JP2010162437A - Detoxification apparatus and detoxification method of fluorine-containing waste liquid - Google Patents

Detoxification apparatus and detoxification method of fluorine-containing waste liquid Download PDF

Info

Publication number
JP2010162437A
JP2010162437A JP2009004594A JP2009004594A JP2010162437A JP 2010162437 A JP2010162437 A JP 2010162437A JP 2009004594 A JP2009004594 A JP 2009004594A JP 2009004594 A JP2009004594 A JP 2009004594A JP 2010162437 A JP2010162437 A JP 2010162437A
Authority
JP
Japan
Prior art keywords
waste liquid
fluorine
water quality
reaction tower
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009004594A
Other languages
Japanese (ja)
Other versions
JP5085574B2 (en
Inventor
Kazutoshi Nagasawa
一利 長澤
Akio Nagasawa
章雄 長澤
Yoshihito Ichinose
義人 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALPHA TEKKU KK
Original Assignee
ALPHA TEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALPHA TEKKU KK filed Critical ALPHA TEKKU KK
Priority to JP2009004594A priority Critical patent/JP5085574B2/en
Publication of JP2010162437A publication Critical patent/JP2010162437A/en
Application granted granted Critical
Publication of JP5085574B2 publication Critical patent/JP5085574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an detoxification apparatus and an detoxification method of a fluorine-containing waste liquid which can effectively remove an fluorine ion from the waste liquid of an alkaline scrubber. <P>SOLUTION: A NaF-containing waste liquid contained in the alkaline scrubber is stored in a water-quality regulating tank 1 and the stored waste liquid is added with HCl to be acidic. The acidic waste liquid is conveyed to a reaction tower 5 filled with CaCO<SB>3</SB>while being compressed with a pump 4. CaCO<SB>3</SB>filled in the reaction tower 5 reacts with NaF in the waste liquid to generate CaF<SB>2</SB>and Na<SB>2</SB>CO<SB>3</SB>. Since Na<SB>2</SB>CO<SB>3</SB>generated in the reaction is decomposed and removed by HCl added beforehand, a back reaction is suppressed and more fluorine ions are removed in the reaction tower 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フッ素含有廃液の除害装置及び除害方法に関し、より詳しくは、半導体製造工程などで発生したフッ素含有廃液の除害装置及び除害方法に関する。   The present invention relates to an apparatus and method for removing fluorine-containing waste liquid, and more particularly to an apparatus and method for removing fluorine-containing waste liquid generated in a semiconductor manufacturing process and the like.

半導体製造において、酸化シリコン膜等のエッチング工程でフッ化水素水溶液(フッ酸)やフッ素を含むガスが用いられる。このようなエッチング工程で発生した廃液や排ガスはフッ素(フッ化物やフッ素イオン等)を含むため、フッ素除去等の除害処理を行ってから排出する必要がある。   In semiconductor manufacturing, a hydrogen fluoride aqueous solution (hydrofluoric acid) or a gas containing fluorine is used in an etching process of a silicon oxide film or the like. Since the waste liquid and exhaust gas generated in such an etching process contain fluorine (fluoride, fluorine ion, etc.), it is necessary to discharge after performing detoxification treatment such as fluorine removal.

フッ酸(HF)を含む廃液において、フッ酸濃度が高い廃液の場合には、廃液を炭酸カルシウムを充填した反応槽に通じて処理する方法がある。この方法によれば、反応塔内に置いてフッ酸と炭酸カルシウムとが反応して、フッ素はフッ化カルシウムとして反応塔内に吸着・固定される。一方、フッ酸濃度が低い廃液の場合には、キレート樹脂等で廃液中のフッ酸を濃縮し、このフッ酸が濃縮された廃液を高濃度廃液と混ぜて、上述の反応塔で処理する方法がある。   In a waste liquid containing hydrofluoric acid (HF), in the case of a waste liquid having a high hydrofluoric acid concentration, there is a method of treating the waste liquid through a reaction tank filled with calcium carbonate. According to this method, hydrofluoric acid and calcium carbonate react in a reaction tower, and fluorine is adsorbed and fixed in the reaction tower as calcium fluoride. On the other hand, in the case of a waste liquid having a low hydrofluoric acid concentration, a method of concentrating the hydrofluoric acid in the waste liquid with a chelate resin or the like, mixing the waste liquid enriched with this hydrofluoric acid with a high concentration waste liquid, and treating it in the above-mentioned reaction tower There is.

特開平6−63561号公報JP-A-6-63561 特開11−156355号公報JP 11-156355 A

一方、少量のフッ化水素を含む排ガスの処理には、アルカリ水溶液を排ガスに散布してフッ化水素を吸着するアルカリスクラバーが用いられる。このアルカリスクラバーでは、下記の(1)式に示す反応で排ガス中のフッ素を除去する。   On the other hand, for the treatment of exhaust gas containing a small amount of hydrogen fluoride, an alkali scrubber that spreads an alkaline aqueous solution on the exhaust gas and adsorbs hydrogen fluoride is used. In this alkali scrubber, fluorine in the exhaust gas is removed by a reaction represented by the following formula (1).

HF + NaOH → NaF + H2O …(1)
ところで、上述のアルカリスクラバーで発生したフッ化ナトリウムを含む廃液は、フッ素イオンの排出基準を定めた環境基準により、そのまま河川等に排出することができない。このため、廃液中のフッ素イオンを除去する必要がある。
HF + NaOH → NaF + H 2 O (1)
By the way, the waste liquid containing sodium fluoride generated in the above-mentioned alkali scrubber cannot be discharged as it is into a river or the like according to the environmental standard that defines the discharge standard of fluorine ions. For this reason, it is necessary to remove the fluorine ions in the waste liquid.

そこで、前述のアルカリスクラバーからの廃液を炭酸カルシウムで処理して、廃液中のフッ素イオンを不溶性のフッ化カルシウムとして除去することが考えられる。しかし、アルカリスクラバーからの廃液に含まれるフッ化ナトリウムと炭酸カルシウムとの反応では逆反応が発生しやすく、廃液から効率よくフッ素イオンを除去するのが困難である。   Therefore, it is conceivable to treat the waste liquid from the aforementioned alkali scrubber with calcium carbonate to remove fluorine ions in the waste liquid as insoluble calcium fluoride. However, the reverse reaction is likely to occur in the reaction between sodium fluoride and calcium carbonate contained in the waste liquid from the alkali scrubber, and it is difficult to efficiently remove fluorine ions from the waste liquid.

本発明はアルカリスクラバーからの廃液から効率よくフッ素イオンを除去することができるフッ素含有廃液の除害装置及び除害方法を提供することを目的とする。   An object of the present invention is to provide a fluorine-containing waste liquid abatement apparatus and a detoxification method capable of efficiently removing fluorine ions from a waste liquid from an alkali scrubber.

一観点によれば、アルカリ金属フッ化物塩を含む廃液に酸を添加して前記廃液を酸性にする水質調整槽と、前記酸性の廃液を炭酸カルシウムに接触させて、前記廃液中のフッ化物イオンをフッ化カルシウムとして廃液から分離する反応塔とを備えることを特徴とするフッ素含有廃液の除害装置が提供される。   According to one aspect, a water quality adjusting tank for adding acid to a waste liquid containing an alkali metal fluoride salt to make the waste liquid acidic, and bringing the acidic waste liquid into contact with calcium carbonate, and fluoride ions in the waste liquid There is provided a fluorine-containing waste liquid detoxifying device comprising a reaction tower that separates from a waste liquid as calcium fluoride.

上記一観点によれば、炭酸カルシウムが充填された反応塔による廃液処理に先立って、アルカリ金属フッ化物塩(例えばフッ化ナトリウム)を含む廃液に酸(例えば塩酸)を添加してその廃液を酸性にする。反応塔で生成した炭酸ナトリウムは、廃液に添加された酸によって分解・除去される。このため、フッ素イオンを吸収・固定する反応を促進することができ、フッ素イオンの除去率が向上する。   According to the above aspect, prior to the waste liquid treatment by the reaction tower filled with calcium carbonate, acid (for example, hydrochloric acid) is added to the waste liquid containing alkali metal fluoride salt (for example, sodium fluoride) to make the waste liquid acidic. To. The sodium carbonate produced in the reaction tower is decomposed and removed by the acid added to the waste liquid. For this reason, the reaction which absorbs and fixes a fluorine ion can be accelerated | stimulated, and the removal rate of a fluorine ion improves.

図1は、第1実施形態に係るフッ素含有廃液の除害装置を示す図である。FIG. 1 is a view showing a fluorine-containing waste liquid abatement apparatus according to the first embodiment. 図2は、第1実施形態の実験例に用いた装置構成を示す図である。FIG. 2 is a diagram illustrating a device configuration used in the experimental example of the first embodiment. 図3は、第2実施形態に係るフッ素含有廃液の除害装置を示す図である。FIG. 3 is a view showing a fluorine-containing waste liquid abatement apparatus according to the second embodiment. 図4は、第2実施形態の実験例に係るフッ素含有廃液の除害装置の各段でのフッ素イオン濃度を示す図である。FIG. 4 is a diagram showing the fluorine ion concentration at each stage of the fluorine-containing waste liquid abatement apparatus according to the experimental example of the second embodiment.

以下、発明を実施するための形態について図面を参照しつつ説明する。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.

(第1実施形態)
以下、第1実施形態に係るフッ素含有廃液の除害方法について説明する。
(First embodiment)
Hereinafter, the detoxification method of the fluorine-containing waste liquid according to the first embodiment will be described.

アルカリスクラバーから排出されたフッ化ナトリウムを含む廃液を炭酸カルシウムに接触させると、下記の(2)式に示す反応が起こり、フッ素イオンがフッ化カルシウムとして除去される。   When the waste liquid containing sodium fluoride discharged from the alkali scrubber is brought into contact with calcium carbonate, the reaction shown in the following formula (2) occurs, and fluorine ions are removed as calcium fluoride.

2NaF+CaCO3→CaF2+Na2CO3 …(2)
上記(2)式に示す反応はF-イオンとCO3 2-イオンとの置換反応であり、可逆的に進行する。このため、廃液中の炭酸ナトリウムの濃度が高い場合には、正反応と逆反応とが拮抗してフッ化ナトリウム(フッ素イオン)の除去が進まなくなる。したがって、フッ素イオンの除去を進めるためには、(2)式の反応生成物である炭酸ナトリウムを除去する必要がある。
2NaF + CaCO 3 → CaF 2 + Na 2 CO 3 (2)
The reaction shown in the above formula (2) is a substitution reaction between F - ions and CO 3 2- ions, and proceeds reversibly. For this reason, when the concentration of sodium carbonate in the waste liquid is high, the normal reaction and the reverse reaction antagonize and the removal of sodium fluoride (fluorine ions) does not proceed. Therefore, in order to proceed with the removal of fluorine ions, it is necessary to remove sodium carbonate which is a reaction product of the formula (2).

ところが、廃液中の水素イオン指数pHが8.6を超えると、炭酸ナトリウムは分解・除去されにくくなり、(2)式に示す反応によるフッ素イオンの除去が進まなくなる。   However, when the hydrogen ion exponent pH in the waste liquid exceeds 8.6, sodium carbonate becomes difficult to be decomposed and removed, and the removal of fluorine ions by the reaction shown in the formula (2) does not proceed.

アルカリスクラバーからの廃液は、pHが10〜11程度と高いため、アルカリスクラバーからの廃液をそのまま炭酸カルシウムと接触させたのでは効率よくフッ素イオンの除去を行うことができない。   Since the waste liquid from the alkali scrubber has a high pH of about 10 to 11, if the waste liquid from the alkali scrubber is directly brought into contact with calcium carbonate, fluorine ions cannot be efficiently removed.

そこで、本実施形態では、アルカリスクラバーからの廃液を炭酸カルシウムと接触させる前に、廃液に酸を加えて酸性にする。このように、廃液中を酸性とすると、廃液と炭酸カルシウムとの反応((2)式参照)で生じる炭酸ナトリウムを分解・除去することができる。例えば、廃液に塩酸を添加した場合には、下記の(3)式に示す反応により炭酸ナトリウムが分解される。   Therefore, in this embodiment, before the waste liquid from the alkali scrubber is brought into contact with calcium carbonate, an acid is added to the waste liquid to make it acidic. In this way, when the waste liquid is acidified, sodium carbonate produced by the reaction between the waste liquid and calcium carbonate (see formula (2)) can be decomposed and removed. For example, when hydrochloric acid is added to the waste liquid, sodium carbonate is decomposed by the reaction shown in the following formula (3).

Na2CO3+2HCl→H2CO3(CO2+H2Oに解離)+2NaCl…(3)
このように、廃液に酸を添加することで炭酸ナトリウムが分解・除去され、(2)式の逆反応を抑制してより多くのフッ素イオン(フッ化ナトリウム)をフッ化カルシウムとして除去することができる。
Na 2 CO 3 + 2HCl → H 2 CO 3 (dissociated into CO 2 + H 2 O) +2 NaCl (3)
In this way, by adding acid to the waste liquid, sodium carbonate is decomposed and removed, and the reverse reaction of formula (2) can be suppressed to remove more fluorine ions (sodium fluoride) as calcium fluoride. it can.

なお、上述の例では廃液に塩酸を添加しているが、炭酸ナトリウムを分解・除去できる酸であれば、塩酸以外のものを用いてもよい。   In the above example, hydrochloric acid is added to the waste liquid. However, any acid other than hydrochloric acid may be used as long as it is an acid that can decompose and remove sodium carbonate.

塩酸の添加量は、廃液中のフッ素イオン濃度が判明している場合には、(2)式の反応式が完全に進行した時に発生する炭酸ナトリウムを全て分解できる量とすることが好ましい。塩酸添加量が炭酸ナトリウムを分解するのに必要な量を超える場合であっても、炭酸カルシウムが消費されるだけであり、フッ素イオンの除去性能自体は低下しない。   When the fluorine ion concentration in the waste liquid is known, the amount of hydrochloric acid added is preferably an amount capable of decomposing all sodium carbonate generated when the reaction formula (2) proceeds completely. Even when the amount of hydrochloric acid added exceeds the amount necessary for decomposing sodium carbonate, only calcium carbonate is consumed, and the fluorine ion removal performance itself does not deteriorate.

ただし、添加する塩酸の濃度が高すぎる場合には、炭酸カルシウムの消費量が増加してしまう。このため、廃液中のフッ素イオン濃度が100ppmを超える場合には、炭酸カルシウムの無駄な消費を抑制とフッ素イオンの除去性能とを考慮して、廃液のpHを4程度とすると好適である。   However, if the concentration of hydrochloric acid to be added is too high, the consumption of calcium carbonate will increase. For this reason, when the fluorine ion concentration in the waste liquid exceeds 100 ppm, it is preferable to set the pH of the waste liquid to about 4 in consideration of suppression of wasteful consumption of calcium carbonate and fluorine ion removal performance.

また、廃液のpHが4.8〜8.6の場合には、下記の(4)式で示すように、炭酸ナトリウムと廃液中に溶存している炭酸ガスとが反応して炭酸水素ナトリウムが生成する。   Further, when the pH of the waste liquid is 4.8 to 8.6, as shown by the following formula (4), sodium carbonate reacts with carbon dioxide dissolved in the waste liquid to form sodium hydrogen carbonate. Generate.

Na2CO3+CO2(溶解ガス)+H2O → 2NaHCO3 …(4)
炭酸水素ナトリウムは、条件によっては(4)の逆反応を起こして、炭酸ナトリウムを生じるおそれがある。この場合には、廃液中の炭酸ナトリウム濃度が上昇してしまい、(2)式の反応によるフッ素イオン除去が進まなくなってしまう。したがって、廃液のpHが少なくとも4.8以下となる量の塩酸を添加することが好ましい。
Na 2 CO 3 + CO 2 (dissolved gas) + H 2 O → 2NaHCO 3 (4)
Depending on conditions, sodium hydrogen carbonate may cause the reverse reaction of (4) to produce sodium carbonate. In this case, the concentration of sodium carbonate in the waste liquid increases, and fluorine ion removal by the reaction of the formula (2) does not proceed. Therefore, it is preferable to add hydrochloric acid in such an amount that the pH of the waste liquid is at least 4.8 or less.

以下、第1実施形態に係るフッ素含有廃液の除害装置について説明する。ここに、図1は第1実施形態に係るフッ素含有廃液の除害装置を示す図である。   Hereinafter, the fluorine-containing waste liquid abatement apparatus according to the first embodiment will be described. FIG. 1 is a view showing the fluorine-containing waste liquid abatement apparatus according to the first embodiment.

図1に示すように、本実施形態に係る除害装置10は、pH調整装置2及びpH測定器3を備えた水質調整槽1と、ポンプ4を介して水質調整槽1に接続された反応塔5とを備えている。   As shown in FIG. 1, a detoxification apparatus 10 according to this embodiment includes a water quality adjustment tank 1 including a pH adjustment apparatus 2 and a pH measurement device 3, and a reaction connected to the water quality adjustment tank 1 via a pump 4. And a tower 5.

水質調整槽1は、アルカリスクラバー(図示せず)等から排出されたフッ化ナトリウム(フッ素イオン)を含む廃液を貯える。pH測定器3は、水質調整槽1に貯えられた廃液中の水素イオン指数pHを測定する。pH調整装置2は、pH測定器3の測定結果に応じて、所定の量の塩酸を水質調整槽1に添加して、水質調整槽1に貯えられた廃液のpHを4.8以下、より好ましくは4程度とする。   The water quality adjusting tank 1 stores waste liquid containing sodium fluoride (fluorine ions) discharged from an alkali scrubber (not shown) or the like. The pH measuring device 3 measures the hydrogen ion exponent pH in the waste liquid stored in the water quality adjusting tank 1. The pH adjusting device 2 adds a predetermined amount of hydrochloric acid to the water quality adjusting tank 1 according to the measurement result of the pH measuring device 3, and the pH of the waste liquid stored in the water quality adjusting tank 1 is 4.8 or less. Preferably it is about 4.

ポンプ4は、水質調整槽1に貯留された廃液を1.0〜1.2kgf/cm2程度に加圧しながら反応塔5に送出する。ポンプ4は、水質調整槽1に設けられた図示しない液面センサーと連動しており、廃液の液面の位置に応じて反応塔5に送出する廃液の流量を調整する。 The pump 4 sends the waste liquid stored in the water quality adjusting tank 1 to the reaction tower 5 while pressurizing it to about 1.0 to 1.2 kgf / cm 2 . The pump 4 is interlocked with a liquid level sensor (not shown) provided in the water quality adjustment tank 1 and adjusts the flow rate of the waste liquid sent to the reaction tower 5 according to the position of the liquid level of the waste liquid.

反応塔5は、パイプ状のケース内に粒径0.5mm程度の粒状の炭酸カルシウムを充填したものである。反応塔5は縦に配置されており、ポンプ4から送出された廃液は反応塔5の底部から供給されて、反応塔5の上部に向かって流れる。反応塔5は取り外し可能に設けられている。一定時間、又は一定の廃液処理量毎に反応塔5を交換することで、除害装置10のフッ素イオン除去能力を維持することができる。一例として、反応塔5は、内径が120mm程度のパイプに20〜25kg程度の炭酸カルシウムを充填したものとすることができる。この場合、フッ素イオン濃度が200ppmの廃液を2L/minで処理すると、交換期間は1〜2カ月程度となる。   The reaction tower 5 is a pipe-shaped case filled with granular calcium carbonate having a particle size of about 0.5 mm. The reaction tower 5 is arranged vertically, and the waste liquid sent from the pump 4 is supplied from the bottom of the reaction tower 5 and flows toward the top of the reaction tower 5. The reaction tower 5 is detachably provided. By exchanging the reaction tower 5 for a certain period of time or every certain amount of waste liquid treatment, the fluorine ion removing ability of the abatement apparatus 10 can be maintained. As an example, the reaction tower 5 can be a pipe having an inner diameter of about 120 mm and filled with about 20 to 25 kg of calcium carbonate. In this case, if the waste liquid having a fluorine ion concentration of 200 ppm is treated at 2 L / min, the replacement period is about 1 to 2 months.

反応塔5内では、前述の(2)式に示す反応が進行し、フッ素イオン(フッ化ナトリウム)がフッ化カルシウムとして固定される。この反応の際に生成する炭酸ナトリウムは、廃液に添加された塩酸によって分解されるので、本実施形態によれば、より多くのフッ素イオンを除去することができる。なお、反応塔5内に蓄積したフッ化カルシウムはフッ素の原料として資源回収することができる。   In the reaction tower 5, the reaction shown in the above formula (2) proceeds, and fluorine ions (sodium fluoride) are fixed as calcium fluoride. Since sodium carbonate produced in this reaction is decomposed by hydrochloric acid added to the waste liquid, more fluorine ions can be removed according to this embodiment. The calcium fluoride accumulated in the reaction tower 5 can be recovered as a raw material of fluorine.

また、反応塔5に供給される、廃液はポンプ4によって加圧されているため、反応塔5内において、塩酸と炭酸ナトリウム(又は炭酸カルシウム)との反応で生じた炭酸ガスの気泡の発生を抑制することができる。これにより、炭酸ガスの気泡が粒状の炭酸カルシウムの表面に付着して接触面積が減少するのを防止でき、反応塔5のフッ素イオン除去能力の低下を防げる。   Further, since the waste liquid supplied to the reaction tower 5 is pressurized by the pump 4, the generation of carbon dioxide bubbles generated by the reaction between hydrochloric acid and sodium carbonate (or calcium carbonate) is generated in the reaction tower 5. Can be suppressed. Thereby, it can prevent that the bubble of a carbon dioxide gas adheres to the surface of granular calcium carbonate, and a contact area reduces, and the fall of the fluorine ion removal capability of the reaction tower 5 can be prevented.

以上のように、本実施形態で廃液を炭酸カルシウムで処理する前に、廃液に塩酸を投入して廃液を酸性にしている。このため、フッ化ナトリウムと炭酸カルシウムとの反応で生成した炭酸ナトリウムを分解・除去して逆反応を抑制でき、反応塔5によるフッ素イオンの除去効率を向上させることができる。   As described above, before treating the waste liquid with calcium carbonate in this embodiment, hydrochloric acid is added to the waste liquid to make the waste liquid acidic. For this reason, the sodium carbonate produced | generated by reaction of sodium fluoride and calcium carbonate can be decomposed | disassembled and removed, a reverse reaction can be suppressed, and the removal efficiency of the fluorine ion by the reaction tower 5 can be improved.

(第1実施形態の実験例)
本願発明者らは、フッ素イオンを含む種々の試験用水溶液(試料1〜4)を炭酸カルシウムを充填した反応塔に流して、フッ素イオン除去率について調べた。
(Experimental example of the first embodiment)
The inventors of the present application flowed various aqueous test solutions (samples 1 to 4) containing fluorine ions to a reaction tower filled with calcium carbonate, and examined the fluorine ion removal rate.

図2は、実験例に用いた装置構成を示す図である。実験例の反応塔6は、内径が25mmの透明アクリル製のパイプに、粒径0.5mm程度の粒状の炭酸カルシウムを500ml程度充填したものである。反応塔6において、炭酸カルシウムの充填部分の高さは1m程度である。   FIG. 2 is a diagram showing a device configuration used in the experimental example. The reaction tower 6 of the experimental example is obtained by filling a transparent acrylic pipe having an inner diameter of 25 mm with about 500 ml of granular calcium carbonate having a particle diameter of about 0.5 mm. In the reaction tower 6, the height of the packed portion of calcium carbonate is about 1 m.

ポンプ4からの、試験用水溶液(試料1〜4)の送出圧力は1kgf/cm2、通水流量は50ml/min(3L/hr)とした。このとき、反応塔6を流れる廃液の通水線速度は6m/hrである。 The delivery pressure of the aqueous test solution (samples 1 to 4) from the pump 4 was 1 kgf / cm 2 , and the water flow rate was 50 ml / min (3 L / hr). At this time, the water flow speed of the waste liquid flowing through the reaction tower 6 is 6 m / hr.

まず、純水にフッ化水素試薬(特級)をフッ素イオン濃度が400ppmとなる量だけ添加した水溶液(試料1)と、純水にフッ化ナトリウム試薬(特級)をフッ素イオン濃度が400ppmとなる量だけ添加した水溶液(試料2)を用意し、これらの水溶液に対するフッ素イオンの除去率を調べた。結果を表1に示す。   First, an aqueous solution (sample 1) in which a hydrogen fluoride reagent (special grade) is added to pure water in an amount such that the fluorine ion concentration is 400 ppm, and an amount in which sodium fluoride reagent (special grade) is added to pure water to have a fluorine ion concentration of 400 ppm. An aqueous solution (sample 2) was added, and the fluorine ion removal rate for these aqueous solutions was examined. The results are shown in Table 1.

Figure 2010162437
表1に示すように、反応塔6によるフッ化水素中のフッ素イオンの除去率は90%と高いのに対し、フッ化ナトリウム水溶液中のフッ素イオンの除去率は25%程度にとどまる。フッ化水素と炭酸カルシウムとは不可逆的に反応するため、除去率が高いものと考えられる。一方、フッ化ナトリウムと炭酸カルシウムとは逆反応が生じるため、除去率が低くなってしまう。
Figure 2010162437
As shown in Table 1, while the removal rate of fluorine ions in hydrogen fluoride by the reaction tower 6 is as high as 90%, the removal rate of fluorine ions in the aqueous sodium fluoride solution is only about 25%. Since hydrogen fluoride and calcium carbonate react irreversibly, it is considered that the removal rate is high. On the other hand, since the reverse reaction occurs between sodium fluoride and calcium carbonate, the removal rate becomes low.

そこで、純水にフッ化ナトリウムをフッ素イオン濃度が400ppmとなる量だけ添加するとともに、塩酸を添加してpH6.5とした試料3と、同じく塩酸を添加してpH3.9とした試料4とを用意し、これらの水溶液に対するフッ素イオンの除去率を調べた。結果を表2に示す。   Therefore, sample 3 was added to pure water in an amount such that the fluorine ion concentration was 400 ppm, and hydrochloric acid was added to adjust the pH to 6.5, and sample 4 was added to hydrochloric acid to adjust the pH to 3.9. Were prepared, and the removal rate of fluorine ions with respect to these aqueous solutions was examined. The results are shown in Table 2.

Figure 2010162437
表2に示すように、pH3.9となる量の塩酸を添加した試料4の場合、フッ素イオンの除去率が40%となり、塩酸を添加しない場合(試料2)よりも除去率が向上している。これは、生成した炭酸ナトリウムを余剰に存在する塩酸で分解・除去でき、より多くのフッ素イオンを除去できることを示している。
Figure 2010162437
As shown in Table 2, in the case of Sample 4 to which hydrochloric acid having an amount of pH 3.9 was added, the removal rate of fluorine ions was 40%, and the removal rate was improved compared to the case of no addition of hydrochloric acid (Sample 2). Yes. This indicates that the generated sodium carbonate can be decomposed and removed with excess hydrochloric acid, and more fluorine ions can be removed.

(第2実施形態)
図3は、第2実施形態に係るフッ素含有廃液の除害装置を示す図である。
(Second Embodiment)
FIG. 3 is a view showing a fluorine-containing waste liquid abatement apparatus according to the second embodiment.

図3に示すように、本実施形態に係る除害装置20は、複数の反応塔5が直列に配置されている。最も上流側(図3において左側)の反応塔5が1段目の反応塔5とよび、その下流側(図3において右側)に配置された反応塔5を順番に2段目、3段目、…、6段目と呼ぶものとする。これらの反応塔5の上流側にはそれぞれ1台ずつ水質調整槽1が設けられており、水質調整槽1と反応塔5との間にはポンプ4が配置されている。   As shown in FIG. 3, in the abatement apparatus 20 according to this embodiment, a plurality of reaction towers 5 are arranged in series. The reaction column 5 on the most upstream side (left side in FIG. 3) is called the first-stage reaction column 5, and the reaction column 5 arranged on the downstream side (right side in FIG. 3) is sequentially arranged in the second and third stages. ,... Shall be called the sixth stage. One water quality adjusting tank 1 is provided on the upstream side of these reaction towers 5, and a pump 4 is disposed between the water quality adjusting tank 1 and the reaction tower 5.

水質調整槽1には廃液のpHを測定するpH測定器3と、水質調整槽1に貯留された廃液に塩酸を添加するための塩酸供給部2bが設けられている。水質調整槽1は、pH測定器3の測定結果に応じて、廃液のpH値が4.8以下、好ましくは4程度となる量の塩酸を添加する。これにより、廃液を酸性にして、反応塔5によるフッ素イオンの除去効率を向上させる。なお、廃液のpH値を4.8以下(好ましくは4程度)とするのに必要な塩酸の添加量が既知である場合には、水質調整槽1にpH測定器3を設けなくてもよい。   The water quality adjusting tank 1 is provided with a pH measuring device 3 for measuring the pH of the waste liquid and a hydrochloric acid supply unit 2b for adding hydrochloric acid to the waste liquid stored in the water quality adjusting tank 1. The water quality adjusting tank 1 is added with an amount of hydrochloric acid according to the measurement result of the pH measuring device 3 so that the pH value of the waste liquid is 4.8 or less, preferably about 4. As a result, the waste liquid is acidified and the fluorine ion removal efficiency by the reaction tower 5 is improved. In addition, when the addition amount of hydrochloric acid necessary for setting the pH value of the waste liquid to 4.8 or less (preferably about 4) is known, the pH measuring device 3 may not be provided in the water quality adjustment tank 1. .

また、本実施形態のポンプ4及び反応塔5は、第1実施形態のポンプ4及び反応塔5と同様である。第2実施形態の反応塔5は、一定の期間毎に、又は一定の廃液処理量毎に交換するだけで、安定してフッ素イオンの除去を行うことができる。この場合、例えば1段目の反応塔5を除去するとともに、2段目以下の反応塔5を1段ずつ順送りで上流側に移し、最も下流側に新しい反応塔5を追加するように交換することで、反応塔5を有効利用しつつ、安定したフッ素イオンの除去を行うことができる。   Moreover, the pump 4 and the reaction tower 5 of this embodiment are the same as the pump 4 and the reaction tower 5 of 1st Embodiment. The reaction tower 5 of the second embodiment can stably remove fluorine ions only by exchanging it at regular intervals or at constant waste liquid throughputs. In this case, for example, the first-stage reaction tower 5 is removed, and the second-stage and lower reaction towers 5 are moved one by one to the upstream side, and exchanged so that a new reaction tower 5 is added on the most downstream side. Thus, stable fluorine ion removal can be performed while effectively using the reaction tower 5.

次に、本実施形態の除害装置による廃液の処理について説明する。   Next, waste liquid processing by the abatement apparatus of the present embodiment will be described.

アルカリスクラバーからの廃液は、最初の水質調整槽1に貯留される。塩酸供給部2bからは、水質調整槽1に貯留された廃液のpHが4程度となる量の塩酸が添加さる。水質調整槽1に貯留された廃液は、ポンプ4により1〜1.2kgf/cm2の圧力で反応塔5に送出される。 Waste liquid from the alkali scrubber is stored in the first water quality adjustment tank 1. From the hydrochloric acid supply unit 2b, an amount of hydrochloric acid is added so that the pH of the waste liquid stored in the water quality adjusting tank 1 is about 4. The waste liquid stored in the water quality adjusting tank 1 is sent to the reaction tower 5 by the pump 4 at a pressure of 1 to 1.2 kgf / cm 2 .

反応塔5に導入された廃液は、前述の(2)式の反応により、フッ化カルシウムと炭酸ナトリウムを生成する。このとき生成した炭酸ナトリウムの一部は、最初の水質調整槽1で添加された塩酸によって分解・除去される。ただし、塩酸は炭酸カルシウムとも反応するため、生成した炭酸ナトリウムの全てを除去することができない。このため、1段目の反応塔5内では、除去しきれない炭酸ナトリウム濃度に応じた量のフッ素イオン(フッ化ナトリウム)が廃液中に残留し、この廃液が1段目の反応塔5から排出される。   The waste liquid introduced into the reaction tower 5 generates calcium fluoride and sodium carbonate by the reaction of the above-described formula (2). Part of the sodium carbonate produced at this time is decomposed and removed by hydrochloric acid added in the first water quality adjustment tank 1. However, since hydrochloric acid also reacts with calcium carbonate, it is not possible to remove all of the generated sodium carbonate. For this reason, in the first-stage reaction tower 5, fluorine ions (sodium fluoride) in an amount corresponding to the sodium carbonate concentration that cannot be removed remain in the waste liquid, and this waste liquid is discharged from the first-stage reaction tower 5. Discharged.

1段目の反応塔5から排出された廃液は、2段目の反応塔5の前に設けられた水質調整槽1に貯留される。この水質調整槽1でも、廃液のpHが4.8以下(より好ましくは4程度)となる量の塩酸が添加される。これにより、1段目の反応塔5から排出された廃液中に含まれる炭酸ナトリウムを除去でき、さらに2段目の反応塔5で生成する炭酸ナトリウムを分解・除去することができる。   The waste liquid discharged from the first-stage reaction tower 5 is stored in the water quality adjusting tank 1 provided in front of the second-stage reaction tower 5. Also in this water quality adjusting tank 1, hydrochloric acid is added in such an amount that the pH of the waste liquid is 4.8 or less (more preferably about 4). Thereby, sodium carbonate contained in the waste liquid discharged from the first-stage reaction tower 5 can be removed, and sodium carbonate generated in the second-stage reaction tower 5 can be decomposed and removed.

以後、同様にして2段目以降の反応塔5による処理と水質調整槽1による塩酸添加を繰り返すことで、廃液中のフッ素イオン濃度を段階的に減少させることができる。   Thereafter, the concentration of fluorine ions in the waste liquid can be reduced stepwise by repeating the treatment by the reaction tower 5 in the second and subsequent stages and the addition of hydrochloric acid in the water quality adjusting tank 1 in the same manner.

以上のように、除害装置20によれば、反応塔5を1段だけ設けた場合よりも、フッ素イオンの除去率を高めることができる。なお、本実施形態の除害装置20において、反応塔5の数は6段に限定されるものではなく、必要に応じて、反応塔5及び水質調整槽1の数を増加させることで、フッ素イオンの除去率をさらに向上させることができる。   As described above, according to the abatement apparatus 20, the fluorine ion removal rate can be increased as compared with the case where only one reaction tower 5 is provided. In the abatement apparatus 20 of the present embodiment, the number of reaction towers 5 is not limited to six, and if necessary, the number of reaction towers 5 and water quality adjustment tanks 1 can be increased to increase fluorine. The ion removal rate can be further improved.

(第2実施形態の実験例)
本願発明者らは、純水にフッ化ナトリウムをフッ素イオン濃度が1000ppmとなる量添加した試験用水溶液を調整し、この水溶液を図3に示す除害装置20で処理したときのフッ素イオン濃度を測定した。なお、各水質調整槽1には塩酸を添加して、貯留された廃液のpHを4.0とした。図4は、各反応塔5を通過した水溶液中のフッ素イオンの濃度の測定結果を示す図である。
(Experimental example of the second embodiment)
The inventors of the present application prepared a test aqueous solution in which sodium fluoride was added to pure water in an amount such that the fluorine ion concentration became 1000 ppm, and the fluorine ion concentration when this aqueous solution was treated with the abatement apparatus 20 shown in FIG. It was measured. In addition, hydrochloric acid was added to each water quality adjustment tank 1, and pH of the stored waste liquid was set to 4.0. FIG. 4 is a diagram showing the measurement results of the concentration of fluorine ions in the aqueous solution that has passed through each reaction tower 5.

図4に示すように、反応塔5を通過する毎に、フッ素イオンを除去でき、6段の反応塔を通過させることで、約95%のフッ素イオンを除去できた。   As shown in FIG. 4, every time it passed through the reaction tower 5, fluorine ions could be removed, and about 95% of the fluorine ions could be removed by passing through the six-stage reaction tower.

1…水質調整槽、2…pH調整装置、2a…塩酸貯留タンク、2b…塩酸供給部、3…pH測定器、4…ポンプ、5、6…反応塔、10、20…除害装置。
DESCRIPTION OF SYMBOLS 1 ... Water quality adjustment tank, 2 ... pH adjustment apparatus, 2a ... Hydrochloric acid storage tank, 2b ... Hydrochloric acid supply part, 3 ... pH measuring device, 4 ... Pump, 5, 6 ... Reaction tower, 10, 20 ... Detoxification device.

Claims (10)

アルカリ金属フッ化物塩を含む廃液に酸を添加して前記廃液を酸性にする水質調整槽と、
前記酸性の廃液を炭酸カルシウムに接触させて、前記廃液中のフッ化物イオンをフッ化カルシウムとして廃液から分離する反応塔とを備えることを特徴とするフッ素含有廃液の除害装置。
A water quality adjusting tank for acidifying the waste liquid by adding an acid to the waste liquid containing an alkali metal fluoride salt;
A detoxifying device for a fluorine-containing waste liquid, comprising: a reaction tower for bringing the acidic waste liquid into contact with calcium carbonate and separating fluoride ions in the waste liquid as calcium fluoride from the waste liquid.
前記水質調整槽及び前記反応塔が複数組直列に連結されていることを特徴とする請求項1に記載のフッ素含有廃液の除害装置。   2. The fluorine-containing waste liquid detoxifying apparatus according to claim 1, wherein a plurality of sets of the water quality adjusting tank and the reaction tower are connected in series. 前記水質調整槽の前記廃液の水素イオン指数pHは4.8以下であることを特徴とする請求項1又は請求項2に記載のフッ素含有廃液の除害装置。   3. The fluorine-containing waste liquid detoxifying device according to claim 1, wherein a hydrogen ion exponent pH of the waste liquid in the water quality adjusting tank is 4.8 or less. さらに、前記水質調整槽と前記反応塔との間に、前記水質調整槽の廃液を加圧しながら前記反応塔に送出するポンプを備えることを特徴とする請求項1乃至請求項3の何れか1項に記載のフッ素含有廃液の除害装置。   Furthermore, the pump which sends out the waste liquid of the said water quality adjustment tank to the said reaction tower, pressurizing between the said water quality adjustment tank and the said reaction tower is provided. The fluorine-containing waste liquid abatement apparatus as described in the item. 前記酸は塩酸であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のフッ素含有廃液の除害装置。   The said acid is hydrochloric acid, The detoxification apparatus of the fluorine-containing waste liquid of any one of Claim 1 thru | or 4 characterized by the above-mentioned. 前記アルカリ金属フッ化物塩は、フッ化ナトリウムであることを特徴とする請求項1乃至請求項5のいずれか1項に記載のフッ素含有廃液の除害装置。   The said alkali metal fluoride salt is sodium fluoride, The detoxification apparatus of the fluorine-containing waste liquid of any one of Claim 1 thru | or 5 characterized by the above-mentioned. アルカリ金属フッ化物塩を含む廃液に酸を添加して前記廃液を酸性にする水質調整工程と、
前記酸性の廃液を炭酸カルシウムに接触させて、前記廃液中のフッ化物イオンをフッ化カルシウムとして廃液から分離する炭酸カルシウム処理工程と、
を有することを特徴とするフッ素含有廃液の除害方法。
A water quality adjusting step for acidifying the waste liquid by adding an acid to the waste liquid containing the alkali metal fluoride salt;
A calcium carbonate treatment step in which the acidic waste liquid is contacted with calcium carbonate, and fluoride ions in the waste liquid are separated from the waste liquid as calcium fluoride;
A method for detoxifying a fluorine-containing waste liquid, comprising:
前記水質調整工程と、前記炭酸カルシウム処理工程とを、交互に複数回繰り返すことを特徴とする請求項7に記載のフッ素含有廃液の除害方法。   The method for removing fluorine-containing waste liquid according to claim 7, wherein the water quality adjustment step and the calcium carbonate treatment step are alternately repeated a plurality of times. 前記水質調整工程は、前記廃液の水素イオン指数pHを4.8以下とすることを特徴とする請求項7又は請求項8に記載のフッ素含有廃液の除害方法。   The said water quality adjustment process makes the hydrogen ion exponent pH of the said waste liquid 4.8 or less, The detoxification method of the fluorine-containing waste liquid of Claim 7 or Claim 8 characterized by the above-mentioned. 前記酸は、塩酸であることを特徴とする請求項7乃至請求項9のいずれか1項に記載のフッ素含有廃液の除害方法。   The method for removing a fluorine-containing waste liquid according to any one of claims 7 to 9, wherein the acid is hydrochloric acid.
JP2009004594A 2009-01-13 2009-01-13 Detoxification device and detoxification method for fluorine-containing waste liquid Active JP5085574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004594A JP5085574B2 (en) 2009-01-13 2009-01-13 Detoxification device and detoxification method for fluorine-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004594A JP5085574B2 (en) 2009-01-13 2009-01-13 Detoxification device and detoxification method for fluorine-containing waste liquid

Publications (2)

Publication Number Publication Date
JP2010162437A true JP2010162437A (en) 2010-07-29
JP5085574B2 JP5085574B2 (en) 2012-11-28

Family

ID=42579077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004594A Active JP5085574B2 (en) 2009-01-13 2009-01-13 Detoxification device and detoxification method for fluorine-containing waste liquid

Country Status (1)

Country Link
JP (1) JP5085574B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965114A (en) * 2011-08-29 2013-03-13 日本爱纳克株式会社 Hydrofluoric acid-containing process liquid regeneration method and regeneration device
JP2014124551A (en) * 2012-12-25 2014-07-07 Alpha Tekku:Kk Detoxifying tower, recovery system of detoxifying tower and recovery method of detoxifying tower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017004657B4 (en) * 2017-05-16 2021-09-23 Gaplast Gmbh Container with inner bag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216740A (en) * 1997-02-07 1998-08-18 Japan Organo Co Ltd Treatment of fluorine-containing waste water
JPH11221578A (en) * 1998-02-04 1999-08-17 Japan Organo Co Ltd Treatment of fluorine-containing discharge water
JP2002035766A (en) * 2000-07-21 2002-02-05 Japan Organo Co Ltd Method for removing fluorine and phosphorus in wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216740A (en) * 1997-02-07 1998-08-18 Japan Organo Co Ltd Treatment of fluorine-containing waste water
JPH11221578A (en) * 1998-02-04 1999-08-17 Japan Organo Co Ltd Treatment of fluorine-containing discharge water
JP2002035766A (en) * 2000-07-21 2002-02-05 Japan Organo Co Ltd Method for removing fluorine and phosphorus in wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965114A (en) * 2011-08-29 2013-03-13 日本爱纳克株式会社 Hydrofluoric acid-containing process liquid regeneration method and regeneration device
JP2014124551A (en) * 2012-12-25 2014-07-07 Alpha Tekku:Kk Detoxifying tower, recovery system of detoxifying tower and recovery method of detoxifying tower

Also Published As

Publication number Publication date
JP5085574B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5440095B2 (en) Method and apparatus for treating fluorine-containing water
CN112742158B (en) Hydrogen fluoride waste gas treatment system and method in nitrogen trifluoride electrolysis preparation process
JP5085574B2 (en) Detoxification device and detoxification method for fluorine-containing waste liquid
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
TWI624299B (en) Treatment method of exhaust gas containing fluorine element
JP2009279567A (en) Method and apparatus for treating exhaust gas containing chloropolysilane
TWI677371B (en) Treatment method of fluorine-containing exhaust gas
TWI342865B (en) Process for production of chlorine dioxide
JP2007137739A (en) METHOD FOR RECOVERING CaF2
US20070122329A1 (en) Purification of raw hydrogen
JP2006231105A (en) Method for removing oxidizing gas
KR101171023B1 (en) METHOD FOR REMOVAL OF ClO3F
US20080307969A1 (en) Method for Cleaning Exhaust Gases Containing Nitrous Gases
KR101136023B1 (en) Waste water treatment system using the ozone
JP5651306B2 (en) Fluorine recovery method and apparatus
JP2016019964A (en) Wet removal method for hypofluorite
JP2008100193A (en) Method of treating nitrogen oxide-containing gas and apparatus for treating nitrogen oxide-containing gas
JP3466637B2 (en) Method and apparatus for treating fluorine-containing water
NL2014542B1 (en) Method and device for treating an effluent stream from one or more electrolysis cells.
JPH02280815A (en) Removal of ill effects from fluorine, bromine and iodine
JP2009207968A (en) Detoxifier for silane-based gas and detoxifying method
JP2000176463A (en) Reforming of gas-dissolved washing water
JPH10128351A (en) Method for treating ammonia nitrogen-containing drainage
KR20140144191A (en) Continuous gas reaction device, and continuous dissolved gas reaction device
JPH0780441A (en) Treatment of ozone in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250