JP5498640B2 - Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts - Google Patents

Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts Download PDF

Info

Publication number
JP5498640B2
JP5498640B2 JP2005299884A JP2005299884A JP5498640B2 JP 5498640 B2 JP5498640 B2 JP 5498640B2 JP 2005299884 A JP2005299884 A JP 2005299884A JP 2005299884 A JP2005299884 A JP 2005299884A JP 5498640 B2 JP5498640 B2 JP 5498640B2
Authority
JP
Japan
Prior art keywords
cleaning
gas
nitride semiconductor
cleaning gas
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005299884A
Other languages
Japanese (ja)
Other versions
JP2007109928A (en
Inventor
靖 福田
由章 杉森
修康 富田
隆 折田
仲男 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2005299884A priority Critical patent/JP5498640B2/en
Publication of JP2007109928A publication Critical patent/JP2007109928A/en
Application granted granted Critical
Publication of JP5498640B2 publication Critical patent/JP5498640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化ガリウム(GaN)や窒化ガリウムアルミニウム(AlGaN)等の窒化物半導体を製造する窒化物半導体製造装置を構成するウエハートレーなどの部品が窒化物半導体などで汚染された時に、この部品を洗浄する方法とその装置に関する。   In the present invention, when a component such as a wafer tray constituting a nitride semiconductor manufacturing apparatus for manufacturing a nitride semiconductor such as gallium nitride (GaN) or gallium aluminum nitride (AlGaN) is contaminated with a nitride semiconductor, this component The present invention relates to a method and an apparatus for cleaning.

窒化物半導体製造装置(以下、「半導体製造装置」という。)では、ウエハー上にGaNやAlGaNなどの窒化物を堆積させて半導体を製造するが、この過程で、半導体製造装置内のウエハー上に堆積すべきGaNなどの半導体薄膜が、ウエハーを保持するウエハートレーやガス流路など、ウエハー以外の各種部品に付着する。
ウエハー以外の部品に付着したGaNなどの半導体薄膜は、不要な汚染物となり、窒化物半導体を製造する上で障害になるので、適宜汚染部品を洗浄して汚染物を除去する必要がある。
A nitride semiconductor manufacturing apparatus (hereinafter referred to as “semiconductor manufacturing apparatus”) manufactures a semiconductor by depositing a nitride such as GaN or AlGaN on a wafer, and in this process, the semiconductor is manufactured on the wafer in the semiconductor manufacturing apparatus. A semiconductor thin film such as GaN to be deposited adheres to various parts other than the wafer, such as a wafer tray and a gas flow path for holding the wafer.
A semiconductor thin film such as GaN adhering to parts other than the wafer becomes an unnecessary contaminant and obstructs the manufacture of the nitride semiconductor. Therefore, it is necessary to appropriately remove the contaminant by washing the contaminated part.

この汚染部品の洗浄方法として、通常、水素洗浄と燐酸洗浄が併行して行われている。
水素洗浄は、主としてウエハートレーに付着した汚染物を除去するもので、ウエハートレーを1000℃以上の高温に保持しつつ半導体製造装置内に水素を通気して行う。1000℃以上にするのは、汚染物と水素との反応生成物を揮発除去するためである。
As a cleaning method for this contaminated part, hydrogen cleaning and phosphoric acid cleaning are usually performed in parallel.
The hydrogen cleaning mainly removes contaminants attached to the wafer tray, and is performed by venting hydrogen into the semiconductor manufacturing apparatus while holding the wafer tray at a high temperature of 1000 ° C. or higher. The reason why the temperature is set to 1000 ° C. or higher is to volatilize and remove the reaction product of contaminants and hydrogen.

燐酸洗浄は、ガス流路を構成するフローチャネル等に付着した汚染物を除去するもので、フローチャネル等の流路形成部品を半導体製造装置から取り外し、別の場所で、前記流路形成部品を加熱した燐酸に浸漬して洗浄するものである。   Phosphoric acid cleaning removes contaminants adhering to the flow channels and the like that constitute the gas flow path. Remove the flow path forming parts such as the flow channel from the semiconductor manufacturing apparatus and place the flow path forming parts in another place. It is immersed and washed in heated phosphoric acid.

また、特開平6−124894号公報には、クリーニング室内に汚染部品を収め、ハロゲン系ガスとアルゴンとの洗浄ガスを導入し、クリーニング室内でプラズマを発生させて、汚染物を除去する洗浄方法が開示されている。
酸化ケイ素を主体とする汚染物の除去については、特開20002−164335号公報に開示がある。
特開2002−164335号公報 特開平6−124894号公報
Japanese Patent Laid-Open No. 6-124894 discloses a cleaning method in which a contaminated part is housed in a cleaning chamber, a cleaning gas of halogen-based gas and argon is introduced, plasma is generated in the cleaning chamber, and contaminants are removed. It is disclosed.
Japanese Unexamined Patent Publication No. 20002-164335 discloses the removal of contaminants mainly composed of silicon oxide.
JP 2002-164335 A JP-A-6-124894

しかしながら、水素洗浄ではウエハートレーを1000℃以上の高温に保持するため、ウエハートレーが熱変形してしまう怖れがあった。一方、燐酸洗浄では有毒な燐酸蒸気下で洗浄することになるので作業者が危険であった。
また、ハロゲン系ガスとアルゴンとの洗浄ガスをプラズマ状態として洗浄する方法では、洗浄後の部品にハロゲン系物質が残留することがあり、この残留ハロゲン系物質が半導体製造装置部品を腐食させ、正常な半導体の製造を阻害する恐れがある。
However, since the wafer tray is kept at a high temperature of 1000 ° C. or higher in the hydrogen cleaning, there is a fear that the wafer tray is thermally deformed. On the other hand, in the phosphoric acid cleaning, the worker is dangerous because the cleaning is performed under a toxic phosphoric acid vapor.
Also, in the method of cleaning with halogen gas and argon cleaning gas in a plasma state, halogen-based material may remain in the cleaned parts, and this residual halogen-based material corrodes semiconductor manufacturing equipment parts and is normal. There is a risk of obstructing the production of a semiconductor.

よって、本発明における課題は、窒化物半導体を製造する際、半導体製造装置を構成する各種部品が上記汚染物で汚染された場合に、この汚染部品を部品の損傷、腐食を来すことなく、しかも作業者が安全に作業することができる洗浄方法および清浄装置を得ることにある。   Therefore, the problem in the present invention is that when various parts constituting the semiconductor manufacturing apparatus are contaminated with the contaminants when manufacturing the nitride semiconductor, the contaminated parts do not cause damage or corrosion of the parts. In addition, the object is to obtain a cleaning method and a cleaning device that allow an operator to work safely.

かかる課題を解決するため、
請求項1にかかる発明は、窒化物半導体製造装置内の、窒化物半導体であるGaNまたはAlGaNからなる汚染物で汚染された部品を、シリカ製の反応室において、塩素を窒素で希釈した混合ガスである第1の洗浄ガスと500〜1000℃で接触させて前記汚染物質を除去し、前記部品に残留している塩素系物質に対して、水素ガスと希釈ガスとの混合ガスである第2の洗浄ガスを500〜1000℃で接触させて反応させることで除去することを特徴とする窒化物半導体製造装置部品の洗浄方法である。
To solve this problem,
The invention according to claim 1 is a mixed gas obtained by diluting chlorine in a reaction chamber made of silica in a nitride semiconductor manufacturing apparatus in a nitride semiconductor manufacturing apparatus in which a component contaminated with a contaminant made of GaN or AlGaN is a nitride semiconductor. The first cleaning gas is contacted at 500 to 1000 ° C. to remove the pollutant , and the second gas which is a mixed gas of hydrogen gas and dilution gas with respect to the chlorine-based material remaining in the component This is a method for cleaning a nitride semiconductor manufacturing apparatus component, characterized in that the cleaning gas is removed by bringing the cleaning gas into contact at 500 to 1000 ° C. for reaction .

前記第1の洗浄ガスの塩素系ガス濃度を5体積%以上とすることが好ましい
請求項2にかかる発明は、前記第1の洗浄ガスとの接触と第2の洗浄ガスとの接触がバッチ処理方式にて行われることを特徴とする請求項1記載の窒化物半導体製造装置部品の洗浄方法である。
The chlorine gas concentration of the first cleaning gas is preferably 5% by volume or more .
The invention according to claim 2 is characterized in that the contact with the first cleaning gas and the contact with the second cleaning gas are performed by a batch processing method. This is a cleaning method.

請求項3にかかる発明は、前記第1の洗浄ガスとの接触と第2の洗浄ガスとの接触が通気処理方式にて行われることを特徴とする請求項1記載の窒化物半導体製造装置部品の洗浄方法である
請求項4にかかる発明は、前記第2の洗浄ガスと汚染された部品との接触が、500〜1000℃で行われることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化物半導体製造装置部品の洗浄方法である。
The invention according to claim 3 is characterized in that the contact with the first cleaning gas and the contact with the second cleaning gas are performed by an aeration treatment method. This is a cleaning method .
Such invention in claim 4, wherein the contact between the second cleaning gas with contaminated components, according to any one of claims 1 to 3, characterized in that is carried out at 500 to 1000 ° C. This is a cleaning method for parts of the nitride semiconductor manufacturing apparatus.

請求項5にかかる発明は、第1洗浄ガス導入管と第2洗浄ガス導入管と排出ガス排出管とを有するシリカ製の反応室と
この反応室内に収めた、窒化物半導体製造装置内の、窒化物半導体であるGaNまたはAlGaNからなる汚染物で汚染された洗浄対象部品を500〜1000℃の温度に保持できる加熱手段と
第1洗浄ガス導入管に、前記洗浄対象部品と500〜1000℃で接触する塩素を窒素で希釈した混合ガスである第1の洗浄ガスを送り込む第1洗浄ガス供給源と
第2洗浄ガス導入管に、前記洗浄対象部品に残留している塩素系物質と500〜1000℃で接触することで反応して除去する水素ガスと希釈ガスの混合ガスである第2の洗浄ガスを送り込む第2洗浄ガス供給源を備えたことを特徴とする窒化物半導体製造装置部品の洗浄装置である。
The invention according to claim 5 is a reaction chamber made of silica having a first cleaning gas introduction pipe, a second cleaning gas introduction pipe, and an exhaust gas discharge pipe ,
Heating means capable of maintaining a cleaning target part contaminated with a contaminant made of GaN or AlGaN as a nitride semiconductor in a nitride semiconductor manufacturing apparatus housed in the reaction chamber at a temperature of 500 to 1000 ° C . ;
A first cleaning gas supply source that feeds into the first cleaning gas introduction pipe a first cleaning gas that is a mixed gas obtained by diluting chlorine that is in contact with the cleaning target component at 500 to 1000 ° C. with nitrogen ;
A second cleaning gas that is a mixed gas of hydrogen gas and dilution gas that reacts and is removed by contacting the second cleaning gas introduction pipe with a chlorine-based substance remaining in the cleaning target component at 500 to 1000 ° C. And a second cleaning gas supply source for feeding a nitride semiconductor manufacturing apparatus component cleaning apparatus.

本発明方法によると、汚染された部品の汚染物は、第1の洗浄ガスに含まれる塩素系ガスと反応して反応生成物を生じ、該反応生成物は500℃以上の温度で生成するので直ちに気化し、これにより汚染物が除去され、汚染された部品は清浄になる。その後、部品が第2の洗浄ガスと接触することで、部品に残留している塩素系物質が除去され、部品に塩素系物質が残ることがない。
また、従来の水素洗浄のように1000℃以上の高温にする必要がないので、ウエハートレーなどの部品が熱変形せず、また、従来の燐酸洗浄のような有毒な環境下での洗浄ではないので作業者の安全が確保できる。
しかも、2種類の洗浄方法を使い分ける従来方法に比べ、本発明方法は一つの洗浄方法で洗浄できるメリットもある。
According to the method of the present invention, the contaminated contaminants react with the chlorine-based gas contained in the first cleaning gas to produce a reaction product, which is generated at a temperature of 500 ° C. or higher. Vaporizes immediately, which removes contaminants and cleans contaminated parts. Thereafter, when the part comes into contact with the second cleaning gas, the chlorine-based substance remaining in the part is removed, and the chlorine-based substance does not remain in the part.
Moreover, since it is not necessary to use a high temperature of 1000 ° C. or higher unlike conventional hydrogen cleaning, parts such as a wafer tray are not thermally deformed, and cleaning is not performed in a toxic environment such as conventional phosphoric acid cleaning. Therefore, the safety of workers can be ensured.
In addition, the method of the present invention has an advantage that the cleaning can be performed by one cleaning method as compared with the conventional method using two types of cleaning methods.

また、本発明装置によれば、反応室内の密閉された空間内において、第1および第2の洗浄ガスと汚染部品に接触させて洗浄するので、作業者は安全に洗浄作業を行なうことができる。   Further, according to the apparatus of the present invention, the first and second cleaning gases and the contaminated parts are cleaned in the sealed space in the reaction chamber, so that the worker can perform the cleaning operation safely. .

図1は、本発明の洗浄装置の一例を示すものである。
この例の洗浄装置は、汚染された部品を収納するシリカなどの耐熱性材料で作られた反応室1と、この反応室1内に第1の洗浄ガスを導入する第1洗浄ガス導入管2と、同じく反応室1内に第2の洗浄ガスを導入する第2洗浄ガス導入管3と、反応室1内で生じた排ガスを排出する排ガス排出管4と、反応室1内を500℃〜1000℃の温度に保持できる一対のヒーター5、5(加熱手段)と、このヒーター5、5の出力を調整して反応室1内に収められた汚染部品の温度を500〜1000℃の範囲で一定に保持する温度調整器6から構成され、反応室1の底部には洗浄対象となる汚染部品7を載置する台8が配置されている。
FIG. 1 shows an example of the cleaning apparatus of the present invention.
The cleaning apparatus of this example includes a reaction chamber 1 made of a heat-resistant material such as silica that houses contaminated parts, and a first cleaning gas introduction pipe 2 that introduces a first cleaning gas into the reaction chamber 1. Similarly, the second cleaning gas introduction pipe 3 for introducing the second cleaning gas into the reaction chamber 1, the exhaust gas discharge pipe 4 for exhausting the exhaust gas generated in the reaction chamber 1, and the reaction chamber 1 within 500 ° C. A pair of heaters 5 and 5 (heating means) that can be maintained at a temperature of 1000 ° C., and the temperature of the contaminated parts stored in the reaction chamber 1 by adjusting the outputs of the heaters 5 and 5 are in the range of 500 to 1000 ° C. A temperature controller 6 that is kept constant is provided, and a base 8 on which a contaminated component 7 to be cleaned is placed is disposed at the bottom of the reaction chamber 1.

第1の洗浄ガスは、塩素、塩化水素などの塩素系ガスを充填した容器9と希釈ガスを充填した容器10から供給され、適宜両ガスが流量調節弁11,11により混合されて第1の洗浄ガスとなりガス導入弁16、16を通り、第1洗浄ガス導入管2を介して反応室1内に導入されるようになっている。   The first cleaning gas is supplied from a container 9 filled with a chlorine-based gas such as chlorine or hydrogen chloride and a container 10 filled with a dilution gas, and the two gases are appropriately mixed by the flow control valves 11 and 11 to form the first cleaning gas. It becomes a cleaning gas, passes through the gas introduction valves 16 and 16, and is introduced into the reaction chamber 1 through the first cleaning gas introduction pipe 2.

第2の洗浄ガスは、水素、メタンなど水素系ガスを充填した容器12と希釈ガスを充填した容器13から供給され、適宜両ガスが流量調節弁14,14により混合されて第2の洗浄ガスとなりガス導入弁16、16を通り、第2洗浄ガス導入管3を介して反応室1内に導入されるようになっている。   The second cleaning gas is supplied from a container 12 filled with a hydrogen-based gas such as hydrogen or methane and a container 13 filled with a diluent gas, and the two cleaning gases are appropriately mixed by the flow rate control valves 14 and 14. Then, the gas passes through the gas introduction valves 16 and 16 and is introduced into the reaction chamber 1 through the second cleaning gas introduction pipe 3.

また、排ガス排出管4は、排出弁17を介して真空ポンプ15に接続されており、これにより反応室1内を真空減圧状態とすることができるようになっている。さらに、真空ポンプ15は、図示しない排ガス除害処理装置に接続されており、反応室1から排出される各種ガスが無害化されたのち、大気中に排出されるようになっている。
なお、ヒーター5は、発熱線、ランプ加熱など汚染部品を加熱可能なものなら何でも良く、個数も2つに限らず任意で良い。
Further, the exhaust gas discharge pipe 4 is connected to a vacuum pump 15 via a discharge valve 17 so that the inside of the reaction chamber 1 can be brought into a vacuum reduced pressure state. Further, the vacuum pump 15 is connected to an exhaust gas abatement treatment apparatus (not shown) so that various gases discharged from the reaction chamber 1 are rendered harmless and then discharged into the atmosphere.
The heater 5 may be anything as long as it can heat contaminated parts such as heating wires and lamp heating, and the number is not limited to two and may be arbitrary.

次に、この洗浄装置を用いて汚染された部品を洗浄する方法について説明する。本発明の洗浄方法には、バッチ処理方式と通気処理方式とがあり、初めにバッチ処理方式によるものを説明する。
バッチ処理方式とは、後述のように、第1の洗浄ガスを反応室1内に封入状態として所定時間処理し、ついで反応室1内の気体をパージしたのち、第2の洗浄ガスを所定時間封入状態として反応を行うものである。
まず、半導体製造装置から汚染された部品7を取り外して反応室1の台8の上に載置した後、反応室1を密閉する。
Next, a method for cleaning contaminated parts using this cleaning apparatus will be described. The cleaning method of the present invention includes a batch processing method and an aeration processing method. First, a description will be given of the batch processing method.
As will be described later, the batch processing method means that the first cleaning gas is sealed in the reaction chamber 1 for a predetermined time, then the gas in the reaction chamber 1 is purged, and then the second cleaning gas is supplied for a predetermined time. The reaction is performed in an enclosed state.
First, after removing the contaminated component 7 from the semiconductor manufacturing apparatus and placing it on the base 8 of the reaction chamber 1, the reaction chamber 1 is sealed.

次いで、ヒーター4を作動させて反応室1内の汚染部品を500〜1000℃の温度に加熱した後、真空ポンプ17を作動させ、反応室1内を減圧状態にしたのち、排出弁17を閉じ、ガス導入弁16、16を開いて第1洗浄ガス導入管2から第1の洗浄ガスを反応室1内に導入する。その後、ガス導入弁16、16を閉じ、第1の洗浄ガスを反応室1内に封入した状態とする。   Next, after the heater 4 is operated to heat the contaminated parts in the reaction chamber 1 to a temperature of 500 to 1000 ° C., the vacuum pump 17 is operated to reduce the pressure in the reaction chamber 1, and then the discharge valve 17 is closed. Then, the gas introduction valves 16 and 16 are opened to introduce the first cleaning gas into the reaction chamber 1 from the first cleaning gas introduction pipe 2. Thereafter, the gas introduction valves 16 and 16 are closed, and the first cleaning gas is sealed in the reaction chamber 1.

この際の第1の洗浄ガスとしては、塩素系ガスを希釈ガスで希釈した混合ガスが用いられる。塩素系ガスとしては、Cl(塩素)、HCl、SiCl、SiHCl、SiHCl、SiHCl、BCl、CHCl、CHCl、CHCl等の分子内に塩素を含む化合物の1種または2種以上の混合物が用いられるが、価格、反応性等を考慮すると塩素が特に好ましい。 As the first cleaning gas at this time, a mixed gas obtained by diluting a chlorine-based gas with a diluent gas is used. Chlorine-based gases include chlorine in molecules such as Cl 2 (chlorine), HCl, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, BCl 3 , CHCl 3 , CH 2 Cl 2 , and CH 3 Cl. One kind or a mixture of two or more kinds of compounds is used, and chlorine is particularly preferable in consideration of price, reactivity and the like.

希釈ガスとしては、窒素、ヘリウム、アルゴン、空気などの塩素系ガスと反応しない任意のガスの1種または2種以上の混合ガスを用いることができる。第1の洗浄ガス中の塩素系ガス濃度は5体積%以上とされる。塩素系ガス濃度が5体積%未満でも汚染物は第1の洗浄ガス中の塩素系ガスと反応するが、反応速度が遅くなり実用性に乏しくなる。   As the dilution gas, one or a mixture of two or more kinds of arbitrary gases that do not react with a chlorine-based gas such as nitrogen, helium, argon, and air can be used. The chlorine-based gas concentration in the first cleaning gas is 5% by volume or more. Even if the chlorine-based gas concentration is less than 5% by volume, the contaminants react with the chlorine-based gas in the first cleaning gas, but the reaction rate becomes slow and the practicality becomes poor.

一方、塩素系ガス濃度を高くしすぎると、部品自体が腐食する怖れがあるが、封入するガス量が少なくて済み、塩素系ガス濃度は高いほうが洗浄性能は高まるので、100体積%が好ましい。   On the other hand, if the chlorine-based gas concentration is too high, the parts themselves may be corroded, but the amount of gas to be filled is small, and the higher the chlorine-based gas concentration, the higher the cleaning performance. Therefore, 100% by volume is preferable. .

この時、汚染部品を500℃以上の温度で接触させるのは、汚染物と第1の洗浄ガスとの反応によって生成された反応生成物を気化して排出するためである。500℃未満の温度でも反応生成物を気化できるが、揮発速度が遅くなるので洗浄方法としては実用的でない。また、接触時の温度を1000℃以下としたのは、汚染された部品の熱変形を防止する観点から定めたもので、1000℃以上の温度でも熱変形を起こさない部品であれば1000℃以上にしても良い。   At this time, the reason why the contaminated parts are brought into contact at a temperature of 500 ° C. or more is to vaporize and discharge the reaction product generated by the reaction between the contaminant and the first cleaning gas. Although the reaction product can be vaporized even at a temperature lower than 500 ° C., the volatilization rate is slow, so that it is not practical as a cleaning method. In addition, the temperature at the time of contact is set to 1000 ° C. or lower because it is determined from the viewpoint of preventing thermal deformation of the contaminated component. If the component does not cause thermal deformation even at a temperature of 1000 ° C. or higher, the temperature is 1000 ° C. or higher. Anyway.

第1の洗浄ガスの封入を所定時間継続すると、汚染部品に付着した汚染物は第1の洗浄ガスに含まれる塩素系ガスと反応し、反応物が生成されるが、この反応物は直ちに蒸発して揮発性の排ガスとなり、反応室1内を漂う。   When the first cleaning gas is sealed for a predetermined time, the contaminants attached to the contaminated parts react with the chlorine-based gas contained in the first cleaning gas to produce a reactant, but this reactant is immediately evaporated. It becomes volatile exhaust gas and drifts in the reaction chamber 1.

その後、排出弁17を開けて第1の洗浄ガスおよび排ガスを排ガス排出管4から排出した後、再び真空ポンプ15を作動させて、反応室1内を減圧状態とし、排出弁17を閉じる。ついで、ガス導入弁16、16を開けて、第2の洗浄ガスを第2洗浄ガス導入管3から反応室1内に導入し、封入する。   Thereafter, the discharge valve 17 is opened and the first cleaning gas and the exhaust gas are discharged from the exhaust gas discharge pipe 4. Then, the vacuum pump 15 is operated again, the inside of the reaction chamber 1 is reduced, and the discharge valve 17 is closed. Next, the gas introduction valves 16 and 16 are opened, and the second cleaning gas is introduced into the reaction chamber 1 from the second cleaning gas introduction pipe 3 and sealed.

第2の洗浄ガスには、水素、メタン、エタンなどの分子内に水素を含む水素系ガスとこれを希釈するアルゴン、ヘリウム、窒素などの不活性ガスからなる希釈ガスとの混合ガスが用いられる。水素系ガスとしては、反応性の点で水素が最も好ましい。   As the second cleaning gas, a mixed gas of a hydrogen-based gas containing hydrogen in a molecule such as hydrogen, methane, or ethane and a dilution gas composed of an inert gas such as argon, helium, or nitrogen that dilutes the gas is used. . As the hydrogen-based gas, hydrogen is most preferable in terms of reactivity.

第2の洗浄ガス中の水素系ガスの濃度は、10〜100体積%とされ、10体積%未満では部品に残留している塩素系ガスを十分に除去することができない。一方、水素系ガス濃度は高い方が洗浄性能は高まるので、100体積%が好ましい。
第2の洗浄ガスと部品との接触温度は、500〜1000℃の範囲とされ、500℃未満では、残留している塩素系物質の除去が不十分となり、1000℃を越えると部品が熱変形を生じる。
The concentration of the hydrogen-based gas in the second cleaning gas is 10 to 100% by volume, and if it is less than 10% by volume, the chlorine-based gas remaining in the part cannot be sufficiently removed. On the other hand, the higher the hydrogen-based gas concentration, the higher the cleaning performance, so 100% by volume is preferable.
The contact temperature between the second cleaning gas and the component is in the range of 500 to 1000 ° C. If the temperature is less than 500 ° C., the remaining chlorine-based material is not sufficiently removed, and if the temperature exceeds 1000 ° C., the component is thermally deformed. Produce.

この第2の洗浄ガスと部品との接触により、先の第1の洗浄ガスとの接触の際に部品に付着して残留している塩素系ガスに起因する塩素系物質が第2の洗浄ガス中の水素系ガスと反応し、塩化水素ガス等となって部品から除去され、この塩化水素ガス等は、反応室1内を漂う。その後、排出弁17を開けて第2の洗浄ガスおよび塩化水素ガス等を排ガス排出管4から排出する。ついで、反応室1内に窒素等を導入して部品を室温まで冷却する。   Due to the contact between the second cleaning gas and the component, the chlorine-based substance resulting from the chlorine-based gas remaining on the component at the time of the contact with the first cleaning gas is the second cleaning gas. It reacts with the hydrogen-based gas therein and becomes hydrogen chloride gas or the like and is removed from the parts. This hydrogen chloride gas or the like drifts in the reaction chamber 1. Thereafter, the discharge valve 17 is opened, and the second cleaning gas and hydrogen chloride gas are discharged from the exhaust gas discharge pipe 4. Subsequently, nitrogen etc. are introduce | transduced in the reaction chamber 1, and components are cooled to room temperature.

次に、本発明の通気処理方式による洗浄方法を説明する。
この通気処理方法とは、反応室1内に、第1の洗浄ガスを所定時間流し続け、ついで第2の洗浄ガスを所定時間流し続ける方法である。この方式で用いられる第1および第2の洗浄ガスは、先のバッチ処理方式のものと同じであり、反応温度、反応時間も原則同様でよい。
Next, the cleaning method by the aeration treatment method of the present invention will be described.
This aeration treatment method is a method in which the first cleaning gas continues to flow into the reaction chamber 1 for a predetermined time, and then the second cleaning gas continues to flow for a predetermined time. The first and second cleaning gases used in this method are the same as those in the previous batch processing method, and the reaction temperature and reaction time may be the same in principle.

まず、汚染部品7を反応室1の台8に載せ、反応室1を密閉する。ついで、真空ポンプ15を作動させて反応室1内の気体をパージする。こののち、ヒーター5、5を作動させて、反応室1内の汚染部品7の温度を500〜1000℃とし、第1洗浄ガス導入管2から第1の洗浄ガスを反応室1内に所定の流量で所定時間流し続ける。   First, the contaminated part 7 is placed on the base 8 of the reaction chamber 1 and the reaction chamber 1 is sealed. Next, the vacuum pump 15 is operated to purge the gas in the reaction chamber 1. After that, the heaters 5 and 5 are actuated to set the temperature of the contaminated component 7 in the reaction chamber 1 to 500 to 1000 ° C., and the first cleaning gas is introduced into the reaction chamber 1 from the first cleaning gas introduction pipe 2 in a predetermined manner. Continue to flow for a predetermined time at the flow rate.

この第1の洗浄ガスの導入により、部品7に付着している汚染物は、第1の洗浄ガスに含まれる塩素系ガスと反応し、揮発性の排ガスとなって部品7から離脱し、この排ガスは、第1の洗浄ガスに同伴されて、反応室1から排ガス排出管4を経て系外に排出される。   Due to the introduction of the first cleaning gas, the contaminants adhering to the component 7 react with the chlorine-based gas contained in the first cleaning gas, become volatile exhaust gas, and leave the component 7. The exhaust gas is accompanied by the first cleaning gas and is discharged from the reaction chamber 1 through the exhaust gas discharge pipe 4 to the outside of the system.

第1の洗浄ガスを所定時間流したのち、第1の洗浄ガスの導入を停止し、これと同時に第2の洗浄ガスを第2洗浄ガス導入管3から反応室1内に流し始める。この際の部品の温度は、500〜1000℃とされる。
第2の洗浄ガスを所定時間流したのち、第2の洗浄ガスの導入を停止する。
After flowing the first cleaning gas for a predetermined time, the introduction of the first cleaning gas is stopped, and at the same time, the second cleaning gas starts to flow from the second cleaning gas introduction pipe 3 into the reaction chamber 1. The temperature of the components at this time is set to 500 to 1000 ° C.
After flowing the second cleaning gas for a predetermined time, the introduction of the second cleaning gas is stopped.

第2の洗浄ガスの導入により、部品に付着している塩素系物質が水素系ガス中の水素と反応し、塩化水素ガス等となって部品から離脱し、このガスは、排ガス排出管4から排出される。ついで、反応室1内に窒素等を導入して部品7を室温まで冷却する。   By introducing the second cleaning gas, the chlorine-based substance adhering to the component reacts with the hydrogen in the hydrogen-based gas and becomes hydrogen chloride gas, etc., and leaves the component. This gas is discharged from the exhaust gas exhaust pipe 4. Discharged. Next, nitrogen or the like is introduced into the reaction chamber 1 to cool the part 7 to room temperature.

このように、本発明の洗浄方法では、第1の洗浄ガスの導入により部品に付着しているGaNなどの窒化物半導体からなる汚染物が除去され、第2の洗浄ガスの導入により部品に付着して残留している塩素系物質が除去されることになる。
このため、部品には、塩素系物質が残ることがなくなり、この塩素系物質によって部品が腐食することもなくなる。
さらに、この塩素系物質が部品から飛散し、窒化物半導体の成膜時の膜中に混入することもなく、良質の窒化物半導体膜を得ることもできる。
Thus, in the cleaning method of the present invention, contaminants made of nitride semiconductor such as GaN adhering to the component are removed by introducing the first cleaning gas, and adhering to the component by introducing the second cleaning gas. As a result, the remaining chlorine-based material is removed.
For this reason, the chlorine-based substance does not remain in the part, and the part is not corroded by the chlorine-based substance.
Furthermore, the chlorine-based substance is scattered from the components and is not mixed into the film at the time of forming the nitride semiconductor, and a high-quality nitride semiconductor film can be obtained.

また、本発明の洗浄方法では、半導体製造装置自体に上記第1および第2の洗浄ガスを導入しても良いが、装置自体の損傷が生じないようにする必要がある。   In the cleaning method of the present invention, the first and second cleaning gases may be introduced into the semiconductor manufacturing apparatus itself, but it is necessary to prevent damage to the apparatus itself.

以下具体例を示すが、本発明はこれに限定されるものではない。
洗浄装置として、図1に記載の構成のものを使用した。
反応室として、内寸法で直径30cm、横100cmの円筒型のものを用い、第1の洗浄ガスと第2の洗浄ガスを導入した。模擬サンプルとして、サファイア基板上に膜厚が既知の窒化ガリウム、窒化ガリウムアルミニウムの結晶を成膜したものを用いた。
Specific examples are shown below, but the present invention is not limited thereto.
A cleaning apparatus having the configuration shown in FIG. 1 was used.
As the reaction chamber, a cylindrical chamber having an internal size of 30 cm in diameter and 100 cm in width was used, and the first cleaning gas and the second cleaning gas were introduced. As a simulation sample, a gallium nitride or gallium aluminum nitride crystal film having a known thickness was formed on a sapphire substrate.

(例1、バッチ処理方式)
膜厚3.0μmのGaN結晶を成膜したサファイア基板を反応室内に設置し、窒素42slmを供給しながら昇温した。反応室内温度が800℃に到達した後、窒素の導入を停止して、反応室1内を減圧状態としてから、塩素70リットルを封入して0.5時間の処理を行った。その後、封入ガスを排出して窒素42slmを流し、反応室内温度が室温となるまで冷却した。
サファイア基板を取り出し、SEMにより処理前後のGaN膜厚を測定した結果、GaN膜は全て除去されており、サファイア基板のみが残った。
(Example 1, batch processing method)
A sapphire substrate on which a GaN crystal having a thickness of 3.0 μm was formed was placed in a reaction chamber, and the temperature was raised while supplying 42 slm of nitrogen. After the temperature in the reaction chamber reached 800 ° C., the introduction of nitrogen was stopped and the pressure in the reaction chamber 1 was reduced, and then 70 liters of chlorine was sealed and the treatment was performed for 0.5 hour. Thereafter, the sealed gas was discharged, and nitrogen 42 slm was flowed, and the reaction chamber was cooled to room temperature.
As a result of taking out the sapphire substrate and measuring the GaN film thickness before and after the treatment by SEM, all of the GaN film was removed, and only the sapphire substrate remained.

ついで、このサファイア基板表面に残留している塩素原子濃度をX線光電子分光分析装置(XPS)で測定したところ、1.5atomic%であった。
さらに、このサファイア基板を反応室内に戻し、封入ガスを水素70リットルとして0.5時間、温度800℃で反応させたのち、室温に冷却した。
このサファイア基板表面に残留している塩素原子濃度を同様にして測定したところ、0.1atomic%以下(N.D.)であった。
Then, the chlorine atom concentration remaining on the surface of the sapphire substrate was measured with an X-ray photoelectron spectrometer (XPS) and found to be 1.5 atomic%.
Further, this sapphire substrate was returned to the reaction chamber, and the reaction was carried out at a temperature of 800 ° C. for 0.5 hours with 70 liter of hydrogen as the sealing gas, and then cooled to room temperature.
When the chlorine atom concentration remaining on the surface of the sapphire substrate was measured in the same manner, it was 0.1 atomic% or less (ND).

(例2、バッチ処理方式)
膜厚1.0μmのAlGaN結晶を成膜したサファイア基板を反応室内に設置し、窒素42slmを供給しながら昇温した。反応室内温度が800℃に到達した後、窒素の導入を停止し、反応室内を減圧状態としてから塩化水素70リットルを封入して0.5時間の処理を行った。その後、封入ガスを排出してから窒素42slmを流し、反応室内温度が室温となるまで冷却した。
サファイア基板を取り出し、SEMにより処理前後のAlGaN膜厚を測定した結果、AlGaN膜は全て除去されており、サファイア基板のみが残った。
(Example 2, batch processing method)
A sapphire substrate on which an AlGaN crystal having a thickness of 1.0 μm was formed was placed in the reaction chamber, and the temperature was raised while supplying 42 slm of nitrogen. After the reaction chamber temperature reached 800 ° C., the introduction of nitrogen was stopped, and after the reaction chamber was evacuated, 70 liters of hydrogen chloride was sealed and the treatment was performed for 0.5 hour. Thereafter, after the sealed gas was discharged, 42 slm of nitrogen was flowed, and the reaction chamber was cooled to room temperature.
As a result of taking out the sapphire substrate and measuring the AlGaN film thickness before and after the treatment by SEM, all of the AlGaN film was removed, and only the sapphire substrate remained.

ついで、このサファイア基板表面に残留している塩素原子濃度をX線光電子分光分析装置(XPS)で測定したところ、0.80atomic%であった。
さらに、このサファイア基板を反応室内に戻し、封入ガスを水素ガス70リットルとして0.5時間、温度800℃で反応させたのち、室温に冷却した。
このサファイア基板表面に残留している塩素原子濃度を同様にして測定したところ、0.1atomic%以下(N.D.)であった。
Next, the chlorine atom concentration remaining on the surface of the sapphire substrate was measured with an X-ray photoelectron spectrometer (XPS), and found to be 0.80 atomic%.
Further, this sapphire substrate was returned to the reaction chamber, and the reaction gas was reacted at a temperature of 800 ° C. for 0.5 hours with 70 liter of hydrogen gas, and then cooled to room temperature.
When the chlorine atom concentration remaining on the surface of the sapphire substrate was measured in the same manner, it was 0.1 atomic% or less (ND).

(例3、通気処理方式)
膜厚3.0μmのGaN結晶を成膜したサファイア基板を反応室内に設置し、窒素42slmを供給しながら昇温した。反応室内温度が800℃に到達した後、導入ガスを窒素21slm+塩素21slm(塩素系ガス濃度50体積%)として、0.5時間の処理を行った。その後、導入ガスを窒素42slmとし、反応室内温度が室温となるまで冷却した。
サファイア基板を取り出し、SEMにより処理前後のGaN膜厚を測定した結果、GaN膜は全て除去されており、サファイア基板のみが残った。
(Example 3, ventilation method)
A sapphire substrate on which a GaN crystal having a thickness of 3.0 μm was formed was placed in a reaction chamber, and the temperature was raised while supplying 42 slm of nitrogen. After the temperature in the reaction chamber reached 800 ° C., the treatment was performed for 0.5 hour with the introduced gas as nitrogen 21 slm + chlorine 21 slm (chlorine gas concentration 50 vol%). Thereafter, the introduced gas was changed to 42 slm, and the reaction chamber was cooled to room temperature.
As a result of taking out the sapphire substrate and measuring the GaN film thickness before and after the treatment by SEM, all of the GaN film was removed, and only the sapphire substrate remained.

ついで、このサファイア基板表面に残留している塩素原子濃度をX線光電子分光分析装置(XPS)で測定したところ、1.4atomic%であった。
さらに、このサファイア基板を反応室内に戻し、導入ガスを窒素21slm+水素21slm(水素系ガス濃度50体積%)として0.5時間、温度800℃で流したのち、室温に冷却した。
このサファイア基板表面に残留している塩素原子濃度を同様にして測定したところ、0.1atomic%以下(N.D.)であった。
Subsequently, the chlorine atom concentration remaining on the surface of the sapphire substrate was measured with an X-ray photoelectron spectrometer (XPS), and found to be 1.4 atomic%.
Furthermore, this sapphire substrate was returned to the reaction chamber, and the introduced gas was nitrogen 21 slm + hydrogen 21 slm (hydrogen-based gas concentration 50 vol%) for 0.5 hour at a temperature of 800 ° C., and then cooled to room temperature.
When the chlorine atom concentration remaining on the surface of the sapphire substrate was measured in the same manner, it was 0.1 atomic% or less (ND).

(従来例1)
サファイア基板上に成膜した膜厚3.0μmのGaN結晶を反応室内に設置し、窒素42slmを供給しながら昇温した。反応室内温度が900℃に到達した後、導入ガスを水素42slmとして1.0時間の処理を行った。その後、導入ガスを窒素42slmに戻し、反応室内温度が室温となるまで冷却した。
サファイア基板を取り出し、処理後のGaN膜厚をSEMで測定した結果、膜厚は3.0μmであり、GaNの除去はできなかった。
(Conventional example 1)
A GaN crystal having a thickness of 3.0 μm formed on a sapphire substrate was placed in the reaction chamber, and the temperature was raised while supplying 42 slm of nitrogen. After the reaction chamber temperature reached 900 ° C., the introduced gas was treated with hydrogen 42 slm for 1.0 hour. Thereafter, the introduced gas was returned to 42 slm of nitrogen, and the reaction chamber was cooled to room temperature.
As a result of taking out the sapphire substrate and measuring the processed GaN film thickness with SEM, the film thickness was 3.0 μm and GaN could not be removed.

(従来例2)
GaN結晶を成膜した直径5cmの石英ガラスを反応室に設置し、窒素42slmを供給しながら昇温した。反応室内温度が1000℃に達した後、導入ガスを水素42slmとして、1.0時間の処理を行った。その後、導入ガスを窒素42slmに戻し、反応炉内温度が室温となるまで冷却した。この処理を30回おこなったのち、石英ガラスの反りを測定した結果、150ミクロンの反りが観察された。
(Conventional example 2)
Quartz glass with a diameter of 5 cm on which a GaN crystal was formed was placed in the reaction chamber, and the temperature was raised while supplying 42 slm of nitrogen. After the reaction chamber temperature reached 1000 ° C., the introduced gas was changed to hydrogen 42 slm, and the treatment was performed for 1.0 hour. Thereafter, the introduced gas was returned to 42 slm of nitrogen, and the reactor was cooled until the temperature in the reactor reached room temperature. After performing this treatment 30 times, the warp of the quartz glass was measured, and as a result, a warp of 150 microns was observed.

上記バッチ処理方式での例1と通気処理方式での例3を比較すると、塩素の使用量が、例1では70リットルであるのに対して、例3では21slm×30分=630リットルとなり、バッチ処理方式では、塩素ガスの使用量を通気処理方式のものの1/9に抑えることが可能である。   Comparing Example 1 in the batch processing method and Example 3 in the aeration processing method, the amount of chlorine used is 70 liters in Example 1, whereas in Example 3, 21 slm × 30 minutes = 630 liters. In the batch processing method, the amount of chlorine gas used can be reduced to 1/9 that of the aeration processing method.

本発明の洗浄装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the washing | cleaning apparatus of this invention.

符号の説明Explanation of symbols

1・・反応室、2・・第1洗浄ガス導入管、3・・第2洗浄ガス導入管3、4・・排出ガス排出管、5・・ヒータ、9・・容器、10・・容器、11・・流量調節弁 1 ... Reaction chamber 2 ... First cleaning gas introduction pipe 3 ... Second cleaning gas introduction pipe 3 ... Exhaust gas discharge pipe 5 ... Heater 9 ... Container 10 ... Container 11. Flow control valve

Claims (5)

窒化物半導体製造装置内の、窒化物半導体であるGaNまたはAlGaNからなる汚染物で汚染された部品を、シリカ製の反応室において、塩素を窒素で希釈した混合ガスである第1の洗浄ガスと500〜1000℃で接触させて前記汚染物質を除去し
前記部品に残留している塩素系物質に対して、水素ガスと希釈ガスとの混合ガスである第2の洗浄ガスを500〜1000℃で接触させて反応させることで除去することを特徴とする窒化物半導体製造装置部品の洗浄方法。
In a nitride semiconductor manufacturing apparatus, a part contaminated with contaminants composed of GaN or AlGaN, which is a nitride semiconductor , is mixed with a first cleaning gas, which is a mixed gas obtained by diluting chlorine with nitrogen in a silica reaction chamber. Contact at 500-1000 ° C. to remove the contaminants ,
The second cleaning gas, which is a mixed gas of hydrogen gas and diluent gas, is removed from the chlorine-based substance remaining in the component by contacting it at 500 to 1000 ° C. to cause a reaction. Method for cleaning nitride semiconductor manufacturing equipment parts.
前記第1の洗浄ガスとの接触と第2の洗浄ガスとの接触がバッチ処理方式にて行われることを特徴とする請求項1記載の窒化物半導体製造装置部品の洗浄方法。   2. The method for cleaning a nitride semiconductor manufacturing apparatus component according to claim 1, wherein the contact with the first cleaning gas and the contact with the second cleaning gas are performed by a batch processing method. 前記第1の洗浄ガスとの接触と第2の洗浄ガスとの接触が通気処理方式にて行われることを特徴とする請求項1記載の窒化物半導体製造装置部品の洗浄方法。   2. The method for cleaning a nitride semiconductor manufacturing apparatus component according to claim 1, wherein the contact with the first cleaning gas and the contact with the second cleaning gas are performed by an aeration process. 前記第2の洗浄ガスと汚染された部品との接触が、500〜1000℃で行われることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化物半導体製造装置部品の洗浄方法。   4. The nitride semiconductor manufacturing apparatus component according to claim 1, wherein the contact between the second cleaning gas and the contaminated component is performed at 500 to 1000 ° C. 5. Cleaning method. 第1洗浄ガス導入管と第2洗浄ガス導入管と排出ガス排出管とを有するシリカ製の反応室と
この反応室内に収めた、窒化物半導体製造装置内の、窒化物半導体であるGaNまたはAlGaNからなる汚染物で汚染された洗浄対象部品を500〜1000℃の温度に保持できる加熱手段と
第1洗浄ガス導入管に、前記洗浄対象部品と500〜1000℃で接触する塩素を窒素で希釈した混合ガスである第1の洗浄ガスを送り込む第1洗浄ガス供給源と
第2洗浄ガス導入管に、前記洗浄対象部品に残留している塩素系物質と500〜1000℃で接触することで反応して除去する水素ガスと希釈ガスの混合ガスである第2の洗浄ガスを送り込む第2洗浄ガス供給源を備えたことを特徴とする窒化物半導体製造装置部品の洗浄装置。
A silica reaction chamber having a first cleaning gas introduction pipe, a second cleaning gas introduction pipe and an exhaust gas discharge pipe ;
Heating means capable of maintaining a cleaning target part contaminated with a contaminant made of GaN or AlGaN as a nitride semiconductor in a nitride semiconductor manufacturing apparatus housed in the reaction chamber at a temperature of 500 to 1000 ° C . ;
A first cleaning gas supply source that feeds into the first cleaning gas introduction pipe a first cleaning gas that is a mixed gas obtained by diluting chlorine that is in contact with the cleaning target component at 500 to 1000 ° C. with nitrogen ;
A second cleaning gas that is a mixed gas of hydrogen gas and dilution gas that reacts and is removed by contacting the second cleaning gas introduction pipe with a chlorine-based substance remaining in the cleaning target component at 500 to 1000 ° C. And a second cleaning gas supply source for feeding a nitride semiconductor manufacturing apparatus component cleaning apparatus.
JP2005299884A 2005-10-14 2005-10-14 Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts Active JP5498640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299884A JP5498640B2 (en) 2005-10-14 2005-10-14 Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299884A JP5498640B2 (en) 2005-10-14 2005-10-14 Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts

Publications (2)

Publication Number Publication Date
JP2007109928A JP2007109928A (en) 2007-04-26
JP5498640B2 true JP5498640B2 (en) 2014-05-21

Family

ID=38035548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299884A Active JP5498640B2 (en) 2005-10-14 2005-10-14 Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts

Country Status (1)

Country Link
JP (1) JP5498640B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277054B2 (en) * 2009-04-08 2013-08-28 大陽日酸株式会社 Cleaning equipment for contaminated parts in nitride semiconductor manufacturing equipment
JP5736820B2 (en) * 2011-02-15 2015-06-17 富士通株式会社 Semiconductor manufacturing apparatus cleaning apparatus and semiconductor device manufacturing method using the same
WO2012157161A1 (en) 2011-05-19 2012-11-22 古河機械金属株式会社 Method of washing semiconductor manufacturing apparatus component, apparatus for washing semiconductor manufacturing apparatus component, and vapor phase growth apparatus
JP5984582B2 (en) * 2012-08-28 2016-09-06 大陽日酸株式会社 Method of cleaning chamber constituent member for nitride semiconductor manufacturing apparatus
JP6091909B2 (en) * 2013-01-25 2017-03-08 旭化成株式会社 Semiconductor light emitting device base material manufacturing method, semiconductor light emitting device manufacturing method, and GaN-based semiconductor light emitting device
JP2016105471A (en) * 2014-11-20 2016-06-09 株式会社ニューフレアテクノロジー Vapor growth method
JP6499493B2 (en) * 2015-04-10 2019-04-10 株式会社ニューフレアテクノロジー Vapor growth method
KR101909482B1 (en) * 2016-08-01 2018-10-19 세메스 주식회사 Method for cleaning component of apparatus for treating substrate
JP7034847B2 (en) * 2018-06-21 2022-03-14 株式会社ニューフレアテクノロジー Dry cleaning equipment and its dry cleaning method
JP6852040B2 (en) * 2018-11-16 2021-03-31 大陽日酸株式会社 Cleaning equipment for semiconductor manufacturing equipment parts, cleaning method for semiconductor manufacturing equipment parts, and cleaning system for semiconductor manufacturing equipment parts

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663097B2 (en) * 1989-01-18 1994-08-17 岩谷産業株式会社 Decontamination method after cleaning with fluoride gas in film forming operation system
JPH0393228A (en) * 1989-09-05 1991-04-18 Fujitsu Ltd Etching system for compound semiconductor
JP3055181B2 (en) * 1990-03-06 2000-06-26 住友電気工業株式会社 Thin film growth method
JPH06232099A (en) * 1992-09-10 1994-08-19 Mitsubishi Electric Corp Manufacture of semiconductor device, manufacturing device of semiconductor device, manufacture of semiconductor laser, manufacture of quantum wire structure, and crystal growth method
JPH0945670A (en) * 1995-07-29 1997-02-14 Hewlett Packard Co <Hp> Vapor phase etching method of group iiinitrogen crystal and re-deposition process method
JP2002305155A (en) * 2001-04-09 2002-10-18 Nikko Materials Co Ltd CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP2003077839A (en) * 2001-08-30 2003-03-14 Toshiba Corp Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device
JP3806868B2 (en) * 2002-01-07 2006-08-09 株式会社日立製作所 Cleaning method for CVD apparatus
JP2003249475A (en) * 2002-02-25 2003-09-05 Sony Corp Method and device for surface treatment
JP3861794B2 (en) * 2002-10-21 2006-12-20 住友電気工業株式会社 Cleaning method for semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP2007109928A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5498640B2 (en) Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts
JP5021907B2 (en) Method and apparatus for cleaning nitride semiconductor manufacturing apparatus
JP4669605B2 (en) Cleaning method for semiconductor manufacturing equipment
KR101070666B1 (en) Cleaning method and substrate processing apparatus
US5679215A (en) Method of in situ cleaning a vacuum plasma processing chamber
KR101295174B1 (en) Film formation method, film formation apparatus, and method for using film formation apparatus
CN101158032B (en) Film forming device and method thereof
JP5213868B2 (en) Cleaning method and substrate processing apparatus
JP2009123795A (en) Manufacturing method of semiconductor device and substrate treatment apparatus
JP2009044091A (en) Baking method of quartz product, and storage medium
JP2008288281A (en) Manufacturing method of semiconductor device and substrate treatment apparatus
JP2010206050A (en) Method of manufacturing semiconductor device, and substrate processing apparatus
JP2004327639A (en) Semiconductor raw material, method for manufacturing semiconductor device, method and apparatus for processing substrate
JPWO2004027849A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR20010039780A (en) A hot element cvd apparatus and a method for removing a deposited film
CN101311336A (en) Film formation apparatus and method for using the same
JPH0496226A (en) Manufacture of semiconductor device
JPH02190472A (en) Method for removing contamination after cleaning by fluorine-based gas in film forming operation system
JP2002313787A (en) Method for cleaning quartz product in heat treatment system and heat treatment method
JP5302719B2 (en) Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts
JP2008211211A (en) Manufacturing method of semiconductor device, and substrate processing apparatus
JP2632293B2 (en) Selective removal method of silicon native oxide film
US6236023B1 (en) Cleaning process for rapid thermal processing system
JPH0748482B2 (en) Method for cleaning substrate surface after removal of oxide film
EP4245884A1 (en) Gas cleaning method, method of processing substrate, method of manufacturing semiconductor device, and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130531

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250