JP2012098193A - Self-traveling flaw detector - Google Patents

Self-traveling flaw detector Download PDF

Info

Publication number
JP2012098193A
JP2012098193A JP2010247016A JP2010247016A JP2012098193A JP 2012098193 A JP2012098193 A JP 2012098193A JP 2010247016 A JP2010247016 A JP 2010247016A JP 2010247016 A JP2010247016 A JP 2010247016A JP 2012098193 A JP2012098193 A JP 2012098193A
Authority
JP
Japan
Prior art keywords
self
flaw detection
contact
ultrasonic flaw
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247016A
Other languages
Japanese (ja)
Other versions
JP5674419B2 (en
Inventor
Takuyo Konishi
拓洋 小西
Fumitaka Yamazaki
文敬 山崎
Tatsuro Hatano
達郎 畑野
Masahiro Otaki
政博 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IXS RES KK
IXS RESEARCH KK
SHIYUTO KOSOKU DORO GIJUTSU CENTER
SHIYUTO KOSOKU DORO GIJUTSU CT
Original Assignee
IXS RES KK
IXS RESEARCH KK
SHIYUTO KOSOKU DORO GIJUTSU CENTER
SHIYUTO KOSOKU DORO GIJUTSU CT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IXS RES KK, IXS RESEARCH KK, SHIYUTO KOSOKU DORO GIJUTSU CENTER, SHIYUTO KOSOKU DORO GIJUTSU CT filed Critical IXS RES KK
Priority to JP2010247016A priority Critical patent/JP5674419B2/en
Publication of JP2012098193A publication Critical patent/JP2012098193A/en
Application granted granted Critical
Publication of JP5674419B2 publication Critical patent/JP5674419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform a crack inspection of a weld zone between a trough rib and a deck while self-traveling on the lower surface of a steel floor system with its retained thereto by a magnetic force regarding a self-traveling flaw detector.SOLUTION: A flaw inspection robot 14 self-travels on the lower surface of the steel floor system while being retained by an attraction force of a magnet. The self-traveling robot 14 is provided with an ultrasonic flaw detecting part 28 to adjust a position in a car width direction by a rack-and-pinion and sliding mechanisms. The ultrasonic flaw detecting part 28 includes an ultrasonic flaw detecting probe 30, a skiing-like sled 34, and springs 40. The ultrasonic flaw detecting probe 30 and the sled 34 can follow the attitude of a fine sliding of a detecting object surface, and the springs 40 are provided at the moving-directional front/rear and retain the plane contact with the detecting object surface even to either-directional movement. A tip portion 34-1 of the skiing-like sled can climb over a projection such as a weld bead and the like.

Description

この発明は自走式探傷装置に関し、被検査物としての鋼材よりなる被検査物、例えば、橋梁等における鋼床版の下面を磁力に保持されつつ自走しつつ、トラフリブとデッキとの溶接部の亀裂検査等の探傷作業を行うことができるものである。   The present invention relates to a self-propelled flaw detector, and an inspection object made of a steel material as an inspection object, for example, a welded portion between a truffle and a deck while self-propelling while maintaining the bottom surface of a steel deck in a bridge or the like with magnetic force. It can perform flaw detection work such as crack inspection.

橋脚等の高架構造の道路の路面は鋼床版上にアスファルト舗装を施して構成される。鋼床版は所定の肉厚の鋼板(デッキ)よりなり、デッキの下面に補強のため、路面幅方向に等間隔をおいて複数配置され、各々が路面縦方向に延びる断面U型の型鋼であるトラフリブを溶接して構成される。鋼床版は車両のタイヤ部分が通過する部位(1車線あたり50cm程度の幅の部分2ヶ所)を中心に荷重を繰り返し受けており、供用年数の経過によりデッキとトラフリブの溶接部に疲労亀裂が発生し得る。溶接部の疲労検査として精度の高い方法としては鋼床版におけるタイヤ通過部位において超音波のエコーにより探傷を行うものが従来より知られている。そして、橋脚等の高架構造の道路におけるデッキとトラフリブとの溶接部のように高所に位置する溶接部の超音波による探傷としては磁力により鋼床版の下面に吸引保持させつつタイヤ型超音波探触子をデッキとトラフリブとの溶接線に沿って転動させることで、超音波により溶接部探傷を行う移動型探傷具が提案されている(特許文献1)。
特開2008−249510号公報
The road surface of an elevated road such as a pier is constructed by asphalt pavement on a steel deck. The steel slab is made of steel plates (deck) with a predetermined thickness, and for reinforcement on the lower surface of the deck, a plurality of steel plates are arranged at equal intervals in the road surface width direction, each of which is a U-shaped section steel that extends in the road surface vertical direction. It is constructed by welding a certain truffle. Steel slabs are repeatedly subjected to loads centered on the part where the tire part of the vehicle passes (two parts with a width of about 50 cm per lane), and fatigue cracks occur in the welded part of the deck and the trough rib over the years of service. Can occur. As a high-accuracy method for fatigue inspection of a welded portion, a method in which flaw detection is performed by ultrasonic echoes at a tire passage portion in a steel deck is conventionally known. And for ultrasonic flaw detection of welds located at high places such as welds between decks and trough ribs on elevated roads such as bridge piers, tire type ultrasonic waves are attracted and held on the lower surface of the steel slab by magnetic force. There has been proposed a mobile flaw detector that performs flaw detection on a welded portion by ultrasonic waves by rolling a probe along a weld line between a deck and a trough rib (Patent Document 1).
JP 2008-249510 A

特許文献1の技術においては、溶接線に沿った探傷具の移動は手動操作である。そのため、鋼床版の下方に足場を架設し、その上での作業を行うことになり、暗所で高所狭隘部での作業は作業者の大きな負担となっていた。また、タイヤ型超音波探触子は内部に超音波の送受信部を備え、被検査物との接触部であるタイヤを介して超音波の送受信を行い、エコー解析により探傷を行うものであった。特許文献1の構造では超音波の送受信部が被検査物の表面の状態による車体の傾斜の影響を直接的に受け、超音波の方向が変化する。これが、測定精度に悪影響を及ぼすことがあった。また、特許文献1の構造は超音波の伝動経路にタイヤのゴム部分が介在しており、直接接触ではないためゴムの物性が超音波信号の伝達に影響を及ぼし、これが測定精度に影響を及ぼす懸念もあった。   In the technique of Patent Document 1, the movement of the flaw detector along the weld line is a manual operation. For this reason, a scaffold is installed under the steel slab and work is performed on it, and work in a narrow area in a dark place is a heavy burden on the operator. In addition, the tire-type ultrasonic probe is equipped with an ultrasonic transmission / reception unit, transmits / receives ultrasonic waves through a tire that is in contact with the object to be inspected, and performs flaw detection by echo analysis. . In the structure of Patent Document 1, the ultrasonic transmission / reception unit is directly affected by the inclination of the vehicle body due to the state of the surface of the inspection object, and the direction of the ultrasonic wave changes. This may have an adverse effect on measurement accuracy. Further, in the structure of Patent Document 1, the rubber part of the tire is interposed in the ultrasonic transmission path, and since it is not a direct contact, the physical properties of the rubber affect the transmission of the ultrasonic signal, which affects the measurement accuracy. There was also concern.

以上より、作業者の負担が軽く、小型軽量で自走式の遠隔操縦による検査装置がこれまで希求されてきた。本発明では超音波プローブを被探傷部に直接金属接触させ、かつこの接触状態を被検査面の状態に関らず維持するようにすることで従来技術の問題点の解決を図ろうとするものである。また、超音波プローブを被検査面に直接金属接触させかつ自走式とする場合、溶接ビードなど凸部が超音波プローブに干渉し、走破できず作業が非効率になる、若しくは回避するための装置が別途必要となり構造複雑化する問題点があった。   In view of the above, there has been a need for an inspection apparatus that is light, self-propelled, and has a small burden on the operator. In the present invention, the ultrasonic probe is brought into direct metal contact with the part to be inspected, and this contact state is maintained regardless of the state of the surface to be inspected. is there. Also, when the ultrasonic probe is in direct metal contact with the surface to be inspected and is self-propelled, convex parts such as weld beads interfere with the ultrasonic probe, and it is impossible to run or work is inefficient or avoided. There was a problem that a device was separately required and the structure was complicated.

本発明では、超音波プローブとして被探傷部に直接接触させ、かつこの接触状態を被検査面の状態に関らず維持し得る遠隔操縦型の小型自走式検査装置とすることで、従来技術の問題点の解決を図るものである。   According to the present invention, a conventional self-propelled inspection apparatus of a remote control type that can be directly brought into contact with a flaw detection portion as an ultrasonic probe and can maintain this contact state regardless of the state of the surface to be inspected. It is intended to solve this problem.

この発明の自走式探傷装置は鋼材よりなる被検査物の探傷をその下面側から超音波によって行うものであって、自走型の車体と、車体を被検査物の下面に磁力により吸着保持する手段と、被検査物の下面に接触移動するべく車体に取り付けられる接触体と、接触体の位置調節手段と、前記接触体に設けられ、被検査物の下面に接触移動することにより超音波による被検査物の探傷を行う超音波プローブと、接触体に設けられ、車体の自走に際して被検査物の下面に対する接触体及び超音波プローブの接触を維持するべく接触体を被検査物下面に向けて付勢する弾性手段とを具備してなる自走式探傷装置とを具備してなる。   The self-propelled flaw detection apparatus of the present invention performs flaw detection of an object to be inspected made of steel by ultrasonic waves from the lower surface side, and holds the self-propelled vehicle body and the vehicle body by magnetic force on the lower surface of the object to be inspected. Means for making contact with the lower surface of the object to be inspected, a contact body attached to the vehicle body, position adjusting means for the contact body, and ultrasonic waves that are provided on the contact body and moved in contact with the lower surface of the object to be inspected. The ultrasonic probe for inspecting the inspection object by the inspection body and the contact body are provided on the lower surface of the inspection object to maintain the contact of the contact body and the ultrasonic probe with the lower surface of the inspection object when the vehicle body is self-propelled. And a self-propelled flaw detector comprising elastic means for urging it toward the surface.

前記弾性手段は車体の移動方向に離間した部位で独立に作用するように配置され、一対のスプリングより構成することができる。そして、接触体は被検査物の下面に摺動移動するスレッドから構成することができ、前記一対のスプリングはスレッドの夫々の端部に設けられる。また、スレッドは移動方向における前端に被検査物から離間方向に曲折した曲折部を有することができる。   The elastic means is disposed so as to act independently at a portion separated in the moving direction of the vehicle body, and can be constituted by a pair of springs. The contact body can be constituted by a thread that slides and moves on the lower surface of the object to be inspected, and the pair of springs are provided at each end of the thread. Further, the sled can have a bent portion that is bent in the direction away from the object to be inspected at the front end in the moving direction.

この発明によれば、車体の移動の際に、接触体及びそれに取り付けられた超音波プローブは弾性下で被検査物に対する直接接触(金属接触)を維持することができ、かつ移動方向に依存することなく、この直接接触状態を維持することができるため、超音波による探傷を高精度にて実施することができる。また足場架設し、その上で作業者が超音波プローブを被検査面に直接接触させることで検査を行うといった作業員の負担が非常に大きい暗所で高所狭隘部での作業を回避しつつ、溶接ビード等の凸部が被検査面にあってもこれを乗り越えるようにすることができ、自走式の作業を高効率にて行うことができる。   According to the present invention, when the vehicle body moves, the contact body and the ultrasonic probe attached thereto can maintain direct contact (metal contact) with the object under elasticity and depend on the moving direction. Therefore, since this direct contact state can be maintained, flaw detection using ultrasonic waves can be performed with high accuracy. In addition, while avoiding the work in a narrow place in a dark place where the burden on the worker is very heavy, such as constructing a scaffold and then performing an inspection by bringing the ultrasonic probe directly into contact with the surface to be inspected Even if a convex part such as a weld bead is on the surface to be inspected, it can be overcome, and self-propelled work can be performed with high efficiency.

図1は鋼床版の構造を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the structure of a steel deck. 図2はこの発明に係る超音波探傷用自走ロボットの正面図であり、鋼床版をその下面から探傷中の状態を示す。FIG. 2 is a front view of the self-propelled robot for ultrasonic flaw detection according to the present invention, and shows a state in which flaw detection is being performed on the steel floor slab from its lower surface. 図3は図1の溶接部の拡大図である。FIG. 3 is an enlarged view of the welded portion of FIG. 図4はこの発明に係る超音波探傷用自走ロボットの側面図(図2のIV方向矢視図)である(以下の図10まで鋼床版の図示は省略)。FIG. 4 is a side view of the self-propelled robot for ultrasonic flaw detection according to the present invention (viewed in the direction of arrow IV in FIG. 2) (illustration of the steel deck is omitted until FIG. 10 below). 図5はこの発明に係る超音波探傷用自走ロボットの平面図(図2のV方向矢視図)である。FIG. 5 is a plan view of the ultrasonic flaw detection self-propelled robot according to the present invention (viewed in the direction of arrow V in FIG. 2). 図6は車輪を下にして上から見たこの発明に係る超音波探傷用自走ロボットの斜視図であり、超音波探傷部の構造を示している。FIG. 6 is a perspective view of the self-propelled robot for ultrasonic flaw detection according to the present invention viewed from above with the wheel facing down, and shows the structure of the ultrasonic flaw detection portion. 図7は車輪を下にして上から見たこの発明に係る超音波探傷用自走ロボットの斜視図である。FIG. 7 is a perspective view of the self-propelled robot for ultrasonic flaw detection according to the present invention as seen from above with the wheels facing down. 図8は図2に示す鋼床版の下面からの探傷中における超音波探傷プローブの取付部を車体の下からみて示す斜視図である。FIG. 8 is a perspective view showing the attachment portion of the ultrasonic flaw detection probe during flaw detection from the lower surface of the steel slab shown in FIG. 図9は超音波探傷プローブの取付部を図8の上からみて示す斜視図である。FIG. 9 is a perspective view showing the attachment portion of the ultrasonic flaw detection probe as seen from the top of FIG. 図10は超音波探傷プローブの取付部の平面図(図9のX方向矢視図)である。FIG. 10 is a plan view of the attachment portion of the ultrasonic flaw detection probe (as viewed in the direction of the arrow X in FIG. 9). 図11は超音波探傷プローブの取付部の側面図(図2のXI方向矢視図)である。FIG. 11 is a side view of the attachment portion of the ultrasonic flaw detection probe (a view taken in the direction of the arrow XI in FIG. 2).

以下本発明を橋梁等における鋼床版(本発明の被検査物)におけるデッキとトラフリブとの溶接部の検査について使用する場合について説明する。図1は鋼床版の構造を略示するもので、鋼床版は周知のように鋼板を素材とし、道路中心に沿った主桁リブ8に沿って間隔をおいて横リブ9を、上面にデッキ10(上面がアスファルト舗装される)を配し、デッキ10の下面における横リブ9間に路面幅方向に間隔をおいて各々が断面U字状でかつ路面長手方向に延びるトラフリブ12を複数配して構成される。図2に示すようにトラフリブ12の開口端(図2の上端)はデッキ10の下面に溶接され、その溶接部(ビード)をWにて示し(図2の溶接部Wは図3に拡大して示される)、溶接部Wはトラフリブ12の長さ方向(図2の紙面直交方向)に延びている。デッキ10及びトラフリブ12は長さ方向には有限の長さであり、長さ方向に隣接するデッキ10及びトラフリブ12は路幅方向の図示しない溶接部(ビード)によって溶接されている。   The case where the present invention is used for inspection of a welded portion between a deck and a trough rib in a steel deck (inspected object of the present invention) in a bridge or the like will be described below. FIG. 1 schematically shows the structure of a steel slab. As is well known, the steel slab is made of a steel plate, and the lateral ribs 9 are spaced along the main girder ribs 8 along the center of the road. A plurality of trough ribs 12 each having a U-shaped cross section and extending in the longitudinal direction of the road surface are provided between the lateral ribs 9 on the lower surface of the deck 10 and spaced apart in the road surface width direction. Arranged. As shown in FIG. 2, the opening end (the upper end in FIG. 2) of the truffle 12 is welded to the lower surface of the deck 10, and its weld (bead) is indicated by W (the weld W in FIG. 2 is enlarged in FIG. 3). The welded portion W extends in the length direction of the truffle 12 (the direction perpendicular to the plane of FIG. 2). The deck 10 and the trough rib 12 have a finite length in the length direction, and the deck 10 and the trough rib 12 adjacent to each other in the length direction are welded by a welding portion (bead) (not shown) in the road width direction.

符号14はこの自走式探傷装置としての自走ロボットを示しており、デッキ10の下面を磁力により吸引保持されつつ溶接部Wの方向(図2の紙面直交方向)に自走することにより溶接部Wの超音波による探傷を行うように構成されている。自走ロボット14の車体は様々なパーツから構成されているが、説明の便宜上全体を16にて示す。ロボット14の走行方向における車体16の片側における左右にタイヤ付の駆動輪18が設けられ、反対側の左右に従動輪19が設けられ、車輪18, 19はデッキ10と平行な車軸を備える。駆動輪18と側と従動輪とはベルト20によって連結されている。駆動輪18を駆動するための電動機ユニットを簡明のため全体を21にて示す。電動機ユニット21には電動機及び電動機の出力軸を駆動輪18に伝達するギヤ等が設けられる。電動機は溶接部Wに沿った前後いずれの方向においても移動できるよう逆転可能に構成されている。また、電動機は図示しない電源ケーブルによって外部バッテリに接続され、電動機の駆動制御回路も外部に設けられ、外部からの有線操作によってロボット14の操作制御が可能となっている。外部バッテリ化は電池大型化による早期消耗対策であるが、場合によっては電池内蔵も可能である。   Reference numeral 14 denotes a self-propelled robot as the self-propelled flaw detector, and welding is performed by self-propelling in the direction of the welded portion W (perpendicular to the plane of FIG. 2) while the lower surface of the deck 10 is attracted and held by magnetic force. The unit W is configured to perform flaw detection using ultrasonic waves. Although the vehicle body of the self-propelled robot 14 is composed of various parts, the whole is denoted by 16 for convenience of explanation. Driving wheels 18 with tires are provided on the left and right of one side of the vehicle body 16 in the traveling direction of the robot 14, and left and right driven wheels 19 are provided on the opposite side. The wheels 18 and 19 have axles parallel to the deck 10. The driving wheel 18, the side, and the driven wheel are connected by a belt 20. An electric motor unit for driving the drive wheels 18 is generally indicated by 21 for the sake of brevity. The motor unit 21 is provided with an electric motor and a gear for transmitting the output shaft of the electric motor to the drive wheels 18. The electric motor is configured to be reversible so that it can move in either the front or rear direction along the welded portion W. Further, the electric motor is connected to an external battery by a power cable (not shown), a drive control circuit for the electric motor is also provided outside, and the operation of the robot 14 can be controlled by a wired operation from the outside. The use of an external battery is a measure against early consumption due to an increase in the size of the battery.

車体16は走行方向に対して片側に張出部16-1(図6及び図7等参照)を備えており、張出部16-1にはガイド輪取付部16-2が設けられ、ガイド輪取付部16-2は鋼床版の検査時にはトラフリブ12の斜面12-1と平行(図2の紙面直交方向)となる。図5に示すようにガイド輪取付部16-2はロボット前後方向に離間する一対のガイド輪22を備えている。ガイド輪22は鋼床版の検査時にトラフリブ12の斜面12-1と平行な車軸を備えており(図2も参照)、ロボット14がデッキ10面を転動する際にガイド輪22はトラフリブ12の斜面12-1上を転動することにより、溶接部Wに沿ったロボット14の移動(図2の紙面直交方向)を補助するようになっている。   The vehicle body 16 is provided with an overhanging portion 16-1 (see FIGS. 6 and 7, etc.) on one side with respect to the traveling direction, and the overhanging portion 16-1 is provided with a guide wheel mounting portion 16-2. The wheel mounting portion 16-2 is parallel to the inclined surface 12-1 of the truffle 12 at the time of inspection of the steel slab (in the direction perpendicular to the paper surface of FIG. 2). As shown in FIG. 5, the guide wheel mounting portion 16-2 includes a pair of guide wheels 22 that are spaced apart in the robot front-rear direction. The guide wheel 22 has an axle parallel to the inclined surface 12-1 of the truffle 12 when the steel deck is inspected (see also FIG. 2). By rolling on the slope 12-1, the movement of the robot 14 along the welded portion W (in the direction perpendicular to the plane of FIG. 2) is assisted.

図2のデッキ10に面して、車体16に永久磁石24(本発明の吸着保持手段)が設けられる。永久磁石24は図7には一層明確に示されている。ロボット14の走行に支障がないように永久磁石24はデッキ10からは離間位置しているが、その磁界の向きは鉛直方向を指向するようにされ、強力な磁力によりロボット14をデッキ10に効率的に吸引保持することができる。図7に示すように永久磁石24は車体16の重心若しくはその近くに位置しているため、本体の向きが何らかの原因でトラフリブに沿った向きから外れた場合にも重心軸の回りで回転させ、直進方向し易くなっている。また、車体16のガイド輪取付部16-2にもその両端に補助の永久磁石26が設けられ、永久磁石26はその磁力によりガイド輪22をトラフリブ12の斜面12-1に当接せしめる方向に吸引し、ガイド輪22の案内により被検査部である溶接部Wに沿ったロボット14の移動をよりスムースとする役目を担う。   Facing the deck 10 in FIG. 2, a permanent magnet 24 (adsorption holding means of the present invention) is provided on the vehicle body 16. Permanent magnet 24 is more clearly shown in FIG. The permanent magnet 24 is spaced apart from the deck 10 so as not to interfere with the running of the robot 14, but the direction of the magnetic field is directed in the vertical direction, and the robot 14 is efficiently attached to the deck 10 by a strong magnetic force. Can be sucked and held. Since the permanent magnet 24 is located at or near the center of gravity of the vehicle body 16 as shown in FIG. 7, even if the orientation of the main body deviates from the direction along the trough rib for some reason, it is rotated around the center of gravity axis, It is easy to go straight. In addition, auxiliary permanent magnets 26 are provided at both ends of the guide wheel mounting portion 16-2 of the vehicle body 16, and the permanent magnet 26 is in a direction in which the guide wheel 22 is brought into contact with the inclined surface 12-1 of the truffle 12 by its magnetic force. It sucks and plays the role of making the movement of the robot 14 along the welded part W, which is the part to be inspected, smoother by the guide wheel 22 being guided.

この発明においては超音波による探傷を被検査面との接触を維持しつつ行い、ロボットの車体に対してアタッチメント式取付けられた超音波探傷部28が具備される。超音波探傷部28は超音波探傷プローブ30と、接触体(本実施形態では後述のスレッド34)と、弾性手段(本実施形態では後述のスプリング40)とを備える。超音波探傷部28は摺動本体27を備え、摺動本体27は図6に示すように車体16の張出部16-1における摺動溝16-3に対して矢印aのように車幅方向(デッキ面と平行でかつリブと直交する方向)摺動可能に収容され、超音波探傷部28も同方向aに往復摺動可能となっている。摺動本体27にはラック29の一端が取り付けられ、ラック29の他端は車体の張出部16-1におけるアジャストブロック16-4内に導入されると共にアジャストブロック16-4内に直交方向に配置した図示しないピニオン(ラック29とで本発明の位置調節手段を構成する)に螺合している。ピニオンの軸端は図6に31にて示すようにアジャストブロック16-4の上部より外部に幾分突出され、ピニオンの軸端31には六角棒スパナとの係合部31Aが設けられ、ピニオンを外部よりの工具操作により前後に回すことによりラック29及びこれに連結された摺動本体27は矢印a方向に直線往復移動し、車幅方向における超音波探傷部28、延いては超音波探傷プローブ30の被探傷部に対する最適位置調整が可能となり、また、接触体としての後述スレッド34及び弾性手段としてのスプリング40も一緒に動くためこれらの適正機能を損なうことがない。   In the present invention, an ultrasonic flaw detection unit 28 that performs ultrasonic flaw detection while maintaining contact with the surface to be inspected and is attached to the body of the robot is provided. The ultrasonic flaw detection unit 28 includes an ultrasonic flaw detection probe 30, a contact body (a thread 34 described later in the present embodiment), and an elastic means (a spring 40 described later in the present embodiment). The ultrasonic flaw detector 28 includes a sliding body 27. The sliding body 27 has a vehicle width as indicated by an arrow a with respect to the sliding groove 16-3 in the overhang 16-1 of the vehicle body 16 as shown in FIG. It is accommodated so as to be slidable in a direction (a direction parallel to the deck surface and perpendicular to the ribs), and the ultrasonic flaw detector 28 is also slidable in the same direction a. One end of a rack 29 is attached to the sliding main body 27, and the other end of the rack 29 is introduced into the adjustment block 16-4 in the overhanging portion 16-1 of the vehicle body and is orthogonal to the adjustment block 16-4. It is screwed into a pinion (not shown) that is arranged (the rack 29 constitutes the position adjusting means of the present invention). As shown by 31 in FIG. 6, the shaft end of the pinion is somewhat protruded from the upper part of the adjustment block 16-4, and the pinion shaft end 31 is provided with an engaging portion 31A with a hexagonal bar spanner. The rack 29 and the sliding main body 27 connected to the rack 29 are moved back and forth in the direction of arrow a by rotating the tool back and forth by operating the tool from the outside, so that the ultrasonic flaw detection unit 28 in the vehicle width direction, and further ultrasonic flaw detection. The optimum position of the probe 30 relative to the part to be inspected can be adjusted, and the later-described thread 34 as the contact body and the spring 40 as the elastic means move together, so that these proper functions are not impaired.

超音波探傷プローブ30はデッキ10の下面との接触を維持しながら移動することにより超音波による探傷を行う。即ち、超音波探傷プローブ30からは超音波が図2の一点鎖線L(図3の拡大図も参照)のように斜め方向に発射され、これに接触されるデッキ10の内部を伝播し、溶接部Wから反射され、反射波はデッキ10内部を戻り、これに接触する超音波探傷プローブ30を介して受信され、受信波(エコー)の解析により溶接部Wの探傷を行うことが可能である。即ち、図3の拡大図において溶接部Wにおける亀裂をCにて表し、亀裂Cはトラフリブ12とデッキ10との溶接ルート部pからデッキ10内部に進行してゆく。そのため、超音波探傷プローブ30からLのように斜め方向に発射される超音波により亀裂Cの的確な探傷が可能となる。他方、超音波による探傷に際しては原理的に超音波探傷プローブ30とデッキ10との接触維持は必要であるが、現実的には、被検査物としてのデッキ10は避けられない幾分の傾斜やアンジュレーションが存在しており、そのままでは、車体の傾斜の影響を直接受けるため、超音波探傷プローブ30とデッキ10との面接触の維持が精度の高い検査のため必要である。また、長手方向に隣接するデッキ間には路面幅方向全長に溶接部(多くは凸部となっている)があり、本発明のように自走ロボットの場合にはこれが障害物となり得るため、これを確実に乗り越え得るようする手段が必要である。そこで、本発明においては超音波探傷プローブ30による探傷を行いつつデッキ面の微妙なアンジュレーションや傾斜に関らず超音波探傷プローブ30と被検査物としてのデッキ10との面接触を確保し、また、溶接ビードのような凸部の乗り越えを可能とする構成としている。即ち、図8は本発明の探傷ロボットにおける超音波探傷プローブ30の部分を示しており、超音波探傷プローブ30は矩形のブロック状をなしており、摺動本体27の矩形開口部27-1に幾分の隙間(ガタ)をもって嵌挿(遊嵌)され、超音波探傷プローブ30は車体16に対しては多少は上下・左右に相対移動可能となっている。超音波探傷プローブ30内には周知のように超音波発信部と受信部とを備え、端面30での超音波送受信により被検査物の探傷を行うことができる。そして、超音波探傷プローブ30へ制御信号や電源供給のためのケーブル32も具備される。摺動本体27と上下方向に間隔をおいて超音波探傷プローブ取付板33が配置され、超音波探傷プローブ30は摺動本体27から離間側において超音波探傷プローブ取付板33の矩形開口部33´を挿通されており、超音波探傷プローブ取付板33を挿通した端部で超音波探傷プローブは超音波探傷プローブを包囲しかつ移動方向の前後に橇状に延びるスレッド(sled)34に固定されている。スレッド34が本発明の接触体を構成する。   The ultrasonic testing probe 30 performs ultrasonic testing by moving while maintaining contact with the lower surface of the deck 10. That is, an ultrasonic wave is emitted from the ultrasonic flaw detection probe 30 in an oblique direction as indicated by a one-dot chain line L in FIG. 2 (see also the enlarged view of FIG. 3), propagates through the inside of the deck 10 in contact therewith, and is welded. The reflected wave is reflected from the portion W, and the reflected wave returns to the inside of the deck 10 and is received via the ultrasonic flaw detection probe 30 in contact therewith, and the welded portion W can be flawed by analyzing the received wave (echo). . That is, in the enlarged view of FIG. 3, a crack in the welded portion W is represented by C, and the crack C progresses from the welding root portion p between the trough rib 12 and the deck 10 to the inside of the deck 10. Therefore, accurate flaw detection of the crack C becomes possible by ultrasonic waves emitted obliquely from the ultrasonic flaw detection probe 30 as indicated by L. On the other hand, in principle, it is necessary to maintain contact between the ultrasonic testing probe 30 and the deck 10 in the case of ultrasonic flaw detection. However, in reality, the deck 10 as an object to be inspected is inevitable with some inclinations. Since undulation exists and is directly affected by the inclination of the vehicle body, it is necessary to maintain surface contact between the ultrasonic flaw detection probe 30 and the deck 10 for highly accurate inspection. In addition, there is a welded portion (mostly a convex portion) between the decks adjacent in the longitudinal direction in the road surface width direction, and this can be an obstacle in the case of a self-propelled robot as in the present invention, A means is needed to ensure that this can be overcome. Therefore, in the present invention, while performing flaw detection with the ultrasonic flaw detection probe 30, surface contact between the ultrasonic flaw detection probe 30 and the deck 10 as the object to be inspected is ensured regardless of subtle undulation or inclination of the deck surface. Moreover, it is set as the structure which can get over a convex part like a weld bead. That is, FIG. 8 shows a portion of the ultrasonic flaw detection probe 30 in the flaw detection robot of the present invention. The ultrasonic flaw detection probe 30 has a rectangular block shape, and is formed in the rectangular opening 27-1 of the sliding body 27. The ultrasonic flaw detection probe 30 is relatively movable up and down and left and right with respect to the vehicle body 16 with some clearance (backlash). As is well known, the ultrasonic flaw detection probe 30 includes an ultrasonic transmission unit and a reception unit, and an inspection object can be detected by ultrasonic transmission / reception on the end face 30. A cable 32 for supplying control signals and power to the ultrasonic flaw detection probe 30 is also provided. An ultrasonic flaw detection probe mounting plate 33 is arranged at a distance from the sliding main body 27 in the vertical direction, and the ultrasonic flaw detection probe 30 is disposed on the side away from the sliding main body 27 at a rectangular opening 33 ′ of the ultrasonic flaw detection probe mounting plate 33. The ultrasonic flaw detection probe is fixed to a sled 34 that surrounds the ultrasonic flaw detection probe and extends in a hook shape in the front and rear directions in the moving direction at the end where the ultrasonic flaw detection probe mounting plate 33 is inserted. Yes. The thread 34 constitutes the contact body of the present invention.

図9に示すようにスレッド34は上面(被検査物との接触面)が超音波探傷プローブ30の被検査面との接触面30´と面一となっている(図11も参照)。また、スレッド34は超音波探傷プローブ30の側面にかしめ等の適当な手段で固定化されている(スレッド34と超音波探傷プローブ30の一体構造も場合によっては可能である)。摺動本体27に対する超音波探傷プローブ30の前記遊嵌構造は超音波探傷プローブ30及びこれに固定されたスレッド34をデッキ面の幾分の傾斜やアンジュレーションに追従して超音波探傷プローブ30及びスレッド34の姿勢を変えデッキ面に対するこれらの面接触を維持させる。更に、スレッド34は超音波探傷プローブ30を挟んでロボット前後方向(溶接部Wの検査のためのロボットの移動方向(図10の矢印f))の前後にU形状部(橇状部)34-1を備え、ロボット移動方向前後のU形状部34-1はスキーのように先端がデッキ10面から離間方向に幾分曲折されている。図10に示すように、スレッド34はロボット移動方向fの左右に前後のU形状部34-1を連結するリンク部34-2を一体に成形しており、このリンク部34-2は図8及び図9に示すようにピン36によって超音波探傷プローブ取付板33に取付られている。更に、図8に示すように摺動本体27からは車体移動方向に離間して2本のスプリングガイド棒38が直立し、各スプリングガイド棒38の一端は摺動本体27に取り付けられ、他端は超音波探傷プローブ取付板33に遊嵌されている。   As shown in FIG. 9, the sled 34 has an upper surface (contact surface with the object to be inspected) flush with a contact surface 30 'with the surface to be inspected of the ultrasonic flaw detection probe 30 (see also FIG. 11). The sled 34 is fixed to the side surface of the ultrasonic flaw detection probe 30 by appropriate means such as caulking (an integrated structure of the sled 34 and the ultrasonic flaw detection probe 30 is also possible in some cases). The loose-fitting structure of the ultrasonic flaw detection probe 30 with respect to the sliding body 27 is such that the ultrasonic flaw detection probe 30 and the sled 34 fixed to the ultrasonic flaw detection probe 30 follow the slight inclination or undulation of the deck surface and The posture of the sled 34 is changed to maintain the surface contact with the deck surface. Further, the sled 34 has a U-shaped portion (saddle-shaped portion) 34- in front of and behind the robot in the longitudinal direction of the robot (the moving direction of the robot for inspection of the weld W (arrow f in FIG. 10)). 1 and the U-shaped portion 34-1 before and after the robot moving direction is somewhat bent in the direction away from the deck 10 surface like a ski. As shown in FIG. 10, the sled 34 is integrally formed with a link portion 34-2 that connects the front and rear U-shaped portions 34-1 to the left and right of the robot moving direction f. And as shown in FIG. 9, it is attached to the ultrasonic flaw detection probe attachment plate 33 by a pin 36. Further, as shown in FIG. 8, two spring guide bars 38 stand upright away from the sliding body 27 in the vehicle body moving direction, and one end of each spring guide bar 38 is attached to the sliding body 27 and the other end. Is loosely fitted to the ultrasonic inspection probe mounting plate 33.

また、スプリングガイド棒38にはスプリング40(本発明の弾性手段)が嵌挿され、スプリング40は一端は摺動本体27に他端は超音波探傷プローブ取付板33に掛装されており、超音波探傷プローブ取付板33を摺動本体27から離間方向に付勢し、換言すれば超音波探傷プローブ取付板33に取り付けられたスレッド34及び超音波探傷プローブ30はスプリング40により車体から離間方向に付勢を受けている。そして、図2に示す探傷時には、スプリング40はその弾性に抗して幾分縮むことにより超音波探傷プローブ30はデッキ10の下面にばねの縮みに応じた圧力下で接触する。そして、図11に示すようにスプリング40は検査のためのロボット移動方向f(図2の紙面直交方向に対応)に離間して2個設けられているため、デッキ面の幾分の傾斜やアンジュレーションがあっても前後の2個のスプリング40の個別的な縮みによりこれに追随し、超音波探傷プローブ30及びスレッド34の姿勢を自動修正し、いずれの方向の移動であってもスレッド34及び超音波探傷プローブ30が移動方向の前後に適宜傾くことで姿勢が調整され、非検査麺の傾斜やアンジュレーションに関らず超音波探傷プローブ30と検査面との面接触(金属接触)が維持され、ロボット移動時にスレッド34が被測定面に対して円滑に滑ることによりスレッド34に支持された超音波探傷プローブ30の被測定面に対する接触を維持し、溶接部Wの高精度での探傷検査を実現することができる。そして、長手方向における隣接デッキ10の接続部のようなロボット移送方向の凸状障害物(図11の紙面では直交方向に位置している)に対しては、超音波探傷プローブ30を支持するスレッド34は移動方向(矢印f)における両端にデッキ面から離間する方向にスキー先端様に曲折されたU形状部34-1を備えているため、いずれの方向の移動であっても自力で凸部を乗り越えることができ、自走ロボットによる作業を中断することなく継続することができる。   Further, a spring 40 (elastic means of the present invention) is fitted into the spring guide rod 38. One end of the spring 40 is hooked on the sliding body 27 and the other end is hooked on the ultrasonic flaw detection probe mounting plate 33. The ultrasonic flaw detection probe mounting plate 33 is urged away from the sliding body 27. In other words, the sled 34 and the ultrasonic flaw detection probe 30 attached to the ultrasonic flaw detection probe mounting plate 33 are moved away from the vehicle body by the spring 40. It is energized. When the flaw detection shown in FIG. 2 is performed, the spring 40 contracts somewhat against its elasticity, so that the ultrasonic flaw detection probe 30 contacts the lower surface of the deck 10 under a pressure corresponding to the contraction of the spring. As shown in FIG. 11, two springs 40 are provided apart from each other in the robot moving direction f for inspection (corresponding to the direction perpendicular to the paper surface of FIG. 2), so that the deck surface has a slight inclination or undulation. Even if there is a vibration, the two springs 40 on the front and back follow each other, and the postures of the ultrasonic flaw detection probe 30 and the sled 34 are automatically corrected. The posture is adjusted by appropriately tilting the ultrasonic flaw detection probe 30 back and forth in the moving direction, and the surface contact (metal contact) between the ultrasonic flaw detection probe 30 and the inspection surface is maintained regardless of the inclination or undulation of the non-inspection noodles. When the robot moves, the sled 34 smoothly slides with respect to the surface to be measured, thereby maintaining contact with the surface to be measured of the ultrasonic testing probe 30 supported by the sled 34, It is possible to realize a flaw inspection with high precision of a contact portion W. Then, a thread that supports the ultrasonic flaw detection probe 30 for a convex obstacle in the robot transfer direction such as a connecting portion of the adjacent deck 10 in the longitudinal direction (located in the orthogonal direction on the paper surface of FIG. 11). 34 is provided with U-shaped portions 34-1 that are bent like the tip of the ski in the direction away from the deck surface at both ends in the moving direction (arrow f), so that the convex portion is self-powered in any direction of movement. And can continue the work by the self-propelled robot without interruption.

10…デッキ
12…トラフリブ
14…自走ロボット
16…車体
16-3…摺動溝
18, 19…車輪
24, 26…永久磁石
27…摺動本体27
28…超音波探傷部
29…ラック(ピニオンとで本発明の位置調節手段を構成)
30…超音波探傷プローブ
31…ピニオンの軸端
33…超音波探傷プローブ取付板
34…スレッド(本発明の接触体)
34-1…スレッドのU形状部(本発明の曲折部)
38…スプリングガイド棒
40…スプリング(本発明の弾性手段)
W…溶接部(ビード)
10 ... Deck 12 ... Traff Rib 14 ... Self-propelled robot 16 ... Car body
16-3… Sliding groove
18, 19 ... wheels
24, 26 ... permanent magnet 27 ... sliding body 27
28 ... Ultrasonic flaw detector 29 ... Rack (the pinion constitutes the position adjusting means of the present invention)
30 ... Ultrasonic flaw detection probe 31 ... Pinion shaft end 33 ... Ultrasonic flaw detection probe mounting plate 34 ... Thread (contact body of the present invention)
34-1 ... U-shaped part of thread (bent part of the present invention)
38 ... Spring guide rod 40 ... Spring (elastic means of the present invention)
W ... Welded part (bead)

Claims (6)

鋼材よりなる被検査物の下面側からの超音波による自走式探傷装置であって、自走型の車体と、車体を被検査物の下面に磁力により吸着保持する手段と、被検査物の下面に接触移動するべく車体に取り付けられる接触体と、接触体の位置調節手段と、前記接触体に設けられ、被検査物の下面に接触移動することにより超音波による被検査物の探傷を行う超音波プローブと、接触体に設けられ、車体の自走に際して被検査物の下面に対する接触体及び超音波プローブの接触を維持するべく接触体を被検査物下面に向けて付勢する弾性手段とを具備してなる自走式探傷装置。   A self-propelled flaw detection device using ultrasonic waves from the lower surface side of an inspection object made of steel, a self-propelled vehicle body, means for adsorbing and holding the vehicle body on the lower surface of the inspection object by magnetic force, A contact body that is attached to the vehicle body so as to move in contact with the lower surface, position adjustment means for the contact body, and provided on the contact body, and inspects the inspection object by ultrasonic waves by moving in contact with the lower surface of the inspection object. An ultrasonic probe, and an elastic means provided on the contact body for biasing the contact body toward the lower surface of the object to be inspected so as to maintain the contact of the contact body with the lower surface of the object to be inspected and the ultrasonic probe when the vehicle body is self-propelled A self-propelled flaw detector. 請求項1に記載の発明において、前記位置調整のための移動の際に接触体と一体に超音波プローブ及び弾性手段が移動するようにされる自走式探傷装置。   2. The self-propelled flaw detection apparatus according to claim 1, wherein an ultrasonic probe and elastic means move together with the contact body during the movement for position adjustment. 請求項2に記載の発明において、弾性手段は接触体を車体の移動方向に離間した部位において独立に被検査物下面に向けて付勢する自走式探傷装置。   3. The self-propelled flaw detection apparatus according to claim 2, wherein the elastic means independently urges the contact body toward the lower surface of the object to be inspected at a portion separated in the moving direction of the vehicle body. 請求項3に記載の発明において、弾性手段は車体の移動方向に離間した部位に配置された複数のスプリングより成る自走式探傷装置。
4. The self-propelled flaw detection device according to claim 3, wherein the elastic means is composed of a plurality of springs arranged at positions separated in the moving direction of the vehicle body.
請求項4に記載の発明において、前記接触体は被検査物の下面に摺動移動するスレッドからなり、前記スプリングはスレッドの夫々の端部に設けられる自走式探傷装置。   5. The self-propelled flaw detector according to claim 4, wherein the contact body includes a thread that slides on the lower surface of the object to be inspected, and the spring is provided at each end of the thread. 請求項5に記載の発明において、スレッドは移動方向における前端に被検査物から離間方向に曲折した曲折部を有する自走式探傷装置。   6. The self-propelled flaw detection apparatus according to claim 5, wherein the sled has a bent portion bent in the separating direction from the object to be inspected at the front end in the moving direction.
JP2010247016A 2010-11-04 2010-11-04 Self-propelled flaw detector Active JP5674419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247016A JP5674419B2 (en) 2010-11-04 2010-11-04 Self-propelled flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247016A JP5674419B2 (en) 2010-11-04 2010-11-04 Self-propelled flaw detector

Publications (2)

Publication Number Publication Date
JP2012098193A true JP2012098193A (en) 2012-05-24
JP5674419B2 JP5674419B2 (en) 2015-02-25

Family

ID=46390264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247016A Active JP5674419B2 (en) 2010-11-04 2010-11-04 Self-propelled flaw detector

Country Status (1)

Country Link
JP (1) JP5674419B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788848A (en) * 2012-08-01 2012-11-21 中国石油天然气集团公司 Probe mechanism of oil and gas pipeline crack detector
CN102879458A (en) * 2012-08-07 2013-01-16 包胜 Damage detector based on piezomagnetic effect
CN102901772A (en) * 2012-06-12 2013-01-30 过宾 Robot for intelligent tracking ultrasonic detection of welding line, and software analysis system therefor
CN102966038A (en) * 2012-11-23 2013-03-13 南京理工大学 Bridge detecting robot based on negative-pressure absorption
CN103934596A (en) * 2014-02-28 2014-07-23 浙江海洋学院 Hull wall climbing welding device
KR20160018907A (en) * 2014-08-07 2016-02-18 주식회사 포스코 Robot for a non-destructive test for iron structures
CN105973986A (en) * 2016-07-04 2016-09-28 四川大学 Robot for all-bearing defect detection of large-capacity flat-bottom container bottom plate and detection method
WO2017158578A1 (en) * 2016-03-18 2017-09-21 Invert Robotics Limited Surface wave detection of surface defects
CN107402064A (en) * 2017-07-25 2017-11-28 上海控创信息技术股份有限公司 noise detecting method and system
CN107402139A (en) * 2017-08-07 2017-11-28 清华大学天津高端装备研究院 A kind of magnetic adsorption wall climbing robot performance detecting platform
CN109557173A (en) * 2019-01-17 2019-04-02 中国石油大学(北京) Non-destructive testing device
CN110566749A (en) * 2019-10-28 2019-12-13 长春大学 Ultrasonic flaw detection marking robot for natural gas pipeline
CN110596243A (en) * 2019-09-27 2019-12-20 哈尔滨工业大学 Orthotropic steel bridge deck plate top plate fatigue crack detection system based on ultrasonic guided wave method
CN111307954A (en) * 2020-03-20 2020-06-19 周泽辉 Automatic flaw detection equipment for concrete bridge pier
CN111521688A (en) * 2020-05-29 2020-08-11 鞍钢股份有限公司 Square steel combination formula probe landing gear
CN111562309A (en) * 2020-05-09 2020-08-21 天津职业技术师范大学(中国职业培训指导教师进修中心) Ultrasonic phased array weld joint detection magnetic adsorption wall climbing robot and working method thereof
CN113826009A (en) * 2019-05-20 2021-12-21 三菱动力株式会社 Ultrasonic inspection apparatus and inspection method
CN114274161A (en) * 2022-01-11 2022-04-05 南通理工学院 Box girder detection robot
CN115290756A (en) * 2022-09-27 2022-11-04 江苏广亚建设集团有限公司 Assembled flaw detection device for road maintenance
CN116297851A (en) * 2023-04-07 2023-06-23 山东方云软件技术有限公司 Highway engineering quality automatic checkout device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696483B (en) * 2018-12-30 2021-06-01 河海大学 Ultrasonic detection auxiliary device based on penetration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174061U (en) * 1986-10-14 1988-11-11
JPH06331611A (en) * 1993-05-21 1994-12-02 Onoda Cement Co Ltd Automatic flaw detecting device for ring-state structure
JPH09229919A (en) * 1996-02-22 1997-09-05 Mitsubishi Heavy Ind Ltd Instrument for measurement of scanning distance in 2-directional flaw detection
JPH11142374A (en) * 1997-11-06 1999-05-28 Hitachi Ltd Piping-inspecting apparatus
JP2004191225A (en) * 2002-12-12 2004-07-08 Ishikawajima Harima Heavy Ind Co Ltd Pipe inspection device
JP2008249510A (en) * 2007-03-30 2008-10-16 Japan Construction Mechanization Association Movable flaw detection tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174061U (en) * 1986-10-14 1988-11-11
JPH06331611A (en) * 1993-05-21 1994-12-02 Onoda Cement Co Ltd Automatic flaw detecting device for ring-state structure
JPH09229919A (en) * 1996-02-22 1997-09-05 Mitsubishi Heavy Ind Ltd Instrument for measurement of scanning distance in 2-directional flaw detection
JPH11142374A (en) * 1997-11-06 1999-05-28 Hitachi Ltd Piping-inspecting apparatus
JP2004191225A (en) * 2002-12-12 2004-07-08 Ishikawajima Harima Heavy Ind Co Ltd Pipe inspection device
JP2008249510A (en) * 2007-03-30 2008-10-16 Japan Construction Mechanization Association Movable flaw detection tool

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901772A (en) * 2012-06-12 2013-01-30 过宾 Robot for intelligent tracking ultrasonic detection of welding line, and software analysis system therefor
CN102788848A (en) * 2012-08-01 2012-11-21 中国石油天然气集团公司 Probe mechanism of oil and gas pipeline crack detector
CN102879458A (en) * 2012-08-07 2013-01-16 包胜 Damage detector based on piezomagnetic effect
CN102879458B (en) * 2012-08-07 2014-12-31 包胜 Damage detector based on piezomagnetic effect
CN102966038A (en) * 2012-11-23 2013-03-13 南京理工大学 Bridge detecting robot based on negative-pressure absorption
CN103934596A (en) * 2014-02-28 2014-07-23 浙江海洋学院 Hull wall climbing welding device
CN103934596B (en) * 2014-02-28 2015-12-30 浙江海洋学院 A kind of hull climbs wall welder
KR20160018907A (en) * 2014-08-07 2016-02-18 주식회사 포스코 Robot for a non-destructive test for iron structures
KR101647191B1 (en) 2014-08-07 2016-08-10 주식회사 포스코 Robot for a non-destructive test for iron structures
US11420692B2 (en) 2016-03-18 2022-08-23 Invert Robotics Limited Surface wave detection of surface defects
WO2017158578A1 (en) * 2016-03-18 2017-09-21 Invert Robotics Limited Surface wave detection of surface defects
CN105973986A (en) * 2016-07-04 2016-09-28 四川大学 Robot for all-bearing defect detection of large-capacity flat-bottom container bottom plate and detection method
CN107402064A (en) * 2017-07-25 2017-11-28 上海控创信息技术股份有限公司 noise detecting method and system
CN107402139A (en) * 2017-08-07 2017-11-28 清华大学天津高端装备研究院 A kind of magnetic adsorption wall climbing robot performance detecting platform
CN109557173A (en) * 2019-01-17 2019-04-02 中国石油大学(北京) Non-destructive testing device
CN109557173B (en) * 2019-01-17 2023-12-22 中国石油大学(北京) Nondestructive testing device
CN113826009A (en) * 2019-05-20 2021-12-21 三菱动力株式会社 Ultrasonic inspection apparatus and inspection method
CN110596243A (en) * 2019-09-27 2019-12-20 哈尔滨工业大学 Orthotropic steel bridge deck plate top plate fatigue crack detection system based on ultrasonic guided wave method
CN110566749A (en) * 2019-10-28 2019-12-13 长春大学 Ultrasonic flaw detection marking robot for natural gas pipeline
CN111307954A (en) * 2020-03-20 2020-06-19 周泽辉 Automatic flaw detection equipment for concrete bridge pier
CN111562309A (en) * 2020-05-09 2020-08-21 天津职业技术师范大学(中国职业培训指导教师进修中心) Ultrasonic phased array weld joint detection magnetic adsorption wall climbing robot and working method thereof
CN111562309B (en) * 2020-05-09 2023-06-27 天津职业技术师范大学(中国职业培训指导教师进修中心) Ultrasonic phased array welding line detection magnetic adsorption wall climbing robot and working method thereof
CN111521688A (en) * 2020-05-29 2020-08-11 鞍钢股份有限公司 Square steel combination formula probe landing gear
CN114274161A (en) * 2022-01-11 2022-04-05 南通理工学院 Box girder detection robot
CN114274161B (en) * 2022-01-11 2023-06-23 南通理工学院 Box girder detection robot
CN115290756A (en) * 2022-09-27 2022-11-04 江苏广亚建设集团有限公司 Assembled flaw detection device for road maintenance
CN115290756B (en) * 2022-09-27 2022-12-20 江苏广亚建设集团有限公司 Assembled flaw detection device for road maintenance
CN116297851A (en) * 2023-04-07 2023-06-23 山东方云软件技术有限公司 Highway engineering quality automatic checkout device
CN116297851B (en) * 2023-04-07 2023-09-26 山东方云软件技术有限公司 Highway engineering quality automatic checkout device

Also Published As

Publication number Publication date
JP5674419B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5674419B2 (en) Self-propelled flaw detector
US7415771B2 (en) Apparatus onboard a vehicle for instructing axle alignment
JP2020502402A (en) Track inspection vehicle and method of detecting track shape
TWI344913B (en)
CN109844224B (en) Machine for work on top of track and method for operating a machine for work on top of track
JP4968625B2 (en) Orbital inspection equipment
JP6038281B2 (en) Machine for track maintenance
JP2013002278A (en) Road paving machine with layer thickness measuring device
JP5999214B2 (en) Self-propelled inspection device for metal plate, self-propelled inspection method for metal plate, and inspection system
JP2017053773A (en) Track displacement measuring device and track displacement measuring method
US20100060884A1 (en) Attachment angle measuring device and attachment angle measuring method
JPH10307015A (en) Method and device for inspecting running rail
JP5808587B2 (en) Inspection method and apparatus
JP4046867B2 (en) Work machine apparatus and method for track with reference system for controlling work unit
JP2013019808A (en) Hammering inspection method of damaged portion inside road and hammering device for inspecting damaged portion inside road
JP2013019808A5 (en)
WO2013011590A1 (en) Hammering inspection method for damaged portion inside road and hammering device for inspecting damaged portion inside road
KR20150137465A (en) Tire Sidewall Stiffness Measurement Device
JP2008249510A (en) Movable flaw detection tool
JP6847813B2 (en) Cover thickness inspection method
WO2019084390A1 (en) Brake tester with tire tread profile measurement attachment
US7929118B2 (en) Method for geodetic monitoring of rails
JP2008175674A (en) Traveling vehicle, and measuring method of its wheel abrasion quantity
CN107356676B (en) Flaw detection device for grooved rail
JP2009128122A (en) Self-traveling flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250