JPH06163485A - Removing method of residual halogen inside reaction furnace for glow discharge film formation - Google Patents

Removing method of residual halogen inside reaction furnace for glow discharge film formation

Info

Publication number
JPH06163485A
JPH06163485A JP30834792A JP30834792A JPH06163485A JP H06163485 A JPH06163485 A JP H06163485A JP 30834792 A JP30834792 A JP 30834792A JP 30834792 A JP30834792 A JP 30834792A JP H06163485 A JPH06163485 A JP H06163485A
Authority
JP
Japan
Prior art keywords
gas
reaction furnace
heater
glow discharge
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30834792A
Other languages
Japanese (ja)
Inventor
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30834792A priority Critical patent/JPH06163485A/en
Publication of JPH06163485A publication Critical patent/JPH06163485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the reliability upon the film formation characteristics to be enhanced further enabling the corrosion inside a reaction furnace to be avoided for making the longevity of the furnace feasible, by a method wherein He gas plasma is generated after a specified cleaning is conducted and a specified gas is passed through a reaction furnace with a heated heater. CONSTITUTION:A film forming gas is led into a reaction furnace 1 wherein a substrate 10 for film formation and a heater 3 to set up a specific temperature are provided and then glow discharge is initiated inside the reaction furnace 1 to form an amorphous silicon base film on the substrate 10. Next, an etching gas containing halogen element is led into the reaction furnace 1 after taking out the film forming substrate 10 to perform the cleaning step and then air or an inert gas or hydrogen gas is passed through the reaction furnace 1 in the heating state of a heater 3. Finally, He gas is led into the reaction furnace 1 in the heating state of the heater 3 simulatneously producing plasma by the He gas to remove any resisdual halogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成膜用又はエッチング用
の反応炉内部に残留したハロゲンを除去して成膜特性の
信頼性を高め且つ反応炉内部の腐食を防いで反応炉の長
寿命化を達成することができたグロー放電成膜用反応炉
内部の残留ハロゲン除去方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention removes halogens remaining in a reaction furnace for film formation or etching to improve the reliability of film formation characteristics and prevents corrosion inside the reaction furnace, thereby prolonging the life of the reaction furnace. The present invention relates to a method for removing residual halogen in a reaction furnace for glow discharge film formation, which is capable of achieving high temperature.

【0002】[0002]

【従来技術及びその問題点】アモルファスシリコン膜を
グロー放電分解法により形成した場合には、その成膜用
原料であるシランガスの分解に伴って放電用電極板やそ
の他の反応炉内部が粉体等により汚染される。このよう
な粉体は同じグロー放電分解装置を用いて次のアモルフ
ァスシリコン膜(以下、アモルファスシリコンをa−S
iと略す)を形成しようとすると成膜中に取り込まれて
成膜欠陥を引き起こし、その欠陥部で特性劣化が生じ
る。
2. Description of the Related Art When an amorphous silicon film is formed by a glow discharge decomposition method, the discharge electrode plate and other insides of the reaction furnace are powdered as the film forming raw material silane gas is decomposed. Polluted by. Such a powder is formed by using the same glow discharge decomposition apparatus as the following amorphous silicon film (hereinafter, amorphous silicon is referred to as aS
When a film is abbreviated as i), it is taken in during film formation to cause a film formation defect, and the characteristic deterioration occurs in the defect portion.

【0003】かかる問題点を解決するために、a−Si
膜を形成したグロー放電分解装置の反応炉内部へ、例え
ばCF4 ガス、SF6 ガス、ClF3 ガス及びNF3
ス等のフッ素系エッチングガスを導入し、必要に応じて
プラズマを発生させ、これに伴うエッチングにより上記
粉体をガス化して除去している。
In order to solve such a problem, a-Si
A fluorine-based etching gas such as CF 4 gas, SF 6 gas, ClF 3 gas, and NF 3 gas is introduced into the reaction furnace of the glow discharge decomposition apparatus on which a film is formed, and plasma is generated if necessary, and The powder is gasified and removed by etching accompanying the above.

【0004】しかしながら、このようなフッ素系エッチ
ングガスなどを用いた場合には上記のようなガスエッチ
ング洗浄を行うことができるが、その反面、そのフッ素
が反応炉内部に残留するという問題点がある。
However, when such a fluorine-based etching gas is used, the above gas etching cleaning can be performed, but on the other hand, there is a problem that the fluorine remains inside the reaction furnace. .

【0005】かかる問題点を解決するために、そのガス
エッチング洗浄の後に、分子状態の水素を流してフッ素
を除去するというフッ素除去方法が提案されている(特
開平1−152274号参照)。
In order to solve such a problem, there has been proposed a fluorine removing method of removing molecular fluorine by flowing hydrogen in a molecular state after the gas etching cleaning (see JP-A-1-152274).

【0006】また、分子状態のシラン、ホスフィン、ア
ルシン、ジボラン、アンモニア及び低級パラフィン炭化
水素の少なくとも一種である水素含有化合物ガスを流し
てフッ素を除去するというフッ素除去方法も提案されて
いる(特開平2−190472号参照)。
Further, a method for removing fluorine has been proposed in which a fluorine-containing compound gas, which is at least one of silane, phosphine, arsine, diborane, ammonia and lower paraffin hydrocarbons in a molecular state, is flowed to remove fluorine. 2-190472).

【0007】しかしながら、上記提案のガスエッチング
洗浄及びフッ素除去方法によっても未だ満足し得る程度
にフッ素が除去されないということが種々の実験により
判明した。
However, various experiments have revealed that the above proposed gas etching cleaning and fluorine removal methods still do not remove fluorine to a satisfactory degree.

【0008】従って、本発明の目的は、成膜特性の信頼
性を更に一段と高め、しかも、反応炉内部の腐食を防い
で反応炉の長寿命化を達成することのできたグロー放電
成膜用反応炉内部の残留ハロゲン除去方法を提供するも
のである。
Therefore, an object of the present invention is to further improve the reliability of film forming characteristics, and further, to prevent corrosion inside the reaction furnace and to extend the life of the reaction furnace. A method for removing residual halogen inside a furnace is provided.

【0009】[0009]

【問題点を解決するための手段】本発明のグロー放電成
膜用反応炉内部の残留ハロゲン除去方法は、被成膜用基
体と、その基体を所定の温度に設定するためのヒーター
が設けられた反応炉内部にa−Si系成膜用ガスを導入
するとともに、反応炉内部にグロー放電を発生させて、
上記基体にa−Si系膜を形成し、この成膜基体を反応
炉内部より取り出した後の反応炉内部にハロゲン元素を
含むエッチング用ガスを導入してクリーニングを行い、
次いで上記ヒーターが加熱状態の反応炉内部に空気又は
不活性ガス又は水素ガスを通過させ、然る後に上記ヒー
ターが加熱状態の反応炉内部にヘリウムガスを導入する
とともに、反応炉内部にヘリウムガスによるプラズマを
発生させて残留ハロゲンを除去することを特徴とする。
The method for removing residual halogen in a glow discharge film forming reactor according to the present invention comprises a substrate for film formation and a heater for setting the substrate at a predetermined temperature. The gas for a-Si film formation is introduced into the reaction furnace, and the glow discharge is generated inside the reaction furnace.
An a-Si-based film is formed on the substrate, the film-forming substrate is taken out of the reaction furnace, and an etching gas containing a halogen element is introduced into the reaction furnace for cleaning.
Next, the heater allows air or an inert gas or hydrogen gas to pass through the inside of the reaction furnace in the heated state, after which the heater introduces helium gas into the reaction furnace in the heated state, and It is characterized in that plasma is generated to remove residual halogen.

【0010】[0010]

【作用】a−Si膜を形成したグロー放電分解装置の反
応炉内部には、その成膜用基板の加熱用ヒーターが設け
られているが、そのヒーターにより加熱せずに上記ガス
エッチング洗浄を行っており、これにより、そのガスに
よりヒーター表面が腐食せず、そのヒーターの寿命を著
しく高めることができる。しかしながら、その後のフッ
素除去でも、そのヒーターを取り付けたまま行うが、既
に提案されたフッ素除去方法によりフッ素除去を行って
も、このヒーターにも依然として幾分かフッ素が残留し
ていることが判明した。このような残留フッ素の存在
は、特にa−Si膜の成膜時にヒーターを約300〜4
00℃にまで高めるので、そのヒーターの高エネルギー
状態下でフッ素が放出するということにより判った。
The heater for heating the film-forming substrate is provided inside the reaction furnace of the glow discharge decomposition apparatus on which the a-Si film is formed. The gas etching cleaning is performed without heating by the heater. As a result, the heater surface is not corroded by the gas, and the life of the heater can be remarkably extended. However, the subsequent fluorine removal is also performed with the heater still attached, but it was found that some fluorine still remained in this heater even after the fluorine removal was performed by the already proposed fluorine removal method. . The presence of such residual fluorine causes the heater to be about 300 to 4 when forming the a-Si film.
It was found that fluorine was released under the high energy state of the heater since the temperature was raised to 00 ° C.

【0011】そこで、上記構成のグロー放電成膜用反応
炉内部の残留ハロゲン除去方法によれば、上記知見に基
づき反応炉内部にハロゲン元素を含むエッチング用ガス
を導入してクリーニングを行った後の残留ハロゲンの除
去において、上記ヒーターが加熱状態の反応炉内部に空
気又は不活性ガス又は水素ガスを通過させ、然る後に上
記ヒーターが加熱状態の反応炉内部にヘリウムガスを導
入するとともに、反応炉内部にヘリウムガスによるプラ
ズマを発生させて残留ハロゲンを除去する。これによ
り、そのヒーターに付着したハロゲンを除去し、次回の
成膜では、そのヒーターの昇温によるハロゲンの放出を
なくし、その結果、ハロゲン元素を含まない高品質のa
−Si膜を形成する。
Therefore, according to the method for removing residual halogen in the glow discharge film forming reaction furnace having the above-described structure, based on the above knowledge, after the etching gas containing a halogen element is introduced into the reaction furnace and cleaning is performed, In the removal of residual halogen, the heater passes air or an inert gas or hydrogen gas into the heated reaction furnace, and then the heater introduces helium gas into the heated reaction furnace and the reaction furnace The residual halogen is removed by generating a plasma with helium gas inside. This removes the halogen adhering to the heater and eliminates the halogen emission due to the temperature rise of the heater in the next film formation. As a result, high quality a
-Form a Si film.

【0012】また、本発明者は繰り返し行った実験によ
り下記の諸点を確認した。
Further, the present inventor confirmed the following points through repeated experiments.

【0013】本発明によれば、上記ヒーターが加熱状態
であるパージやヘリウムプラズマにおいて、基板温度を
成膜時の基板温度よりも高くするとよい。例えば、成膜
時の基板温度280℃に比べて、280〜330℃に設
定するとよい。しかも、グロー放電分解用電極板や、反
応炉の側壁からのハロゲン放出を促すためにも、それら
を加熱するとよい。グロー放電分解用電極板であれば、
150〜190℃に設定するとよい。反応炉の側壁であ
れば、80〜120℃に設定するとよい。
According to the present invention, it is preferable that the substrate temperature is higher than the substrate temperature at the time of film formation in purging or helium plasma in which the heater is heated. For example, it is preferable to set the temperature to 280 to 330 ° C. compared to the substrate temperature 280 ° C. at the time of film formation. Moreover, in order to promote the release of halogen from the glow discharge decomposition electrode plate and the side wall of the reaction furnace, it is advisable to heat them. If it is an electrode plate for glow discharge decomposition,
It may be set to 150 to 190 ° C. If it is the side wall of the reaction furnace, it may be set to 80 to 120 ° C.

【0014】上記反応炉内部に通過させる空気又は不活
性ガス又は水素ガスのうち、特に不活性ガスが水分を含
有しないので、好適である。
Of the air, the inert gas or the hydrogen gas that is passed through the reaction furnace, the inert gas is particularly preferable because it does not contain water.

【0015】そして、これらのガスを、上記ヒーターが
加熱状態の反応炉内部に導入するに際して、その昇温と
ガスパージにおける昇温時間が30分以上あればよく、
これにより、ハロゲンの放出が行われる。
Then, when these gases are introduced into the reactor in which the heater is heated, the temperature rise and the temperature rise time in the gas purge should be 30 minutes or more,
As a result, halogen is released.

【0016】また、上記ヒーターが加熱状態の反応炉内
部にヘリウムガスを導入するとともに、反応炉内部にヘ
リウムガスによるプラズマを発生させて残留ハロゲンを
除去するに当たっては、ハロゲンの放出が40分で大き
く減衰するので、60分以上の所要時間であればよい。
このプラズマの圧力は、10〜40mTorr、好適に
は20mTorr前後であればよい。また、それに印加
する高周波電力は300〜700W、特に500W以上
が好ましい。
Further, when helium gas is introduced into the reaction furnace in which the heater is heated and plasma is generated in the reaction furnace by the helium gas to remove the residual halogen, the halogen is largely released in 40 minutes. Since it decays, the time required is 60 minutes or more.
The pressure of this plasma may be 10 to 40 mTorr, preferably about 20 mTorr. The high frequency power applied to it is preferably 300 to 700 W, and more preferably 500 W or more.

【0017】[0017]

【実施例】以下、本発明をa−Si感光体ドラムを作製
するグロー放電分解装置を例にとって詳細に説明する。
EXAMPLES The present invention will be described in detail below with reference to a glow discharge decomposition apparatus for producing an a-Si photosensitive drum as an example.

【0018】〔グロー放電分解装置〕図1はグロー放電
分解装置であり、図中、1は円筒形状の金属製反応炉、
2は感光体ドラム装着用の円筒形状の導電性基板支持
体、3は基板加熱用ヒーター、4はa−Siの成膜に用
いられる円筒形状のグロー放電用電極板であり、この電
極板4にはガス噴出口5が形成されており、そして、6
は反応炉内部へガスを導入するためのガス導入口、7は
グロー放電に晒されたガスの残余ガスを排気するための
ガス排出口であり、8は基板支持体2とグロー放電用電
極板4の間でグロー放電を発生させる高周波電源、9は
排気用ポンプである。また、この反応炉1は円筒体1a
と、蓋体1bと、底体1cとからなり、そして、円筒体
1aと蓋体1bとの間、並びに円筒体1aと底体1cと
の間にはそれぞれ絶縁性のリング1dを設けており、こ
れによって高周波電源8の一方の端子は円筒体1aを介
してグロー放電用電極板4と導通しており、他方の端子
は底体1cを介して基板支持体2と導通している。
[Glow Discharge Decomposing Device] FIG. 1 shows a glow discharge decomposing device, in which 1 is a cylindrical metal reaction furnace,
Reference numeral 2 is a cylindrical conductive substrate support for mounting a photosensitive drum, 3 is a substrate heating heater, and 4 is a cylindrical glow discharge electrode plate used for film formation of a-Si. A gas outlet 5 is formed in the
Is a gas inlet for introducing gas into the reaction furnace, 7 is a gas outlet for exhausting the residual gas of the gas exposed to glow discharge, and 8 is the substrate support 2 and the electrode plate for glow discharge. A high frequency power source for generating glow discharge between 4 and 9 is an exhaust pump. Further, the reactor 1 has a cylindrical body 1a.
, A lid 1b and a bottom 1c, and an insulating ring 1d is provided between the cylinder 1a and the lid 1b, and between the cylinder 1a and the bottom 1c. As a result, one terminal of the high-frequency power source 8 is electrically connected to the glow discharge electrode plate 4 through the cylindrical body 1a, and the other terminal is electrically connected to the substrate support 2 through the bottom body 1c.

【0019】このグロー放電分解装置を用いてa−Si
感光体ドラムを作製する場合には、a−Si成膜用のド
ラム状基板10を基板支持体2に装着し、a−Si生成
用ガスをガス導入口6より反応炉内部へ導入し、このガ
スをガス噴出口5を介して基板面へ噴出し、更にヒータ
ー3によって基板を所要の温度に設定するとともに基板
支持体2と電極板4の間でグロー放電を発生させ、これ
により、基板10の周面にa−Si膜が成膜できる。
Using this glow discharge decomposition apparatus, a-Si
In the case of producing a photoconductor drum, the drum-shaped substrate 10 for a-Si film formation is mounted on the substrate support 2, and a-Si generation gas is introduced into the reaction furnace through the gas introduction port 6. Gas is ejected to the surface of the substrate through the gas ejection port 5, the substrate is set to a desired temperature by the heater 3, and a glow discharge is generated between the substrate support 2 and the electrode plate 4, whereby the substrate 10 An a-Si film can be formed on the peripheral surface of.

【0020】本実施例の成膜条件は表1に示す通りであ
る。この場合、反応炉1の円筒体1aは約80℃であ
り、また、電極板4は約150℃であった。
The film forming conditions of this embodiment are as shown in Table 1. In this case, the temperature of the cylindrical body 1a of the reaction furnace 1 was about 80 ° C, and the temperature of the electrode plate 4 was about 150 ° C.

【0021】[0021]

【表1】 [Table 1]

【0022】〔例1〕上記のようにa−Si感光体ドラ
ムを製作した場合、電極板4や反応炉内部には汚染物質
が付着していた。
Example 1 When the a-Si photosensitive drum was manufactured as described above, contaminants adhered to the inside of the electrode plate 4 and the reaction furnace.

【0023】そこで、基板10と概ね同形状のアルミニ
ウム金属からなる導電性ダミー基板を基板支持体2に装
着し、次いでClF3 ガスをガス導入口6より反応炉内
部へ導入し、ガス噴出口5を介してダミー基板へ向けて
噴出し、そのガスを反応炉内部に充満させ、これによっ
てガスエッチングが行われて前記汚染物質がガス化す
る。このガスエッチングの条件は表2に示す通りであ
る。
Therefore, a conductive dummy substrate made of aluminum metal having substantially the same shape as the substrate 10 is mounted on the substrate support 2, then ClF 3 gas is introduced into the reaction furnace through the gas introduction port 6, and the gas injection port 5 is introduced. The gas is ejected toward the dummy substrate through the gas, and the gas is filled in the reaction furnace, whereby gas etching is performed and the contaminant is gasified. The conditions of this gas etching are as shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】次に上記ヒーター3を約300℃に設定
し、更に反応炉1の円筒体1aと、電極板4とにヒータ
ーを設けて、それぞれの設定温度を約100℃、約17
0℃にまで昇温した。そして、下記の条件によりパージ
を行った。
Next, the heater 3 is set to about 300.degree. C., a heater is further provided on the cylindrical body 1a of the reaction furnace 1 and the electrode plate 4, and the respective set temperatures are set to about 100.degree.
The temperature was raised to 0 ° C. Then, purging was performed under the following conditions.

【0026】先ず最初に窒素(N2 )ガスをガス導入口
6より反応炉内部へ導入し、ガス噴出口5を介してダミ
ー基板へ向けて噴出し、そのガスを反応炉内部に充満さ
せ、そして、ガス排出口7より排出する。このN2 ガス
の流入条件は、500sccmの流量で、圧力1Tor
rで流し、約30分間連続してパージを行った。次い
で、到達真空度まで真空引きを行って、N2 ガスを圧力
500Torrになるまで反応炉に充満させるという工
程を、3回繰り返す。
First, nitrogen (N 2 ) gas is introduced into the reaction furnace through the gas introduction port 6, and is ejected toward the dummy substrate through the gas ejection port 5 to fill the reaction furnace with the gas. Then, the gas is discharged from the gas discharge port 7. The N 2 gas inflow condition is a flow rate of 500 sccm and a pressure of 1 Torr.
It was flushed with r and was continuously purged for about 30 minutes. Next, the process of performing vacuuming to the ultimate vacuum and filling the reaction furnace with N 2 gas until the pressure reaches 500 Torr is repeated three times.

【0027】その後に、昇温を継続しながら到達真空度
まで真空引きを行って、表3の条件により反応炉内部に
ヘリウム(He)ガスを導入するとともに、反応炉内部
にヘリウムガスによるプラズマを発生させた。
After that, vacuuming is performed up to the ultimate vacuum while continuing to raise the temperature, and helium (He) gas is introduced into the reaction furnace under the conditions of Table 3, and plasma generated by helium gas is introduced into the reaction furnace. Raised.

【0028】[0028]

【表3】 [Table 3]

【0029】次に、上記のようにガスエッチングとフッ
素除去が行われたグロー放電分解装置を用いて、先の成
膜条件と同じにしてa−Si感光体ドラムを再度作製し
た。そして、このa−Si感光体ドラムの膜のフッ素量
を測定したところ、0.1ppm以下であった。尚、こ
のフッ素量は2次イオン質量分析計を用いたSIMS分
析法により求めた。
Next, using the glow discharge decomposition apparatus in which the gas etching and the fluorine removal were performed as described above, the a-Si photosensitive drum was re-produced under the same film forming conditions as above. Then, when the amount of fluorine in the film of the a-Si photosensitive drum was measured, it was 0.1 ppm or less. The amount of fluorine was determined by SIMS analysis method using a secondary ion mass spectrometer.

【0030】また、ガス排出口7にポートを設けて、排
ガスをQ−Mass装置内に真空引きを行って、HFガ
スのピークを検知する方法により、フッ素量を測定した
が、何ら検知できなかった。更にHF検知管を用いて測
定しても何ら反応がなかった。しかも、和光純薬工業株
式会社製のポナールキットFを用いて、反応炉の構成部
材のフッ素量を測定したところ、0.5ppmであっ
た。
The amount of fluorine was measured by a method in which a port was provided at the gas outlet 7 and the exhaust gas was evacuated into the Q-Mass apparatus to detect the peak of HF gas. It was Furthermore, there was no reaction when measured using an HF detector tube. Moreover, when the amount of fluorine in the constituent members of the reaction furnace was measured using Ponal Kit F manufactured by Wako Pure Chemical Industries, Ltd., it was 0.5 ppm.

【0031】〔例2〕本例においては、〔例1〕と同様
なガスエッチングとフッ素除去を行うに当たって、反応
炉内部にヘリウムガスを導入して、そのプラズマを発生
させることをしないで、その他はすべて同じ工程を取っ
た。
[Example 2] In this example, in performing the same gas etching and fluorine removal as in [Example 1], helium gas was not introduced into the reaction furnace to generate plasma thereof. Took all the same steps.

【0032】このフッ素除去が行われたグロー放電分解
装置を用いて、先の成膜条件と同じにしてa−Si感光
体ドラムを再度作製し、そのa−Si感光体ドラムの膜
のフッ素量を測定したところ、2ppm以下であった。
Using the glow discharge decomposition apparatus from which fluorine has been removed, an a-Si photoconductor drum is produced again under the same film forming conditions as above, and the amount of fluorine in the film of the a-Si photoconductor drum is changed. Was 2 ppm or less.

【0033】また、Q−Mass装置によるフッ素量
は、そのピークが0.20であり、更にHF検知管を用
いて測定したところ、0.1ppmであった。しかも、
ポナールキットFを用いて、反応炉の構成部材のフッ素
量を測定したところ、5ppmであった。
The peak of the amount of fluorine by the Q-Mass apparatus was 0.20, and when measured using an HF detector tube, it was 0.1 ppm. Moreover,
When the amount of fluorine in the constituent members of the reaction furnace was measured using Ponard Kit F, it was 5 ppm.

【0034】〔例3〕本実施例中のフッ素除去に際し
て、ヒーター3を昇温させることなく、他はすべて同じ
条件によりa−Si感光体ドラムを作製し、そして、こ
のa−Si感光体ドラムの膜のフッ素量を測定したとこ
ろ、その膜方向にわたって周期的に変化しており、その
最大値で350ppm、その最小値で180ppmであ
った。このような周期的な変動は、ヒーター3のオン−
オフと対応して変化しており、この実験結果からヒータ
ー3に表面に吸着したフッ素が、成膜時のヒーター3の
昇温により放出され、膜中に取り込まれていると考え
る。
Example 3 In removing fluorine in the present example, an a-Si photosensitive drum was prepared under the same conditions except that the heater 3 was not heated, and the a-Si photosensitive drum was prepared. When the amount of fluorine in the film of No. 2 was measured, it was periodically changed in the film direction, and the maximum value was 350 ppm and the minimum value was 180 ppm. Such a periodic fluctuation is caused by turning on the heater 3.
From the experimental results, it is considered that the fluorine adsorbed on the surface of the heater 3 is released by the temperature rise of the heater 3 during film formation and is taken into the film.

【0035】また、本発明者は本実施例において、フッ
素系エッチングガスにCF4 、SF6 、NF3 、F2
を用いてガスエッチング洗浄を行っても同様な結果が得
られた。
Further, the present inventor obtained the same result in the present embodiment even when the gas etching cleaning was performed using CF 4 , SF 6 , NF 3 , F 2 or the like as the fluorine-based etching gas.

【0036】更に上記実施例においては、N2 ガスを導
入してフッ素除去を行ったが、それ以外にArなどの不
活性ガス又は空気又は水素ガスを用いても同様な結果が
得られた。
Further, in the above embodiment, N 2 gas was introduced to remove fluorine, but the same result was obtained by using an inert gas such as Ar or air or hydrogen gas.

【0037】[0037]

【発明の効果】以上の通り、本発明のグロー放電成膜用
反応炉内部の残留ハロゲン除去方法によれば、a−Si
系膜が形成された成膜基体を反応炉内部より取り出し、
その後に反応炉内部にハロゲン元素を含むエッチング用
ガスを導入してクリーニングを行い、次いでヒーターが
加熱状態の反応炉内部に空気又は不活性ガス又は水素ガ
スを通過させ、然る後にヒーターが加熱状態の反応炉内
部にヘリウムガスを導入するとともに、反応炉内部にヘ
リウムガスによるプラズマを発生させて残留ハロゲンを
除去する。これにより、そのヒーターに付着したハロゲ
ンを除去し、次回の成膜では、そのヒーターの昇温によ
るハロゲンの放出をなくし、その結果、ハロゲン元素を
含まない高品質のa−Si膜を形成できた。
As described above, according to the method for removing residual halogen in the glow discharge film forming reactor of the present invention, a-Si
The film-forming substrate on which the system film has been formed is taken out of the reaction furnace,
After that, an etching gas containing a halogen element is introduced into the reaction furnace for cleaning, and then the heater is allowed to pass air or an inert gas or hydrogen gas into the heated reaction furnace, after which the heater is heated. The helium gas is introduced into the reaction furnace and the plasma is generated by the helium gas inside the reaction furnace to remove the residual halogen. As a result, the halogen attached to the heater was removed, and in the next film formation, the halogen was not released due to the temperature rise of the heater, and as a result, a high-quality a-Si film containing no halogen element could be formed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例におけるグロー放電分解装置の概略図で
ある。
FIG. 1 is a schematic view of a glow discharge decomposition apparatus in an example.

【符号の説明】[Explanation of symbols]

1 金属製反応炉 1a 円筒体 1b 蓋体 1d リング 3 基板加熱用ヒーター 4 グロー放電用電極板 8 高周波電源 1 Metal Reaction Furnace 1a Cylindrical Body 1b Lid 1d Ring 3 Substrate Heating Heater 4 Glow Discharge Electrode Plate 8 High Frequency Power Supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被成膜用基体と該基体を所定の温度に設
定するためのヒーターが設けられた反応炉内部にアモル
ファスシリコン系成膜用ガスを導入するとともに、該反
応炉内部にグロー放電を発生させて、上記基体にアモル
ファスシリコン系膜を形成し、該成膜基体を反応炉内部
より取り出した後の該反応炉内部にハロゲン元素を含む
エッチング用ガスを導入してクリーニングを行い、次い
で上記ヒーターが加熱状態の反応炉内部に空気又は不活
性ガス又は水素ガスを通過させ、然る後に上記ヒーター
が加熱状態の反応炉内部にヘリウムガスを導入するとと
もに、該反応炉内部にヘリウムガスによるプラズマを発
生させて残留ハロゲンを除去することを特徴とするグロ
ー放電成膜用反応炉内部の残留ハロゲン除去方法。
1. An amorphous silicon film-forming gas is introduced into a reaction furnace provided with a film-forming substrate and a heater for setting the substrate to a predetermined temperature, and glow discharge is also introduced into the reaction furnace. To form an amorphous silicon film on the substrate, and after removing the film-forming substrate from the inside of the reaction furnace, an etching gas containing a halogen element is introduced into the inside of the reaction furnace to perform cleaning. The heater allows air or an inert gas or hydrogen gas to pass through the inside of the reactor in a heated state, and then the heater introduces helium gas into the inside of the reactor in a heated state. A method for removing residual halogen in a reactor for glow discharge film formation, which comprises removing residual halogen by generating plasma.
JP30834792A 1992-11-18 1992-11-18 Removing method of residual halogen inside reaction furnace for glow discharge film formation Pending JPH06163485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30834792A JPH06163485A (en) 1992-11-18 1992-11-18 Removing method of residual halogen inside reaction furnace for glow discharge film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30834792A JPH06163485A (en) 1992-11-18 1992-11-18 Removing method of residual halogen inside reaction furnace for glow discharge film formation

Publications (1)

Publication Number Publication Date
JPH06163485A true JPH06163485A (en) 1994-06-10

Family

ID=17979972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30834792A Pending JPH06163485A (en) 1992-11-18 1992-11-18 Removing method of residual halogen inside reaction furnace for glow discharge film formation

Country Status (1)

Country Link
JP (1) JPH06163485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019634A1 (en) * 2001-08-30 2003-03-06 Kabushiki Kaisha Toshiba Purging method for semiconductor production device and production method for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019634A1 (en) * 2001-08-30 2003-03-06 Kabushiki Kaisha Toshiba Purging method for semiconductor production device and production method for semiconductor device
US6903025B2 (en) 2001-08-30 2005-06-07 Kabushiki Kaisha Toshiba Method of purging semiconductor manufacturing apparatus and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR102158307B1 (en) Plasma treatment process to improve in-situ chamber cleaning efficiency in plasma processing chamber
KR100855597B1 (en) Sulfur hexafluoride remote plasma source clean
US6872323B1 (en) In situ plasma process to remove fluorine residues from the interior surfaces of a CVD reactor
CN1282992C (en) Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device
US20040139983A1 (en) Cleaning of CVD chambers using remote source with CXFYOZ based chemistry
KR100732932B1 (en) Low temperature cvd chamber cleaning using dilute nf3
US20030037802A1 (en) Semiconductor treating apparatus and cleaning method of the same
JPH0831451B2 (en) Cleaning method for plasma reactor
CN1644251A (en) Chamber cleaning method
KR100755804B1 (en) Cleaning method of apparatus for depositing Al-containing metal film and Al-containing metal nitride film
JP3657942B2 (en) Method for cleaning semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP3004696B2 (en) Cleaning method for chemical vapor deposition equipment
JP2006324663A (en) Method of cleaning contaminated tool component
JP5178342B2 (en) Deposit removing method and deposited film forming method
JP2618817B2 (en) Non-plasma cleaning method in semiconductor manufacturing equipment
JP2013536322A (en) Deposition chamber cleaning using in situ activation of molecular fluorine
JPH06163485A (en) Removing method of residual halogen inside reaction furnace for glow discharge film formation
JPH05302172A (en) Method for removing halogen remaining in reaction furnace for forming film by glow discharge
JPH05243163A (en) Method of removing residual halogen inside reaction oven
JPH0529285A (en) Cleaning method and semiconductor manufacturing device
JP3820212B2 (en) Method for conditioning a CVD chamber after CVD chamber cleaning
JPH09148255A (en) Cleaning method in reaction container
JPH01200628A (en) Dry etching
JPH03170678A (en) Method for cleaning reaction vessel
JPH09320963A (en) Adjusting method after cleaning of cvd chamber