processing device, 2... Device main body, 3... Control box, 4, 5... Reaction tube.
Claims (1)
性炭、木炭等の炭素塊と反応温度300〜600℃で反
応させ、毒性のないCF4ガスとN2ガスに変えるこ
とを特徴とする三フツ化窒素ガスの処理方法。 2 炭素塊が粒度4〜8メツシユの粒状物である
特許請求の範囲第1項記載の三フツ化窒素ガスの
処理方法。 3 炭素塊が不活性ガス例えばN2、Ar、Heガス
を流通させることにより予め乾燥させられている
特許請求の範囲第1項または第2項記載の三フツ
化窒素ガスの処理方法。 4 炭素塊が充填される反応筒、該反応筒に三フ
ツ化窒素ガスを導く流通用配管、および前記反応
筒に並列に設けられているバイパスをそなえ、前
記反応筒の温度が設定値以上となつたとき、また
は反応筒の圧力が設定値以上となつたときは反応
筒へ供給される三フツ化窒素ガスをバイパスを通
して放出するようにバルブを開閉操作する制御装
置が設けられていることを特徴とする三フツ化窒
素ガス処理装置。[Claims] 1. Reacting exhaust gas containing nitrogen trifluoride gas NF 3 with a carbon mass such as activated carbon or charcoal at a reaction temperature of 300 to 600°C to convert it into non-toxic CF 4 gas and N 2 gas. A method for processing nitrogen trifluoride gas, characterized by: 2. The method for treating nitrogen trifluoride gas according to claim 1, wherein the carbon mass is a granular material with a particle size of 4 to 8 mesh. 3. The method for treating nitrogen trifluoride gas according to claim 1 or 2, wherein the carbon mass is dried in advance by flowing an inert gas such as N 2 , Ar, or He gas. 4 A reaction tube filled with carbon lumps, a flow pipe for introducing nitrogen trifluoride gas into the reaction tube, and a bypass provided in parallel with the reaction tube, so that the temperature of the reaction tube is equal to or higher than a set value. A control device is installed that opens and closes the valve so that the nitrogen trifluoride gas supplied to the reaction tube is released through the bypass when the temperature rises or the pressure in the reaction tube exceeds a set value. Characteristic nitrogen trifluoride gas treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61078863A JPH0230731B2 (en) | 1986-04-05 | 1986-04-05 | SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61078863A JPH0230731B2 (en) | 1986-04-05 | 1986-04-05 | SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62237929A JPS62237929A (en) | 1987-10-17 |
JPH0230731B2 true JPH0230731B2 (en) | 1990-07-09 |
Family
ID=13673663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61078863A Expired - Lifetime JPH0230731B2 (en) | 1986-04-05 | 1986-04-05 | SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0230731B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5176889A (en) * | 1990-07-09 | 1993-01-05 | Daidousanso Co., Ltd. | Method and apparatus for treatment of NF3 gas |
US5401473A (en) * | 1990-07-09 | 1995-03-28 | Daidousanso Co., Ltd. | Method and apparatus for treatment of NF3 gas |
JPH05277341A (en) * | 1991-03-04 | 1993-10-26 | Iwatani Internatl Corp | Device for removing harmful gaseous nitrogen fluoride |
TW369434B (en) * | 1994-02-03 | 1999-09-11 | Mitsui Chemicals Inc | Exhaust gas treating agent and a method of treating exhaust gas using the agent |
GB2579788B (en) * | 2018-12-13 | 2021-06-30 | Edwards Ltd | Abatement apparatus |
-
1986
- 1986-04-05 JP JP61078863A patent/JPH0230731B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62237929A (en) | 1987-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW550112B (en) | Method for processing perfluorocarbon, and apparatus therefor | |
JP3280173B2 (en) | Exhaust gas treatment equipment | |
US5100495A (en) | Dry etching apparatus with diluted anhydrous hydrogen fluoride gas generator | |
US7494628B2 (en) | Apparatus for abatement of by-products generated from deposition processes and cleaning of deposition chambers | |
JPH0625822A (en) | Treatment for surface passivation of stainless steel | |
JP5498640B2 (en) | Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts | |
JPH0230731B2 (en) | SANFUTSUKACHITSUSOGASUNOSHORIHOHOOYOBISONOSOCHI | |
JPH08261400A (en) | Method of minimizing contamination and granular article and distributing and supplying ultra-high purity gas | |
US5702673A (en) | Ozone generating apparatus | |
EP0382986A1 (en) | Method and apparatus for detoxicating halide of nitrogen or carbon | |
JP3544329B2 (en) | Substrate processing equipment | |
JP3566453B2 (en) | Ozone generator | |
JPH0251654B2 (en) | ||
JP2783485B2 (en) | How to remove chlorine trifluoride gas | |
US5176889A (en) | Method and apparatus for treatment of NF3 gas | |
JP2632261B2 (en) | Method for removing oxide film on substrate surface | |
KR20000069619A (en) | Device and Method for the Storage, Transportation and Production of Active Fluorine | |
TW200904511A (en) | Semiconductor exhaust gas treating device | |
JP4814052B2 (en) | Uranium waste decontamination method and equipment | |
KR20070018238A (en) | Method for the abatement of waste gas comprising fluorine and its adsorption column device | |
JPH0436727B2 (en) | ||
JPH08117555A (en) | Method and apparatus for treating mercury vapor | |
JP3723332B2 (en) | Nitrogen trifluoride gas treatment method and apparatus used therefor | |
JP2012106200A (en) | Removing method for halogen gas or fluoride gas by removing agent | |
JPS61101032A (en) | Treating equipment |