JP2008175674A - Traveling vehicle, and measuring method of its wheel abrasion quantity - Google Patents

Traveling vehicle, and measuring method of its wheel abrasion quantity Download PDF

Info

Publication number
JP2008175674A
JP2008175674A JP2007008890A JP2007008890A JP2008175674A JP 2008175674 A JP2008175674 A JP 2008175674A JP 2007008890 A JP2007008890 A JP 2007008890A JP 2007008890 A JP2007008890 A JP 2007008890A JP 2008175674 A JP2008175674 A JP 2008175674A
Authority
JP
Japan
Prior art keywords
wheel
distance
traveling
traveling vehicle
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008890A
Other languages
Japanese (ja)
Inventor
Koichi Uno
幸一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2007008890A priority Critical patent/JP2008175674A/en
Publication of JP2008175674A publication Critical patent/JP2008175674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a wheel abrasion quantity of a trackless type traveling vehicle during traveling. <P>SOLUTION: A distance measuring means for measuring a distance to a traveling surface is mounted on a carriage frame of the traveling vehicle. A horizontal surface capable of supporting rolling surfaces of the whole wheels of the traveling vehicle on the same plane is formed on a prescribed spot of the traveling surface. The traveling vehicle is guided onto the horizontal surface, and the distance to the horizontal surface is measured by the distance measuring means. The measured distance is compared with a value just after wheel replacement, and the wheel abrasion quantity is determined from the difference. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、走行車両の車輪の磨耗量を検出する技術であって、特には無軌道式走行車両の車輪磨耗量を測定するのに好適な技術に関する。   The present invention relates to a technique for detecting the amount of wheel wear of a traveling vehicle, and more particularly to a technique suitable for measuring the amount of wheel wear of a trackless traveling vehicle.

今日、自動化の進んだ工場では、製品、半製品を荷台に載せて指定場所へ無人搬送する走行車両が多用されている。こうした走行車両には、軌道上を走行する有軌道式ものと、平坦な床面上を自身で車体操舵しながら走行する無軌道式のものがある。何れの方式の走行車両も、その殆どがエンコーダを使用して車輪の回転数を検出する。そして、検出した回転数に車輪外周長さを掛けて基準位置からの移動距離を算出し、その値により自身の現在位置を確認しつつ予め記憶したプログラムに従って無人走行を行なう。   In today's highly automated factories, traveling vehicles that carry products and semi-finished products on a loading platform and unattended transport to designated locations are often used. Such traveling vehicles include a tracked vehicle that travels on a track and a trackless vehicle that travels on a flat floor while steering itself. Most of the traveling vehicles of any system use an encoder to detect the rotational speed of the wheel. Then, the travel distance from the reference position is calculated by multiplying the detected rotational speed by the wheel outer circumference length, and the unmanned travel is performed according to the program stored in advance while confirming the current position by the value.

こうした車輪回転数から移動距離を求める方式では、車輪外周長さの算出基礎となる車輪径を正確に把握することが重要である。車輪は鉄、ウレタン、ゴム等の材質で製作され、これらは何れも走行により磨耗して車輪径を減少させる。車輪の磨耗を無視したのでは算出した移動距離に誤差が生じ、停止位置や走行経路にずれを生ずる。人手による車輪磨耗量の点検には点検時間や工数の問題があるため、稼働途中あるいは稼働の合間に自動測定できることが望まれる。   In such a method of obtaining the moving distance from the number of wheel rotations, it is important to accurately grasp the wheel diameter that is the basis for calculating the wheel outer peripheral length. The wheels are made of a material such as iron, urethane, rubber, etc., all of which are worn by running to reduce the wheel diameter. If the wear of the wheels is ignored, an error occurs in the calculated moving distance, and a deviation occurs in the stop position and the travel route. Since there is a problem of inspection time and man-hours in checking the amount of wheel wear manually, it is desirable that automatic measurement can be performed during operation or between operations.

従来技術として軌道上を走行する有軌道式走行車両では、直線軌道に沿って所定距離離れた2つの基準位置にマークを設け、走行車両にはそれらマークを検出する検出器を取り付ける。そして、それら2つの基準位置間を走行する間の車輪回転数をエンコーダで検出して車輪1回転当たりの走行距離を算出し、その値から車輪径を逆算する方法が多く採られている。   In a tracked traveling vehicle that travels on a track as a conventional technique, marks are provided at two reference positions that are separated by a predetermined distance along a straight track, and detectors that detect these marks are attached to the traveling vehicle. And many methods are employed in which the number of wheel rotations while traveling between these two reference positions is detected by an encoder to calculate the traveling distance per one wheel rotation, and the wheel diameter is calculated backward from that value.

有軌道式走行車両で採用されるこの方式は、稼働途中に実際の車輪径を測定できる上、2つ基準位置間の距離を長くとることで測定精度を上げることもできる。しかし、この方式を無軌道式走行車両に適用するには問題が多い。無軌道式走行車両の多くは、床面に貼られた光反射テープや磁気テープ、床面直下に敷設された電流の流れる電線等の誘導線を検出しながらそれらに沿って走行する。従って、その誘導線を直線状に張っておくことにより直線走行させることもできる。しかし、その場合も走行車両は誘導線から外れないように微妙な操舵を繰り返しており、車輪の走行方向は誘導線の向きを中心として微妙に振れ動いている。その影響で、直線経路に沿った2つの基準位置間を走行する間の車輪回転数を検出したとしても誤差が生じる。このため、この方法で車輪摩耗量を正確に測定することは難しい。   This method adopted in a tracked traveling vehicle can measure the actual wheel diameter during operation, and can increase the measurement accuracy by increasing the distance between the two reference positions. However, there are many problems in applying this method to trackless traveling vehicles. Many trackless traveling vehicles travel along these while detecting induction wires such as light reflecting tape and magnetic tape affixed to the floor, and electric current lines laid directly under the floor. Therefore, it is also possible to run the vehicle in a straight line by stretching the guide wire in a straight line. However, even in this case, the traveling vehicle repeats delicate steering so as not to deviate from the guide line, and the traveling direction of the wheels slightly swings around the direction of the guide line. As a result, an error occurs even if the wheel speed is detected while traveling between two reference positions along a straight path. For this reason, it is difficult to accurately measure the amount of wheel wear by this method.

本発明は、従来技術のこうした問題点を解決するためになされたもので、その課題は、走行車両の車輪の磨耗量を測定する技術であって、特には無人走行する無軌道式走行車両の車輪磨耗量を稼働途中あるいは稼働の合間に測定するのに適した技術を提供することにある。   The present invention has been made in order to solve such problems of the prior art, and the subject thereof is a technique for measuring the amount of wear of wheels of a traveling vehicle, and in particular, the wheels of a trackless traveling vehicle that travels unattended. The object is to provide a technique suitable for measuring the amount of wear during operation or between operations.

前記課題を達成するための請求項1に記載の発明は、走行車両の車輪磨耗量を測定する方法であって、走行車両の台車フレームに車輪が転動する走行面又は走行面に平行な面との間の距離を測定する距離測定手段を取り付け、走行車両が走行する走行面上の所定個所には走行車両の全車輪の転動面を同一面上に支え得る平面を形成しておき、走行車両をその平面上に誘導して距離測定手段にてその平面又はその平面から一定間隔離れた平行平面との間の距離を測定させ、測定した距離を車輪交換直後の値と比較して車輪の磨耗量を算出することを特徴とする走行車両の車輪磨耗量の測定方法である。   The invention according to claim 1 for achieving the above object is a method for measuring the amount of wheel wear of a traveling vehicle, wherein the wheel rolls on a carriage frame of the traveling vehicle or a surface parallel to the traveling surface. A distance measuring means for measuring the distance between the traveling vehicle and the traveling surface where the traveling vehicle travels is formed at a predetermined position on the traveling surface, and a plane that can support the rolling surfaces of all the wheels of the traveling vehicle on the same surface is formed. The traveling vehicle is guided on the plane, and the distance measuring means measures the distance between the plane or a parallel plane spaced apart from the plane, and compares the measured distance with the value immediately after the wheel replacement. This is a method of measuring the amount of wheel wear of a traveling vehicle.

このような測定方法によれば、無軌道式の走行車両であってもその稼働途中あるいは稼働の合間をみて人手を介することなく車輪磨耗量を自動測定することができる。磨耗量が判ればその時点における実際の車輪径も判るため、車軸の回転に同期したパルスを発するエンコーダの信号に基づいて移動量を計算する際、その値を用いることで移動量を正確に把握することができる。   According to such a measuring method, even if it is a trackless traveling vehicle, it is possible to automatically measure the amount of wheel wear without any human intervention during operation or between operations. If the amount of wear is known, the actual wheel diameter at that time can also be found, so when calculating the amount of movement based on the encoder signal that emits a pulse synchronized with the rotation of the axle, the amount of movement can be accurately grasped by using that value. can do.

また、請求項2に記載の発明は、走行面上を車輪を転動させて走行する走行車両であって、走行車両の台車フレームに取り付けられて走行面又は走行面に平行な面との間の距離を測定する距離測定手段と、車輪の磨耗量算出手段とを備え、磨耗量算出手段は走行面又は走行面に平行な面との距離測定の指示と車輪が交換された旨の情報入力を受ける入力手段と、距離測定手段の測定した距離と入力手段が受けた車輪交換情報を記憶しておく記憶手段を有し、入力手段を介して距離測定の指示を受けた場合には距離測定手段に指示して走行面又は走行面に平行な面との距離測定を実行させ、得られた測定値を車輪交換の情報入力を受けた後に記憶手段が最初に記憶した距離測定値と比較することにより車輪の磨耗量を算出するように構成してあることを特徴とする走行車両である。   The invention according to claim 2 is a traveling vehicle that travels by rolling wheels on the traveling surface, and is attached to the carriage frame of the traveling vehicle and between the traveling surface or a surface parallel to the traveling surface. A distance measuring means for measuring the distance of the vehicle and a wheel wear amount calculating means. The wear amount calculating means inputs a distance measurement instruction to the running surface or a plane parallel to the running surface and information indicating that the wheel has been replaced. Receiving means, and a storage means for storing the distance measured by the distance measuring means and the wheel replacement information received by the input means. When receiving a distance measurement instruction via the input means, the distance measurement is performed. Instruct the means to perform distance measurement with the running surface or a plane parallel to the running surface, and compare the obtained measurement value with the distance measurement value stored first by the storage means after receiving the wheel replacement information input It is configured to calculate the amount of wheel wear by It is traveling vehicle characterized by.

このような構成の走行車両によれば、車両が無軌道式であってもその稼働途中あるいは稼働の合間をみて水平面上にて該水平面までの距離を測定させることで、人手を介することなく車輪磨耗量を自動測定することができる。磨耗量が判ればその時点における実際の車輪径も判るため、車軸の回転に同期したパルスを発するにエンコーダの信号に基づいて移動量を計算する際、その値を用いることで移動量を正確に把握することができる。   According to the traveling vehicle having such a configuration, even if the vehicle is a trackless type, it is possible to measure the distance to the horizontal plane on the horizontal plane during operation or between operations, thereby eliminating wheel wear without human intervention. The amount can be measured automatically. If the amount of wear is known, the actual wheel diameter at that time can also be found, so when calculating the amount of movement based on the encoder signal to generate a pulse synchronized with the rotation of the axle, the value is used to accurately determine the amount of movement. I can grasp it.

また、請求項3に記載の発明は、請求項2に記載の走行車両において、距離測定手段は走行車両の駆動車輪に近い台車フレームに取り付けてあることを特徴とする走行車両である。   According to a third aspect of the present invention, in the traveling vehicle according to the second aspect, the distance measuring means is attached to a bogie frame close to a driving wheel of the traveling vehicle.

車輪の磨耗は従動車輪より駆動車輪の方が激しいため、駆動車輪近くの台車フレームに距離測定手段を取り付けておけば車輪の交換時期をより正確に判断することができる。   Since the wear of the wheel is more severe on the driving wheel than on the driven wheel, if the distance measuring means is attached to the bogie frame near the driving wheel, the replacement time of the wheel can be determined more accurately.

以下、本発明に係る走行車両とその車輪磨耗量の測定方法についての一実施形態を図面を参照して説明する。本実施形態では、走行車両の一例として無人フォークリフトを取り上げて説明する。図1、図2は、その無人フォークリフト1の正面図と側面図である。この無人フォークリフト1は無軌道式であり、平坦な床面2上に車輪3を転動させながら無人走行して荷物を搬送する。図1の右方向が無人走行する場合の前進方向である。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a traveling vehicle and a method for measuring the amount of wheel wear according to the present invention will be described with reference to the drawings. In the present embodiment, an unmanned forklift will be described as an example of a traveling vehicle. 1 and 2 are a front view and a side view of the unmanned forklift 1. The unmanned forklift 1 is a trackless type and travels unmanned while rolling a wheel 3 on a flat floor 2 to carry a load. The right direction in FIG. 1 is the forward direction when the vehicle travels unattended.

無人フォークリフト1は下部の台車フレーム5と、その上の進行方向前側に搭載された車体本体部6と、後側に搭載されたフォーク装置7により構成されている。フォーク装置7はL字形フォーク8と、それを上下、前後に動かす駆動機構9とからなる荷物の積み降ろし装置である。搬送荷物はそのフォーク8上に載せて運ばれる。   The unmanned forklift 1 includes a lower bogie frame 5, a vehicle body main body 6 mounted on the front side in the traveling direction, and a fork device 7 mounted on the rear side. The fork device 7 is a cargo loading / unloading device comprising an L-shaped fork 8 and a drive mechanism 9 for moving the L-shaped fork 8 up and down and back and forth. The transported luggage is carried on the fork 8.

車体本体部6内には、後述する走行制御装置31、車輪磨耗量算出回路45、レーザ距離計50、電源装置等が収納してある。車体本体部6の前面には、走行警告灯11、障害物検知センサ12が取り付けてある。車体本体部6の上部両側からは斜め上方に延びる一対の側枠14が取り付けてあり、それらの上端には上枠15が水平に取り付けてある。上枠15にはレーザ投受光器16が取り付けてある。   The vehicle body 6 contains a travel control device 31, a wheel wear amount calculation circuit 45, a laser distance meter 50, a power supply device and the like which will be described later. A travel warning lamp 11 and an obstacle detection sensor 12 are attached to the front surface of the vehicle body main body 6. A pair of side frames 14 extending obliquely upward from both sides of the upper portion of the vehicle body main body 6 are attached, and an upper frame 15 is horizontally attached to the upper ends thereof. A laser projector / receiver 16 is attached to the upper frame 15.

図3、図4は、無人フォークリフト1の台車フレーム5とその下面側の車輪の取り付け関係を示したものであり、図3は車輪の配置関係を示す平面図、図4は図3の切断面線A−Aから見た断面図である。なお、図3中の符号18は、無人フォークリフト1の車輪磨耗量測定のために走行面の所定場所に設置した水平板を示している。   3 and 4 show the mounting relationship between the bogie frame 5 of the unmanned forklift 1 and the wheels on the lower surface side thereof, FIG. 3 is a plan view showing the positional relationship of the wheels, and FIG. 4 is a cut surface of FIG. It is sectional drawing seen from line AA. In addition, the code | symbol 18 in FIG. 3 has shown the horizontal board installed in the predetermined place of a driving | running | working surface for the wheel abrasion amount measurement of the unmanned forklift 1. FIG.

この無人フォークリフト1は4輪で走行する。図3に示すように走行方向の前部左側には走行駆動輪3aが、前部右側には従動輪3bが、後部左右には従動輪3c、3dが取り付けてある。図4に示すように走行駆動輪3aと従動輪3bはそれぞれ台車フレーム5に旋回自由に取り付けられた車輪支持枠22a、22bに取り付けてあり、走行駆動輪3aは同軸に取り付けた減速機付きの走行モータ20により駆動される。走行駆動輪3a図示しないステアリング機構により操舵される。従動輪3bにはキャスターが使用してある。   The unmanned forklift 1 travels on four wheels. As shown in FIG. 3, traveling drive wheels 3a are attached to the front left side in the traveling direction, driven wheels 3b are attached to the front right side, and driven wheels 3c and 3d are attached to the rear left and right sides. As shown in FIG. 4, the traveling drive wheel 3a and the driven wheel 3b are respectively attached to wheel support frames 22a and 22b that are freely attached to the carriage frame 5, and the traveling drive wheel 3a has a reduction gear attached coaxially. It is driven by the travel motor 20. The driving wheel 3a is steered by a steering mechanism (not shown). A caster is used for the driven wheel 3b.

本実施形態の無人フォークリフト1の特徴として走行駆動輪3a寄りの台車フレーム5部分に、レーザ距離計50が台車フレーム5に開けた穴を通して下向きに取り付けてある。レーザ距離計(距離測定手段に相当)50は、床面2に向けて照射したレーザ光と、床面(走行面)2で反射して戻ってきた反射光との時間差、位相差等に基づいて床面2までの距離を測定する装置である。   As a feature of the unmanned forklift 1 of the present embodiment, a laser rangefinder 50 is attached downward through a hole formed in the bogie frame 5 on the bogie frame 5 near the traveling drive wheel 3a. A laser distance meter (corresponding to a distance measuring means) 50 is based on a time difference, a phase difference, etc. between the laser light irradiated toward the floor surface 2 and the reflected light reflected by the floor surface (traveling surface) 2 and returned. This is a device for measuring the distance to the floor surface 2.

図5は、制御装置30の構成を示したものである。制御装置30は、走行制御装置31と、本実施形態に特有の車輪磨耗量を算出するためのレーザ距離計50と車輪磨耗量算出回路(磨耗量算出手段に相当)45とからなる。   FIG. 5 shows the configuration of the control device 30. The control device 30 includes a travel control device 31, a laser distance meter 50 for calculating a wheel wear amount unique to the present embodiment, and a wheel wear amount calculation circuit (corresponding to a wear amount calculation means) 45.

走行制御装置31は、無人フォークリフト1の走行制御の他、フォーク装置7の制御も司る。中核としての制御回路32はマイクロコンピュータを用いて構成されている。制御回路32には、無線装置33、レーザ投受光器16、障害物検知回路35、エンコーダ回路36、走行モータ駆動回路37a、操舵機構駆動回路37b、走行警告灯駆動回路38、走行警音器駆動回路39、フォーク装置駆動回路40等が接続されている。   The travel control device 31 also controls the fork device 7 in addition to the travel control of the unmanned forklift 1. The control circuit 32 as a core is configured using a microcomputer. The control circuit 32 includes a wireless device 33, a laser projector / receiver 16, an obstacle detection circuit 35, an encoder circuit 36, a travel motor drive circuit 37a, a steering mechanism drive circuit 37b, a travel warning light drive circuit 38, and a travel sound alarm drive. A circuit 39, a fork device drive circuit 40, and the like are connected.

制御回路32は、地上の指令装置から送られてくる搬送指令を無線装置33で受ける。その指令に基づき走行モータ駆動回路37aを操作して走行駆動輪3aを駆動すると共に、操舵機構駆動回路37bを操作して走行駆動輪3aを操舵して無人フォークリフト1を目的の場所に誘導する。誘導は予め記憶している走行空間のレイアウトマップと、レーザ投受光器16を使用して検出した現在位置情報、走行モータ20に取り付けたエンコーダ(図示せず。)からのパルス信号をエンコーダ回路36で計数して得た所定地点からの移動距離情報等に基づいて行なう。レーザ投受光器16を用いた現在位置の検出は、走行空間の壁面などに取り付けた複数の反射体にレーザ光を投光してその反射光から距離と方向を検出し、三角測量の原理で自己の位置を算出する方法で行なう。   The control circuit 32 receives the conveyance command sent from the ground command device by the wireless device 33. Based on the command, the travel motor drive circuit 37a is operated to drive the travel drive wheel 3a, and the steering mechanism drive circuit 37b is operated to steer the travel drive wheel 3a to guide the unmanned forklift 1 to a target location. For guidance, a layout map of the traveling space stored in advance, current position information detected using the laser projector / receiver 16, and a pulse signal from an encoder (not shown) attached to the traveling motor 20 are encoded by an encoder circuit 36. This is performed based on the movement distance information from a predetermined point obtained by counting in step (b). The current position detection using the laser projector / receiver 16 is based on the principle of triangulation by projecting laser light onto a plurality of reflectors attached to the wall surface of the traveling space and detecting the distance and direction from the reflected light. This is done by calculating its own position.

車輪磨耗量算出回路(磨耗量算出手段に相当)45は、演算回路46、記憶回路47、インターフェイス(IF)回路48を備える。演算回路46はマイクロコンピュータを用いて構成されている。インターフェイス回路48は制御回路32とデータ交信を行なうためのもので、請求項に記載した入力手段である。記憶回路(記憶手段に相当)47は、レーザ距離計50で計測した床面2までの距離や、インターフェイス回路48を介して受けた車輪交換時期を記憶しておくためのもので、不揮発メモリを用いて構成してある。   The wheel wear amount calculation circuit (corresponding to the wear amount calculation means) 45 includes an arithmetic circuit 46, a storage circuit 47, and an interface (IF) circuit 48. The arithmetic circuit 46 is configured using a microcomputer. The interface circuit 48 is used for data communication with the control circuit 32, and is an input means described in the claims. The storage circuit (corresponding to storage means) 47 is for storing the distance to the floor 2 measured by the laser distance meter 50 and the wheel replacement time received via the interface circuit 48. It is configured using.

次に、以上のような構成の下での車輪磨耗量の測定方法について説明する。測定は、車輪を新品に交換したことを車輪磨耗量算出回路45に伝えることから始まる。交換したことの情報は、地上の指令装置から走行制御装置31の制御回路32に無線で伝えられる。その情報は、制御回路32から車輪磨耗量算出回路45のインターフェイス回路48に出力されて演算回路46に伝えられる。演算回路46は車輪が交換されたことを記憶回路47に記憶させる。   Next, a method for measuring the amount of wheel wear under the above configuration will be described. The measurement starts by notifying the wheel wear amount calculation circuit 45 that the wheel has been replaced with a new one. Information on the exchange is transmitted from the ground command device to the control circuit 32 of the travel control device 31 wirelessly. The information is output from the control circuit 32 to the interface circuit 48 of the wheel wear amount calculation circuit 45 and transmitted to the arithmetic circuit 46. The arithmetic circuit 46 stores in the storage circuit 47 that the wheel has been replaced.

続いて、指令装置から走行制御装置31に対し、無人フォークリフト1を車輪磨耗量測定のために準備された測定場所に移動させ、測定を行なわせる指示を発する。指示を受けた走行制御装置31は、無人フォークリフト1を準備された測定場所に誘導して停止させる。測定場所には、無人フォークリフト1の全車輪の転動面を同一面上に支えることができ、且つ照射されたレーザ光をよく反射する水平面を形成しておく。例えば、図3、図4に示すように表面を磨いたステンレスの厚い水平板を敷設しておく。   Subsequently, the command device issues an instruction to move the unmanned forklift 1 to a measurement location prepared for measuring the amount of wheel wear and to perform measurement. Receiving the instruction, the travel control device 31 guides the unmanned forklift 1 to the prepared measurement location and stops it. At the measurement location, a horizontal plane that can support the rolling surfaces of all the wheels of the unmanned forklift 1 on the same plane and reflects the irradiated laser beam well is formed. For example, as shown in FIGS. 3 and 4, a thick horizontal plate of stainless steel whose surface is polished is laid.

無人フォークリフト1を測定場所に誘導して停止させた後、走行制御装置31は車輪磨耗量算出回路45に対して測定開始を指示する。インターフェイス回路48を経て指示を受けた演算回路46は、レーザ距離計50に指示して床面2までの距離を測定させ、その値を受け取る。演算回路46は受け取った測定値を記憶回路47に記憶させる。車輪交換が行なわれた後の最初の測定では、車輪磨耗量の演算は行なわない。   After the unmanned forklift 1 is guided to the measurement location and stopped, the traveling control device 31 instructs the wheel wear amount calculation circuit 45 to start measurement. Receiving the instruction through the interface circuit 48, the arithmetic circuit 46 instructs the laser distance meter 50 to measure the distance to the floor 2 and receives the value. The arithmetic circuit 46 stores the received measurement value in the storage circuit 47. In the first measurement after wheel replacement, the wheel wear amount is not calculated.

無人フォークリフト1の累計稼働時間が所定値に達したならば、地上の指令装置から走行制御装置31に対して車輪摩耗量の測定指示を出す。測定指示は作業者が手動で出してもよいし、指令装置から定期的に出してもよい。また、測定場所を通過する度に走行制御装置31が自動的に出すようにしてもよい。測定指示が出されると走行制御装置31は上述した車輪交換直後と同じように無人フォークリフト1を測定場所に誘導して停止させ、車輪磨耗量算出回路45に測定開始の指示を出す。演算回路46はレーザ距離計50に指示して床面2までの距離を測定させ、その値を受け取る。演算回路46は受け取った測定値を記憶回路47に記憶させる。同時に今回の測定値を車輪交換直後の測定値と比較し、その差を車輪磨耗量として把握する。把握した磨耗量はインターフェイス回路48を経て走行制御装置31に伝える。走行制御装置31は受け取った値を無線で地上の指令装置に送信する。   When the cumulative operating time of the unmanned forklift 1 reaches a predetermined value, a command for measuring the wheel wear amount is issued from the ground command device to the travel control device 31. The measurement instruction may be issued manually by an operator or periodically from the commanding device. Moreover, you may make it the traveling control apparatus 31 put out automatically whenever it passes a measurement place. When a measurement instruction is issued, the traveling control device 31 guides the unmanned forklift 1 to the measurement location and stops it, just after the wheel replacement described above, and issues a measurement start instruction to the wheel wear amount calculation circuit 45. The arithmetic circuit 46 instructs the laser distance meter 50 to measure the distance to the floor 2 and receives the value. The arithmetic circuit 46 stores the received measurement value in the storage circuit 47. At the same time, the current measurement value is compared with the measurement value immediately after the wheel replacement, and the difference is grasped as the wheel wear amount. The grasped wear amount is transmitted to the travel control device 31 via the interface circuit 48. The traveling control device 31 wirelessly transmits the received value to the ground command device.

このようにして地上の指令装置は、車輪摩耗量測定の指示を無線送信するだけで、人手を介することなく車輪摩耗量を把握できる。車輪摩耗量が判れば、その値から車輪交換の必要性を判断できる。また、車輪摩耗量が判ればその時点における実際の車輪径も判明する。従って、車軸の回転に同期したパルスを発するエンコーダの信号に基づいて移動量を計算する際、判明した車輪径の数値を用いることで移動量を正確に計算することができる。   In this way, the ground commanding device can grasp the wheel wear amount without manual intervention only by wirelessly transmitting a wheel wear amount measurement instruction. If the amount of wheel wear is known, the necessity of wheel replacement can be determined from the value. Further, if the wheel wear amount is known, the actual wheel diameter at that time is also found. Therefore, when calculating the amount of movement based on the encoder signal that generates a pulse synchronized with the rotation of the axle, the amount of movement can be accurately calculated by using the numerical value of the wheel diameter that has been found.

なお、車輪の磨耗は従動輪より駆動輪の方が激しい。そのためレーザ距離計50は上記実施形態のように駆動輪近くの台車フレームに取り付けておくのが好ましい。また、駆動輪が複数ある場合にはレーザ距離計50を駆動輪毎に取り付けるとよい。
また、上記実施形態では車輪摩耗量の測定を水平板18の上で行なったが、板18は必ずしも水平である必要はなく多少傾いていてもよい。
また、上記実施形態では水平板18までの距離を測定したが、水平板18の上方又は下方に水平板18と平行な面を形成しておき、その面までの距離を測定するようにしてもよい。
It should be noted that wheel wear is more severe on the drive wheels than on the driven wheels. Therefore, it is preferable that the laser distance meter 50 is attached to a carriage frame near the drive wheel as in the above embodiment. Further, when there are a plurality of driving wheels, the laser distance meter 50 may be attached to each driving wheel.
Moreover, in the said embodiment, although the measurement of the amount of wheel wear was performed on the horizontal board 18, the board 18 does not necessarily need to be horizontal and may incline a little.
In the above embodiment, the distance to the horizontal plate 18 is measured. However, a surface parallel to the horizontal plate 18 is formed above or below the horizontal plate 18 and the distance to the surface is measured. Good.

また、車輪磨耗量算出回路45は走行制御装置31と別に設けるのでなく、走行制御装置31と一体に構成してもよい。その場合は、図5における演算回路46とインターフェイス回路48の機能を制御回路32に実行させる。
また、上記実施形態では無軌道式走行車両について説明したが、本発明は有軌道式走行車両にも適用できる。その場合には、図3、図4に示した水平板18の上に一定高さの軌道を敷設し、水平板18の表面までの距離をレーザ距離計50で定期的に測定すればよい。
Further, the wheel wear amount calculation circuit 45 may be integrated with the travel control device 31 instead of being provided separately from the travel control device 31. In that case, the control circuit 32 is caused to execute the functions of the arithmetic circuit 46 and the interface circuit 48 in FIG.
In the above embodiment, a trackless traveling vehicle has been described. However, the present invention can also be applied to a tracked traveling vehicle. In that case, a track having a certain height may be laid on the horizontal plate 18 shown in FIGS. 3 and 4 and the distance to the surface of the horizontal plate 18 may be measured periodically by the laser distance meter 50.

無人フォークリフト(走行車両)1の側面図である。1 is a side view of an unmanned forklift (traveling vehicle) 1. FIG. 無人フォークリフト(走行車両)1の正面図である。1 is a front view of an unmanned forklift (traveling vehicle) 1. FIG. 台車フレーム5に取り付けた車輪の配置関係を示す平面図である。It is a top view which shows the positional relationship of the wheel attached to the trolley | bogie frame. 図3の切断面線A−Aから見た断面図である。It is sectional drawing seen from the cut surface line AA of FIG. 制御装置30の構成図である。2 is a configuration diagram of a control device 30. FIG.

符号の説明Explanation of symbols

図面中、1は無人フォークリフト(走行車両)、2は床面(走行面)、3aは走行駆動輪(車輪)、3bは従動輪、5は台車フレーム、16はレーザ投受光器、18は水平面(水平板)、31は走行制御装置、45は車輪磨耗量算出回路、50はレーザ距離計を示す。   In the drawings, 1 is an unmanned forklift (traveling vehicle), 2 is a floor surface (traveling surface), 3a is a traveling drive wheel (wheel), 3b is a driven wheel, 5 is a carriage frame, 16 is a laser projector / receiver, and 18 is a horizontal plane. (Horizontal plate), 31 is a traveling control device, 45 is a wheel wear amount calculation circuit, and 50 is a laser distance meter.

Claims (3)

走行車両の車輪磨耗量を測定する方法であって、前記走行車両の台車フレームに車輪が転動する走行面又は走行面に平行な面との間の距離を測定する距離測定手段を取り付け、
前記走行車両が走行する走行面上の所定個所に前記走行車両の全車輪の転動面を同一面上に支え得る平面を形成しておき、
前記走行車両を前記平面上に誘導して前記距離測定手段にて該平面又は該平面から一定間隔離れた平行平面との間の距離を測定させ、
該測定した距離を前記車輪を交換した直後の値と比較して該車輪の磨耗量を算出することを特徴とする走行車両の車輪磨耗量の測定方法。
A method for measuring a wheel wear amount of a traveling vehicle, wherein a distance measuring means for measuring a distance between a traveling surface on which a wheel rolls or a surface parallel to the traveling surface is attached to a bogie frame of the traveling vehicle,
Forming a plane capable of supporting the rolling surfaces of all the wheels of the traveling vehicle on the same surface at predetermined locations on the traveling surface on which the traveling vehicle travels;
Guiding the traveling vehicle onto the plane and measuring the distance between the plane or a parallel plane spaced apart from the plane by the distance measuring means;
A method for measuring a wheel wear amount of a traveling vehicle, wherein the measured amount of wear of the wheel is calculated by comparing the measured distance with a value immediately after the wheel is replaced.
走行面上を車輪を転動させて走行する走行車両であって、
該走行車両の台車フレームに取り付けられて前記走行面又は走行面に平行な面との間の距離を測定する距離測定手段と、車輪の磨耗量算出手段とを備え、
該磨耗量算出手段は前記走行面又は走行面に平行な面との距離測定の指示と前記車輪が交換された旨の情報入力を受ける入力手段と、前記距離測定手段の測定した前記距離と前記入力手段が受けた車輪交換情報を記憶しておく記憶手段を有し、前記入力手段を介して距離測定の指示を受けた場合には前記距離測定手段に指示して前記走行面又は走行面に平行な面との距離測定を実行させ、得られた測定値を前記車輪交換の情報入力を受けた後に前記記憶手段が最初に記憶した前記距離測定値と比較することにより前記車輪の磨耗量を算出するように構成してあることを特徴とする走行車両。
A traveling vehicle that travels by rolling wheels on a traveling surface,
A distance measuring means attached to the carriage frame of the traveling vehicle and measuring a distance between the traveling surface or a surface parallel to the traveling surface; and a wheel wear amount calculating means.
The wear amount calculating means includes an input means for receiving an instruction to measure a distance to the running surface or a plane parallel to the running surface, and an information input indicating that the wheel has been replaced, the distance measured by the distance measuring means, Storage means for storing the wheel replacement information received by the input means, and when receiving a distance measurement instruction via the input means, the distance measurement means is instructed to the travel surface or the travel surface The distance measurement with the parallel plane is executed, and the measured value obtained is compared with the distance measurement value stored first by the storage means after receiving the wheel replacement information input, thereby determining the amount of wear of the wheel. A traveling vehicle configured to calculate.
請求項2に記載の走行車両において、前記距離測定手段は前記走行車両の駆動車輪に近い前記台車フレームに取り付けてあることを特徴とする走行車両。   3. The traveling vehicle according to claim 2, wherein the distance measuring means is attached to the bogie frame close to a driving wheel of the traveling vehicle.
JP2007008890A 2007-01-18 2007-01-18 Traveling vehicle, and measuring method of its wheel abrasion quantity Pending JP2008175674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008890A JP2008175674A (en) 2007-01-18 2007-01-18 Traveling vehicle, and measuring method of its wheel abrasion quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008890A JP2008175674A (en) 2007-01-18 2007-01-18 Traveling vehicle, and measuring method of its wheel abrasion quantity

Publications (1)

Publication Number Publication Date
JP2008175674A true JP2008175674A (en) 2008-07-31

Family

ID=39702803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008890A Pending JP2008175674A (en) 2007-01-18 2007-01-18 Traveling vehicle, and measuring method of its wheel abrasion quantity

Country Status (1)

Country Link
JP (1) JP2008175674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679854A (en) * 2011-03-18 2012-09-19 艾默生电气公司 Connector wear indicator realized by computer
JP2016109441A (en) * 2014-12-02 2016-06-20 シャープ株式会社 Tire wear determination device and autonomous mobile device
CN107748113A (en) * 2017-10-09 2018-03-02 长沙开元仪器股份有限公司 A kind of rail vehicle and its rail vehicle wheel wear detection means
KR20200016593A (en) * 2018-08-07 2020-02-17 세메스 주식회사 Vehicle maintenance lift

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679854A (en) * 2011-03-18 2012-09-19 艾默生电气公司 Connector wear indicator realized by computer
JP2016109441A (en) * 2014-12-02 2016-06-20 シャープ株式会社 Tire wear determination device and autonomous mobile device
CN107748113A (en) * 2017-10-09 2018-03-02 长沙开元仪器股份有限公司 A kind of rail vehicle and its rail vehicle wheel wear detection means
KR20200016593A (en) * 2018-08-07 2020-02-17 세메스 주식회사 Vehicle maintenance lift
KR102169581B1 (en) * 2018-08-07 2020-10-23 세메스 주식회사 Vehicle maintenance lift

Similar Documents

Publication Publication Date Title
JP6109616B2 (en) Automated guided vehicle
TWI490672B (en) Pallet truck system
JP2009525553A (en) Automatic guided vehicle with variable travel path
WO2014156498A1 (en) Mobile body and position detection device
JP5999214B2 (en) Self-propelled inspection device for metal plate, self-propelled inspection method for metal plate, and inspection system
TW201128339A (en) Traveling vehicle system and method of avoiding collision with obstacles
TWI638766B (en) Inspection method for the truck system and the truck system, and inspection trolley
JP7450271B2 (en) Conveyance system and conveyance control method
JP2007064890A (en) Method and device for measuring separation distance from platform
JP2014137710A (en) Control method of automatic guided vehicle
JP4965094B2 (en) Automated guided vehicle
JP2008175674A (en) Traveling vehicle, and measuring method of its wheel abrasion quantity
CN110244705B (en) Walking calibration device and method for automatic guide trolley
CN115771582A (en) AGV trolley for transporting anode plates
JP2007213356A (en) Automated guided facility
JP2002182744A (en) Approach guide device for unmanned carrier to pallet
JP3740883B2 (en) Control method of unmanned mobile cart
KR20130098484A (en) A coil alignment device
JP2019175036A (en) Unmanned running truck
JP7283152B2 (en) Autonomous mobile device, program and steering method for autonomous mobile device
JP2011243129A (en) Transportation vehicle system
JP2005258754A (en) Approach guide method for unmanned carrier to pallet, and device
KR20170098381A (en) Line tracking method of automatic guided vehicle equipped with the omnidirectional drive wheel
JP5896432B1 (en) Inspection device and transfer system
JP3021875B2 (en) Automated guided vehicle guidance