JPH09229919A - Instrument for measurement of scanning distance in 2-directional flaw detection - Google Patents

Instrument for measurement of scanning distance in 2-directional flaw detection

Info

Publication number
JPH09229919A
JPH09229919A JP8034847A JP3484796A JPH09229919A JP H09229919 A JPH09229919 A JP H09229919A JP 8034847 A JP8034847 A JP 8034847A JP 3484796 A JP3484796 A JP 3484796A JP H09229919 A JPH09229919 A JP H09229919A
Authority
JP
Japan
Prior art keywords
flaw detection
pipe
scanning distance
ultrasonic sensor
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8034847A
Other languages
Japanese (ja)
Inventor
Etsuo Nagaoka
悦雄 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8034847A priority Critical patent/JPH09229919A/en
Publication of JPH09229919A publication Critical patent/JPH09229919A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device wherein 2-directional scan distance of an ultrasonic sensor is measured accurately and smoothly in ultrasonic flaw detecting. SOLUTION: In the entire periphery at both side part of scanning direction detection tires 1 and 1', guide balls 2 and 2' for sliding are inserted, and, holding frames 5 and 5' which rotatively support the tires 1 and 1' and pipe curved surface tracking frames 8 and (8') which support them while oscillation is allowed are engaged each other with four sets of springs 9 and 9' while restoration is possible, and, the tracking frames 8 and (8') are supported with supporting frames 111 and 111' while pressing is allowed with four sets of springs 101 and 101', thus, a flaw detection scanning distance detecting mechanism part in the pipe axis direction and pipe circumference direction is constituted. Then, the flaw detection scanning distance detecting mechanism part is orthogonally arranged at the central part of an ultrasonic sensor 17 so that a flaw detection scanning distance meter of 2-directional is formed. Thus, accurate measurement of scanning distance of the ultrasonic sensor 17 at a bend pipe part, which was impossible with a conventional device, becomes possible, and wear of the tires 1 and 1' orthogonal to the scan direction is prevented and sliding resistance is reduced, for smooth measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波探傷検査装
置に適用される2方向探傷走査距離計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-way flaw detection scanning rangefinder applied to an ultrasonic flaw detection device.

【0002】[0002]

【従来の技術】配管の溶接部の欠陥検出は、図6(a)
に示すように配管01の壁面を超音波センサ02で走査
し、これが管肉内に発信した超音波03の溶接部04に
よる反射波を受信し、その大きさと位置を検出すること
により行われる。
2. Description of the Related Art Detection of defects in a welded portion of a pipe is performed by using FIG.
As shown in (1), the wall surface of the pipe 01 is scanned by the ultrasonic sensor 02, and the ultrasonic wave 03 transmitted to the inside of the pipe is received by the reflected wave from the welded portion 04, and its size and position are detected.

【0003】上記超音波センサ02は、その走査が図6
(b),(c)に示すように配管01の管軸方向(Y方
向)に行われる場合と、管周方向(X方向)に行われる
場合とがあり、欠陥の位置検出に必要な超音波センサ0
2のX方向及びY方向の移動距離、即ち、2方向探傷走
査距離を計測するための距離計が取付けられている。
The scanning of the ultrasonic sensor 02 is shown in FIG.
As shown in (b) and (c), it may be performed in the pipe axis direction (Y direction) of the pipe 01 or in the pipe circumferential direction (X direction). Sound wave sensor 0
A distance meter for measuring the moving distances of the X and Y directions of 2, that is, the two-way flaw detection scanning distance is attached.

【0004】従来の超音波センサのXY方向の移動距離
を計測する距離計は、トラックボール型距離計(パソコ
ンの操作に使用されるマウスと類似したもの)であり,
これが超音波センサ02のX方向又はY方向の位置に取
付けられていた。
A conventional range finder for measuring a moving distance of an ultrasonic sensor in XY directions is a trackball type range finder (similar to a mouse used for operating a personal computer),
This was attached to the position of the ultrasonic sensor 02 in the X direction or the Y direction.

【0005】[0005]

【発明が解決しようとする課題】従来の距離計は、前記
のように、その間に一定間隔を設けて超音波センサのX
方向又はY方向に取付けられるものであり、超音波セン
サの移動距離は、距離計が計測したその移動距離より求
められていたため、曲管部での超音波探傷検査時には、
正確な距離計測が行えなかった。
In the conventional rangefinder, as described above, the X-axis of the ultrasonic sensor is provided with a certain interval provided therebetween.
It is mounted in the Y direction or the Y direction, and the moving distance of the ultrasonic sensor was obtained from the moving distance measured by the range finder.
I could not measure the distance accurately.

【0006】例えば、図7(a)に示すように超音波セ
ンサ02の管軸方向へ距離計05を配設した場合は、周
方向探傷走査時に距離計05が楕円軌道を描くために誤
差を生じていた。
For example, when the distance meter 05 is arranged in the tube axis direction of the ultrasonic sensor 02 as shown in FIG. 7A, an error occurs because the distance meter 05 draws an elliptical orbit during circumferential flaw scanning. It was happening.

【0007】また、図7(b)に示すように超音波セン
サ02の管周方向へ距離計05を配設した場合には、管
軸方向探傷捜査時に超音波センサ02と距離計05が異
なる軌道を移動するため、誤差を生じていた。本発明は
上記の課題を解決しようとするものである。
Further, as shown in FIG. 7B, when the distance meter 05 is arranged in the circumferential direction of the ultrasonic sensor 02, the ultrasonic sensor 02 and the distance meter 05 are different from each other during flaw detection in the pipe axial direction. There was an error because the orbit moved. The present invention seeks to solve the above problems.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明の
係る2方向探傷走査距離計は、それぞれの中心線の延長
線がその中心で直交するように超音波センサにそれぞれ
配設された管軸方向用と管周方向用の探傷走査距離検出
機構部により形成され、それぞれの探傷走査距離検出機
構部が、その両側部位全周に転動可能にガイドボールを
挿設した走査距離検出用タイヤ、同タイヤを回転可能に
支承した保持フレーム、同保持フレームを揺動可能に支
承し同保持フレームとの間に4組の引張コイルバネを復
元可能に係合した追動フレーム、および同追動フレーム
を4組の圧縮コイルバネを介して押付可能に支承し上記
超音波センサに接合された支持フレームを備えたことを
特徴としている。
In the two-direction flaw detection scanning rangefinder according to the invention described in claim 1, the extension lines of the respective center lines are arranged in the ultrasonic sensors so that they extend at right angles to each other. Formed by flaw detection scanning distance detection mechanism parts for pipe axis direction and pipe circumference direction, each flaw detection scanning distance detection mechanism part has a guide ball inserted so that it can roll around the entire circumference of both sides A tire, a holding frame that rotatably supports the tire, a tracking frame that rotatably supports the holding frame and four sets of tension coil springs are reversibly engaged with the holding frame, and the following motion The frame is characterized in that it is provided with a support frame that is supported by four compression coil springs so as to be capable of being pressed and that is joined to the ultrasonic sensor.

【0009】本発明に係る2方向探傷走査距離計が設け
られた超音波センサを用いて配管の超音波探傷を行う場
合、配管壁面に超音波センサをセットすると、それぞれ
の探傷走査距離検出機構部の追動フレームが4組の圧縮
コイルバネにより押圧され、それぞれのタイヤが配管壁
面に接触する。
When ultrasonic flaw detection of a pipe is performed using an ultrasonic sensor provided with a two-way flaw detection scanning distance meter according to the present invention, when the ultrasonic sensor is set on the wall surface of the pipe, each flaw detection scanning distance detection mechanism unit is installed. The following frame is pressed by four sets of compression coil springs, and the respective tires come into contact with the pipe wall surface.

【0010】この状態で超音波センサの走査を開始する
と、走査方向を向いた探傷走査距離検出機構部のタイヤ
は回転するが、走査方向と直交する方向に位置する探傷
走査距離検出機構部のタイヤは、配管壁面との摺動抵抗
により傾斜し、走査方向側のガイドボールが配管壁面に
接触して転動(又は摺動)し、走査を停止すると、引張
コイルバネによりタイヤの傾きは復元される。
When the scanning of the ultrasonic sensor is started in this state, the tire of the flaw detection scanning distance detection mechanism portion facing the scanning direction rotates, but the tire of the flaw detection scanning distance detection mechanism portion positioned in the direction orthogonal to the scanning direction. Is inclined due to sliding resistance with the pipe wall surface, the guide ball on the scanning direction side comes into contact with the pipe wall surface to roll (or slide), and when the scanning is stopped, the tension coil spring restores the tire inclination. .

【0011】上記走査方向を向いた探傷走査距離検出機
構部のタイヤは、その回転角度が検出され、この回転角
度が距離に換算され、超音波センサの走査時における走
査距離が計測される。
The rotation angle of the tire of the flaw detection scanning distance detecting mechanism portion facing the scanning direction is detected, the rotation angle is converted into the distance, and the scanning distance at the time of scanning by the ultrasonic sensor is measured.

【0012】本発明においては、管軸方向と管周方向の
走査距離は超音波センサの中心でそれぞれの中心線の延
長線が直交する管軸方向用と管周方向用の探傷走査距離
検出機構部によりそれぞれ計測されるため、従来の装置
において生じていた曲管部での計測誤差を防止すること
が可能となる。
In the present invention, the scanning distances in the tube axis direction and the tube circumferential direction are flaw detection scanning distance detecting mechanisms for the tube axis direction and the tube circumferential direction in which the extension lines of the center lines of the ultrasonic sensors are orthogonal to each other. Since the measurement is performed by each unit, it is possible to prevent the measurement error in the curved pipe unit that occurs in the conventional device.

【0013】また、超音波センサの走査方向と直交する
タイヤは傾斜させ、ガイドボールを配管壁面と接触させ
るため、タイヤの摩耗防止と摺動抵抗の軽減が可能とな
り、スムースな計測が可能となる。
Further, since the tire orthogonal to the scanning direction of the ultrasonic sensor is inclined and the guide ball is brought into contact with the wall surface of the pipe, it is possible to prevent wear of the tire and reduce sliding resistance, and smooth measurement is possible. .

【0014】[0014]

【発明の実施の形態】本発明の実施の一形態に係る2方
向探傷走査距離計について、図1乃至図5により説明す
る。なお、図1は本実施形態に係る距離計を反転させた
状態の矢視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A two-direction flaw detection scanning rangefinder according to an embodiment of the present invention will be described with reference to FIGS. Note that FIG. 1 is an arrow view of a state in which the rangefinder according to the present embodiment is inverted.

【0015】図1乃至図5に示す本実施形態に係る距離
計は、管軸方向用探傷走査距離検出機構部と、管周方向
用探傷走査距離検出機構部とにより形成されており、両
者はそれぞれの中心線の延長線が超音波センサ部の中心
で直交するように超音波センサ部に結合されている。
The rangefinder according to the present embodiment shown in FIGS. 1 to 5 is composed of a flaw detection scanning distance detection mechanism portion for the pipe axis direction and a flaw detection scanning distance detection mechanism portion for the pipe circumferential direction, both of which are provided. The extension lines of the respective center lines are connected to the ultrasonic sensor unit so that the extension lines are orthogonal to each other at the center of the ultrasonic sensor unit.

【0016】上記管軸方向用と管周方向用の探傷走査距
離検出機構部は、図1乃至図4に示すようにそれぞれ走
査距離検出用ゴムタイヤ1,1’、ガイドボール2,
2’、回転リムフレーム3,3' 、軸部材4,4' 、保
持フレーム5,5' 、ヒンジ51,51' 、増速機6,
6' 、回転角度検出器7,7' 、追動フレーム8,
8'、カラー81,81' 、引張コイルバネ9,9' 、
押付ガイドロッド10,10' 、及び圧縮コイルバネ1
01,101' により形成されている。
As shown in FIGS. 1 to 4, the flaw detection scanning distance detecting mechanism portions for the pipe axis direction and the pipe circumferential direction are provided with rubber tires 1 and 1'for detecting the scanning distance, a guide ball 2, respectively.
2 ', rotating rim frames 3, 3', shaft members 4, 4 ', holding frames 5, 5', hinges 51, 51 ', gearbox 6,
6 ', rotation angle detector 7, 7', chasing frame 8,
8 ', collar 81, 81', tension coil spring 9, 9 ',
Pressing guide rods 10 and 10 ', and compression coil spring 1
It is formed by 01, 101 '.

【0017】また、超音波センサ部は、図1、図3乃至
図5に示すように、センサ保持フレーム11、管軸方向
用支持フレーム111、管周方向用支持フレーム11
1' 、ガイドボール12、シンバル機構フレーム13、
センサ保持部材14、センサ押付ロッド15、圧縮コイ
ルバネ16、超音波センサ17、及びガスシリンダロッ
ド18により形成されている。
As shown in FIGS. 1 and 3 to 5, the ultrasonic sensor section includes a sensor holding frame 11, a pipe axis direction support frame 111, and a pipe circumferential direction support frame 11.
1 ', guide ball 12, cymbal mechanism frame 13,
The sensor holding member 14, the sensor pressing rod 15, the compression coil spring 16, the ultrasonic sensor 17, and the gas cylinder rod 18 are formed.

【0018】上記部材によりそれぞれ形成された管軸方
向用探傷走査距離検出機構部と管周方向用探傷走査距離
検出機構部の詳細について、以下に図1乃至図4を用い
て説明する。
The details of the flaw detection scanning distance detecting mechanism portion for the pipe axis direction and the flaw detection scanning distance detecting mechanism portion for the pipe circumferential direction formed by the above members will be described below with reference to FIGS. 1 to 4.

【0019】走査距離検出用ゴムタイヤ1,1' は、両
側部位全周に直交方向走査時のタイヤ1,1' 摩耗防止
と摺動抵抗軽減化を目的とした転動(摺動)用ガイドボ
ール2,2' が複数個自在挿設されており、回転リムフ
レーム3,3' により固持され、ベアリング等を介して
軸部材4,4' 及び保持フレーム5,5' に回転自在に
支承されている。
The rubber tires 1, 1'for detecting the scanning distance are rolling (sliding) guide balls for the purpose of preventing wear and reducing sliding resistance of the tires 1, 1'at the time of scanning in the orthogonal direction over the entire circumference of both sides. A plurality of 2, 2'are freely inserted and fixed by a rotating rim frame 3, 3'and rotatably supported by shaft members 4, 4'and holding frames 5, 5'via bearings or the like. There is.

【0020】上記軸部材4,4' 内には、前記回転リム
フレーム3,3' へ軸芯部が連結された増速機6,6'
と回転角度検出器7,7' が挿設され、軸部材4,4'
は、保持フレーム5,5' へ挿設固定されている。
In the shaft members 4 and 4 ', gearboxes 6 and 6'in which shaft cores are connected to the rotary rim frames 3 and 3', respectively.
And rotation angle detectors 7 and 7'are inserted, and shaft members 4 and 4 '
Are inserted and fixed to the holding frames 5 and 5 '.

【0021】上記保持フレーム5,5' は、管壁面側へ
押付時に復元力が働くように配管壁面側へ偏芯させて摺
動(回転)可能に追動フレーム8,8' へ支承され、保
持フレーム5,5' の両側へ突出した4組のヒンジ5
1,51' と追動フレーム8,8' のカラー81,8
1' 間を4組の引張コイルバネ9,9' で復元可能に係
合している。
The holding frames 5 and 5'are supported by the chasing frames 8 and 8'to be slidable (rotatably) eccentrically to the pipe wall surface so that a restoring force works when pressed to the pipe wall surface. 4 sets of hinges 5 protruding to both sides of the holding frames 5 and 5 '
1,51 'and the collar 81,8 of the chasing frame 8,8'
Four sets of tension coil springs 9 and 9'are engaged between 1'to allow restoration.

【0022】上記追動フレーム8,8' は、カラー8
1,81' 部分に挿設固定された4組の押付ガイドロッ
ド10,10' 、圧縮コイルバネ101,101' を介
して超音波センサ部のセンサ保持フレーム11の支持フ
レーム111,111' へ押圧、追動可能に支承され
る。
The following frames 8 and 8'are color 8
Pressing against the support frames 111, 111 'of the sensor holding frame 11 of the ultrasonic sensor unit via the four sets of pressing guide rods 10, 10' inserted and fixed in the 1, 81 'part and the compression coil springs 101, 101', It is supported so that it can be driven.

【0023】上記部材により形成されそれぞれの探傷走
査距離検出機構部に結合された超音波センサ部の詳細に
ついて、以下に図1,図3乃至図5を用いて説明する。
超音波センサ17は、4組のガイドボール12を四角へ
配設し、管法線方向へ調芯可能としたセンサ保持フレー
ム11の中心部位へ配置され、センサ保持フレーム11
の管周方向に摺動可能としたシンバル機構フレーム13
と直交揺動可能としたセンサ保持部材14へ4組のセン
サ押付ロッド15、圧縮コイルバネ16を介して配管壁
面側へ押圧可能に装設されている。
The details of the ultrasonic sensor portion formed of the above members and coupled to each flaw detection scanning distance detecting mechanism portion will be described below with reference to FIGS. 1 and 3 to 5.
The ultrasonic sensor 17 has four sets of guide balls 12 arranged in a square and is arranged at the central portion of the sensor holding frame 11 which can be aligned in the pipe normal direction.
Cymbal mechanism frame 13 slidable in the pipe circumferential direction
The sensor holding member 14 that can be swung orthogonally to is attached to the pipe wall surface side through four sets of sensor pressing rods 15 and compression coil springs 16.

【0024】上記センサ保持フレーム11は、図1乃至
図3に一部図示の2組のガスシリンダロッド18の先端
部へ取付けられ、このガスシリンダロッド18により配
管壁面へ押圧追動走査される。
The sensor holding frame 11 is attached to the tips of two sets of gas cylinder rods 18 partially shown in FIGS. 1 to 3, and the gas cylinder rods 18 press and scan the wall surface of the pipe.

【0025】次に、本実施形態に係る2方向探傷走査距
離計を用いて行う超音波センサ17の探傷走査距離の計
測について、管軸方向走査の場合と管周方向走査の場合
を以下に説明する。
Next, regarding the measurement of the flaw detection scanning distance of the ultrasonic sensor 17 using the two-direction flaw detection scanning distance meter according to this embodiment, the case of the tube axis direction scanning and the case of the tube circumferential direction scanning will be described below. To do.

【0026】超音波センサ17を管軸方向(Y方向)に
走査する場合は、管軸方向に配設したタイヤ1が配管壁
面と直角に接地し、これを押圧した状態で管軸方向へ追
動回転(図1乃至図3における矢印a)されると、その
回転が回転リムフレーム3を介して増速機6へ伝達さ
れ、回転角度検出器7で回転角度が計測され、距離に換
算される。
When scanning the ultrasonic sensor 17 in the tube axis direction (Y direction), the tire 1 arranged in the tube axis direction is grounded at a right angle to the wall surface of the pipe and pressed in the tube axis direction while pressing it. When it is dynamically rotated (arrow a in FIGS. 1 to 3), the rotation is transmitted to the speed increasing gear 6 through the rotating rim frame 3, the rotation angle is measured by the rotation angle detector 7, and converted into a distance. It

【0027】このとき、管周方向に配設されたタイヤ
1' は、走査方向と直交状態に配管壁面と接地押圧され
ているため、配管壁面との摺動抵抗により走査方向と反
対の側へ首振り揺動(図1乃至図3における矢印b)し
て傾き、走査方向側のガイドボール2' のみが配管壁面
に接地して転動(又は摺動)し、タイヤ1' の摺動抵抗
が軽減される。管軸方向への走査移動が停止すると、走
査方向側の引張コイルバネ9' によりタイヤ1' の傾き
が復元され、配管壁面に対して直角に接地押圧される。
At this time, since the tire 1'disposed in the pipe circumferential direction is pressed against the pipe wall surface in a state orthogonal to the scanning direction, the tire 1'is moved to the side opposite to the scanning direction due to the sliding resistance with the pipe wall surface. Swinging and tilting (arrow b in FIGS. 1 to 3) and tilting, and only the guide ball 2 ′ on the scanning direction side rolls (or slides) by contacting the pipe wall surface and sliding resistance of the tire 1 ′. Is reduced. When the scanning movement in the pipe axis direction is stopped, the inclination of the tire 1'is restored by the tension coil spring 9'on the scanning direction side, and the tire 1'is grounded and pressed at right angles to the pipe wall surface.

【0028】超音波センサ17を管周方向(X方向)に
走査する場合は、管軸方向に配設したタイヤ1と管周方
向に配設したタイヤ1' がそれぞれ上記の場合と逆の作
用を行い、管周方向の探傷走査距離の計測が行われる。
When the ultrasonic sensor 17 scans in the tube circumferential direction (X direction), the tire 1 arranged in the tube axial direction and the tire 1'arranged in the tube circumferential direction have the opposite actions to the above case. Then, the flaw detection scanning distance in the pipe circumferential direction is measured.

【0029】本実施形態においては、上記のようにその
中心線の延長線が超音波センサ17の中心で直交する管
軸方向用と管周方向用の探傷走査距離検出機構部により
形成されたため、それぞれの方向についての探傷走査距
離を正確に計測することが可能となった。
In the present embodiment, as described above, the extension line of the center line is formed by the flaw detection scanning distance detecting mechanism portions for the pipe axis direction and the pipe circumferential direction which are orthogonal to each other at the center of the ultrasonic sensor 17. It has become possible to accurately measure the flaw detection scanning distance in each direction.

【0030】[0030]

【発明の効果】本発明の2方向探傷走査距離計は、走査
距離検出用タイヤの両側部位全周に転動(摺動)用ガイ
ドボールを挿設し、前記タイヤ部位回転支承の保持フレ
ームとそれを揺動可能に支承した管曲面追動フレームと
の間を4組のスプリングにより復元可能に係合させ、前
記追動フレームを4組のスプリングで押付可能に支持フ
レームに支承してそれぞれが形成された管軸方向用と管
周方向用の探傷走査距離検出機構部を備え、これらを超
音波センサ中心部へ直交配設して2方向探傷走査距離計
を形成したことによって、従来の装置の場合に不可能で
あった曲管部における超音波センサの走査距離の正確な
計測が可能になるとともに、走査方向と直交したタイヤ
の摩耗防止と摺動抵抗の軽減が可能になり、スムースな
計測が可能となる。
In the two-way flaw detection scanning rangefinder of the present invention, rolling (sliding) guide balls are inserted around the entire circumference of both sides of the tire for detecting the scanning distance, and used as a holding frame for the rotation bearing of the tire part. It is reproducibly engaged with the tube curved surface follower frame which is swingably supported by four sets of springs, and the follower frame is supported by the support frame so that it can be pressed by four sets of springs. The conventional device is provided with the formed flaw detection scanning distance detection mechanism portions for the pipe axis direction and the pipe circumferential direction, which are arranged orthogonally to the central portion of the ultrasonic sensor to form a two-direction flaw detection scanning distance meter. In this case, it is possible to accurately measure the scanning distance of the ultrasonic sensor in the curved pipe section, which can prevent wear of the tire orthogonal to the scanning direction and reduce sliding resistance. It becomes possible to measure

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係る2方向探傷走査距
離計の反転状態の斜視図である。
FIG. 1 is a perspective view of a two-way flaw detection scanning rangefinder in an inverted state according to an embodiment of the present invention.

【図2】上記一実施形態に係る探傷走査距離検出機構部
の平面断面図である。
FIG. 2 is a plan sectional view of a flaw detection scanning distance detection mechanism section according to the embodiment.

【図3】上記一実施形態に係る距離計の側面断面図であ
る。
FIG. 3 is a side sectional view of the rangefinder according to the embodiment.

【図4】上記一実施形態に係る距離計の正面図である。FIG. 4 is a front view of the distance meter according to the embodiment.

【図5】上記一実施形態に係る距離計の平面図である。FIG. 5 is a plan view of the distance meter according to the embodiment.

【図6】超音波センサの走査の説明図である。FIG. 6 is an explanatory diagram of scanning by the ultrasonic sensor.

【図7】従来の装置による配管の探傷走査距離計測の説
明図である。
FIG. 7 is an explanatory diagram of measuring a flaw detection scanning distance of a pipe by a conventional device.

【符号の説明】 1,1' タイヤ 2,2' ガイドボール 3,3' 回転リムフレーム 4,4' 軸部材 5,5' 保持フレーム 51,51' ヒンジ 6,6' 増速機 7,7' 回転角度検出器 8,8' 追動フレーム 81,81' カラー 9,9' 引張コイルバネ 10,10' 押付ガイドロッド 101,101' 圧縮コイルバネ 11 センサ保持フレーム 111,111' 支持フレーム[Explanation of Codes] 1,1 'Tire 2,2' Guide Ball 3,3 'Rotating Rim Frame 4,4' Shaft Member 5,5 'Holding Frame 51,51' Hinge 6,6 'Gearbox 7,7 'Rotation angle detector 8,8' Chasing frame 81,81 'Collar 9,9' Tension coil spring 10,10 'Pressing guide rod 101,101' Compression coil spring 11 Sensor holding frame 111,111 'Support frame

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 それぞれの中心線の延長線がその中心で
直交するように超音波センサにそれぞれ配設された管軸
方向用と管周方向用の探傷走査距離検出機構部により形
成され、それぞれの探傷走査距離検出機構部が、その両
側部位全周に転動可能にガイドボールを挿設した走査距
離検出用タイヤ、同タイヤを回転可能に支承した保持フ
レーム、同保持フレームを揺動可能に支承し同保持フレ
ームとの間に4組の引張コイルバネを復元可能に係合し
た追動フレーム、および同追動フレームを4組の圧縮コ
イルバネを介して押付可能に支承し上記超音波センサに
接合された支持フレームを備えたことを特徴とする2方
向探傷走査距離計。
1. A flaw detection scanning distance detection mechanism portion for pipe axis direction and pipe circumferential direction, which is arranged in an ultrasonic sensor such that extension lines of respective center lines are orthogonal to each other at their centers, respectively. The flaw detection scanning distance detection mechanism makes it possible to roll the scanning distance detection tire with guide balls inserted around the entire circumference of both sides, the holding frame that rotatably supports the tire, and the holding frame that can swing. A chasing frame in which four sets of tension coil springs are supported between the supporting frame and the holding frame in a recoverable manner, and the chasing frame is supported in a pressable manner via four sets of compression coil springs and joined to the ultrasonic sensor. Two-way flaw detection scanning rangefinder, which is provided with a supported frame.
JP8034847A 1996-02-22 1996-02-22 Instrument for measurement of scanning distance in 2-directional flaw detection Withdrawn JPH09229919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034847A JPH09229919A (en) 1996-02-22 1996-02-22 Instrument for measurement of scanning distance in 2-directional flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034847A JPH09229919A (en) 1996-02-22 1996-02-22 Instrument for measurement of scanning distance in 2-directional flaw detection

Publications (1)

Publication Number Publication Date
JPH09229919A true JPH09229919A (en) 1997-09-05

Family

ID=12425587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034847A Withdrawn JPH09229919A (en) 1996-02-22 1996-02-22 Instrument for measurement of scanning distance in 2-directional flaw detection

Country Status (1)

Country Link
JP (1) JPH09229919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286308A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Millimeter-wave imaging system and imaging method of the same
JP2012098193A (en) * 2010-11-04 2012-05-24 Shiyuto Kosoku Doro Gijutsu Center Self-traveling flaw detector
JP2015210213A (en) * 2014-04-28 2015-11-24 新日鐵住金株式会社 Flaw detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286308A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Millimeter-wave imaging system and imaging method of the same
JP2012098193A (en) * 2010-11-04 2012-05-24 Shiyuto Kosoku Doro Gijutsu Center Self-traveling flaw detector
JP2015210213A (en) * 2014-04-28 2015-11-24 新日鐵住金株式会社 Flaw detection device

Similar Documents

Publication Publication Date Title
JPH01219554A (en) Method and device for ultrasonic flaw detecting inspection of ball for structure member
JPH11108602A (en) Out-of-roundness measuring instrument
US3908280A (en) Roller drive-type compound vehicle wheel alignment tester
US6722050B2 (en) Bend-angle measuring device
JPS6351244B2 (en)
JPH09229919A (en) Instrument for measurement of scanning distance in 2-directional flaw detection
CN2628990Y (en) Screening gauge
JPH0257974A (en) Pipe running device
JP2000292161A (en) Circularity measuring instrument
JPH01259211A (en) Diameter measuring instrument for circularity measuring machine
JPH068807B2 (en) Ultrasonic probe holder
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JPH0645880Y2 (en) Tire type ultrasonic sensor holding mechanism
JPH0875597A (en) Non-spherical surface eccentricity measuring machine
JPH0720104A (en) Ultrasonic probe scanner
JPH1047906A (en) Measuring device for crank shaft
JP2592690B2 (en) Pipe eddy current flaw detector
JPH0611441Y2 (en) Tire type ultrasonic sensor holding mechanism
JP2966028B2 (en) Manual ultrasonic flaw detector
CN119355138B (en) Defect recording method and related device of ultrasonic flaw detector
RU2194979C1 (en) Device for ultrasonic monitoring of cylindrical articles
JPH044219Y2 (en)
CN216013244U (en) Ultrasonic flaw detection device for steel structure detection
CN118464897B (en) Intelligent toilet comprehensive testing machine based on manipulator
JPH0222696Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506