JP2012105671A - 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 - Google Patents
光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 Download PDFInfo
- Publication number
- JP2012105671A JP2012105671A JP2012042003A JP2012042003A JP2012105671A JP 2012105671 A JP2012105671 A JP 2012105671A JP 2012042003 A JP2012042003 A JP 2012042003A JP 2012042003 A JP2012042003 A JP 2012042003A JP 2012105671 A JP2012105671 A JP 2012105671A
- Authority
- JP
- Japan
- Prior art keywords
- group
- optically active
- hcn
- reaction
- cyanohydrin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
【解決手段】芳香族アルデヒド及びHCNを基質とし、水と実質的に混和しない有機溶媒の存在下、酵素反応により光学活性シアンヒドリンを製造する方法において、
酵素として遺伝子組換え生物を用いて調製したヒドロキシニトリルリアーゼを使用し、反応溶液中の芳香族アルデヒドのモル濃度が0.4mol/kg以下であり、且つHCNのモル濃度以下となる状態を反応温度−10〜40℃、pH4.0〜7.0で2時間以上維持することにより、光学純度90%e.e.以上の光学活性シアンヒドリンを反応系内に35重量%以上蓄積することを特徴とする光学活性シアンヒドリンの製造方法。
【選択図】図1
Description
通常、当該酵素を使う光学活性シアンヒドリンの合成は、酵素と基質のHCN及びカルボニル化合物を必須要素として含む水系、水―有機溶媒二相系、有機溶媒―微水系又は有機溶媒系で実施されている。反応に用いる有機溶媒としては、水に難溶又は不溶な有機溶媒が使用されている例が多い。特にエーテル系溶媒を使う例が多く知られている。例えば、水−有機溶媒二相系において水と有機溶媒の容量比が5:1〜1:5の間で反応を行うこと(特許文献1)、水−有機溶媒二相系においてエマルジョンが生成するまで攪拌して反応を行うこと(特許文献2)が知られている。
また、カルボニル化合物の存在下、HCNを滴下しながら反応を行うこと(特許文献3)又はHCNの存在下、温度を維持しながらカルボニル化合物を滴下して反応を行うこと(特許文献4)が知られている。しかし、特許文献1〜4に記載の方法では、いずれも生成したシアンヒドリンの反応系内の蓄積濃度は、30%未満に過ぎなかった。また、カルボニル化合物1mmolあたりの酵素量も30〜300単位と多量に必要であり、工業生産に適した効率の良い方法とは言えなかった。
さらには、高化学純度及び高光学純度光学活性シアンヒドリンは、室温付近で固結する場合があり、固結した場合、光学活性シアンヒドリンの取り扱いが困難になるという問題があった。そのため、高化学純度及び高光学純度光学活性シアンヒドリンの高濃度蓄積可能な製造方法が望まれていた。
一方、光学活性α−ヒドロキシカルボン酸は、上記光学活性シアンヒドリンを加水分解することにより製造される(非特許文献1〜2、特許文献5、特許文献7〜8)。上記文献の方法は、光学活性シアンヒドリンの製造後、固液分離、溶剤抽出又は相分離により光学活性シアンヒドリンと酵素を分離後、加水分解している。上記方法を含む光学活性α−ヒドロキシカルボン酸の製造方法は、残存するHCNの存在下、光学活性シアンヒドリン溶液から酵素を分離する工程が必要なため、危険性が高く、収率も低いという問題があった。そのため、安全でかつ収率が高い光学活性α−ヒドロキシカルボン酸の製造方法が望まれていた。
(1)カルボニル化合物及びHCNを基質とし、水と実質的に混和しない有機溶媒の存在
下、酵素反応により光学活性シアンヒドリンを製造する方法において、反応溶液中のカル
ボニル化合物のモル濃度が0.4mol/kg以下であり、且つHCNのモル濃度以下と
なる状態を維持することを特徴とする光学活性シアンヒドリンの製造方法。(2)最終的
なカルボニル化合物の使用量の1ミリモルあたり1〜20単位のヒドロキシニトリルリア
ーゼを使用する(1)の方法。(3)(1)又は(2)の方法で得られた光学活性シアン
ヒドリンを加水分解することを含む光学活性α-ヒドロキシカルボン酸の製造方法。(4
)次いで、光学活性α-ヒドロキシカルボン酸を含む溶液を活性炭と接触させた後、濃縮
及び/又は冷却晶析することを含む(3)の方法。
安全かつ高収率に光学活性α−ヒドロキシカルボン酸が得られる。
本発明の光学活性シアンヒドリンの製造方法を以下、単に「本シアンヒドリン製造方法」と呼ぶ。
光学活性シアンヒドリンとは、一方の鏡像異性体(例えばR体)が他方の鏡像異性体(例えばS体)より多く含まれているシアンヒドリン又はいずれか一方の鏡像異性体のみからなるシアンヒドリンをいう。なお、シアンヒドリンがいずれか一方の鏡像異性体のみからなる場合は、光学純度が100%である。
ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を指すが、フッ素原子、塩素原子、臭素原子が好ましい。
光学活性シアンヒドリンを合成する活性を有する酵素を意味する。そのような酵素として
は、ヒドロキシニトリルリアーゼが挙げられる。R体のシアンヒドリンを合成するヒドロ
キシニトリルリアーゼ((R)−ヒドロキシニトリルリアーゼ)としては、アーモンド(Prunus amygdalus)等のバラ科植物由来の(R)−ヒドロキシニトリルリアーゼ、アマ科植物由来の(R)−ヒドロキシニトリルリアーゼを例示できる。S体のシアンヒドリンを合成するヒドロキシニトリルリアーゼ((S)−ヒドロキシニトリルリアーゼ)としては、モロコシ(Sorghum bicolor)等のイネ科植物由来の(S)−ヒドロキシニトリルリアーゼ、キャッサバ(Manihot esculenta)、パラゴムノキ(Hevea brasiliensis)等のトウダイグサ科植物由来の(S)−ヒドロキシニトリルリアーゼ、キシメニア(Ximenia americana)等のボロボロノキ科植物由来の(S)−ヒドロキシニトリルリアーゼを例示できる。キャッサバ(Manihot esculenta)由来ヒドロキシニトリルリアーゼ遺伝子の塩基配列は公知であり、文献等に公開されている(Jane Hughes et al, Arch.Biochem.Biophys.331(1994)496−502及びGenBank accession number Z29091)。該遺伝子の塩基配列を配列番号2に表す。また、該遺伝子がコードするアミノ酸配列は配列番号1に表す。
ヒドロキシニトリルリアーゼの抽出は常法によって行うことができる。抽出した調整物は、反応に悪影響を与えなければ本製造方法の酵素として使用することができる。例えば、調製が容易であることから、ヒドロキシニトリルリアーゼ遺伝子を組み込んで作成した遺伝子組換え大腸菌(Escherichia coli)を用いて調整するヒドロキシニトリルリアーゼが好ましい。
ヒドロキシニトリルリアーゼの形態は、粉末状酵素、緩衝液等に溶解させた酵素水溶液、適当な担体に固定化してなる固定化酵素等のいずれのものでも使用することができる。調製が容易であることから、緩衝液等に溶解させた酵素水溶液とすることが好ましい。酵素水溶液は、夾雑物を含む懸濁液でも良く、例えば、遺伝子組換え大腸菌を破砕して得られる懸濁液が挙げられる。
有機溶媒は、水又は水性緩衝液で飽和していることが好ましい。水性緩衝液のpHは、酵素活性の最適pHとすることが好ましい。pHは、pH4.0〜7.0で緩衝能を発揮する緩衝液、例えば、リン酸、クエン酸、グルタル酸、リンゴ酸、マロン酸、o−フタル酸、コハク酸、酢酸等の塩によって構成される緩衝液等とすることが好ましい。
有機溶媒は、HCNを予め含んでいてもよく、そのHCN濃度は、特に制限されない。HCNを20質量%以下とすることが好ましく、10質量%以下とすることが特に好ましい。有機溶媒中のHCNの濃度は、有機溶媒で希釈するか又はHCNを有機溶媒に加えることにより所望の濃度に調整することが好ましい。
ここで、「最終的なカルボニル化合物の使用量」とは反応開始から反応終了までに使用するカルボニル化合物の全量のことを意味する。1単位(U; unit)とは、DL−マンデロニトリルを基質として1分間にベンズアルデヒド1μmolを生成する活性と定義する。その活性は特表平11−508775 号公報に記載の方法により測定することができる。
例えば、水と混和しない有機溶剤及びヒドロキシニトリルリアーゼを含む溶液中に対して、好ましくはHCN濃度が10質量%を超えないように溶液中にHCNを添加する。その後、カルボニル化合物を0.4mol/kg以下かつHCNの濃度を下回る濃度に維持しながら添加する。酵素反応溶液中にHCN及びカルボニル化合物を添加すると、酵素反応によりHCN及びカルボニル化合物は光学活性シアンヒドリンに変換し、消費される。消費されるHCN及びカルボニル化合物を補うため、HCN及び/又はカルボニル化合物を逐次添加する。添加方法は、複数回に分けて添加する方法又は連続的に滴下する方法等が挙げられる。カルボニル化合物が0.4mol/kg以下かつHCNのモル濃度を下回る状態を維持する。
上述の方法により、光学活性シアンヒドリンは高い光学純度、例えば90%e.e.以上で、反応系内に30質量%以上蓄積することができる。この蓄積濃度以上であると、該光学活性シアンヒドリンに対するヒドロキシニトリルリアーゼ及び有機溶剤の使用量が相対的に抑えられ、経済的に有利となる。
安定化剤は、p−トルエンスルホン酸、酢酸等の有機酸、硫酸等の無機酸等が挙げられる。光学活性シアンヒドリンに対して安定化剤を1/200〜1/10モル添加することが好ましい。
上述の留去工程により、光学活性シアンヒドリンを含む溶液中の光学活性シアンヒドリンの含有率が50質量%以上とすることが好ましい。含有率が80重量%以上とすることがより好ましく、90重量%以上とすることが特に好ましい。
留去工程の減圧度及び温度は、有機溶媒の種類に応じて適宜選択する。通常、t−ブチルメチルエーテルやジイソプロピルエーテル等の沸点が約30〜100℃付近の溶媒を用いる場合には、蒸留温度を0〜100℃とすることが好ましい。蒸留温度は、20〜70℃とすることがより好ましく、20〜60℃とすることが特に好ましい。減圧度は、1〜600Torrとすることが好ましく、5〜400Torrとすることが特に好ましい。また、留出した溶媒は、溶媒を捕集するのに十分な温度、例えば、10℃以下に冷却した冷却管を使い捕集する。この方法で行うと効率が良い。
次いで、有機溶媒によって光学活性α−ヒドロキシカルボン酸を抽出し、必要に応じて水洗する。その後、溶媒を蒸発・乾固するか、あるいは反応溶液を必要に応じて濃縮及び/又は冷却して光学活性α−ヒドロキシカルボン酸の結晶を析出させる。析出した結晶を濾別回収する。加水分解終了後は、反応溶液内にHCNが実質的に残存しないため、光学活性α−ヒドロキシカルボン酸結晶の回収は安全に実施できる。
に、光学活性α−ヒドロキシカルボン酸結晶を溶剤で再溶解した後、活性炭と接触処理して脱色する。また、加水分解溶液を活性炭と接触処理した後、光学活性α−ヒドロキシカルボン酸結晶を単離することで、光学活性α−ヒドロキシカルボン酸結晶の着色を防ぐこともできる。接触処理の方法としては、特に制限されない。例えば、回分式で実施する場合は、光学活性α−ヒドロキシカルボン酸溶液に活性炭を加えて攪拌することにより接触処理する。連続式で実施する場合は、活性炭を充填したカラム内に光学活性α−ヒドロキシカルボン酸溶液を通して接触処理する。
着色の度合いは、比色管によりAPHA標準色と比較することで数値化(ハーゼン色数)
する。接触処理に使用する活性炭の量、処理温度及び処理時間は着色の度合いによって適宜選択する。
なお、マンデロニトリル、マンデルアミド、マンデル酸の化学純度及び光学純度は、高速液体クロマトグラフィー(HPLC)を用い、下記の分析条件で決定した。
<化学純度>
試料調製方法: 試料20mgをキャリヤー25mLに溶解
装置: カラムオーブン 日本分光社製 865−CO
UV 日本分光社製 870−UV
ポンプ 日本分光社製 880−PU
インテグレーター 島津製作所社製 C−R3A
カラム: ODS−2 GLサイエンス社製
キャリヤー: アセトニトリル:水=3/7(リン酸にてpH3.0に調整)
カラム温度: 40℃
流速: 1.0mL/min
波長: 220nm
<光学純度>
試料調製方法: 試料20mgをキャリヤー25mLに溶解
装置: カラムオーブン 日本分光社製 865−CO
UV 日本分光社製 870−UV
ポンプ 日本分光社製 880−PU
インテグレーター 島津製作所社製 C−R3A
カラム: CHIRALCEL OJ−H ダイセル化学工業社製
キャリヤー:n−ヘキサン:2−プロパノール:トリフルオロ酢酸 = 90:10:0.1
カラム温度: 35℃
流速: 1.0mL/min
波長: 220nm
検出限界値: 99.9%ee
[ヒドロキシニトリルリア−ゼ発現形質転換(導入)体の調製]
(1)PCRによるヒドロキシニトリルリア−ゼ遺伝子の作製
Jane Hughes et al, Arch.Biochem.Biophys.331(1994)496−502及びGenBank accession number Z29091記載の塩基配列を元に、配列番号2によって表されるキャッサバ(Manih
ot esculenta)由来のヒドロキシニトリルリア−ゼ遺伝子をPCR法により合成した。具体的には、20種のオリゴヌクレオチドF01〜F10及びR01〜R10(配列番号3〜22)を設計及び合成した。オリゴヌクレオチドに相補的に設定された20種のオリゴヌクレオチドは、それぞれ約20塩基ずつ重なるように設計した。図1に20種のオリゴヌクレオチドF01〜F10及びR01〜R10(配列番号3〜22)の位置関係を模式的に表した。凍結乾燥されたオリゴヌクレオチドを蒸留水で再懸濁し、100 pmol/μlとした。20種のオリゴヌクレオチド溶液のそれぞれから1μlずつ集めてミックスオリゴを作製した。この混合液をPCR−mix(Pwo 10×緩衝液、dNTP mix、Pwo DNAポリメラ−ゼ)(Boehringer Mannheim社製)に加えた。表1にPCR反応液の組成を示した。
次に、上述の方法で作製した合成遺伝子のPCR増幅を行った。この操作を2nd PCRとした。上記のA、B、Cの反応産物1.3μlに、5μlのPwo 10×緩衝液、5μlのdNTP mix、0.5μlのPwo DNAポリメラ−ゼ、36.2μlの蒸留水及び1μlの外側プライマ−を添加した。外側プライマ−として、F01(配列番号3)及びR01(配列番号13)のプライマ−を用いた。2nd PCRは、94度で30秒、50℃で30秒、72℃で60秒のセットを23サイクル行い、遺伝子を増幅した。1.5%アガロ−スゲル電気泳動に該増幅産物を供し、約1kbの増幅産物を確認した。
工程(1)で得られた2nd PCRの増幅産物のバンド(約1kb)をQIAquick Gel Extraction Kit(QIAGEN社製)で精製した。精製したDNA(5μl)を制限酵素BamHI(1μl)(オリゴヌクレオチドF01中に消化認識部位が含まれる)及びKpnI(1μl)(オリゴヌクレオチドR01中に消化認識部位が含まれる)で37℃、1時間消化し、フェノ−ル抽出・クロロホルム抽出・エタノ−ル沈殿[Molecular Cloning, A Laboratory Manual 2nd ed.(Cold Spring Harbor Press (1989))]により精製した。精製したDNA(5μl)、BamHI及びKpnIで予め消化しておいたベクタ−pUC19(タカラバイオ社製)(1μl)、蒸留水(4μl)及びsolution I(DNA Ligation Kit ver.2(タカラバイオ社製))(10μl)を混合してライゲ−ション混合物を作った。該混合物を12時間、16℃でインキュベ−トすることで増幅産物とベクタ−を結合した。
大腸菌 JM109株をLB培地(1% バクトトリプトン、0.5%バクトイ−ストエキス、0.5% NaCl) 1mlに接種し37℃、5時間好気的に前培養した。該前培養液 0.4mlを SOB培地 40ml(2%バクトトリプトン、0.5%バクトイ−ストエキス、10mM NaCl、2.5mM KCl、1mM MgSO4、1mM MgCl2)に加え、18℃で20時間培養した。該培養物を遠心分離により集菌(3,700×g、10分間、4℃)した後、冷TF溶液(20mM PIPES−KOH(pH 6.0)、200mM KCl、10mM CaCl2、40mM MnCl2)を13ml加え、0℃で10分間放置した。その後、再度遠心分離(3,700×g、10分間、4℃)し、上澄を除いた。沈殿した大腸菌を冷TF溶液 3.2mlに懸濁し、0.22mlのジメチルスルフォキシドを加え0℃で10分間放置した。
作製したコンピテントセル 200μl を工程(2)で作製した該ライゲーション産物10μlに加え、0℃で30分放置した。該コンピテントセルに42℃で30秒間ヒ−トショックを与え、0℃で2分間冷却した。その後、該コンピテントセルにSOC 培地(20mM グルコ−ス、2%バクトトリプトン、0.5%バクトイ−ストエキス、10mM NaCl 、2.5mM KCl 、1mM MgSO4 、1mM MgCl2)1mlを添加し、37℃にて1時間振盪培養した。該培養液を 200μl ずつLBAmp寒天培地(アンピシリン 100mg/L 、1.5%寒天を含有するLB培地)にまき、37℃で培養した。寒天培地上に生育した形質転換体コロニ−複数個を 1.5mlのLBAmp培地(アンピシリン 100mg/Lを含有するLB培地)にて37℃で一晩培養した。該培養液を各々集菌後、Flexi Prep(アマシャムバイオサイエンス社製)を用いて組換えベクターを回収した。得られた組換えベクターの塩基配列をCEQ DTCS Quick Start Kit及び蛍光シ−ケンサCEQ 2000XL DNA Analysis system(いずれもBECKMAN COULTER、米国)を用いて解析した。プライマ−は、オリゴヌクレオチドF01〜F10及びR01〜R10を用いた。 配列番号2で表されるキャッサバ(Manihot esculenta)由来ヒドロキシニトリルリア−ゼ遺伝子の塩基配列と同一の配列を有する組換えベクターのひとつをpUMEと命名した。
キャッサバ(Manihot esculenta) 由来ヒドロキシニトリルリア−ゼ発現プラスミドを、以下の方法で作製した。まず、ヒドロキシニトリルリア−ゼをコ−ドするDNA断片が、発現ベクタ−に容易に導入可能な制限酵素認識部位を両端に有する形となるよう、PCR法により作製した。PCR用の反応混合物は、5μlのPwo 10×バッファ−、5μlのdNTP mix、0.5μlのPwo DNAポリメラ−ゼ、36.2μlの蒸留水、1μlのセンスプライマー(配列番号23、29ヌクレオチドからなり、その配列中にNcoI認識部位及びヒドロキシニトリルリア−ゼ遺伝子のATG開始コドン以降を有する)及びアンチセンスプライマ−(配列番号24、33ヌクレオチドからなり、その配列中にSse8387I認識部位及びヒドロキシニトリルリア−ゼ遺伝子の終止コドンを含む)、並びに鋳型としてプラスミドpUMEを1μl添加したものを用いた。PCRは、95℃で2分の変性を行った後、94℃で30秒、50℃で30秒、72℃で2分を30サイクルいった。
CCACCATGGTAACTGCACATTTTGTTCTG(配列番号23;下線部は制限酵素NcoI認識部位
を示す)
アンチセンスプライマ−:
GGCCTGCAGGTTAACTTAATAGGAGCTAAAAGC(配列番号24;下線部は制限酵素Sse838
7I認識部位を示す)
次いで、ヒドロキシニトリルリア−ゼ発現用ベクタ−を以下のように調製した。発現用ベクタ−としては、pKK233−2(Centraalbureau voor Schimmelcultures (CBS)、オランダ;http://www.cbs.knaw.nl/)を用いた。pKK233−2(5μl)をHindIII(1μl)で消化後、フェノ−ル抽出・クロロホルム抽出・エタノ−ル沈殿により精製した。DNABlunting Kit(タカラバイオ(株))を用いて末端を平滑処理を行った。該処理液を再度フェノ−ル抽出・クロロホルム抽出・エタノ−ル沈殿により精製した。精製した発現ベクタ−(5μl)をShrimp Alkaline Phosphatase(タカラバイオ社製)を用いて脱リン酸化処理を行った。該処理液を再度エタノ−ル沈殿により精製した。精製したベクタ−DNA(5μl)、アニ−リング済みSse8387Iリン酸化リンカ−pSse8387I(タカラバイオ社製)(5μl)及びsolution I(DNA Ligation Kit ver.2(タカラバイオ社製))(10μl)を混合してライゲ−ション混合物を作った。該混合物を12時間、16℃でインキュベ−トすることでリンカ−とベクタ−を結合した。工程(4)と同様の操作により、大腸菌JM109株の形質転換を行った。生育したコロニ−より組換えベクターを回収した。回収した組換えベクターに対してSse8387I消化反応を行い、直鎖状に消化されることが確認されたものをpKK233−2(+Sse)とした。pKK233−2(+Sse)を制限酵素NcoIとSse8387Iで消化後、フェノ−ル抽出・クロロホルム抽出・エタノ−ル沈殿により精製した。
工程(5)の方法で得られたヒドロキシニトリルリア−ゼ遺伝子DNA断片(5μl)と工程(6)の方法で作成した発現ベクタ−pKK233−2(+Sse) (5μl)を混合した。該混合液にsolution I(DNA Ligation Kit ver.2(タカラバイオ(株)))(10μl)を添加してライゲ−ション混合物を作った。この混合物を12時間、16℃でインキュベ−トすることでリンカ−とベクタ−を結合した。工程(4)と同様の操作により、大腸菌JM109株の形質転換を行い、生育コロニ−より組換えベクターを回収した。ヒドロキシニトリルリア−ゼ遺伝子DNA断片が正しく発現ベクタ−に連結された組換えベクターを確認し、ヒドロキシニトリルリア−ゼ発現組換えベクターpOXN103と命名した。同時に、ヒドロキシニトリルリア−ゼ発現形質転換(導入)体、JM109/pOXN103を得た。
[(S)−ヒドロキシニトリルリアーゼ水溶液の調製]
培地(2% 日本製薬社製ポリペプトンN、0.5% オリエンタル酵母社製酵母エキス、0.15% リン酸水素2カリウム、0.1g/L アンピシリンナトリウム、1mM IPTG)を100ml入れた三角フラスコを20本準備した。調整例1で得られた形質転換(導入)体JM109/pOXN103を接種し、37℃で一晩培養した。培養液の酵素活性は、特表平11−508775 号公報に記載の方法により測定し、4.77unit/mLであった。この培養液2Lを遠心分離(3,700×g、10分間、4℃)して菌体を回収し、20mMクエン酸及び70mMリン酸水素2ナトリウムを含むpH6.0の緩衝液を加えて80mLの菌体懸濁液を得た。この菌体懸濁液をフレンチプレス(大岳製作所社製 フレンチ・プレス 5502 5615L、1000kg/cm2)で2回処理して菌体を破砕した。その後、遠心分離(10,000×g、10分間、4℃)により上清を回収し、130unit/mLの酵素活性を持つ(S)−ヒドロキシニトリルリアーゼ水溶液60mLを得た。
(1)(S)−マンデロニトリルの合成
調製例2で得られた(S)−ヒドロキシニトリルリアーゼ水溶液25.4mL(3302単位)とt−ブチルメチルエーテル120.8mLを混合し、HCN3.5g(0.1295mol)を添加した。次いで、この混合物を16〜18℃で充分攪拌しながら、ベンズアルデヒド4g(0.0377mol)を添加した。添加して10分後、HPLCによって反応系内のベンズアルデヒド濃度を測定したところ、0.063mol/kg(10分あたり3.18gのベンズアルデヒドを消費)であった。さらに、反応系内を16〜18℃に維持して充分攪拌しながら、10分あたりHCN0.8g(0.0296mol)及びベンズアルデヒド3g(0.0283mol)の比率でHCN及びベンズアルデヒドを3時間20分間かけて連続的に滴下した。滴下終了後、1時間、反応系内を16〜18℃に維持して充分攪拌した。反応系内のベンズアルデヒド濃度(HPLCで測定)及びHCN濃度(滴定により測定)をモニタリングした結果を表2に示した。
(1)(S)−マンデロニトリルの合成
調製例2で得られた(S)−ヒドロキシニトリルリアーゼ水溶液44.6mL(5798単位)とt−ブチルメチルエーテル120.8mLを混合し、HCN5.0g(0.185mol)を添加した。次いで、この混合物を6〜8℃で充分攪拌しながら、HCN1.45g(0.0537mol) 及びベンズアルデヒド5.55g(0.0523mol)を添加した。添加して10分後、HPLCによって反応系内のベンズアルデヒド濃度を測定したところ、0.060mol/kg(10分あたり4.65gのベンズアルデヒドが消費)であった。さらに、反応系内を6〜8℃に維持して充分攪拌しながら、10分あたりHCN1.5g(0.0556mol) 及びベンズアルデヒド4.5g(0.0424mol)の比率でHCN及びベンズアルデヒドを3時間20分間かけて連続的に滴下した。滴下終了後、1時間、反応系内を6〜8℃に維持して充分攪拌した。反応系内のベンズアルデヒド濃度(HPLCで測定)及びHCN濃度(滴定により測定)をモニタリングした結果を表3に示した。
実施例2の(1)で得られた反応溶液261gに、98%硫酸を0.4g添加した後、エバポレーターで濃縮を行った。90重量%のマンデロニトリルを含む溶液130.5g(ベンズアルデヒドからの収率98%)が得られた。濃縮後のマンデロニトリル溶液は、水及び有機溶剤に不溶な沈澱を含んでいた。
(1) (S)−マンデロニトリルの合成
調製例2で得られた(S)−ヒドロキシニトリルリアーゼ水溶液25.4mL(3302単位)とt−ブチルメチルエーテル120.8mLを混合し、HCN24.3g(0.9mol)を添加した。次いで、この混合物を16〜18℃で充分攪拌しながら、ベンズアルデヒド64g(0.603mol)を3時間30分間かけて滴下した。滴下終了後、1時間、反応系内を16〜18℃に維持して充分攪拌した。反応系内のベンズアルデヒド濃度(HPLCで測定)及びHCN濃度(滴定により測定)をモニタリングした結果を表4に示した。
(1)(R)−2−クロロマンデロニトリルの合成
アーモンド(Prunus amygdalus)由来の(R)−ヒドロキシニトリルリアー
ゼ(シグマ社製MO646(登録商標))24.3mg(13200単位) を50mMクエン酸緩衝液(pH5.0)25mLに溶解させた。次いで、これにt−ブチルメチルエーテル140mLを混合し、HCN3g(0.111mol)を添加した。この混合物を26〜28℃で充分攪拌しながら、HCN1.3g(0.048mol) 及び2−クロロベンズアルデヒド5.3g(0.0377mol)を添加した。添加して10分後、HPLCによって反応系内の2−クロロベンズアルデヒド濃度を測定したところ、0.057mol/kg(10分あたり4.2gの2−クロロベンズアルデヒドが消費された)であった。さらに、反応系内を26〜28℃に維持して充分攪拌しながら、10分あたりHCN1g(0.037mol) 及び2−クロロベンズアルデヒド4g(0.0284mol)の比率でHCN及び2−クロロベンズアルデヒドを3時間20分間かけて連続的に滴下した。滴下終了後、1時間、反応系内を26〜28℃に維持して充分攪拌した。反応系内の2−クロロベンズアルデヒド濃度(HPLCで測定)及びHCN濃度(滴定により測定)をモニタリングした結果を表5に示した。
濃度は41.4重量%、その光学純度は91.5%e.e. のR体過剰であった。
実施例4の(1)で得られた反応溶液238gに、98%硫酸を0.4g添加した後、エバポレーターで濃縮を行った。90重量%の2−クロロマンデロニトリルを含む溶液109.5g(2−クロロベンズアルデヒドからの収率87%)が得られた。濃縮後の2−クロロマンデロニトリル溶液は水及び有機溶剤に不溶な沈澱を含んでいた。次いで、30〜35℃で17時間攪拌しながら35%塩酸97gに濃縮後の2−クロロマンデロニトリル溶液109.5gを滴下した。この反応溶液はスラリーであった。17時間攪拌後の反応溶液をHPLCで分析したところ、2−クロロマンデロニトリルは検出されず、2−クロロマンデルアミドと2−クロロマンデル酸が混在していた。17時間攪拌後の反応溶液の全量に、水を213g添加し、75℃で2時間攪拌して加水分解した。この反応溶液は均一であった。75℃で2時間攪拌した後の反応溶液をHPLCで分析したところ、2−クロロマンデロニトリル、及び2−クロロマンデルアミドは検出されなかった。2−クロロマンデル酸の濃度は26.8%(2−クロロマンデロニトリルからの収率93%)、光学純度は91.5%e.e.のR体過剰であった。この反応溶液はわずかに褐色に着色しており、ハーゼン色数は250〜300番であった。
実施例4の(2)で得られた419.5gの加水分解反応溶液に、活性炭8g(クラレ製P−60W5; 含水率50%)を加え、60℃で2時間攪拌した。その後、活性炭を濾別し、その着色度を比色管で測定した。ハーゼン色数は150〜200番であった。
(S)−マンデロニトリルの加水分解
30〜35℃で17時間攪拌しながら、実施例2の(1)で得られたマンデロニトリル溶液130.5gを35%塩酸146gに滴下した。この反応溶液はスラリーであった。17時間攪拌後の反応溶液をHPLCで分析したところ、マンデロニトリルは検出されず、マンデルアミドとマンデル酸が混在していた。17時間攪拌後の反応溶液の全量に、水を319g添加し、75℃で2時間攪拌し加水分解した。この反応溶液は均一であった。75℃で2時間攪拌した後の反応溶液をHPLCで分析したところ、マンデロニトリル、及びマンデルアミドは検出されず、マンデル酸の濃度は21.3%(マンデロニトリルからの収率94.5%)、光学純度は98.0%e.e.のS体過剰であった。この反応溶液はわずかに褐色に着色しており、その着色度を比色管で測定した。ハーゼン色数は200〜250番であった。
加水分解反応溶液を実施例5で得られたマンデル酸を含む加水分解反応溶液595g、活性炭を12gに変えた以外は実施例4の(3)と同様に行った。ハーゼン色数は80〜100番であった。
実施例6で得られた脱色後の加水分解反応溶液のうち590gを、60℃から5℃/時間の冷却速度で15℃まで冷却し、結晶を析出させた。この結晶を濾別し、10℃の水で洗浄した後、乾燥した。白色のマンデル酸結晶114.5gが得られ、その化学純度は97.0%(R体を含む)、光学純度は99.5% e.e.のS体過剰であった。
(S)−マンデロニトリルの合成
調製例2で得られた(S)−ヒドロキシニトリルリアーゼ水溶液25.4mL(3302単位)とt−ブチルメチルエーテル120.8mLを混合したものに、ベンズアルデヒド64g(0.603mol)を添加した。次いで、この混合物を16〜18℃で充分攪拌しながら、HCN24.3g (0.9mol)を3時間30分間かけて滴下した。滴下終了後、
1時間、反応系内を16〜18℃に維持して充分攪拌した。反応系内のベンズアルデヒド濃度(HPLCで測定) 及びHCN濃度(滴定により測定)をモニタリングした結果を表6
に示した。
(S)−マンデロニトリルの合成
10分あたりHCN2g(0.074mol) 及びベンズアルデヒド6g(0.0565mol)の比率でHCN及びベンズアルデヒドを1時間45分間かけて連続的に滴下した以外は実施例1と同様に行った。HCN及びベンズアルデヒドの滴下終了後、2時間45分間充分攪拌した。反応系内のベンズアルデヒド濃度(HPLCで測定) 及びHCN濃度(
滴定により測定)をモニタリングした結果を表7に示した。
(R)−2−クロロマンデロニトリルの合成
10分あたりHCN2g(0.074mol) 及び2−クロロベンズアルデヒド8g(0.0569mol)の比率でHCN及びベンズアルデヒドを1時間45分間かけて連続的に滴下した以外は実施例4の(1)と同様に行った。HCN及び2−クロロベンズアルデヒドの滴下終了後、2時間45分間充分攪拌した。反応系内の2−クロロベンズアルデヒド濃度(HPLCで測定) 及びHCN濃度(滴定により測定)をモニタリングした結果を表8に示した。
Claims (3)
- 芳香族アルデヒド及びHCNを基質とし、水と実質的に混和しない有機溶媒の存在下、酵素反応により光学活性シアンヒドリンを製造する方法において、
酵素として遺伝子組換え生物を用いて調製したヒドロキシニトリルリアーゼを使用し、反応溶液中の芳香族アルデヒドのモル濃度が0.4mol/kg以下であり、且つHCNのモル濃度以下となる状態を反応温度−10〜40℃、pH4.0〜7.0で2時間以上維持することにより、光学純度90%e.e.以上の光学活性シアンヒドリンを反応系内に35重量%以上蓄積することを特徴とする光学活性シアンヒドリンの製造方法。 - 芳香族アルデヒドが、ベンズアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド、2-ピリジンカルボキシアルデヒド、3−ピリジンカルボキシアルデヒド、4−ピリジンカルボキシアルデヒド又は4−ヒドロキシ−3,3−ジメチルブチルアルデヒドである請求項1記載の方法。
- 請求項1又は2記載の方法で得られた光学活性シアンヒドリンを加水分解することを含む光学活性α-ヒドロキシカルボン酸の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012042003A JP2012105671A (ja) | 2012-02-28 | 2012-02-28 | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012042003A JP2012105671A (ja) | 2012-02-28 | 2012-02-28 | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005130166A Division JP5001523B2 (ja) | 2005-04-27 | 2005-04-27 | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012105671A true JP2012105671A (ja) | 2012-06-07 |
Family
ID=46492020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012042003A Pending JP2012105671A (ja) | 2012-02-28 | 2012-02-28 | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012105671A (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63219388A (ja) * | 1987-01-20 | 1988-09-13 | デグツサ・アクチエンゲゼルシヤフト | 光学活性シアンヒドリンの製造方法 |
JPH09131194A (ja) * | 1995-11-10 | 1997-05-20 | Nitto Chem Ind Co Ltd | 微生物によるα−ヒドロキシ酸またはα−ヒドロキシアミドの製造法 |
JP2001346595A (ja) * | 2000-06-02 | 2001-12-18 | Nippon Shokubai Co Ltd | 酵素反応方法 |
JP2002306194A (ja) * | 2001-04-10 | 2002-10-22 | Mitsubishi Rayon Co Ltd | 光学活性シアンヒドリンの製造方法 |
JP2004057005A (ja) * | 2002-07-24 | 2004-02-26 | Nippon Shokubai Co Ltd | 光学活性シアノヒドリンの工業的製造方法 |
WO2004076385A2 (de) * | 2003-02-27 | 2004-09-10 | Dsm Fine Chemicals Austria Nfg Gmbh & Co. Kg | VERFAHREN ZUR HERSTELLUNG CHIRALER α-HYDROXYCARBONSÄUREN DURCH ENZYMATISCHE HYDROLYSE VON CHIRALEN CYANHYDRINEN |
JP2006304667A (ja) * | 2005-04-27 | 2006-11-09 | Mitsubishi Rayon Co Ltd | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
-
2012
- 2012-02-28 JP JP2012042003A patent/JP2012105671A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63219388A (ja) * | 1987-01-20 | 1988-09-13 | デグツサ・アクチエンゲゼルシヤフト | 光学活性シアンヒドリンの製造方法 |
JPH09131194A (ja) * | 1995-11-10 | 1997-05-20 | Nitto Chem Ind Co Ltd | 微生物によるα−ヒドロキシ酸またはα−ヒドロキシアミドの製造法 |
JP2001346595A (ja) * | 2000-06-02 | 2001-12-18 | Nippon Shokubai Co Ltd | 酵素反応方法 |
JP2002306194A (ja) * | 2001-04-10 | 2002-10-22 | Mitsubishi Rayon Co Ltd | 光学活性シアンヒドリンの製造方法 |
JP2004057005A (ja) * | 2002-07-24 | 2004-02-26 | Nippon Shokubai Co Ltd | 光学活性シアノヒドリンの工業的製造方法 |
WO2004076385A2 (de) * | 2003-02-27 | 2004-09-10 | Dsm Fine Chemicals Austria Nfg Gmbh & Co. Kg | VERFAHREN ZUR HERSTELLUNG CHIRALER α-HYDROXYCARBONSÄUREN DURCH ENZYMATISCHE HYDROLYSE VON CHIRALEN CYANHYDRINEN |
JP2006304667A (ja) * | 2005-04-27 | 2006-11-09 | Mitsubishi Rayon Co Ltd | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5001523B2 (ja) | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 | |
EP2295592B1 (en) | An enzyme reaction method and a method for enzymatically producing an optically active cyanohydrin | |
JP4995437B2 (ja) | シアンヒドリン類濃縮液及びα−ヒドロキシカルボン酸類結晶の製造方法 | |
CN105408489A (zh) | 用于制备去甲伪麻黄碱的方法 | |
JP2012105671A (ja) | 光学活性シアンヒドリンの製造方法及び光学活性α−ヒドロキシカルボン酸の製造方法 | |
JP4498649B2 (ja) | シアノヒドリンの工業的製造方法 | |
JP3892644B2 (ja) | 光学活性シアノヒドリンの製造方法 | |
JP2007508005A (ja) | 鏡像体に富むα−ヒドロキシカルボン酸及びα−ヒドロキシカルボン酸アミドの製造方法 | |
JP3905690B2 (ja) | 酵素反応方法 | |
JP4012779B2 (ja) | 光学活性シアノヒドリンの工業的製造方法 | |
EP2955225A1 (en) | (R)-selective hydroxynitrile lyase variants with a cupin fold having improved substrate scope and the use thereof | |
JP4995429B2 (ja) | マンデル酸類の精製方法 | |
JP5057727B2 (ja) | ヒドロキシニトリルリアーゼ遺伝子、ニトリラーゼ遺伝子を含む形質転換体、並びにそれを用いたα−ヒドロキシカルボン酸の製造法 | |
JP2006141263A (ja) | (r)−ヒドロキシニトリルリアーゼの製造方法 | |
EP1160235B1 (en) | A method for producing alpha-hydroxycarboxylic acid | |
JP3561230B2 (ja) | α−ヒドロキシカルボン酸の製造方法 | |
WO2014202671A1 (en) | Hnl mutants at low ph | |
JP4071588B2 (ja) | (r)−ヒドロキシニトリルリアーゼ組成物及び安定化方法 | |
JP2001348356A (ja) | 光学活性α−ヒドロキシカルボン酸の製法 | |
JP3934860B2 (ja) | アルデヒド化合物を基質とする酵素反応方法 | |
JP2003284579A (ja) | 2−ケト酪酸の製造方法 | |
EP2861750B1 (en) | Process for producing chiral 1-substituted 3-piperidinols employing oxidoreductases | |
JP4925410B2 (ja) | 光学活性マンデル酸又はその誘導体の製造方法 | |
JP2003206255A (ja) | 光学活性α−ヒドロキシカルボン酸の製造法 | |
JP5236249B2 (ja) | キメラ組換え(r)−ヒドロキシニトリルリアーゼ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140710 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141107 |