JP2003077839A - Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device - Google Patents

Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device

Info

Publication number
JP2003077839A
JP2003077839A JP2001262295A JP2001262295A JP2003077839A JP 2003077839 A JP2003077839 A JP 2003077839A JP 2001262295 A JP2001262295 A JP 2001262295A JP 2001262295 A JP2001262295 A JP 2001262295A JP 2003077839 A JP2003077839 A JP 2003077839A
Authority
JP
Japan
Prior art keywords
gas
cvd
reaction tank
purging
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001262295A
Other languages
Japanese (ja)
Inventor
Ichiro Mizushima
一郎 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001262295A priority Critical patent/JP2003077839A/en
Priority to CNB028028082A priority patent/CN1282992C/en
Priority to EP02767869A priority patent/EP1422749A1/en
Priority to PCT/JP2002/008742 priority patent/WO2003019634A1/en
Priority to KR1020037005941A priority patent/KR100690459B1/en
Priority to TW091119825A priority patent/TWI269378B/en
Publication of JP2003077839A publication Critical patent/JP2003077839A/en
Priority to US10/608,020 priority patent/US6903025B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/905Cleaning of reaction chamber

Abstract

PROBLEM TO BE SOLVED: To provide a purging method of a semiconductor-manufacturing apparatus, such as a CVD apparatus for shortening a time required for purge, for improving operating efficiency in the apparatus, and for increasing productivity, and to provide a manufacturing method of a semiconductor device using the purged semiconductor-manufacturing apparatus. SOLUTION: The inside of a reaction bath 2 which constitutes a semiconductor-manufacturing apparatus, where a CVD film is subjected to film-formed treatment on a semiconductor wafer by a CVD method is subjected to dry cleaning by cleaning gas containing halogen such as ClF3 . In a succeeding purging (substitution removal) process, gas containing hydrogen (1), gas containing vapor (2), and gas containing a material that reacts with water such as ammonia (3), and that turns into a base is used as the gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体製造装置のパ
ージ工程に関するもので、特にCVD(ChemicalVapor D
eposition) 装置のドライクリーニング後のパージに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purging process for semiconductor manufacturing equipment, and more particularly to a CVD (Chemical Vapor
eposition) Purge after dry cleaning of equipment.

【0002】[0002]

【従来の技術】半導体製造装置、例えば、LP(Low Pre
ssure)−CVDなどのCVD装置は、その使用によって
反応槽内にシリコン、シリコン酸化物、シリコン窒化物
あるいはその他の半導体装置で使用される薄膜のCVD
堆積膜が堆積する。このようなCVD堆積膜が厚くなり
過ぎると、膜剥がれが生じてダスト汚染が発生するとい
う問題があり、また、反応槽内の堆積膜の膜厚が不均一
であると半導体ウェーハ上に成膜されるCVD膜が均一
に形成されないという問題がある。そこで、従来はこの
ような問題が顕著にならない前にClF3 やF2 などの
ハロゲンを含むクリーニングガスによるエッチング処理
によりこの堆積膜を除去していた。通常モニタウェーハ
上での累積膜厚がある一定以上になった場合にドライク
リーニングを始め、経験的に十分であると判断された時
間ドライクリーニングを実施していた。このように、C
VDチャンバー(反応槽)内部に付着した堆積膜のドラ
イクリーニング方法としては、例えば、ClF3 等のエ
ッチングガスが用いられている。このようなチャンバー
のクリーニング後には、これ以降の通常のCVDプロセ
スを行う前にエッチングガスを完全にパージ除去する必
要がある。
2. Description of the Related Art Semiconductor manufacturing equipment such as LP (Low Pre
A CVD device such as ssure) -CVD is used to deposit a thin film of silicon, silicon oxide, silicon nitride or other thin film used in a semiconductor device in a reaction tank.
A deposited film is deposited. If such a CVD deposited film becomes too thick, there is a problem that film peeling occurs and dust contamination occurs. Also, if the deposited film in the reaction tank has an uneven film thickness, it is formed on a semiconductor wafer. There is a problem that the formed CVD film is not formed uniformly. Therefore, conventionally, the deposited film has been removed by an etching treatment with a cleaning gas containing halogen such as ClF 3 or F 2 before such a problem does not become noticeable. Normally, dry cleaning was started when the accumulated film thickness on the monitor wafer exceeded a certain level, and dry cleaning was carried out for a period of time that was empirically determined to be sufficient. Thus, C
As a method of dry cleaning the deposited film attached inside the VD chamber (reaction tank), for example, an etching gas such as ClF 3 is used. After cleaning such a chamber, it is necessary to completely purge and remove the etching gas before performing the usual CVD process thereafter.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ClF
3 等のエッチングガスは、電気陰性度の高いハロゲンを
含有しており、チャンバー表面に吸着したものをパージ
によってもなかなか脱離することができず、結果として
長時間のパージを必要としていた。チャンバーのクリー
ニング頻度が低くて済むような使用方法であれば、クリ
ーニング後のパージ時間の長いことは特段の問題とはな
らないが、CVDプロセスを行う度にクリーニングを行
わなければならないような場合にはスループットの低下
を招いてしまう。本発明は、このような事情によりなさ
れたものであり、パージを短時間化することにより装置
の稼働率を向上させて生産性を高めるCVD装置などの
半導体製造装置のパージ方法及びこのパージ方法を用い
てパージされた半導体製造装置を用いる半導体装置の製
造方法を提供する。
[Problems to be Solved by the Invention] However, ClF
Etching gases such as 3 contained halogen with high electronegativity, and those adsorbed on the chamber surface could not be easily desorbed even by purging, and as a result, long-term purging was required. A long purge time after cleaning is not a particular problem as long as the chamber is used with a low cleaning frequency, but in the case where cleaning must be performed every time the CVD process is performed, This leads to a decrease in throughput. The present invention has been made in view of the above circumstances, and a method of purging a semiconductor manufacturing apparatus such as a CVD apparatus and a method of purging the same for improving the operating rate of the apparatus and improving the productivity by shortening the purging time. A method for manufacturing a semiconductor device using the semiconductor manufacturing device purged by using the method is provided.

【0004】[0004]

【課題を解決するための手段】本発明は、CVD法によ
って半導体ウェーハ上にCVD膜を成膜処理した半導体
製造装置を構成する反応槽内をClF3 などのハロゲン
を含有するクリーニングガスを用いてドライクリーニン
グを行い、その後のパージ(置換除去)工程において以
下(〜)に示す材料を含む、例えば、窒素、アルゴ
ン、酸素あるいはこれらの混合物などからなるガスを用
いることを特徴としている。水素、水蒸気、アン
モニア等の水と反応して塩基となる材料。すなわち、本
発明の半導体製造装置のパージ方法は、CVD法によっ
て半導体ウェーハ上にCVD膜を成膜処理した半導体製
造装置を構成する反応槽内に堆積したCVD堆積膜を少
なくともハロゲンガスを含むクリーニングガスによりエ
ッチング除去する工程と、前記CVD堆積膜をクリーニ
ングガスによりエッチング除去する工程の後に、前記反
応槽内に水素を含んだガスを流して前記反応槽内に残留
しているクリーニングガスに対するパージを行う工程と
を備えたことを特徴としている。
According to the present invention, a cleaning gas containing halogen such as ClF 3 is used in a reaction tank constituting a semiconductor manufacturing apparatus in which a CVD film is formed on a semiconductor wafer by a CVD method. It is characterized in that dry cleaning is performed, and then a gas containing the materials shown below (to), for example, nitrogen, argon, oxygen, or a mixture thereof is used in the subsequent purging (substitution removal) step. A material that becomes a base by reacting with water such as hydrogen, steam, and ammonia. That is, the semiconductor manufacturing apparatus purging method of the present invention is a cleaning gas containing at least a halogen gas for a CVD deposited film deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a CVD film is formed on a semiconductor wafer by a CVD method. After the step of etching and removing the CVD deposited film with a cleaning gas, a gas containing hydrogen is flown into the reaction tank to purge the cleaning gas remaining in the reaction tank. It is characterized by having a process.

【0005】また、本発明の半導体製造装置のパージ方
法は、CVD法によって半導体ウェーハ上にCVD膜を
成膜処理した半導体製造装置を構成する反応槽内に堆積
したCVD堆積膜を少なくともハロゲンガスを含むクリ
ーニングガスによりエッチング除去する工程と、前記C
VD堆積膜をクリーニングガスによりエッチング除去す
る工程の後に、前記反応槽内に水蒸気を含んだガスを流
して、前記反応槽内に残留しているクリーニングガスに
対するパージを行う工程とを備えたことを特徴としてい
る。また、本発明の半導体製造装置のパージ方法は、C
VD法によって半導体ウェーハ上にCVD膜を成膜処理
した半導体製造装置を構成する反応槽内に堆積したCV
D堆積膜を少なくともハロゲンガスを含むクリーニング
ガスによりエッチング除去する工程と、前記CVD堆積
膜をクリーニングガスによりエッチング除去する工程の
後に、前記反応槽内に水に溶かすとアルカリとなる物質
を含んだ含んだガスを流して、前記反応槽内に残留して
いるクリーニングガスに対するパージを行う工程とを備
えたことを特徴としている。
Further, according to the purging method of the semiconductor manufacturing apparatus of the present invention, the CVD deposited film deposited in the reaction tank constituting the semiconductor manufacturing apparatus in which the CVD film is formed on the semiconductor wafer by the CVD method is subjected to at least halogen gas. Etching with a cleaning gas containing C, and
After the step of etching away the VD deposited film with a cleaning gas, a step of flowing a gas containing water vapor into the reaction tank to purge the cleaning gas remaining in the reaction tank is provided. It has a feature. Further, the purging method of the semiconductor manufacturing apparatus of the present invention uses C
CV deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a CVD film is formed on a semiconductor wafer by the VD method
After the step of etching away the D deposited film with a cleaning gas containing at least a halogen gas and the step of etching away the CVD deposited film with a cleaning gas, the reaction tank contains a substance that becomes an alkali when dissolved in water. And a step of purging the cleaning gas remaining in the reaction tank.

【0006】また、本発明の半導体製造装置のパージ方
法は、CVD法によって半導体ウェーハ上にCVD膜を
成膜処理した半導体製造装置を構成する反応槽内に堆積
したCVD堆積膜を少なくともハロゲンガスを含むクリ
ーニングガスによりエッチング除去する工程と、前記C
VD堆積膜をクリーニングガスによりエッチング除去す
る工程の後に、前記反応槽内にアンモニアガスを流し
て、前記反応槽内に残留しているクリーニングガスに対
するパージを行う工程とを備えたことを特徴としてい
る。本発明の半導体装置の製造方法は、請求項1乃至請
求項4のいずれかに記載された半導体製造装置のパージ
方法によりパージされた反応槽内に半導体ウェーハを挿
入し載置する工程と、前記反応槽内において前記半導体
ウェーハ上にCVD膜を形成する工程とを備えたことを
特徴としている。
Further, according to the purging method of the semiconductor manufacturing apparatus of the present invention, at least the halogen gas is deposited on the CVD deposited film deposited in the reaction tank constituting the semiconductor manufacturing apparatus in which the CVD film is formed on the semiconductor wafer by the CVD method. Etching with a cleaning gas containing C, and
After the step of etching away the VD deposited film with a cleaning gas, a step of flowing an ammonia gas into the reaction tank to purge the cleaning gas remaining in the reaction tank is provided. . A method of manufacturing a semiconductor device according to the present invention comprises a step of inserting and mounting a semiconductor wafer in a reaction tank purged by the method for purging a semiconductor manufacturing device according to any one of claims 1 to 4, And a step of forming a CVD film on the semiconductor wafer in a reaction tank.

【0007】本発明は、さらに、請求項1乃至請求項4
のいづれかに記載された発明において、次のような構成
を有するようにすることができる。(1) 前記反応槽
内に残留している残留ガスをモニタすることによってパ
ージの終了を判定すること。(2) 残留ガスの質量分
離によって前記残留ガスをモニタすること。(3)前記
パージを行う工程において、圧力変動を繰り返すことに
より排気速度を変化させること。(4) 前記圧力変動
の圧力変動値が3桁以上異なるようにすること。(5)
前記パージを行う工程において、前記反応槽及びこの
反応槽に接続された排気管の温度を前記CVD膜を成膜
する時の温度より高くすること。(6) 前記反応槽内
に残留している残留ガスを次のプロセスにおけるドーピ
ングガスとすること。
The present invention further includes claims 1 to 4.
The invention described in any one of the above may be configured as follows. (1) The completion of purging is determined by monitoring the residual gas remaining in the reaction tank. (2) Monitoring the residual gas by mass separation of the residual gas. (3) In the purging step, the exhaust speed is changed by repeating pressure fluctuations. (4) The pressure fluctuation value of the pressure fluctuation should be different by three digits or more. (5)
In the purging step, the temperature of the reaction tank and the exhaust pipe connected to the reaction tank is set higher than the temperature at which the CVD film is formed. (6) The residual gas remaining in the reaction tank is used as a doping gas in the next process.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して発明の実施
の形態を説明する。まず、図1を参照して第1の実施例
を説明する。図1は、半導体製造装置である縦型CVD
装置の概略断面図である。縦型に置かれた反応槽(以
下、チャンバーという)2には、その使用時にシリコン
などの半導体ウェーハが載置される。チャンバー2の下
部にはガス導入口1が取り付けられており、ここからチ
ャンバー2の内部にクリーニングガスが導入されるよう
に構成されている。チャンバー2の半導体ウェーハが載
置される部分には、その部分を加熱するために、ヒータ
3が外側に配置されている。チャンバー2には圧力制御
バルブ5を有する排気配管4を介してポンプ6が接続さ
れており、内部が適宜排気されるように構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. First, a first embodiment will be described with reference to FIG. FIG. 1 is a vertical CVD which is a semiconductor manufacturing apparatus.
It is a schematic sectional drawing of an apparatus. A semiconductor wafer such as silicon is placed on the reaction vessel (hereinafter referred to as a chamber) 2 placed vertically so that it is used. A gas introduction port 1 is attached to the lower portion of the chamber 2, and the cleaning gas is introduced into the chamber 2 from here. A heater 3 is arranged outside the chamber 2 where the semiconductor wafer is placed in order to heat that portion. A pump 6 is connected to the chamber 2 through an exhaust pipe 4 having a pressure control valve 5, and the inside of the chamber 2 is appropriately exhausted.

【0009】図1に示すCVD装置を用いてLP−CV
Dプロセスによるシリコン膜を成膜した後に、ClF3
ガスをクリーニングガスとして用いてドライクリーニン
グを行った。ドライクリーニング前のCVD装置のチャ
ンバー(反応槽)内部には、シリコン膜が300nm程
度付着した状態であった。チャンバーを一旦減圧にした
後、1600sccmの窒素(N2 )で希釈したClF
3 ガスを900sccm、チャンバー温度350℃、チ
ャンバー圧力20Torrの状態に保ったチャンバー内
部に供給し、チャンバー内部のシリコン堆積膜と反応さ
せてチャンバー内部のシリコン膜をドライクリーニング
除去した。クリーニング終了については、ClF3 ガス
とシリコン膜との反応が発熱反応であることから、チャ
ンバーの内部温度計あるいはチャンバーを加熱するヒー
ターのパワーをモニタして、その変化から判定すること
ができる。
Using the CVD apparatus shown in FIG. 1, LP-CV
After forming a silicon film by the D process, ClF 3
Dry cleaning was performed using gas as a cleaning gas. Before dry cleaning, a silicon film was attached to the inside of the chamber (reaction tank) of the CVD apparatus by about 300 nm. After decompressing the chamber once, ClF diluted with 1600 sccm of nitrogen (N 2 )
The 3 gas was supplied to the inside of the chamber kept at 900 sccm, the chamber temperature of 350 ° C. and the chamber pressure of 20 Torr, and reacted with the silicon deposited film inside the chamber to remove the silicon film inside the chamber by dry cleaning. Since the reaction between the ClF 3 gas and the silicon film is an exothermic reaction, the end of cleaning can be judged from the change by monitoring the power of the chamber internal thermometer or the heater heating the chamber.

【0010】クリーニング終了後、ClF3 ガスと窒素
の供給を止め、ガスを全く流さない状態でチャンバー内
部を引ききり、2分間保持した。このときの圧力は0.
8mTorrであった。この後、チャンバー内部に5s
lmの窒素と、5slmの水素(H2 )との混合ガスを
流して2分間保持した。このときの圧力は100Tor
rであった。この引ききりステップと、混合ガスを流す
ステップを繰り返す、サイクルパージを合計3回行った
結果、四重極質量計(Q−mass)7によるモニタ
で、ClF3 の残留ガスが検知できなくなっていること
を確認した。また、ClF3 が分解してできるCl、F
のいずれも検出されなくなった。これに対して比較のた
め、水素と窒素の混合ガスの代わりに、窒素を10sl
m流した場合について同様にQ−massによるモニタ
を行ったところ、上記と同一繰り返し回数ではCl等の
残留が見られ、十分にパージができていないことが確認
された。
After the cleaning was completed, the supply of ClF 3 gas and nitrogen was stopped, and the inside of the chamber was pulled out while the gas was not flowing at all, and the chamber was held for 2 minutes. The pressure at this time is 0.
It was 8 mTorr. After this, 5s inside the chamber
A mixed gas of 1 lm of nitrogen and 5 slm of hydrogen (H 2 ) was flowed and held for 2 minutes. The pressure at this time is 100 Tor
It was r. This pulling step and the step of flowing the mixed gas are repeated, and as a result of performing the cycle purge three times in total, the residual gas of ClF 3 cannot be detected by the monitor by the quadrupole mass meter (Q-mass) 7. It was confirmed. Also, Cl, F formed by decomposition of ClF 3
None of these have been detected. On the other hand, for comparison, nitrogen is replaced by 10 sl instead of the mixed gas of hydrogen and nitrogen.
When monitoring was performed by Q-mass similarly in the case of m flow, it was confirmed that Cl and the like remained after the same number of repetitions as above, and sufficient purging was not performed.

【0011】ここでこのように、水素を含んだガスを用
いてパージを行うことでClF3 を効果的の除去できる
ようになったのは、 ClF3 +2H2 →HCl+3HF ・・・(1) で表される反応が起こり((1)式参照)、残留ClF
3 を除去できたためであると考えられる。なお水素の添
加量としては、この実施例では窒素と同一としたが、必
ずしもこれに限られるものではなく、100%の水素
(つまり水素のみ)であっても構わない。また流量につ
いても、この実施例では5slmとしたが、500sc
cm以上であれば添加効果を発揮できることができる。
この実施例によれば、パージを短時間化することがで
き、装置の稼働率を向上させることが可能になる。
[0011] Here Thus, it began to effectively the possible removal of ClF 3 by purging with a gas containing hydrogen, with ClF 3 + 2H 2 → HCl + 3HF ··· (1) The reaction shown occurs (see equation (1)) and residual ClF
This is probably because 3 was removed. Although the amount of hydrogen added was the same as that of nitrogen in this embodiment, it is not limited to this, and 100% hydrogen (that is, only hydrogen) may be used. The flow rate is set to 5 slm in this embodiment, but 500 sc
If it is at least cm, the effect of addition can be exhibited.
According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0012】次に、第2の実施例を説明する。この実施
例では第1の実施例と同様にチャンバー内部にシリコン
膜が付着した状態でClF3 ガスを用いたクリーニング
を行った。このクリーニング後のパージにおいては、5
slmの窒素に加えて、25sccmの水蒸気(H
2 O)を混合したガスで行った。この時のチャンバー圧
力は、100Torrであり、したがって水蒸気分圧
は、0.5Torr(すなわち0.5mmHg)とな
る。第1の実施例と同様の引ききるステップとガスを流
すステップとを行うサイクルパージを合計5回繰り返し
た。そしてQ−massによるモニタの結果、ClF3
ガス起因と考えられるHClやHFなどの残留ガスが、
全く見られなくなったことが確認された。比較のために
行った水蒸気を加えない窒素のみを流した場合には、同
一回数のサイクルパージではHFやHClが残留してい
ることが確認されており、この実施例のように水蒸気を
加えることにより効果的にHFが除去できたものと判断
できる。
Next, a second embodiment will be described. In this example, as in the first example, cleaning was performed using ClF 3 gas with the silicon film attached to the inside of the chamber. In purging after this cleaning, 5
In addition to slm nitrogen, 25 sccm of water vapor (H
2 O) with mixed gas. At this time, the chamber pressure is 100 Torr, and thus the water vapor partial pressure is 0.5 Torr (that is, 0.5 mmHg). The cycle purge in which the pulling step and the gas flowing step similar to those in the first example was performed was repeated 5 times in total. Then, as a result of monitoring by Q-mass, ClF 3
Residual gases such as HCl and HF, which are considered to be gas-derived,
It was confirmed that it was not seen at all. It was confirmed that HF and HCl remained in the same number of cycle purges when only nitrogen was passed without adding water vapor, which was carried out for comparison. Therefore, it can be determined that HF could be effectively removed.

【0013】このように水蒸気の添加によってHFやH
Clが除去できたのは、ClF3 を流した際にチャンバ
ー内部に残留している水分があると、その水分とClF
3 とが反応してしまい、 ClF3 +2H2 O→3HF+HCl+O2 ・・・(2) (2)式によってHFやHClが生成されるためであ
る。したがってパージ時に水分を供給することによりH
FやHClがともに脱離できるため、残留HF、HCl
量を低減させることができる。しかしながら、水蒸気を
添加したパージにおいては、そのパージ直後において、
残留HF、HCl量は低減できるものの、逆に水蒸気は
残留してしまう。これを避けるために、水蒸気を含んだ
ガスでのパージののち、全く水蒸気を含まないガスでの
パージを続けて行うことが望ましい。その条件として
は、例えば、上述した水蒸気を添加した条件において、
水蒸気の添加のみを止めたようなものとすればよい。
As described above, HF and H are added by adding steam.
Cl was able to be removed because when ClF 3 was allowed to flow, if there was water remaining inside the chamber, that water and ClF
This is because 3 reacts with ClF 3 + 2H 2 O → 3HF + HCl + O 2 (2) Formula (2) produces HF and HCl. Therefore, by supplying water during purging, H
Since both F and HCl can be desorbed, residual HF and HCl
The amount can be reduced. However, in the purge with steam added, immediately after the purge,
Although the amount of residual HF and HCl can be reduced, on the contrary, water vapor remains. In order to avoid this, it is desirable to carry out purging with a gas containing water vapor and then purging with a gas containing no water vapor at all. As the conditions, for example, in the condition that the above-mentioned steam is added,
It suffices that the addition of water vapor is stopped.

【0014】パージ時に水分を添加するという方法に関
しては、これまでに特開平5−331630号公報に示
す「三フッ化塩素ガスの除去方法」がある。この公開公
報においては、添加量として1mmHg以上の分圧の水
蒸気を含んだ空気もしくはガスを用いることが望ましい
ことが示されている。しかしながらこの実施例によれ
ば、1mmHgよりも低い水蒸気分圧においても水蒸気
添加の効果があることが確認された。その効果は、0.
05Torr(=0.05mmHg)以上であれば十分
であった。また公知公開公報においては、水蒸気を空気
または窒素に添加するプロセスのみが示されているが、
実際には水蒸気が残留するという問題があり、水蒸気添
加後のパージの後に水蒸気を添加しないガスでのパージ
を行うことが望ましい。この実施例によれば、パージを
短時間化することができ、装置の稼働率を向上させるこ
とが可能になる。
Regarding the method of adding water at the time of purging, there is a "method of removing chlorine trifluoride gas" disclosed in Japanese Patent Application Laid-Open No. 5-331630. This publication discloses that it is desirable to use air or gas containing water vapor with a partial pressure of 1 mmHg or more as an addition amount. However, according to this example, it was confirmed that the addition of water vapor was effective even at a water vapor partial pressure lower than 1 mmHg. The effect is 0.
It was sufficient if the pressure was 05 Torr (= 0.05 mmHg) or more. Further, in the publicly known publication, only the process of adding water vapor to air or nitrogen is shown,
Actually, there is a problem that water vapor remains, so it is desirable to carry out purging with a gas to which water vapor is not added after purging after the addition of water vapor. According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0015】次に、第3の実施例を説明する。この実施
例では、第1の実施例と同様にチャンバー内部にシリコ
ン膜が付着した状態で、ClF3 ガスを用いたクリーニ
ングを行った。このクリーニング後のパージにおいて
は、5slmの窒素に加えて、100sccmの水蒸気
を混合したガスで行った。第1の実施例と同様の引きき
るステップとガスを流すステップとを行うサイクルパー
ジを、合計5回繰り返した結果、Q−massによるモ
ニタの結果、ClF3 ガス起因と考えられるHFやHC
lなどの残留ガスが全く見られず、同様にチャンバー内
部にシリコン膜が付着した状態でClF3 ガスを用いた
クリーニングを行った。このクリーニング後のパージに
おいては、2slmの窒素に加えて、500sccmの
アンモニア(NH3 )を混合したガスで行った。引きき
るステップとガスを流すステップとを繰り返すサイクル
パージを合計3回繰り返した結果、Q−massによる
モニタにより、ClF3 ガス起因と考えられるHClや
HFなどの残留ガスが、全く見られなくなったことが確
認された。
Next, a third embodiment will be described. In this example, similarly to the first example, cleaning with ClF 3 gas was performed with the silicon film attached inside the chamber. The purging after the cleaning was performed using a gas in which 100 sccm of water vapor was mixed in addition to 5 slm of nitrogen. As a result of repeating the cycle purging in which the pulling step and the gas flowing step similar to those in the first embodiment are performed 5 times in total, the result of monitoring by Q-mass, HF and HC which are considered to be caused by ClF 3 gas
No residual gas such as l was observed at all, and similarly, cleaning was performed using ClF 3 gas with the silicon film attached inside the chamber. The purging after the cleaning was performed by using a gas in which 500 sccm of ammonia (NH 3 ) was mixed in addition to 2 slm of nitrogen. As a result of repeating the cycle purge in which the pulling step and the gas flowing step are repeated three times in total, the residual gas such as HCl and HF, which is considered to be caused by ClF 3 gas, is not seen at all by the monitor by Q-mass. Was confirmed.

【0016】このようにアンモニアを添加することによ
って、HFやHClが除去できたのは、ClF3 を流し
た際に、チャンバー内部の残留水分との反応によって形
成されたHFやHClが、NH3 と反応することでNH
4 FやNH4 Clが生成されるためである。これによっ
て、チャンバー内に残留した酸であるHFやHClを、
より安定な塩であるNH4 FやNH4 Clに変化させ、
この結果として装置内部の金属部分が腐食され易い状態
であったものが、腐食の懸念を低減できるようになる。
なおこの実施例においては、添加ガスとしてアンモニア
を用いたが、HFやHClと反応するガスとして、酸で
あるHFやHClと中和するものであればよく、例え
ば、NaOHやKOHなど、水に溶かすとアルカリとな
る物質であればよい。この実施例によれば、パージを短
時間化することができ、装置の稼働率を向上させること
が可能になる。
By adding ammonia in this way, HF and HCl could be removed because the HF and HCl formed by the reaction with the residual water inside the chamber when ClF 3 was flowed was NH 3 NH by reacting with
This is because 4 F and NH 4 Cl are produced. As a result, HF and HCl, which are the acids remaining in the chamber,
Change to more stable salts NH 4 F and NH 4 Cl,
As a result, even if the metal portion inside the device was easily corroded, the concern of corrosion can be reduced.
Although ammonia was used as the additive gas in this example, any gas that reacts with HF or HCl and neutralizes with HF or HCl that is an acid may be used. For example, NaOH or KOH may be added to water. Any substance that becomes an alkali when melted may be used. According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0017】次に、図1及び図2を参照して第4の実施
例を説明する。図2は、イオン電流のパージ回数依存性
を示す特性図である。この実施例では、第1の実施例の
場合と同様に、チャンバー内部にシリコン膜が付着した
状態でClF3 ガスを用いたクリーニングを行った。こ
のクリーニング後のパージを5slmの窒素を流すこと
により行った。図1に示したように、チャンバーの排気
側に四重極質量計(Q−mass)7をセットし、その
変化を調べた。引ききりステップごとに測定したHF、
HCl、Clの質量数のQ−massによるピーク強度
の変化を図2に示した。引ききり、ガス供給のサイクル
を7回繰り返すことで、いずれのピークも検出されなく
なり、十分なパ−ジが行われたことがわかる。このよう
なモニタを行うことにより、必要十分な回数のパージを
行うことができる。この実施例ではパージ時のガスとし
て窒素のみを用いたが、第1から第3の実施例に示した
ようなガスの添加を行う場合にも同様に有効であり、い
ずれの場合においても、上記7回よりも少ないサイクル
回数で、残留FあるいはCl濃度が検出限界以下となっ
ていることが確認され、必要十分な回数、時間のパージ
を行うことができるようになった。この実施例によれ
ば、パージを短時間化することができ、装置の稼働率を
向上させることが可能になる。
Next, a fourth embodiment will be described with reference to FIGS. FIG. 2 is a characteristic diagram showing the dependency of the ion current on the number of purges. In this example, as in the case of the first example, cleaning was performed using ClF 3 gas with the silicon film attached inside the chamber. Purging after this cleaning was performed by flowing nitrogen of 5 slm. As shown in FIG. 1, a quadrupole mass meter (Q-mass) 7 was set on the exhaust side of the chamber, and its change was examined. HF measured at each pulling step,
The change in peak intensity due to the Q-mass of the mass numbers of HCl and Cl is shown in FIG. It can be seen that by repeating the gas supply cycle seven times, no peaks were detected and sufficient purging was performed. By performing such monitoring, it is possible to perform the necessary and sufficient number of purges. In this embodiment, only nitrogen was used as the gas at the time of purging, but it is similarly effective when adding the gas as shown in the first to third embodiments, and in any case, the above It was confirmed that the residual F or Cl concentration was below the detection limit with the number of cycles less than 7, and it became possible to perform the necessary and sufficient number of times of time purging. According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0018】次に、第5の実施例を説明する。この実施
例では、第1の実施例同様、チャンバー内部にシリコン
膜が付着した状態で、ClF3 を用い、チャンバー内部
に付着したシリコン膜をクリーニング除去した。この後
のサイクルパージステップにおいて、窒素の流し方に関
しては、第1の実施例と同様に、引ききるステップと窒
素を流すステップとを繰り返した。この窒素を流すステ
ップにおいて、この実施例では、特に、窒素を10sl
m流した状態で圧力を400Torrになるように排気
側のコンダクタンス制御を行った。この結果、第1の実
施例等で示した排気側のコンダクタンス制御を特に行わ
なかった場合と比較して、Q−massによるモニタの
結果、サイクルパージ回数が5回必要なところを4回で
済むようになることが確認された。このような、窒素を
流す際に圧力を高くすることの効果が現れる理由に関し
ては、チャンバー壁等に付着している残留ハロゲンに対
して、窒素のアタックする頻度が高くなるために、ハロ
ゲンの脱離効率が上がり、少ないサイクルパージ回数で
十分となったのである。
Next, a fifth embodiment will be described. In this example, as in the first example, ClF 3 was used to clean and remove the silicon film attached to the inside of the chamber while the silicon film was attached to the inside of the chamber. In the subsequent cycle purging step, with respect to the method of flowing nitrogen, the step of completely withdrawing nitrogen and the step of flowing nitrogen were repeated as in the first embodiment. In the step of flowing the nitrogen, in this embodiment, especially, 10 sl of nitrogen is used.
The conductance control on the exhaust side was performed so that the pressure was 400 Torr in the state of m flow. As a result, as compared with the case where the conductance control on the exhaust side is not particularly performed as shown in the first embodiment and the like, the result of monitoring by Q-mass is that the number of times the cycle purge is required is five, but only four is required. It was confirmed that The reason why the effect of increasing the pressure at the time of flowing the nitrogen appears is that the halogen is frequently desorbed because the nitrogen is frequently attacked with respect to the residual halogen adhering to the chamber wall and the like. The separation efficiency was improved, and a small number of cycle purges was sufficient.

【0019】なお、この実施例において、引き切り時の
圧力は、1mTorr、また窒素を流した時点での制御
圧力は、400Torrと、その圧力差が5桁以上あっ
た。さまざまな圧力に制御した場合でパージ効率を比較
したところ、引き切り時と窒素を流した時点での圧力差
が3桁以上あると、良好なパージ効率が実現できること
が確認された。この実施例によれば、パージを短時間化
することができ、装置の稼働率を向上させることが可能
になる。
In this example, the pressure at the time of pulling off was 1 mTorr, and the control pressure at the time of flowing nitrogen was 400 Torr, and the pressure difference was more than 5 digits. Comparing the purge efficiencies when controlling various pressures, it was confirmed that good purge efficiency can be realized when the pressure difference between the time of pulling off and the time of flowing nitrogen is 3 digits or more. According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0020】次に、第6の実施例を説明する。チャンバ
ー内部にシリコン膜が付着した状態で、ClF3 ガスを
用い、チャンバー内部に付着したシリコン膜をクリーニ
ング除去した。クリーニングプロセスにおいては、チャ
ンバー温度は、400℃、また排気配管は、50℃に制
御したが、この後のパージステップでは、チャンバー温
度は、850℃、排気配管温度は150℃に制御した。
このようにクリーニングステップよりも高い温度に制御
することで、付着したガスの脱離効率を上げることがで
き、パージ効率を上げることが可能となる。実際、前記
実施例と同様にQ−massによりモニタした結果、サ
イクルパージ回数が5回必要なところを4回で済むよう
になることが確認された。
Next, a sixth embodiment will be described. With the silicon film attached to the inside of the chamber, ClF 3 gas was used to clean and remove the silicon film attached to the inside of the chamber. In the cleaning process, the chamber temperature was controlled at 400 ° C. and the exhaust pipe was controlled at 50 ° C., but in the subsequent purge step, the chamber temperature was controlled at 850 ° C. and the exhaust pipe temperature was controlled at 150 ° C.
By controlling the temperature to be higher than that in the cleaning step in this way, it is possible to improve the desorption efficiency of the adhered gas and the purging efficiency. Actually, as a result of monitoring by Q-mass in the same manner as in the above-mentioned example, it was confirmed that the number of cycle purges required to be 5 can be reduced to 4 only.

【0021】なおこの実施例は、ClF3 によるクリー
ニングガスの場合について記述したが、ソースガスとし
てハロゲンを含有するプロセスであれば、クリーニング
プロセスに限らず、CVDプロセスにおいても同様の効
果を実現できる。例えば、SiH2 Cl2 をソースガス
として用いるCVDなどがそれにあたる。また、この実
施例ではパージステップでのチャンバー温度は850
℃、排気配管温度は、150℃に制御したが、温度はこ
れに限定されるものではなく、その装置が構成上各部位
の温度をどこまで上げることができるか、また昇降温に
要する時間がどの程度か、によって、適宜変更して応用
することができる。以上、第1の実施例から第6の実施
例まで、それぞれ有効なパージ方法を示したが、当然の
ことながらこれらを組み合わせた方法によるパージもも
ちろん可能であり、それはそれぞれを単独で実施するよ
りも良好なパージ効率を実現することができる。この実
施例によれば、パージを短時間化することができ、装置
の稼働率を向上させることが可能になる。
Although this embodiment describes the case of the cleaning gas using ClF 3 , the same effect can be realized not only in the cleaning process but also in the CVD process as long as the process contains halogen as the source gas. For example, CVD or the like using SiH 2 Cl 2 as a source gas corresponds thereto. Further, in this embodiment, the chamber temperature in the purge step is 850.
℃, the exhaust pipe temperature was controlled at 150 ℃, but the temperature is not limited to this, how much the equipment can raise the temperature of each part, and the time required for raising and lowering the temperature. It can be applied by appropriately changing it depending on the degree. As described above, the effective purging methods have been shown from the first embodiment to the sixth embodiment, but it goes without saying that purging by a combination of these methods is also possible, and it is preferable to carry out each of them independently. Can achieve good purging efficiency. According to this embodiment, the purging can be shortened and the operating rate of the apparatus can be improved.

【0022】次に、第7の実施例を説明する。チャンバ
ー内部にシリコン堆積膜が付着した状態で、ClF3
スを用い、チャンバー内部に付着したシリコン堆積膜を
クリーニング除去した。こののち、窒素を用いてチャン
バー内部のパージを行った。Q−massによるモニタ
によりHFが残留していることが確認されている状態
で、このチャンバーを用いて、シランガス300scc
m、圧力1Torr、温度600℃の条件で多結晶シリ
コン膜を堆積した。この膜中に含有された不純物をSI
MSを用いて測定したところ、基板と堆積膜との界面
に、ピーク濃度1018cm-3のFが存在することが確認
された。この膜を用いてMOSキャパシタのゲート電極
を形成し、作成したMOSキャパシタについて、その耐
圧をTDDB測定により調べたところ、Fを含有しない
多結晶シリコン膜をゲート電極とした場合と比較して、
短時間で不良となるキャパシタの割合が低下しているこ
とが確認された。
Next, a seventh embodiment will be described. With the deposited silicon film inside the chamber, ClF 3 gas was used to clean and remove the deposited silicon film inside the chamber. After that, the interior of the chamber was purged with nitrogen. While confirming that HF remained by the monitor by Q-mass, using this chamber, 300 cc of silane gas was used.
A polycrystalline silicon film was deposited under the conditions of m, pressure 1 Torr, and temperature 600 ° C. The impurities contained in this film are treated as SI
When measured using MS, it was confirmed that F having a peak concentration of 10 18 cm −3 was present at the interface between the substrate and the deposited film. A gate electrode of a MOS capacitor was formed using this film, and the breakdown voltage of the created MOS capacitor was examined by TDDB measurement. As a result, as compared with the case where a polycrystalline silicon film containing no F was used as the gate electrode,
It was confirmed that the proportion of capacitors that became defective in a short time was decreasing.

【0023】このようなFの効果については、Y. Mitan
i 他, 1999 IEEE International Reliability Physics
Symposium Proceedings. 37th Annual (Cat. No.99CH3
6296)(USA)P.P.93-8に示されるように、Fにはゲート酸
化膜に存在する欠陥を補償する働きがあるためと考えら
れる。この実施例による方法は、プロセス工程数を全く
増やすことなく、単にチャンバー中に残留したガスを、
制御された分量だけ残しておくことで、デバイス上のメ
リットを有する構造を実現することができる、極めて優
れた方法ということができる。以上、実施例で説明した
パージ方法によりドライクリーニングされた半導体製造
装置(CVD装置)の反応槽内にシリコンなどの半導体
ウェーハを挿入し固定する。そして、反応槽内におい
て、半導体ウェーハ上にシリコン酸化膜などのCVD膜
を堆積させ、さらに後処理工程を行って半導体装置を形
成する。
Regarding the effect of such F, Y. Mitan
i et al., 1999 IEEE International Reliability Physics
Symposium Proceedings. 3 7th Annual (Cat. No. 99CH3
6296) (USA) PP93-8, it is considered that F has a function of compensating for defects existing in the gate oxide film. The method according to this embodiment simply removes the gas remaining in the chamber without increasing the number of process steps.
It can be said that an extremely excellent method can realize a structure having a merit on the device by leaving only the controlled amount. As described above, the semiconductor wafer such as silicon is inserted and fixed in the reaction tank of the semiconductor manufacturing apparatus (CVD apparatus) dry-cleaned by the purging method described in the embodiment. Then, in the reaction tank, a CVD film such as a silicon oxide film is deposited on the semiconductor wafer, and a post-treatment process is performed to form a semiconductor device.

【0024】[0024]

【発明の効果】以上パージ効率を向上させ、パージ時間
を短縮することにより、半導体製造装置の稼動効率を上
げることができる。
As described above, by improving the purging efficiency and shortening the purging time, the operating efficiency of the semiconductor manufacturing apparatus can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のCVD装置の概略断面図。FIG. 1 is a schematic sectional view of a CVD apparatus of the present invention.

【図2】本発明のパージ特性を示す特性図。FIG. 2 is a characteristic diagram showing a purge characteristic of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ガス導入口、 2・・・チャンバー、3・・
・ヒータ(チャンバー加熱用)、 4・・・排気配
管、5・・・圧力制御バルブ、 6・・・ポンプ、7
・・・四重極質量計(Q−mass)。
1 ... Gas inlet, 2 ... Chamber, 3 ...
・ Heater (for chamber heating), 4 ... Exhaust pipe, 5 ... Pressure control valve, 6 ... Pump, 7
... Quadrupole mass meter (Q-mass).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CVD法によって半導体ウェーハ上にC
VD膜を成膜処理した半導体製造装置を構成する反応槽
内に堆積したCVD堆積膜を少なくともハロゲンガスを
含むクリーニングガスによりエッチング除去する工程
と、 前記CVD堆積膜をクリーニングガスによりエッチング
除去する工程の後に、前記反応槽内に水素を含んだガス
を流して前記反応槽内に残留しているクリーニングガス
に対するパージを行う工程とを備えたことを特徴とする
半導体製造装置のパージ方法。
1. A method for depositing C on a semiconductor wafer by a CVD method.
A step of etching and removing a CVD deposited film deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a VD film is formed by a cleaning gas containing at least a halogen gas; and a step of etching and removing the CVD deposited film with a cleaning gas. And a purge step for purging the cleaning gas remaining in the reaction tank by flowing a gas containing hydrogen into the reaction tank.
【請求項2】 CVD法によって半導体ウェーハ上にC
VD膜を成膜処理した半導体製造装置を構成する反応槽
内に堆積したCVD堆積膜を少なくともハロゲンガスを
含むクリーニングガスによりエッチング除去する工程
と、 前記CVD堆積膜をクリーニングガスによりエッチング
除去する工程の後に、前記反応槽内に水蒸気を含んだガ
スを流して、前記反応槽内に残留しているクリーニング
ガスに対するパージを行う工程とを備えたことを特徴と
する半導体製造装置のパージ方法。
2. C on a semiconductor wafer by the CVD method
A step of etching and removing a CVD deposited film deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a VD film is formed by a cleaning gas containing at least a halogen gas; and a step of etching and removing the CVD deposited film with a cleaning gas. And a purge process for cleaning gas remaining in the reaction tank by flowing a gas containing water vapor into the reaction tank.
【請求項3】 CVD法によって半導体ウェーハ上にC
VD膜を成膜処理した半導体製造装置を構成する反応槽
内に堆積したCVD堆積膜を少なくともハロゲンガスを
含むクリーニングガスによりエッチング除去する工程
と、 前記CVD堆積膜をクリーニングガスによりエッチング
除去する工程の後に、前記反応槽内に水に溶かすとアル
カリとなる物質を含んだ含んだガスを流して、前記反応
槽内に残留しているクリーニングガスに対するパージを
行う工程とを備えたことを特徴とする半導体製造装置の
パージ方法。
3. C on a semiconductor wafer by the CVD method
A step of etching and removing a CVD deposited film deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a VD film is formed by a cleaning gas containing at least a halogen gas; and a step of etching and removing the CVD deposited film with a cleaning gas. After that, a step of causing a gas containing a substance that becomes an alkali when dissolved in water to flow into the reaction tank to purge the cleaning gas remaining in the reaction tank is provided. Purge method for semiconductor manufacturing equipment.
【請求項4】 CVD法によって半導体ウェーハ上にC
VD膜を成膜処理した半導体製造装置を構成する反応槽
内に堆積したCVD堆積膜を少なくともハロゲンガスを
含むクリーニングガスによりエッチング除去する工程
と、 前記CVD堆積膜をクリーニングガスによりエッチング
除去する工程の後に、前記反応槽内にアンモニアガスを
流して、前記反応槽内に残留しているクリーニングガス
に対するパージを行う工程とを備えたことを特徴とする
半導体製造装置のパージ方法。
4. C on a semiconductor wafer by the CVD method
A step of etching and removing a CVD deposited film deposited in a reaction tank constituting a semiconductor manufacturing apparatus in which a VD film is formed by a cleaning gas containing at least a halogen gas; and a step of etching and removing the CVD deposited film with a cleaning gas. After that, a step of flowing ammonia gas into the reaction tank to purge the cleaning gas remaining in the reaction tank is provided, and a purging method for a semiconductor manufacturing apparatus.
【請求項5】 請求項1乃至請求項4のいずれかに記載
された半導体製造装置のパージ方法によりパージされた
反応槽内に半導体ウェーハを挿入し載置する工程と、 前記反応槽内において前記半導体ウェーハ上にCVD膜
を形成する工程とを備えたことを特徴とする半導体装置
の製造方法。
5. A step of inserting and mounting a semiconductor wafer in a reaction tank purged by the purging method of a semiconductor manufacturing apparatus according to claim 1, and the step of placing the semiconductor wafer in the reaction tank. And a step of forming a CVD film on a semiconductor wafer.
JP2001262295A 2001-08-30 2001-08-30 Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device Pending JP2003077839A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001262295A JP2003077839A (en) 2001-08-30 2001-08-30 Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device
CNB028028082A CN1282992C (en) 2001-08-30 2002-08-29 Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device
EP02767869A EP1422749A1 (en) 2001-08-30 2002-08-29 Purging method for semiconductor production device and production method for semiconductor device
PCT/JP2002/008742 WO2003019634A1 (en) 2001-08-30 2002-08-29 Purging method for semiconductor production device and production method for semiconductor device
KR1020037005941A KR100690459B1 (en) 2001-08-30 2002-08-29 Purging method for semiconductor production device and production method for semiconductor device
TW091119825A TWI269378B (en) 2001-08-30 2002-08-30 Purge method for semiconductor manufacturing device and method for manufacturing semiconductor device
US10/608,020 US6903025B2 (en) 2001-08-30 2003-06-30 Method of purging semiconductor manufacturing apparatus and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262295A JP2003077839A (en) 2001-08-30 2001-08-30 Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2003077839A true JP2003077839A (en) 2003-03-14

Family

ID=19089212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262295A Pending JP2003077839A (en) 2001-08-30 2001-08-30 Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device

Country Status (7)

Country Link
US (1) US6903025B2 (en)
EP (1) EP1422749A1 (en)
JP (1) JP2003077839A (en)
KR (1) KR100690459B1 (en)
CN (1) CN1282992C (en)
TW (1) TWI269378B (en)
WO (1) WO2003019634A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138378A (en) * 2001-10-30 2003-05-14 Anelva Corp Thin film forming method
JP2006278594A (en) * 2005-03-29 2006-10-12 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device
JP2007109928A (en) * 2005-10-14 2007-04-26 Taiyo Nippon Sanso Corp Cleaning method and cleaning apparatus for component of apparatus for manufacturing nitride semiconductor
JP2007231357A (en) * 2006-02-28 2007-09-13 Phyzchemix Corp Apparatus for producing metallic film and method for detoxifying inside of chamber
JP2008166366A (en) * 2006-12-27 2008-07-17 Sharp Corp Semiconductor layer manufacturing method and semiconductor layer manufacturing device and semiconductor device manufactured by using these
JP2008283148A (en) * 2007-05-14 2008-11-20 Tokyo Electron Ltd Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP2008283126A (en) * 2007-05-14 2008-11-20 Tokyo Electron Ltd Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP2009188198A (en) * 2008-02-06 2009-08-20 Taiyo Nippon Sanso Corp Method of manufacturing semiconductor device and substrate treatment apparatus
JP2010045409A (en) * 2003-03-25 2010-02-25 Tokyo Electron Ltd Thin film forming device cleaning method, thin film forming method, and thin film forming device
JP2013191887A (en) * 2013-06-19 2013-09-26 Tokyo Electron Ltd Method for cleaning thin film deposition apparatus, a thin film deposition method, and thin film deposition apparatus
JP6023854B1 (en) * 2015-06-09 2016-11-09 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2017168534A (en) * 2016-03-14 2017-09-21 株式会社東芝 Semiconductor manufacturing apparatus
WO2018043446A1 (en) * 2016-08-31 2018-03-08 国立大学法人 横浜国立大学 Method for cleaning semiconductor production chamber
US10413946B2 (en) 2015-07-09 2019-09-17 Samsung Electronics Co., Ltd. Furnace-type semiconductor apparatus, method of cleaning the same, and method of forming thin film using the same
JP7411696B2 (en) 2022-01-11 2024-01-11 株式会社Kokusai Electric Cleaning method, semiconductor device manufacturing method, substrate processing equipment and program

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875674B2 (en) * 2000-07-10 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device with fluorine concentration
TWI365919B (en) * 2004-12-28 2012-06-11 Tokyo Electron Ltd Film formation apparatus and method of using the same
US20060196527A1 (en) * 2005-02-23 2006-09-07 Tokyo Electron Limited Method of surface processing substrate, method of cleaning substrate, and programs for implementing the methods
JP4895256B2 (en) * 2005-02-23 2012-03-14 東京エレクトロン株式会社 Substrate surface treatment method
CN100447944C (en) * 2005-09-15 2008-12-31 旺宏电子股份有限公司 Dry device and dry method for semiconductor equipment
JP2007158230A (en) * 2005-12-08 2007-06-21 Nec Electronics Corp Cleaning method for plasma etching equipment and plasma etching equipment
WO2008020715A1 (en) * 2006-08-16 2008-02-21 Jong-Ha Park Gas saver for semiconductor manufacturing
KR100807066B1 (en) * 2006-08-31 2008-02-25 동부일렉트로닉스 주식회사 Apparatus for manufacturing a semiconductor device and method of manufactruing a semiconductor device using the apparatus
CN101214487B (en) * 2007-01-04 2010-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 Method for cleaning cavity of semiconductor etching equipment
US7867921B2 (en) 2007-09-07 2011-01-11 Applied Materials, Inc. Reduction of etch-rate drift in HDP processes
US7745350B2 (en) 2007-09-07 2010-06-29 Applied Materials, Inc. Impurity control in HDP-CVD DEP/ETCH/DEP processes
CN101450346B (en) * 2007-12-05 2012-09-05 北京北方微电子基地设备工艺研究中心有限责任公司 Dry cleaning method during preparing semi-conductor
JP2010109245A (en) 2008-10-31 2010-05-13 Toshiba Corp Method of manufacturing semiconductor device
US8110889B2 (en) 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
WO2010129289A2 (en) * 2009-04-28 2010-11-11 Applied Materials, Inc. Decontamination of mocvd chamber using nh3 purge after in-situ cleaning
CN102174690A (en) * 2011-01-13 2011-09-07 中国科学院苏州纳米技术与纳米仿生研究所 MOCVD (metal-organic chemical vapor deposition) graphite disc cleaning device
US8497211B2 (en) 2011-06-24 2013-07-30 Applied Materials, Inc. Integrated process modulation for PSG gapfill
TWI570777B (en) * 2011-12-23 2017-02-11 索泰克公司 Processes and systems for reducing undesired deposits within a reaction chamber associated with a semiconductor deposition system
KR20130089084A (en) * 2012-02-01 2013-08-09 삼성전자주식회사 Substrate treating apparatus and reaction gas removing method using the apparatus
DE102013104105A1 (en) * 2013-04-23 2014-10-23 Aixtron Se MOCVD layer growth process with subsequent multi-stage purification step
JP6868686B2 (en) * 2017-04-18 2021-05-12 東京エレクトロン株式会社 Film forming equipment and its cleaning method
KR102414617B1 (en) 2017-08-17 2022-07-01 삼성전자주식회사 Apparatus for treating substrate and method for cleaning the apparatus
JP6971887B2 (en) * 2018-03-02 2021-11-24 東京エレクトロン株式会社 Film formation method and film formation equipment
JP6956660B2 (en) * 2018-03-19 2021-11-02 東京エレクトロン株式会社 Cleaning method and film forming equipment
JP6773711B2 (en) * 2018-03-27 2020-10-21 株式会社Kokusai Electric Semiconductor device manufacturing methods, substrate processing devices and programs
SG11202102590YA (en) * 2018-10-31 2021-04-29 Kokusai Electric Corp Method of manufacturing semiconductor device, substrate processing apparatus, and program
JP7113041B2 (en) * 2020-03-04 2022-08-04 株式会社Kokusai Electric Cleaning method, semiconductor device manufacturing method, substrate processing apparatus and program
CN112430804A (en) * 2020-11-04 2021-03-02 苏州尚勤光电科技有限公司 Method for removing deposit on surface of graphite disc
CN112885709B (en) * 2021-01-13 2024-03-22 中电化合物半导体有限公司 Preparation method of silicon carbide epitaxial structure and semiconductor device
KR20230072194A (en) 2021-11-17 2023-05-24 신학수 A Multi Gas Supplying Type of a Purge System
CN114369812A (en) * 2021-12-15 2022-04-19 北京博纳晶科科技有限公司 Cleaning method of chemical vapor deposition equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563367A (en) * 1984-05-29 1986-01-07 Applied Materials, Inc. Apparatus and method for high rate deposition and etching
JPS6370428A (en) * 1986-09-11 1988-03-30 Anelva Corp Plasma treating apparatus
JPH01152274A (en) * 1987-12-09 1989-06-14 Iwatani Internatl Corp Method for removing pollutant after chlorine fluoride cleaning in film forming operation system
JPH0663097B2 (en) * 1989-01-18 1994-08-17 岩谷産業株式会社 Decontamination method after cleaning with fluoride gas in film forming operation system
JPH03130368A (en) * 1989-09-22 1991-06-04 Applied Materials Inc Cleaning of semiconductor wafer process device
JP3208820B2 (en) * 1992-03-13 2001-09-17 富士通株式会社 Cleaning method for dry etching equipment
JPH05302172A (en) 1992-04-27 1993-11-16 Kyocera Corp Method for removing halogen remaining in reaction furnace for forming film by glow discharge
JPH05315297A (en) 1992-05-11 1993-11-26 Fujitsu Ltd Cleaning method for vapor growth device, and vapor growth device
JP2783485B2 (en) 1992-06-01 1998-08-06 セントラル硝子株式会社 How to remove chlorine trifluoride gas
JPH06163485A (en) * 1992-11-18 1994-06-10 Kyocera Corp Removing method of residual halogen inside reaction furnace for glow discharge film formation
US5609721A (en) * 1994-03-11 1997-03-11 Fujitsu Limited Semiconductor device manufacturing apparatus and its cleaning method
US5888906A (en) 1996-09-16 1999-03-30 Micron Technology, Inc. Plasmaless dry contact cleaning method using interhalogen compounds
JP3476638B2 (en) * 1996-12-20 2003-12-10 東京エレクトロン株式会社 CVD film forming method
KR100347400B1 (en) * 1998-11-27 2002-08-03 닛뽕덴끼 가부시끼가이샤 A method for manufacturing a semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138378A (en) * 2001-10-30 2003-05-14 Anelva Corp Thin film forming method
JP2010045409A (en) * 2003-03-25 2010-02-25 Tokyo Electron Ltd Thin film forming device cleaning method, thin film forming method, and thin film forming device
JP2006278594A (en) * 2005-03-29 2006-10-12 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device
JP4703230B2 (en) * 2005-03-29 2011-06-15 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP2007109928A (en) * 2005-10-14 2007-04-26 Taiyo Nippon Sanso Corp Cleaning method and cleaning apparatus for component of apparatus for manufacturing nitride semiconductor
JP2007231357A (en) * 2006-02-28 2007-09-13 Phyzchemix Corp Apparatus for producing metallic film and method for detoxifying inside of chamber
JP2008166366A (en) * 2006-12-27 2008-07-17 Sharp Corp Semiconductor layer manufacturing method and semiconductor layer manufacturing device and semiconductor device manufactured by using these
JP4553891B2 (en) * 2006-12-27 2010-09-29 シャープ株式会社 Semiconductor layer manufacturing method
US8389389B2 (en) 2006-12-27 2013-03-05 Sharp Kabushiki Kaisha Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
JP2008283126A (en) * 2007-05-14 2008-11-20 Tokyo Electron Ltd Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP2008283148A (en) * 2007-05-14 2008-11-20 Tokyo Electron Ltd Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP2009188198A (en) * 2008-02-06 2009-08-20 Taiyo Nippon Sanso Corp Method of manufacturing semiconductor device and substrate treatment apparatus
JP2013191887A (en) * 2013-06-19 2013-09-26 Tokyo Electron Ltd Method for cleaning thin film deposition apparatus, a thin film deposition method, and thin film deposition apparatus
JP6023854B1 (en) * 2015-06-09 2016-11-09 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2017005090A (en) * 2015-06-09 2017-01-05 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing device, and program
US10413946B2 (en) 2015-07-09 2019-09-17 Samsung Electronics Co., Ltd. Furnace-type semiconductor apparatus, method of cleaning the same, and method of forming thin film using the same
JP2017168534A (en) * 2016-03-14 2017-09-21 株式会社東芝 Semiconductor manufacturing apparatus
WO2018043446A1 (en) * 2016-08-31 2018-03-08 国立大学法人 横浜国立大学 Method for cleaning semiconductor production chamber
JP7411696B2 (en) 2022-01-11 2024-01-11 株式会社Kokusai Electric Cleaning method, semiconductor device manufacturing method, substrate processing equipment and program

Also Published As

Publication number Publication date
US6903025B2 (en) 2005-06-07
EP1422749A1 (en) 2004-05-26
CN1473353A (en) 2004-02-04
KR20030044061A (en) 2003-06-02
WO2003019634A1 (en) 2003-03-06
CN1282992C (en) 2006-11-01
TWI269378B (en) 2006-12-21
KR100690459B1 (en) 2007-03-09
US20040002220A1 (en) 2004-01-01

Similar Documents

Publication Publication Date Title
JP2003077839A (en) Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device
JP4179311B2 (en) Film forming method, film forming apparatus, and storage medium
TWI442475B (en) Method of manufacturing a semiconductor device, method of cleaning a process vessel, and substrate processing apparatus
CN1327485C (en) Cleaning method of thin tilm forming device
JP5044579B2 (en) Thin film forming apparatus cleaning method, thin film forming method, thin film forming apparatus, and program
JP6242095B2 (en) Cleaning method, semiconductor device manufacturing method, substrate processing apparatus, and program
US6899767B2 (en) Method of cleaning processing chamber of semiconductor processing apparatus
KR0184269B1 (en) Cleaning method for semiconductor wafer processing apparatus
KR101630016B1 (en) Method of cleaning, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP5576101B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR20080055673A (en) Thermal f2 etch process for cleaning cvd chambers
JP2002334869A (en) Method and device for forming silicon nitride film, and method for preprocessing of cleaning thereof
JPH06330323A (en) Production device for semiconductor device and cleaning method therefor
JP2004311929A (en) Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
TWI768619B (en) Cleaning method of reaction tube, manufacturing method of semiconductor device, and substrate processing apparatus
KR20130012671A (en) Method of cleaning a semiconductor device manufacturing apparatus
JP4541739B2 (en) Semiconductor device manufacturing method, cleaning method, and semiconductor device manufacturing apparatus
WO2010008102A1 (en) Cleaning method of apparatus for depositing carbon containing film
JP5710033B2 (en) Thin film forming apparatus cleaning method, thin film forming method, thin film forming apparatus, and program
JP5250141B2 (en) Thin film forming apparatus cleaning method, thin film forming method, thin film forming apparatus, and program
TWI738053B (en) Cleaning method, manufacturing method of semiconductor device, substrate processing device and recording medium
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JP5197554B2 (en) Thin film forming apparatus cleaning method and thin film forming method
JP5087653B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP2018166190A (en) Method of suppressing sticking of cleaning by-product, method of cleaning inside of reaction chamber using the same, and room temperature deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081027