JP2012097969A - Heating furnace - Google Patents

Heating furnace Download PDF

Info

Publication number
JP2012097969A
JP2012097969A JP2010246248A JP2010246248A JP2012097969A JP 2012097969 A JP2012097969 A JP 2012097969A JP 2010246248 A JP2010246248 A JP 2010246248A JP 2010246248 A JP2010246248 A JP 2010246248A JP 2012097969 A JP2012097969 A JP 2012097969A
Authority
JP
Japan
Prior art keywords
flow path
heat treatment
exhaust flow
hot air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010246248A
Other languages
Japanese (ja)
Other versions
JP5408106B2 (en
Inventor
Sohiro Kamiya
壮宏 神谷
Hideaki Watanabe
英昭 渡辺
Takuo Katayasu
卓雄 潟保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010246248A priority Critical patent/JP5408106B2/en
Publication of JP2012097969A publication Critical patent/JP2012097969A/en
Application granted granted Critical
Publication of JP5408106B2 publication Critical patent/JP5408106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating furnace that can equally heat up an object to be heated without complicating the structure and depending on the position in a heat treatment chamber while suppressing a heat loss.SOLUTION: A hot air generating circulation part 20 is connected with a heat treatment chamber 10 via a wind direction switching valve 60 and air supply/exhaust flow passages 30 and 40. The first air supply/exhaust flow passage 30 is connected with one side of the heat treatment chamber 10 and the second air supply/exhaust flow passage 40 is connected with the other side of the heat treatment chamber 10. When the wind direction switching valve 60 is switched to the first status, the air supply hot air PW from the hot air generating circulation part 20 passes toward the second air supply/exhaust flow passage 40 from the first air supply/exhaust flow passage 30 in the heat treatment chamber 10. In addition, when the wind direction switching valve 60 is switched to the second status, the air supply hot air PW from the hot air generating circulation part 20 passes toward the first air supply/exhaust flow passage 30 from the second air supply/exhaust flow passage 40 in the heat treatment chamber 10.

Description

本発明は、熱処理室へ熱風を供給する加熱炉に関するものである。   The present invention relates to a heating furnace that supplies hot air to a heat treatment chamber.

従来の加熱炉として、例えば特許文献1のような電子部品製造用の連続式脱バインダ炉が知られている。この加熱炉は、熱風発生器で発生した熱風を炉内で循環させると共に、熱処理室内のセッターに載置された電子部品のセラミック成形体を熱風加熱することによって、セラミック成形体中に含まれるバインダ成分を除去している。この加熱炉においては、熱風は炉内において一方向に向かって循環している。   As a conventional heating furnace, for example, a continuous debinding furnace for manufacturing electronic components as in Patent Document 1 is known. This heating furnace circulates the hot air generated by the hot air generator in the furnace and heats the ceramic molded body of the electronic component placed on the setter in the heat treatment chamber by hot air, thereby binding the binder contained in the ceramic molded body. Ingredients are removed. In this heating furnace, the hot air circulates in one direction in the furnace.

特開2003−097888号公報JP 2003-097888 A

しかしながら、上述の加熱炉にあっては、炉内で熱風が一方向に向かって循環している。すなわち、熱処理室内では、熱風の流れの上流と下流が定まっている。熱処理室の上流側は、下流側に比して供給される熱量が大きいため、上流側に配置されるセラミック成形体と下流側に配置されるセラミック成形体との間で加熱状態(脱脂状態)に差異が生じる。これによって、従来の加熱炉で熱処理されたセラミック成形体において、焼成時にクラックや変形などの不良が発生していた。従って、被加熱物の加熱状態を熱処理室内の配置によらず均一とすることが求められていた。更に、加熱炉の構成を複雑化させることなく、且つ、熱損失を増加させることなく、均一に加熱することが求められていた。   However, in the heating furnace described above, hot air circulates in one direction in the furnace. That is, in the heat treatment chamber, the upstream and downstream of the hot air flow are determined. Since the amount of heat supplied to the upstream side of the heat treatment chamber is larger than that on the downstream side, the heated state (degreasing state) between the ceramic molded body disposed on the upstream side and the ceramic molded body disposed on the downstream side. There will be a difference. As a result, in the ceramic molded body heat-treated in a conventional heating furnace, defects such as cracks and deformation occurred during firing. Therefore, it has been required to make the heating state of the object to be heated uniform regardless of the arrangement in the heat treatment chamber. Further, there has been a demand for uniform heating without complicating the structure of the heating furnace and without increasing heat loss.

本発明は、このような課題を解決するためになされたものであり、構成を複雑化させることなく、且つ、熱損失を抑制しつつ、被加熱物を熱処理室内における位置によらず均一に加熱することのできる加熱炉を提供することを目的とする。   The present invention has been made in order to solve such problems. The object to be heated is uniformly heated regardless of the position in the heat treatment chamber without complicating the configuration and suppressing heat loss. It aims at providing the heating furnace which can do.

本発明に係る加熱炉は、被加熱物の熱処理を行う熱処理室と、熱風を発生させると共に、熱処理室に対する給排気を行う熱風発生循環部と、熱処理室から独立して設けられると共に、熱処理室の一方側に連結され、熱処理室と熱風発生循環部とを接続する第一給排気流路と、熱処理室及び第一給排気流路から独立して設けられると共に、熱処理室の他方側に連結され、熱処理室と熱風発生循環部とを接続する第二給排気流路と、第一給排気流路と第二給排気流路との間に配置されると共に、第一給排気流路と熱風発生循環部、及び第二給排気流路と熱風発生循環部とを接続する風向切換弁と、を備え、熱風発生循環部は、熱処理室へ給気される熱風を通過させる給気流路と、熱処理室から排気される熱風を通過させる排気流路と、給気流路と排気流路との間に配置される熱供給源と、給気流路及び排気流路における何れかの位置に配置される送風手段と、を備え、風向切換弁は、熱風発生循環部の給気流路と排気流路との間に配置され、第一給排気流路を給気側とすると共に第二給排気流路を排気側とする第一状態と、第一給排気流路を排気側とすると共に第二給排気流路を給気側とする第二状態とを切り換えることを特徴とする。   A heating furnace according to the present invention is provided independently of the heat treatment chamber, a heat treatment chamber for performing heat treatment of an object to be heated, a hot air generating circulation section for generating hot air and supplying and exhausting the heat treatment chamber, and a heat treatment chamber. A first air supply / exhaust flow path that is connected to one side of the heat treatment chamber and connects the heat treatment chamber and the hot air generation circulation section, and is provided independently from the heat treatment chamber and the first air supply / exhaust flow path, and is connected to the other side of the heat treatment chamber And a second air supply / exhaust flow path connecting the heat treatment chamber and the hot air generating / circulating portion, a first air supply / exhaust flow path, A hot air generation and circulation section, and a wind direction switching valve that connects the second air supply and exhaust passage and the hot air generation and circulation section, and the hot air generation and circulation section includes an air supply passage that allows the hot air supplied to the heat treatment chamber to pass through. An exhaust passage for passing hot air exhausted from the heat treatment chamber, and an air supply passage A heat supply source disposed between the air flow path and an air blowing unit disposed at any position in the air supply flow path and the exhaust flow path, and the wind direction switching valve is provided in the air flow path of the hot air generating and circulating unit. And a first state in which the first air supply / exhaust flow path is the air supply side and the second air supply / exhaust flow path is the exhaust side, and the first air supply / exhaust flow path is the exhaust side And a second state in which the second air supply / exhaust flow path is set to the air supply side.

本発明に係る加熱炉によれば、熱風発生循環部は、風向切換弁、第一給排気流路及び第二給排気流路を介して、熱処理室と接続されている。第一給排気流路は、熱処理室の一方側に連結され、第二給排気流路は、当該熱処理室の他方側に連結されている。風向切換弁を第一状態に切り換えると、第一給排気流路が給気側となり第二給排気流路が排気側となり、熱風発生循環部からの給気熱風は、熱処理室内において第一給排気流路から第二給排気流路へ向かって通過する。また、風向切換弁を第二状態に切り換えると、第一給排気流路が排気側となり第二給排気流路が給気側となり、熱風発生循環部からの給気熱風は、熱処理室内において第二給排気流路から第一給排気流路へ向かって通過する。このように、熱処理室内で熱風の風向きが切り換わるため、熱風の供給方向による被加熱物の熱処理状態のばらつきを低減することができ、熱処理室内における位置によらず複数の被加熱物を均一に加熱することができる。また、熱風発生循環部と熱処理室とは、互いに熱処理室から独立して設けられた第一給排気流路及び第二給排気流路によって接続されている。従って、熱風発生循環部からの給気熱風は、排気側へ漏れることなく、独立した給排気流路を通過して熱処理室へ供給される。また、本発明に係る加熱炉の構成によれば、熱風の循環方向は、風向切換弁よりも下流側の熱処理室、第一給排気流路及び第二給排気流路のみで切り換わり、熱風発生循環部では循環方向は常に一定とすることができる。例えば、送風手段において風向きを変化させる構成や循環方向に応じて複数の熱供給源及び給排気経路を設けるような場合は、構成が複雑化する。しかし、本発明の加熱炉では、熱風発生循環部で常に一定方向で熱風を循環される構成としておき、風向切換弁を切り換えるだけで被加熱物を均一に加熱することができるため、構造の複雑化を抑制できる。また、例えば、風向切換弁からの排気熱風が再び熱供給源に至るまでの排気流路が二つ存在し、一方の排気流路を排気熱風が通過しているときは他方の排気流路に排気熱風が通過していない構成とした場合、排気熱風が通過していない他方の排気流路は熱が失われ温度低下してしまう。この状態で循環方向を切り換えて他方の排気流路に排気熱風を通過させると、温度低下した排気流路にて熱損失が発生する。一方、本発明においては、熱風発生循環部は常に同じ状態で熱風を循環させることができ、第一状態及び第二状態において同一の排気流路を用いることができるため、排気流路での熱損失を抑制できる。以上によって、構成を複雑化させることなく、且つ、熱損失を抑制しつつ、被加熱物を熱処理室内における位置によらず均一に加熱することができる。   According to the heating furnace according to the present invention, the hot air generation / circulation part is connected to the heat treatment chamber via the wind direction switching valve, the first supply / exhaust flow path, and the second supply / exhaust flow path. The first air supply / exhaust flow path is connected to one side of the heat treatment chamber, and the second air supply / exhaust flow path is connected to the other side of the heat treatment chamber. When the air direction switching valve is switched to the first state, the first air supply / exhaust flow path becomes the air supply side and the second air supply / exhaust flow path becomes the exhaust side, and the hot air supplied from the hot air generation circulation section is supplied to the first air supply in the heat treatment chamber. Passes from the exhaust passage toward the second supply / exhaust passage. When the air direction switching valve is switched to the second state, the first air supply / exhaust flow path becomes the exhaust side and the second air supply / exhaust flow path becomes the air supply side. Passes from the two air supply / exhaust flow paths toward the first air supply / exhaust flow path. Thus, since the direction of the hot air is switched in the heat treatment chamber, variation in the heat treatment state of the heated object depending on the hot air supply direction can be reduced, and a plurality of heated objects can be uniformly distributed regardless of the position in the heat treatment chamber. Can be heated. Further, the hot air generating / circulating part and the heat treatment chamber are connected to each other by a first air supply / exhaust flow channel and a second air supply / exhaust flow channel which are provided independently from the heat treatment chamber. Therefore, the hot air supplied from the hot air generating / circulating portion passes through the independent supply / exhaust flow path and is supplied to the heat treatment chamber without leaking to the exhaust side. Further, according to the configuration of the heating furnace according to the present invention, the hot air circulation direction is switched only in the heat treatment chamber, the first air supply / exhaust flow channel, and the second air supply / exhaust flow channel on the downstream side of the air direction switching valve. In the generation circulation part, the circulation direction can always be constant. For example, in the case where a plurality of heat supply sources and supply / exhaust paths are provided according to the configuration in which the air direction is changed or the circulation direction in the blowing unit, the configuration becomes complicated. However, in the heating furnace of the present invention, since the hot air is always circulated in a constant direction in the hot air generating and circulating section, and the object to be heated can be heated uniformly only by switching the air direction switching valve, the structure is complicated. Can be suppressed. Also, for example, there are two exhaust passages from which the exhaust hot air from the wind direction switching valve reaches the heat supply source again, and when the exhaust hot air passes through one exhaust passage, the other exhaust passage When the exhaust hot air does not pass, the other exhaust passage through which the exhaust hot air does not pass loses heat and the temperature decreases. When the circulation direction is switched in this state and the exhaust hot air is passed through the other exhaust passage, heat loss occurs in the exhaust passage whose temperature has decreased. On the other hand, in the present invention, the hot air generating and circulating section can always circulate hot air in the same state, and the same exhaust passage can be used in the first state and the second state. Loss can be suppressed. As described above, the object to be heated can be uniformly heated regardless of the position in the heat treatment chamber without complicating the configuration and suppressing heat loss.

本発明に係る加熱炉において、熱処理室は、水平な仕切壁で仕切られ形成される複数段の熱処理空間を有し、熱風発生循環部からの熱風を各段の熱処理空間に分岐させて通過させ、各段の熱処理空間における第一給排気流路との接続部には、熱供給源からの距離が大きいほど第一給排気流路側に長く突出する湾曲形状の第一熱損失調整板が配置され、各段の熱処理空間における第二給排気流路との接続部には、熱供給源からの距離が大きいほど第二給排気流路側に長く突出する湾曲形状の第二熱損失調整板が配置され、第一熱損失調整板と第二熱損失調整板とは、熱処理室を介して対称に配置されていることが好ましい。湾曲形状の熱損失調整板が設けられていることにより、各段の熱処理空間に対して均一に給気熱風を供給することができる。熱損失調整板は、熱供給源からの距離が大きいほど長く突出しているため、熱処理空間の位置によらず、均一に給気熱風を供給することができる。また、第一熱損失調整板と第二熱損失調整板とは熱処理室を介して対称に配置されているため、第一状態と第二状態を切り換えても、給気熱風の供給状態を第一給排気流路側と第二給排気流路側において同じにすることができる。   In the heating furnace according to the present invention, the heat treatment chamber has a plurality of stages of heat treatment spaces formed by being partitioned by a horizontal partition wall, and the hot air from the hot air generating and circulating part is branched and passed through the heat treatment spaces of the respective stages. In addition, a curved first heat loss adjusting plate that protrudes longer toward the first air supply / exhaust flow path as the distance from the heat supply source is larger is disposed at the connection with the first air supply / exhaust flow path in the heat treatment space of each stage. The second heat loss adjusting plate having a curved shape that protrudes longer toward the second air supply / exhaust flow path as the distance from the heat supply source is larger at the connection portion with the second air supply / exhaust flow path in the heat treatment space of each stage. It is preferable that the first heat loss adjusting plate and the second heat loss adjusting plate are arranged symmetrically via the heat treatment chamber. By providing the curved heat loss adjusting plate, the supplied hot air can be uniformly supplied to the heat treatment space of each stage. Since the heat loss adjusting plate protrudes longer as the distance from the heat supply source is larger, the supplied hot air can be supplied uniformly regardless of the position of the heat treatment space. In addition, since the first heat loss adjustment plate and the second heat loss adjustment plate are arranged symmetrically via the heat treatment chamber, the supply air hot air supply state is changed even if the first state and the second state are switched. It can be made the same on the one supply / exhaust flow path side and the second supply / exhaust flow path side.

本発明に係る加熱炉において、風向切換弁は、一枚の切換板を備え、切換板は、熱風発生循環部の給気流路からの熱風を一方の面に当てることによって第一給排気流路及び第二給排気流路のいずれか一方へ案内し、第一給排気流路及び第二給排気流路の他方から排気される熱風を他方の面に当てることによって熱風発生循環部の排気流路へ案内することが好ましい。切換板の他方の面に排気熱風が当たることによって、他方の面における温度低下が抑制される。従って、切換板に当たったときの給気熱風の熱損失を抑制することができる。   In the heating furnace according to the present invention, the wind direction switching valve includes a single switching plate, and the switching plate applies the hot air from the supply air flow path of the hot air generation circulation section to one surface to thereby apply the first supply / exhaust flow path. And the second air supply / exhaust flow path, and the hot air exhausted from the other of the first air supply / exhaust flow path and the second air supply / exhaust flow path is applied to the other surface, so that It is preferable to guide to the road. When exhaust hot air hits the other surface of the switching plate, the temperature drop on the other surface is suppressed. Therefore, the heat loss of the supply hot air when hitting the switching plate can be suppressed.

本発明に係る加熱炉において、第一給排気流路の長さと第二給排気流路の長さは同一であることが好ましい。これによって、第一状態と第二状態を切り換えても、給気側と排気側のそれぞれの流路長を不変とすることができるため、給気熱風の供給状態を第一給排気流路側と第二給排気流路側において同じにすることができる。   In the heating furnace according to the present invention, the length of the first air supply / exhaust flow path and the length of the second air supply / exhaust flow path are preferably the same. Thereby, even if the first state and the second state are switched, the flow path lengths on the air supply side and the exhaust side can be made unchanged, so the supply state of the supply air hot air is changed to the first air supply / exhaust flow path side. It can be made the same on the second air supply / exhaust flow path side.

本発明によれば、構成を複雑化させることなく、且つ、熱損失を抑制しつつ、被加熱物を熱処理室内における位置によらず均一に加熱することができる。   According to the present invention, the object to be heated can be uniformly heated regardless of the position in the heat treatment chamber without complicating the configuration and suppressing heat loss.

本発明の実施形態に係る加熱炉の概略構成を示す正面図である。It is a front view showing a schematic structure of a heating furnace concerning an embodiment of the present invention. 図1に示すII−II線に沿った断面図である。It is sectional drawing along the II-II line | wire shown in FIG. 図1に示す熱風発生循環部を側方から見た概略構成図である。It is the schematic block diagram which looked at the hot air generation | occurrence | production circulation part shown in FIG. 1 from the side.

以下、図面を参照しつつ本発明に係る加熱炉の好適な実施形態について詳細に説明する。図1、図2及び図3に示す加熱炉1は、セラミック電子部品の製造工程において、焼成処理前のセラミック成形体を加熱して脱脂処理を行う脱脂炉として用いられる。図1は、本発明の実施形態に係る加熱炉1の概略構成を示す正面図である。図1では、熱処理室及びその周辺部は断面が示されている。図2は、図1に示すII−II線に沿った断面図である。図3は、図1に示す熱風発生循環部を側方から見た概略構成図である。   Hereinafter, preferred embodiments of a heating furnace according to the present invention will be described in detail with reference to the drawings. A heating furnace 1 shown in FIGS. 1, 2 and 3 is used as a degreasing furnace for performing a degreasing process by heating a ceramic molded body before a firing process in a manufacturing process of a ceramic electronic component. FIG. 1 is a front view showing a schematic configuration of a heating furnace 1 according to an embodiment of the present invention. In FIG. 1, the heat treatment chamber and its peripheral part are shown in cross section. FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. FIG. 3 is a schematic configuration diagram of the hot air generating and circulating unit shown in FIG. 1 as viewed from the side.

加熱炉1は、断熱壁で囲まれセラミック成形体の被加熱物Wを収納する熱処理室10と、熱風を発生させると共に熱処理室10に対する給排気を行う熱風発生循環部20と、熱処理室10と熱風発生循環部20とを接続する第一給排気流路30と、熱処理室10と熱風発生循環部20とを接続する第二給排気流路40と、熱風の給排気の循環状態を切り換える風向切換弁60と、を備えている。熱処理室10内では熱風発生循環部20からの熱風が何れか一方から吹き抜けるようになっており、熱処理室10内の被加熱物Wは、熱風に晒されることにより、加熱され脱脂処理される。この脱脂処理によって、焼成処理に先立って、セラミック成形体中の樹脂成分(バインダ)が除去される。本実施形態に係る加熱炉1は、風向切換弁60によって、熱処理室10に対する熱風の供給方向を切り換えることで、第一状態と第二状態に切り換えることができる。図1(a)及び図2(a)は第一状態に係る加熱炉1を示し、図1(b)及び図2(b)は第二状態に係る加熱炉1を示している。加熱炉1は、図1に示すように、正面から見て左右対称な構成を有している。   The heating furnace 1 includes a heat treatment chamber 10 that is surrounded by a heat insulating wall and accommodates an object to be heated W of a ceramic molded body, a hot air generation circulation unit 20 that generates hot air and supplies and exhausts the heat treatment chamber 10, and a heat treatment chamber 10 A first air supply / exhaust flow path 30 connecting the hot air generating / circulating part 20, a second air supply / exhaust flow path 40 connecting the heat treatment chamber 10 and the hot air generating / circulating part 20, and a wind direction for switching the hot air supply / exhaust circulation state. And a switching valve 60. In the heat treatment chamber 10, hot air from the hot air generation / circulation unit 20 blows out from either one, and the article to be heated W in the heat treatment chamber 10 is heated and degreased by being exposed to the hot air. By this degreasing treatment, the resin component (binder) in the ceramic molded body is removed prior to the firing treatment. The heating furnace 1 according to the present embodiment can be switched between the first state and the second state by switching the hot air supply direction to the heat treatment chamber 10 by the air direction switching valve 60. FIGS. 1A and 2A show the heating furnace 1 according to the first state, and FIGS. 1B and 2B show the heating furnace 1 according to the second state. As shown in FIG. 1, the heating furnace 1 has a symmetrical configuration when viewed from the front.

熱処理室10は、複数の水平な仕切壁11で仕切られており、熱処理室10内には、鉛直方向に重なる複数段(ここでは、5段とする)の熱処理空間13a〜13eが形成されている。仕切壁11はステンレス製の板であり、上面に被加熱物Wを載置することができる。このように、各段の熱処理空間13a〜13eに、それぞれ被加熱物Wを収納可能とすることで、熱処理室10に被加熱物Wを効率的に収納し、加熱炉1における処理効率向上が図られている。熱処理室10は、両端側が開口しており、いずれか一方の開口から給気熱風PWを給気され、当該給気熱風PWを各熱処理空間13a〜13eに通過させ、他方の開口から排気熱風EWを排気する。熱処理室10のより詳細な構成については後述する。   The heat treatment chamber 10 is partitioned by a plurality of horizontal partition walls 11, and in the heat treatment chamber 10, multiple stages (here, five stages) of heat treatment spaces 13 a to 13 e overlapping in the vertical direction are formed. Yes. The partition wall 11 is a plate made of stainless steel, and the object to be heated W can be placed on the upper surface. In this way, by allowing the heated object W to be stored in the respective heat treatment spaces 13a to 13e, the heated object W can be efficiently stored in the heat treatment chamber 10, and the processing efficiency in the heating furnace 1 can be improved. It is illustrated. Both ends of the heat treatment chamber 10 are open, and the supply hot air PW is supplied from one of the openings, the supply hot air PW is passed through the heat treatment spaces 13a to 13e, and the exhaust hot air EW is supplied from the other opening. Exhaust. A more detailed configuration of the heat treatment chamber 10 will be described later.

図3に示すように、熱風発生循環部20は、熱処理室10への給気熱風PWを通過させる給気流路21と、熱処理室10からの排気熱風EWを通過させる排気流路22と、給気流路21と排気流路22との間に配置される熱供給源23と、加熱炉1内における空気の流れを発生させるブロワ(送風手段)24と、を備えている。   As shown in FIG. 3, the hot air generating and circulating unit 20 includes an air supply passage 21 through which the supply hot air PW to the heat treatment chamber 10 passes, an exhaust passage 22 through which the exhaust hot air EW from the heat treatment chamber 10 passes, A heat supply source 23 disposed between the air flow path 21 and the exhaust flow path 22 and a blower (blower unit) 24 that generates an air flow in the heating furnace 1 are provided.

熱風発生循環部20は、上側流路20Aと、垂直流路20Bと、下側流路20Cと、接続流路20Dと、接続流路20Eと、を備えている。上側流路20Aと、垂直流路20Bと、下側流路20Cと、接続流路20Dと、接続流路20Eとは互いに連通しており、第一給排気流路30、第二給排気流路40及び熱処理室10から独立した管によって構成されている。上側流路20Aは、風向切換弁60の上側において第一給排気流路30及び第二給排気流路40と直交する方向(ここでは、風向切換弁60よりも後側へ向かって延びている)へ延びている。垂直流路20Bは、上側流路20Aの後端より下方へ延びている。下側流路20Cは、風向切換弁60より下側において垂直流路20Bの下端から第一給排気流路30及び第二給排気流路40と直交する方向(ここでは、風向切換弁60へ向かって前側へ向かって延びる)へ延びている。下側流路20Cは、風向切換弁60と熱処理室10との間の高さ位置で延びている。接続流路20Dは、下側流路20Cから上方へ延びて、下側流路20Cと風向切換弁60とを接続している。接続流路20Eは、上側流路20Aから下方へ延びて、上側流路20Aと風向切換弁60とを接続している。接続流路20Dと風向切換弁60の下部との接続部分における気密性、及び接続流路20Eと風向切換弁60の上部との接続部分における気密性は、十分に確保されている。従って、風向切換弁60と熱風発生循環部20との間の気密性が確保されている。このように、熱風発生循環部20は、第一給排気流路30、第二給排気流路40及び熱処理室10から独立して循環する管によって構成されており、風向切換弁60との接続部分の気密性は十分に確保されているため、発生させた給気熱風PWを漏れなく風向切換弁60へ供給できる。   The hot air generating / circulating unit 20 includes an upper flow path 20A, a vertical flow path 20B, a lower flow path 20C, a connection flow path 20D, and a connection flow path 20E. The upper flow path 20A, the vertical flow path 20B, the lower flow path 20C, the connection flow path 20D, and the connection flow path 20E communicate with each other, and the first supply / exhaust flow path 30, the second supply / exhaust flow It is constituted by a pipe independent from the path 40 and the heat treatment chamber 10. The upper flow path 20 </ b> A extends in the direction perpendicular to the first air supply / exhaust flow path 30 and the second air supply / exhaust flow path 40 above the wind direction switching valve 60 (here, the air direction switching valve 60 extends toward the rear side. ). The vertical channel 20B extends downward from the rear end of the upper channel 20A. The lower flow path 20C is located below the wind direction switching valve 60 in a direction orthogonal to the first air supply / exhaust flow path 30 and the second air supply / exhaust flow path 40 from the lower end of the vertical flow path 20B (here, to the wind direction switching valve 60). Toward the front side). The lower flow path 20 </ b> C extends at a height position between the air direction switching valve 60 and the heat treatment chamber 10. The connection flow path 20D extends upward from the lower flow path 20C and connects the lower flow path 20C and the air direction switching valve 60. The connection flow path 20E extends downward from the upper flow path 20A and connects the upper flow path 20A and the wind direction switching valve 60. The airtightness at the connection portion between the connection flow path 20D and the lower part of the wind direction switching valve 60 and the airtightness at the connection portion between the connection flow path 20E and the upper portion of the wind direction switching valve 60 are sufficiently secured. Therefore, the airtightness between the wind direction switching valve 60 and the hot air generating / circulating unit 20 is ensured. As described above, the hot air generation / circulation unit 20 is configured by a pipe that circulates independently from the first supply / exhaust flow path 30, the second supply / exhaust flow path 40, and the heat treatment chamber 10, and is connected to the wind direction switching valve 60. Since the airtightness of the portion is sufficiently ensured, the generated supply air hot air PW can be supplied to the wind direction switching valve 60 without leakage.

上側流路20Aと垂直流路20Bとの間の角部には、熱供給源23が配置されている。この熱供給源23は、図3に示すように循環流路の外側にヒータ23aを配置し、配管23bを介して循環流路内に熱を供給してもよい。このとき、熱供給源23は、熱風を供給することで系内における循環の流れを形成することで、送風手段としても機能することができる。あるいは、循環流路内にヒータを直接配置し、循環流路内で熱を発生させ、図3に示すようなブロワ24を配置して熱風を発生させてもよい。ブロワ24は、上側流路20Aの前端側に配置し、接続流路20Eを介して風向切換弁60へ向かって下方に送風する(循環流路外の熱供給源23の送風のみによって循環させる場合は、ブロワ24を省略してもよい)。下側流路20Cと垂直流路20Bとの間の角部には、排気熱風EWの一部を循環流路の外側へ排気するための、排気管25が配置されている。   A heat supply source 23 is disposed at a corner between the upper flow path 20A and the vertical flow path 20B. As shown in FIG. 3, the heat supply source 23 may be provided with a heater 23a outside the circulation channel and supply heat into the circulation channel via a pipe 23b. At this time, the heat supply source 23 can function as a blowing means by forming a circulation flow in the system by supplying hot air. Alternatively, a heater may be arranged directly in the circulation channel, heat may be generated in the circulation channel, and a blower 24 as shown in FIG. 3 may be arranged to generate hot air. The blower 24 is disposed on the front end side of the upper flow path 20A and blows downward toward the wind direction switching valve 60 via the connection flow path 20E (in the case of circulating only by the heat supply source 23 outside the circulation flow path). May omit the blower 24). An exhaust pipe 25 for exhausting a part of the hot exhaust air EW to the outside of the circulation flow path is disposed at a corner between the lower flow path 20C and the vertical flow path 20B.

このような構成によって、熱供給源23と風向切換弁60との間の上流側の流路、すなわち、上側流路20A及び接続流路20Eが、給気流路21として機能する。一方、熱供給源23と風向切換弁60との間の下流側の流路、すなわち、接続流路20D、下側流路20C、及び垂直流路20Bが、排気流路22として機能する。熱供給源23またはブロワ24による送風により、給気熱風PWは、上側流路20A、接続流路20Eを流れ、風向切換弁60を介して熱処理室10へ供給される。また、排気熱風EWは、風向切換弁60を介して熱処理室10から排気され、接続流路20D及び下側流路20Cを流れて排気管25で一部排気される。更に、排気熱風EWは、垂直流路20Bを流れ、熱供給源23で熱を供給されることで、再び給気熱風PWとして循環流路内を循環する。熱風発生循環部20での循環方向は、風向切換弁60での切換状態に関わらず、常に同一方向である。   With such a configuration, the upstream flow path between the heat supply source 23 and the wind direction switching valve 60, that is, the upper flow path 20 </ b> A and the connection flow path 20 </ b> E function as the air supply flow path 21. On the other hand, the downstream flow path between the heat supply source 23 and the wind direction switching valve 60, that is, the connection flow path 20 </ b> D, the lower flow path 20 </ b> C, and the vertical flow path 20 </ b> B functions as the exhaust flow path 22. The supply hot air PW flows through the upper flow path 20 </ b> A and the connection flow path 20 </ b> E by air blown by the heat supply source 23 or the blower 24, and is supplied to the heat treatment chamber 10 via the wind direction switching valve 60. Further, the exhaust hot air EW is exhausted from the heat treatment chamber 10 through the air direction switching valve 60, flows through the connection flow path 20 </ b> D and the lower flow path 20 </ b> C, and is partially exhausted through the exhaust pipe 25. Further, the exhaust hot air EW flows through the vertical flow path 20B and is supplied with heat by the heat supply source 23, so that it again circulates in the circulation flow path as the supply hot air PW. The circulation direction in the hot air generation / circulation unit 20 is always the same regardless of the switching state in the wind direction switching valve 60.

熱供給源23の配置は、図3に示す位置に限定されず、流路20A〜20Eにおけるいずれの位置に配置されていてもよい。その場合、熱供給源23と風向切換弁60との間の上流側の流路が給気流路21として機能し、熱供給源23と風向切換弁60との間の下流側の流路が、排気流路22として機能する。送風手段としてブロワ24を配置する場合、ブロワ24は、給気流路21及び排気流路22における何れの位置に配置されていてもよく、循環流路内で熱風の流れを作ることのできる位置であれば、特に限定されない。排気管25は、排気流路22であれば、何れの位置に配置されていてもよく、あるいは設けられていなくともよい。   The arrangement of the heat supply source 23 is not limited to the position shown in FIG. 3 and may be arranged at any position in the flow paths 20A to 20E. In that case, the upstream flow path between the heat supply source 23 and the wind direction switching valve 60 functions as the air supply flow path 21, and the downstream flow path between the heat supply source 23 and the wind direction switching valve 60 is It functions as the exhaust passage 22. When the blower 24 is disposed as a blowing means, the blower 24 may be disposed at any position in the air supply passage 21 and the exhaust passage 22 and at a position where a flow of hot air can be created in the circulation passage. If there is, it will not be specifically limited. The exhaust pipe 25 may be disposed at any position as long as it is the exhaust flow path 22 or may not be provided.

図1及び図2に示すように、第一給排気流路30は、熱風発生循環部20、熱処理室10及び第二給排気流路40から独立した一本の管によって構成されている。第一給排気流路30は、加熱炉1の一方側(紙面右側)において、風向切換弁60を介して熱風発生循環部20と熱処理室10とを連結している。具体的には、第一給排気流路30の上側の端部は、風向切換弁60の一方の側部に連結され、第一給排気流路30の下側の端部は、熱処理室10の一方の側部に連結されている。第一給排気流路30は、風向切換弁60の一方の側部から水平に延びると共に下方へ垂直に屈曲し、下端部分における側壁が開口し、当該開口部が熱処理室の一方の開口部に接続される。第一給排気流路30と風向切換弁60との接続部分における気密性、及び第一給排気流路30と熱処理室10との接続部分における気密性は、十分に確保されている。このように、第一給排気流路30は、熱風発生循環部20、熱処理室10及び第二給排気流路40から独立した管であり、風向切換弁60との接続部分、及び熱処理室10との接続部分における気密性が十分に確保されているため、熱風発生循環部20からの給気熱風PWを漏れなく熱処理室10へ供給することができる。   As shown in FIGS. 1 and 2, the first air supply / exhaust flow path 30 is configured by a single pipe independent from the hot air generating / circulating unit 20, the heat treatment chamber 10, and the second air supply / exhaust flow path 40. The first air supply / exhaust flow path 30 connects the hot air generating / circulating part 20 and the heat treatment chamber 10 via the air direction switching valve 60 on one side (the right side in the drawing) of the heating furnace 1. Specifically, the upper end of the first air supply / exhaust flow path 30 is connected to one side of the wind direction switching valve 60, and the lower end of the first air supply / exhaust flow path 30 is connected to the heat treatment chamber 10. It is connected to one side of the. The first air supply / exhaust flow path 30 extends horizontally from one side of the air direction switching valve 60 and bends vertically downward, the side wall at the lower end opens, and the opening is formed in one opening of the heat treatment chamber. Connected. The airtightness at the connection portion between the first air supply / exhaust flow path 30 and the air direction switching valve 60 and the airtightness at the connection portion between the first air supply / exhaust flow path 30 and the heat treatment chamber 10 are sufficiently secured. As described above, the first air supply / exhaust flow path 30 is a pipe independent of the hot air generation / circulation unit 20, the heat treatment chamber 10 and the second air supply / exhaust flow path 40, and is connected to the wind direction switching valve 60 and the heat treatment chamber 10. Therefore, the air supply hot air PW from the hot air generation / circulation unit 20 can be supplied to the heat treatment chamber 10 without leakage.

第二給排気流路40は、熱風発生循環部20、熱処理室10及び第一給排気流路30から独立した一本の管によって構成されている。第二給排気流路40は、加熱炉1の他方側(紙面左側)において、風向切換弁60を介して熱風発生循環部20と熱処理室10とを連結している。具体的には、第二給排気流路40の上側の端部は、風向切換弁60の他方の側部に連結され、第二給排気流路40の下側の端部は、熱処理室10の他方の側部に連結されている。第二給排気流路40は、風向切換弁60の他方の側部から水平に延びると共に下方へ垂直に屈曲し、下端部分における側壁が開口し、当該開口部が熱処理室の他方の開口部に接続される。第二給排気流路40と風向切換弁60との接続部分における気密性、及び第二給排気流路40と熱処理室10との接続部分における気密性は、十分に確保されている。このように、第二給排気流路40は、熱風発生循環部20、熱処理室10及び第一給排気流路30から独立した管であり、風向切換弁60との接続部分、及び熱処理室10との接続部分における気密性が十分に確保されているため、熱風発生循環部20からの給気熱風PWを漏れなく熱処理室10へ供給することができる。   The second air supply / exhaust flow path 40 is constituted by a single pipe independent from the hot air generating / circulating unit 20, the heat treatment chamber 10, and the first air supply / exhaust flow path 30. The second air supply / exhaust flow path 40 connects the hot air generating / circulating part 20 and the heat treatment chamber 10 via the air direction switching valve 60 on the other side (left side of the drawing) of the heating furnace 1. Specifically, the upper end of the second air supply / exhaust flow path 40 is connected to the other side of the wind direction switching valve 60, and the lower end of the second air supply / exhaust flow path 40 is connected to the heat treatment chamber 10. It is connected with the other side part. The second air supply / exhaust flow path 40 extends horizontally from the other side portion of the air direction switching valve 60 and bends vertically downward. The side wall at the lower end portion opens, and the opening portion is formed in the other opening portion of the heat treatment chamber. Connected. The airtightness at the connection portion between the second air supply / exhaust flow path 40 and the air direction switching valve 60 and the airtightness at the connection portion between the second air supply / exhaust flow path 40 and the heat treatment chamber 10 are sufficiently secured. As described above, the second air supply / exhaust flow path 40 is a pipe independent from the hot air generation / circulation unit 20, the heat treatment chamber 10 and the first air supply / exhaust flow path 30, and is connected to the wind direction switching valve 60 and the heat treatment chamber 10. Therefore, the air supply hot air PW from the hot air generation / circulation unit 20 can be supplied to the heat treatment chamber 10 without leakage.

第一給排気流路30と第二給排気流路40は、風向切換弁60及び熱処理室10を介して左右対称となっている。従って、第一給排気流路30の長さと第二給排気流路40の長さは、同一である。また、第一給排気流路30と第二給排気流路40との、対応箇所における断面形状や流路面積も同一である。図1(a)及び図2(a)に示すように、第一状態において、第一給排気流路30が給気側となり、第二給排気流路40が排気側となる。すなわち、熱風発生循環部20からの給気熱風PWは、第一給排気流路30を通り、熱処理室10からの排気熱風EWは、第二給排気流路40を通る。図1(b)及び図2(b)に示すように、第二状態において、第二給排気流路40が給気側となり、第一給排気流路30が排気側となる。すなわち、熱風発生循環部20からの給気熱風PWは、第二給排気流路40を通り、熱処理室10からの排気熱風EWは、第一給排気流路30を通る。   The first air supply / exhaust flow path 30 and the second air supply / exhaust flow path 40 are symmetric with respect to the air direction switching valve 60 and the heat treatment chamber 10. Therefore, the length of the first air supply / exhaust flow path 30 is the same as the length of the second air supply / exhaust flow path 40. Moreover, the cross-sectional shape and flow path area in the corresponding location of the 1st air supply / exhaust flow path 30 and the 2nd air supply / exhaust flow path 40 are also the same. As shown in FIGS. 1A and 2A, in the first state, the first air supply / exhaust flow path 30 is on the air supply side, and the second air supply / exhaust flow path 40 is on the exhaust side. That is, the supply hot air PW from the hot air generation / circulation unit 20 passes through the first supply / exhaust flow path 30, and the exhaust hot air EW from the heat treatment chamber 10 passes through the second supply / exhaust flow path 40. As shown in FIGS. 1B and 2B, in the second state, the second air supply / exhaust flow path 40 is on the air supply side, and the first air supply / exhaust flow path 30 is on the exhaust side. That is, the supply hot air PW from the hot air generation / circulation unit 20 passes through the second supply / exhaust flow path 40, and the exhaust hot air EW from the heat treatment chamber 10 passes through the first supply / exhaust flow path 30.

図1及び図3に示すように、風向切換弁は、熱風の風向きを切り換える切換板61と、切換板61の回動軸62と、弁の外壁を構成する円筒状のシリンダ63と、を備えている。シリンダ63の外周壁は、上側で熱風発生循環部20の接続流路20Eと連通し、下側で熱風発生循環部20の接続流路20Dと連通し、水平方向の一方(図1の紙面右側)で第一給排気流路30と連通し、水平方向の他方(図1の紙面左側)で第二給排気流路40と連通している。回動軸62は、シリンダ63内において、当該シリンダ63の軸線上に配置されている。切換板61は、シリンダ63の内部空間を周方向に二つの空間に区切るように配置された、一枚の板部材である。なお、ここでの「一枚」とは、切換板61全体が一体に形成された一枚の板で形成されている場合も、複数の板を重ね合わせ、あるいはつなぎ合わせて一枚の切換板61とした場合も含まれる。切換板61は、中央位置を回動軸62で軸支され、回動することによって、加熱炉1の第一状態に対応する位置と、第二状態に対応する位置に切り替わる。切換板61の外縁部は、シリンダ63の内面と隙間無く配置されており、気密性が確保されている。風向切換弁60は、図示されない制御装置と電気的に接続されており、当該制御装置により、第一状態と第二状態を所定の時間間隔で切り換える。熱処理室10の被加熱物Wが場所によらず均一に熱処理されるように、第一状態の時間と第二状態の時間が等しくなるように制御されることが好ましい。具体的に、熱処理室10での熱処理の合計時間が10時間〜60時間であるのに対し、10分間〜60分間の時間間隔で状態の切換が行われることが好ましい。   As shown in FIGS. 1 and 3, the wind direction switching valve includes a switching plate 61 that switches the direction of hot air, a rotating shaft 62 of the switching plate 61, and a cylindrical cylinder 63 that forms the outer wall of the valve. ing. The outer peripheral wall of the cylinder 63 communicates with the connection flow path 20E of the hot air generation / circulation section 20 on the upper side, and communicates with the connection flow path 20D of the hot air generation / circulation section 20 on the lower side. ) Communicates with the first air supply / exhaust flow path 30 and communicates with the second air supply / exhaust flow path 40 on the other side in the horizontal direction (left side in FIG. 1). The rotation shaft 62 is disposed on the axis of the cylinder 63 in the cylinder 63. The switching plate 61 is a single plate member arranged to divide the internal space of the cylinder 63 into two spaces in the circumferential direction. Here, “one sheet” means that a single switching plate is formed by superimposing or connecting a plurality of plates even when the entire switching plate 61 is formed as a single plate. The case of 61 is also included. The switching plate 61 is pivotally supported by a rotation shaft 62 at the center position, and is switched to a position corresponding to the first state of the heating furnace 1 and a position corresponding to the second state. The outer edge portion of the switching plate 61 is disposed without a gap from the inner surface of the cylinder 63, and airtightness is ensured. The wind direction switching valve 60 is electrically connected to a control device (not shown), and the control device switches the first state and the second state at a predetermined time interval. It is preferable to control the time of the first state and the time of the second state to be equal so that the article W to be heated in the heat treatment chamber 10 is uniformly heat-treated regardless of the place. Specifically, while the total time of heat treatment in the heat treatment chamber 10 is 10 hours to 60 hours, the state is preferably switched at a time interval of 10 minutes to 60 minutes.

図1(a)に示すように、第一状態においては、切換板61は、他端部が上向きになるように傾斜し、当該他端部が熱風発生循環部20の接続流路20Eと第二給排気流路40との間に配置され、下向きの一端部が熱風発生循環部20の接続流路20Dと第一給排気流路30との間に配置される状態となる。これによって、給気流路21を構成する接続流路20Eが、第一給排気流路30と連通され、第二給排気流路40と遮断される。また、排気流路22を構成する接続流路20Dが、第二給排気流路40と連通され、第一給排気流路30と遮断される。切換板61は、給気流路21に係る接続流路20Eからの給気熱風PWを第一面61aに当てることによって、第一給排気流路30へ案内する。また、切換板61は、第二給排気流路40から排気される排気熱風EWを第二面61bに当てることによって、排気流路22に係る接続流路20Dへ案内する。排気熱風EWは第二面61bに当たることによって、切換板61が温度低下することなく高温に保つことができる。このような構成により、給気熱風PWが第一面61aに当たったときに熱を奪われることが抑制される。シリンダ63と切換板61との間の気密性が確保されているため、給気熱風PWが排気流路22側へ漏れること、及び排気熱風EWが第一給排気流路30側へ漏れることは防止される。   As shown in FIG. 1 (a), in the first state, the switching plate 61 is inclined so that the other end portion faces upward, and the other end portion is connected to the connection flow path 20E of the hot air generating / circulating portion 20 and the second flow path. It arrange | positions between the two air supply / exhaust flow paths 40, and will be in the state arrange | positioned between the connection flow path 20D of the hot air generation circulation part 20 and the 1st air supply / exhaust flow path 30 between downward. As a result, the connection flow path 20 </ b> E constituting the air supply flow path 21 is communicated with the first air supply / exhaust flow path 30 and is blocked from the second air supply / exhaust flow path 40. Further, the connection flow path 20 </ b> D constituting the exhaust flow path 22 is communicated with the second supply / exhaust flow path 40 and is blocked from the first supply / exhaust flow path 30. The switching plate 61 guides to the first air supply / exhaust flow path 30 by applying the hot air PW from the connection flow path 20E related to the air supply flow path 21 to the first surface 61a. Further, the switching plate 61 guides the exhaust hot air EW exhausted from the second air supply / exhaust flow path 40 to the second flow path 61b to the connection flow path 20D related to the exhaust flow path 22. The exhaust hot air EW hits the second surface 61b, so that the switching plate 61 can be kept at a high temperature without lowering the temperature. With such a configuration, it is suppressed that heat is taken away when the supply hot air PW hits the first surface 61a. Since airtightness between the cylinder 63 and the switching plate 61 is ensured, the supply hot air PW leaks to the exhaust flow path 22 side, and the exhaust hot air EW leaks to the first supply / exhaust flow path 30 side. Is prevented.

図1(b)に示すように、第二状態においては、切換板61は、一端部が上向きになるように傾斜し、当該一端部が熱風発生循環部20の接続流路20Eと第一給排気流路30との間に配置され、下向きの他端部が熱風発生循環部20の接続流路20Dと第二給排気流路40との間に配置される状態となる。これによって、給気流路21を構成する接続流路20Eが、第二給排気流路40と連通され、第一給排気流路30と遮断される。また、排気流路22を構成する接続流路20Dが、第一給排気流路30と連通され、第二給排気流路40と遮断される。切換板61は、給気流路21に係る接続流路20Eからの給気熱風PWを第二面61bに当てることによって、第二給排気流路40へ案内する。また、切換板61は、第一給排気流路30から排気される排気熱風EWを第一面61aに当てることによって、排気流路22に係る接続流路20Dへ案内する。排気熱風EWは第一面61aに当たることによって、切換板61が温度低下することなく高温に保つことができる。このような構成により、給気熱風PWが第二面61bに当たったときに熱を奪われることが抑制される。シリンダ63と切換板61との間の気密性が確保されているため、給気熱風PWが排気流路22側へ漏れること、及び排気熱風EWが第二給排気流路40側へ漏れることは防止される。   As shown in FIG. 1B, in the second state, the switching plate 61 is inclined so that one end thereof faces upward, and the one end is connected to the connection flow path 20E of the hot air generating and circulating unit 20 and the first supply. It arrange | positions between the exhaust flow paths 30, and it will be in the state arrange | positioned between the connection flow path 20D of the hot air generation | occurrence | production circulation part 20 and the 2nd air supply / exhaust flow path 40 between downward. As a result, the connection flow path 20 </ b> E constituting the air supply flow path 21 is communicated with the second air supply / exhaust flow path 40 and is blocked from the first air supply / exhaust flow path 30. Further, the connection flow path 20 </ b> D constituting the exhaust flow path 22 communicates with the first supply / exhaust flow path 30 and is blocked from the second supply / exhaust flow path 40. The switching plate 61 guides to the second air supply / exhaust flow path 40 by applying the hot air PW from the connection flow path 20E related to the air supply flow path 21 to the second surface 61b. Further, the switching plate 61 guides the exhaust hot air EW exhausted from the first air supply / exhaust flow path 30 to the first flow path 61 a to the connection flow path 20 </ b> D related to the exhaust flow path 22. The exhaust hot air EW hits the first surface 61a, so that the switching plate 61 can be kept at a high temperature without lowering the temperature. With such a configuration, it is possible to prevent heat from being taken away when the supply hot air PW hits the second surface 61b. Since the airtightness between the cylinder 63 and the switching plate 61 is ensured, the supply hot air PW leaks to the exhaust flow path 22 side and the exhaust hot air EW leaks to the second supply / exhaust flow path 40 side. Is prevented.

一般に、セラミック成形体の被加熱物Wには、樹脂成分が含まれており、加熱炉1では、被加熱物W中の樹脂成分が長時間をかけて徐々に除去されていく。樹脂成分の除去速度は、熱風として被加熱物Wに接触する雰囲気ガスの温度、風量、及び雰囲気ガス中の樹脂濃度、に依存する。ここで、熱処理室10内の各位置ごとに、雰囲気ガスの温度、風量、及び樹脂濃度のバラツキがある場合、熱処理室10の各位置に配置された被加熱物Wごとに樹脂の除去速度がバラつくことになる。例えば、樹脂の除去速度が速すぎる場合、被加熱物Wにクラックが発生するおそれがある。また、樹脂の除去速度が遅すぎる場合には、処理終了後も被加熱物Wに樹脂成分が残存してしまう。従って、熱処理室10内のすべての被加熱物Wについてムラなく良好な脱脂を行うためには、熱処理室10内の温度分布、風量分布、樹脂濃度分布のバラツキを小さくすることが必要である。   Generally, a resin component is contained in the article to be heated W of the ceramic molded body, and in the heating furnace 1, the resin component in the article to be heated W is gradually removed over a long period of time. The removal rate of the resin component depends on the temperature, the air volume, and the resin concentration in the atmosphere gas of the atmosphere gas that contacts the object to be heated W as hot air. Here, when there are variations in the temperature of the atmosphere gas, the air volume, and the resin concentration for each position in the heat treatment chamber 10, the resin removal speed is increased for each object to be heated W arranged in each position in the heat treatment chamber 10. It will vary. For example, when the removal rate of the resin is too fast, there is a possibility that cracks may occur in the article to be heated W. In addition, when the resin removal rate is too slow, the resin component remains in the article to be heated W even after the processing is completed. Therefore, in order to perform uniform degreasing without unevenness on all the objects to be heated W in the heat treatment chamber 10, it is necessary to reduce variations in the temperature distribution, the air volume distribution, and the resin concentration distribution in the heat treatment chamber 10.

そこで、加熱炉1は、5段の熱処理空間13a〜13eにそれぞれ対応するステンレス製の熱損失調整板A51a〜A51e,B51a〜B51eを備えている。このうち、第一熱損失調整板A51b〜A51eは、それぞれ、対応する熱処理空間13b〜13eにおける第一給排気流路30との接続部31に設けられている。各熱処理空間13b〜13eを区画する上壁をなす仕切壁11の端部に、各第一熱損失調整板A51b〜A51eが固定されており、各第一熱損失調整板A51b〜A51eは、それぞれ、第一給排気流路30内に突出するように延びている。そして、第一熱損失調整板A51b〜A51eは、先端が上方に向くように湾曲している。このような湾曲形状により、各第一熱損失調整板A51b〜A51eは、第一状態における第一給排気流路30からの鉛直方向の給気熱風PWをそれぞれ案内して水平方向の熱風とし(図1(a)を参照)、各々の熱処理空間13b〜13eに熱風を円滑に導き入れる。なお、第一熱損失調整板A51aは、熱処理室10の下壁面に固定されているが、他の第一熱損失調整板A51b〜A51eと同様の構成により、熱処理空間13aに給気熱風PWを円滑に導き入れる。   Therefore, the heating furnace 1 includes stainless heat loss adjusting plates A51a to A51e and B51a to B51e respectively corresponding to the five stages of heat treatment spaces 13a to 13e. Among these, 1st heat loss adjustment board A51b-A51e is provided in the connection part 31 with the 1st air supply / exhaust flow path 30 in each heat processing space 13b-13e, respectively. The first heat loss adjustment plates A51b to A51e are fixed to the end portions of the partition wall 11 forming the upper wall that partitions the heat treatment spaces 13b to 13e, and the first heat loss adjustment plates A51b to A51e are respectively The first supply / exhaust flow path 30 extends so as to protrude. And 1st heat loss adjustment board A51b-A51e is curving so that a front-end | tip may face upwards. With such a curved shape, each of the first heat loss adjusting plates A51b to A51e guides the hot air PW in the vertical direction from the first air supply / exhaust flow path 30 in the first state to generate hot air in the horizontal direction ( 1 (a)), hot air is smoothly introduced into each of the heat treatment spaces 13b to 13e. The first heat loss adjustment plate A51a is fixed to the lower wall surface of the heat treatment chamber 10, but the supply hot air PW is supplied to the heat treatment space 13a with the same configuration as the other first heat loss adjustment plates A51b to A51e. Introduce smoothly.

第一熱損失調整板A51a〜A51eにおける、第一給排気流路30側に突出する長さは、第一熱損失調整板A51e,A51d,A51c,A51b,A51aの順に長い。すなわち、各熱損失調整板A51a〜A51eの長さは、下に位置するものほど長くなっており、更に換言すれば、熱供給源23からの距離が大きくなるほど、第一熱損失調整板A51a〜A51eが長くなっている。第一熱損失調整板A51a〜A51eの幅及び厚さは、すべて同じである。   The length of the first heat loss adjusting plates A51a to A51e protruding toward the first air supply / exhaust flow path 30 is longer in the order of the first heat loss adjusting plates A51e, A51d, A51c, A51b, A51a. That is, the lengths of the heat loss adjustment plates A51a to A51e are longer as they are positioned below. In other words, as the distance from the heat supply source 23 increases, the first heat loss adjustment plates A51a to A51e. A51e is longer. The widths and thicknesses of the first heat loss adjustment plates A51a to A51e are all the same.

第二熱損失調整板B51a〜B51eは、熱処理室10を介して第一熱損失調整板A51a〜A51eと左右対称な構成を有している。第二熱損失調整板B51b〜B51eは、それぞれ、対応する熱処理空間13b〜13eにおける第二給排気流路40との接続部41に設けられている。各熱処理空間13b〜13eを区画する上壁をなす仕切壁11の端部に、各第二熱損失調整板B51b〜B51eが固定されており、各第二熱損失調整板B51b〜B51eは、それぞれ、第二給排気流路40内に突出するように延びている。そして、第二熱損失調整板B51b〜B51eは、先端が上方に向くように湾曲している。このような湾曲形状により、各第二熱損失調整板B51b〜B51eは、第二状態における第二給排気流路40からの鉛直方向の給気熱風PWをそれぞれ案内して水平方向の熱風とし(図1(b)を参照)、各々の熱処理空間13b〜13eに熱風を円滑に導き入れる。なお、第二熱損失調整板B51aは、熱処理室10の下壁面に固定されているが、他の第二熱損失調整板B51b〜B51eと同様の構成により、熱処理空間13aに給気熱風PWを円滑に導き入れる。   The second heat loss adjustment plates B51a to B51e have a symmetrical configuration with the first heat loss adjustment plates A51a to A51e via the heat treatment chamber 10. The second heat loss adjusting plates B51b to B51e are provided at the connection portions 41 with the second air supply / exhaust flow paths 40 in the corresponding heat treatment spaces 13b to 13e, respectively. The second heat loss adjustment plates B51b to B51e are fixed to the end portions of the partition wall 11 forming the upper wall that partitions the heat treatment spaces 13b to 13e, and the second heat loss adjustment plates B51b to B51e are respectively The second air supply / exhaust flow path 40 extends so as to protrude. And 2nd heat loss adjustment board B51b-B51e is curving so that a front-end | tip may face upwards. With such a curved shape, each of the second heat loss adjustment plates B51b to B51e guides the vertical supply air hot air PW from the second air supply / exhaust flow path 40 in the second state to generate horizontal hot air ( 1 (b)), hot air is smoothly introduced into each of the heat treatment spaces 13b to 13e. The second heat loss adjustment plate B51a is fixed to the lower wall surface of the heat treatment chamber 10, but the supply hot air PW is supplied to the heat treatment space 13a with the same configuration as the other second heat loss adjustment plates B51b to B51e. Introduce smoothly.

第二熱損失調整板B51a〜B51eにおける、第二給排気流路40側に突出する長さは、第二熱損失調整板B51e,B51d,B51c,B51b,B51aの順に長い。すなわち、各熱損失調整板B51a〜B51eの長さは、下に位置するものほど長くなっており、更に換言すれば、熱供給源23からの距離が大きくなるほど、第二熱損失調整板B51a〜B51eが長くなっている。第二熱損失調整板B51a〜B51eの幅及び厚さは、すべて同じである。   The length of the second heat loss adjustment plates B51a to B51e protruding toward the second air supply / exhaust flow path 40 is longer in the order of the second heat loss adjustment plates B51e, B51d, B51c, B51b, and B51a. That is, the lengths of the heat loss adjustment plates B51a to B51e are longer as they are positioned below. In other words, the longer the distance from the heat supply source 23, the greater the second heat loss adjustment plates B51a to B51a. B51e is longer. The widths and thicknesses of the second heat loss adjustment plates B51a to B51e are all the same.

更に、各熱処理空間13a〜13eにおいては、熱処理室10の両側の開口を塞ぐように二重に重ねて配置された2枚のメッシュ材がそれぞれ設けられている。このうち熱処理室10に対して外側のメッシュ材を第一メッシュ材53とし、内側のメッシュ材を第二メッシュ材55とする。第一メッシュ材53と第二メッシュ材55とは、被加熱物Wの載置位置と第一熱損失調整板A51a〜A51eとの間、及び被加熱物Wの載置位置と第二熱損失調整板B51a〜B51eとの間に位置している。第一メッシュ材53と第二メッシュ材55とは、所定の開口率(約60%程度)を有するステンレス製の金網状の部材であり、各熱処理空間13a〜13eに導入される給気熱風PWは、第一メッシュ材53と第二メッシュ材55とを順に通過する。各段の第一メッシュ材53及び第二メッシュ材55は、上から見てすべて同じ位置に配置されている。ただし、各段の第二メッシュ材55を、上段にいくほど徐々に内側にずれるように配置されていてもよい。また、各段の第二メッシュ材55は、例えばネジ止め等により着脱自在に仕切壁11に取り付けられる構成により、前後方向に位置調整が可能である。各段の第一及び第二メッシュ材53,55の開口率は、段ごとに調整され互いに異なっている。第一給排気流路30側のメッシュ材53,55と、第二給排気流路40側のメッシュ材53,55とは、熱処理室10を介して左右対称に構成されている。   Further, in each of the heat treatment spaces 13a to 13e, two mesh members arranged in a double layer so as to close the openings on both sides of the heat treatment chamber 10 are provided. Among these, the outer mesh material with respect to the heat treatment chamber 10 is a first mesh material 53, and the inner mesh material is a second mesh material 55. The first mesh material 53 and the second mesh material 55 are located between the placement position of the article to be heated W and the first heat loss adjusting plates A51a to A51e, and the placement position of the article to be heated W and the second heat loss. It is located between the adjustment plates B51a to B51e. The first mesh material 53 and the second mesh material 55 are stainless steel wire mesh members having a predetermined opening ratio (about 60%), and supply air hot air PW introduced into the heat treatment spaces 13a to 13e. Passes through the first mesh material 53 and the second mesh material 55 in order. The first mesh material 53 and the second mesh material 55 at each stage are all arranged at the same position as viewed from above. However, the second mesh material 55 at each stage may be arranged so as to gradually shift inward as it goes upward. The second mesh material 55 at each stage can be adjusted in the front-rear direction by a configuration that is detachably attached to the partition wall 11 by, for example, screwing. The opening ratios of the first and second mesh members 53 and 55 in each step are adjusted for each step and are different from each other. The mesh materials 53 and 55 on the first air supply / exhaust flow path 30 side and the mesh materials 53 and 55 on the second air supply / exhaust flow path 40 side are configured symmetrically via the heat treatment chamber 10.

このように、各段の第一メッシュ材53は、上から見て同じ位置に配置されるので、各熱処理空間13a〜13eにほぼ同じ条件で熱風を導入させ、第2メッシュ材55を位置調整することで、各熱処理空間13a〜13eからの輻射熱にバラツキが生じても第二メッシュ材55に対する影響を、各段の熱処理空間13a〜13e同士で共通に揃えることができる。また、各段のメッシュ材53,55の開口率は、段ごとに調整され互いに異なっている。このように、メッシュ材53,55の開口率を各段ごとに調整することで、各段の熱処理空間13a〜13eごとの温度分布をより精密に調整することができる。   Thus, since the first mesh material 53 of each step is disposed at the same position when viewed from above, hot air is introduced into each of the heat treatment spaces 13a to 13e under substantially the same conditions to adjust the position of the second mesh material 55. By doing so, even if the radiant heat from each of the heat treatment spaces 13a to 13e varies, the influence on the second mesh material 55 can be made common in the heat treatment spaces 13a to 13e of each stage. Moreover, the aperture ratios of the mesh materials 53 and 55 at each step are adjusted for each step and are different from each other. Thus, by adjusting the aperture ratio of the mesh materials 53 and 55 for each step, the temperature distribution for each heat treatment space 13a to 13e of each step can be adjusted more precisely.

更に、各熱処理空間13a〜13eにおいては、両側における第一メッシュ材53と第二メッシュ材55との間の空間に、複数枚(ここでは、6枚とする)のステンレス製の熱分布調整板57が設けられている。熱分布調整板57は、仕切壁11の上面(或いは熱処理室10の底壁面)に設けられており、図1における奥行き方向に水平に配列されている。熱分布調整板57は、上方から見てやや傾斜することで、被加熱物Wの設置位置における熱風の流動に影響を与える。すなわち、熱分布調整板57は、上方からみて中央付近の給気熱風PWを外側に導くように傾斜している。この構成により、各熱処理空間13a〜13eにおいては、熱風に直交する面内における風量のバラツキが低減される。第一給排気流路30側の熱分布調整板57と、第二給排気流路40側の熱分布調整板57とは、熱処理室10を介して左右対称に構成されている。   Further, in each of the heat treatment spaces 13a to 13e, a plurality of (here, six) stainless steel heat distribution adjusting plates are provided in the space between the first mesh material 53 and the second mesh material 55 on both sides. 57 is provided. The heat distribution adjusting plate 57 is provided on the upper surface of the partition wall 11 (or the bottom wall surface of the heat treatment chamber 10), and is arranged horizontally in the depth direction in FIG. The heat distribution adjusting plate 57 is slightly inclined when viewed from above, thereby affecting the flow of hot air at the installation position of the article to be heated W. That is, the heat distribution adjusting plate 57 is inclined so as to guide the hot air PW near the center to the outside as viewed from above. With this configuration, in each of the heat treatment spaces 13a to 13e, variation in the air volume in a plane orthogonal to the hot air is reduced. The heat distribution adjusting plate 57 on the first air supply / exhaust flow path 30 side and the heat distribution adjusting plate 57 on the second air supply / exhaust flow path 40 side are configured symmetrically via the heat treatment chamber 10.

第一メッシュ材53は、通過する熱風の分布を分散させることにより、結果として温度分布を等しくする。また、第一メッシュ材53の通過後にも残存する水平方向の温度バラツキは、蓄熱材として機能する熱分布調整板57によって補償されるので、熱処理空間13a〜13eにおける水平方向の温度分布が均一化される。また、第二メッシュ材55は熱処理空間13a〜13eからの輻射熱が熱分布調整板57に直接影響を与えることを抑制し、且つ輻射熱を第二メッシュ材55の面内で分散させる。これにより、熱分布調整板57の温度が急激に変化することなく安定し、第二メッシュ材55を通過した熱風における、流れに直交する断面の温度分布が均一化される。   The first mesh material 53 disperses the distribution of hot air passing therethrough, thereby making the temperature distribution equal. Further, since the horizontal temperature variation remaining after passing through the first mesh material 53 is compensated by the heat distribution adjusting plate 57 functioning as a heat storage material, the horizontal temperature distribution in the heat treatment spaces 13a to 13e is made uniform. Is done. Further, the second mesh material 55 suppresses the direct influence of the radiant heat from the heat treatment spaces 13 a to 13 e on the heat distribution adjusting plate 57, and disperses the radiant heat within the surface of the second mesh material 55. Thereby, the temperature of the heat distribution adjusting plate 57 is stabilized without suddenly changing, and the temperature distribution of the cross section perpendicular to the flow in the hot air that has passed through the second mesh material 55 is made uniform.

また、熱損失調整板A51a〜A51e,B51a〜B51eと、メッシュ材53,55と、熱分布調整板57とは、ステンレス製である。このように、保温性の高い(熱伝導の悪い)ステンレスで、熱分布補償部材としての熱損失調整板A51a〜A51e,B51a〜B51eと、メッシュ材53,55と、熱分布調整板57とを構成することにより、外乱が生じてもこれらの熱分布補償部材が急激に温度変化せず、熱処理室10内における一定の温度分布を維持し易い。   The heat loss adjusting plates A51a to A51e, B51a to B51e, the mesh materials 53 and 55, and the heat distribution adjusting plate 57 are made of stainless steel. As described above, the heat loss adjusting plates A51a to A51e and B51a to B51e as the heat distribution compensating members, the mesh materials 53 and 55, and the heat distribution adjusting plate 57 are made of stainless steel having high heat retention (poor heat conduction). With this configuration, even if a disturbance occurs, these heat distribution compensation members do not rapidly change in temperature, and it is easy to maintain a constant temperature distribution in the heat treatment chamber 10.

熱処理室10は、炉体に対して挿脱可能な被加熱物収納マガジン12を備えている。この被加熱物収納マガジン12は、炉体側に固定されている熱損失調整板A51a〜A51e,B51a〜B51e、メッシュ材53,55、熱分布調整板57が設けられている部分とは別体とされており、被加熱物Wが載置されている領域のみを取り外し可能な構成となっている。また、炉体と被加熱物収納マガジン12との間の気密性が確保されており、他の熱処理空間へ漏れることなく各熱処理空間13a〜13eへ給気熱風PWを給気することができる。このような構成により、被加熱物Wの熱処理室10への出し入れが容易になる。   The heat treatment chamber 10 includes a heated object storage magazine 12 that can be inserted into and removed from the furnace body. This heated article storage magazine 12 is separate from the portion where the heat loss adjusting plates A51a to A51e, B51a to B51e, the mesh materials 53 and 55, and the heat distribution adjusting plate 57 are fixed to the furnace body side. Thus, only the region where the article to be heated W is placed can be removed. Moreover, the airtightness between the furnace body and the article to be heated storage 12 is ensured, and the supplied hot air PW can be supplied to the heat treatment spaces 13a to 13e without leaking to other heat treatment spaces. With such a configuration, it becomes easy to put the workpiece W into and out of the heat treatment chamber 10.

続いて、上述の構成に基づく加熱炉1の作用効果について説明する。   Then, the effect of the heating furnace 1 based on the above-mentioned structure is demonstrated.

第一状態においては、図1(a)、図2(a)、図3に示すように、熱供給源23からの熱供給及び送風により、給気熱風PWが、給気流路21に係る上側流路20A及び接続流路20Eを流れ、風向切換弁60の切換板61の第一面61aに当たる。第一面61aによって案内された給気熱風PWは、第一給排気流路30を通過し、第一熱損失調整板A51a〜A51eで案内されながら熱処理室10の各段の熱処理空間13a〜13eに分岐して流入する。その後、熱処理室10から排気される排気熱風EWは、第二熱損失調整板B51a〜B51eで案内されながら再度合流し、第二給排気流路40を通る。排気熱風EWは、風向切換弁60の切換板61の第二面61bに当たり、熱風発生循環部20の排気流路22へ案内される。排気熱風EWは、接続流路20D及び下側流路20Cを流れて排気管25で一部排気される。更に、排気熱風EWは、垂直流路20Bを流れ、熱供給源23で熱を供給されることで、再び給気熱風PWとして加熱炉1内を循環する。   In the first state, as shown in FIGS. 1 (a), 2 (a), and FIG. 3, the supply hot air PW is supplied to the upper side of the supply air flow path 21 by the heat supply and the ventilation from the heat supply source 23. It flows through the flow path 20A and the connection flow path 20E and hits the first surface 61a of the switching plate 61 of the air direction switching valve 60. The supply hot air PW guided by the first surface 61a passes through the first air supply / exhaust flow path 30, and is guided by the first heat loss adjustment plates A51a to A51e while being heat-treated spaces 13a to 13e at the respective stages of the heat treatment chamber 10. It branches into and flows in. Thereafter, the exhaust hot air EW exhausted from the heat treatment chamber 10 joins again while being guided by the second heat loss adjusting plates B51a to B51e and passes through the second air supply / exhaust flow path 40. The exhaust hot air EW hits the second surface 61 b of the switching plate 61 of the air direction switching valve 60 and is guided to the exhaust flow path 22 of the hot air generating and circulating unit 20. The exhaust hot air EW flows through the connection flow path 20D and the lower flow path 20C and is partially exhausted through the exhaust pipe 25. Further, the exhaust hot air EW flows through the vertical flow path 20B and is supplied with heat by the heat supply source 23, so that it again circulates in the heating furnace 1 as the supply air hot air PW.

第二状態においては、図1(b)、図2(b)、図3に示すように、熱供給源23からの熱供給及び送風により、給気熱風PWが、給気流路21に係る上側流路20A及び接続流路20Eを流れ、風向切換弁60の切換板61の第二面61bに当たる。第二面61bによって案内された給気熱風PWは、第二給排気流路40を通過し、第二熱損失調整板B51a〜B51eで案内されながら熱処理室10の各段の熱処理空間13a〜13eに分岐して流入する。その後、熱処理室10から排気される排気熱風EWは、第一熱損失調整板A51a〜A51eで案内されながら再度合流し、第一給排気流路30を通る。排気熱風EWは、風向切換弁60の切換板61の第一面61aに当たり、熱風発生循環部20の排気流路22へ案内される。排気熱風EWは、接続流路20D及び下側流路20Cを流れて排気管25で一部排気される。更に、排気熱風EWは、垂直流路20Bを流れ、熱供給源23で熱を供給されることで、再び給気熱風PWとして加熱炉1内を循環する。このような第一状態と第二状態の切換は、同じ時間間隔で行われる。   In the second state, as shown in FIGS. 1 (b), 2 (b), and 3, the supply hot air PW is supplied to the upper side of the supply flow passage 21 by the heat supply and the air blowing from the heat supply source 23. It flows through the flow path 20A and the connection flow path 20E and hits the second surface 61b of the switching plate 61 of the air direction switching valve 60. The supply hot air PW guided by the second surface 61b passes through the second supply / exhaust flow path 40 and is guided by the second heat loss adjusting plates B51a to B51e while being heat-treated spaces 13a to 13e at the respective stages of the heat treatment chamber 10. It branches into and flows in. Thereafter, the exhaust hot air EW exhausted from the heat treatment chamber 10 joins again while being guided by the first heat loss adjusting plates A51a to A51e and passes through the first air supply / exhaust flow path 30. The exhaust hot air EW hits the first surface 61 a of the switching plate 61 of the air direction switching valve 60 and is guided to the exhaust flow path 22 of the hot air generating and circulating unit 20. The exhaust hot air EW flows through the connection flow path 20D and the lower flow path 20C and is partially exhausted through the exhaust pipe 25. Further, the exhaust hot air EW flows through the vertical flow path 20B and is supplied with heat by the heat supply source 23, so that it again circulates in the heating furnace 1 as the supply air hot air PW. Such switching between the first state and the second state is performed at the same time interval.

以上により、本実施形態に係る加熱炉1によれば、風向切換弁60を第一状態に切り換えると、熱風発生循環部20からの給気熱風PWは、熱処理室10内において第一給排気流路30から第二給排気流路40へ向かって通過する。また、風向切換弁60を第二状態に切り換えると、熱風発生循環部20からの給気熱風PWは、熱処理室10内において第二給排気流路40から第一給排気流路30へ向かって通過する。このように、熱処理室10内で給気熱風PWの風向きが切り換わるため、給気熱風PWの供給方向による被加熱物Wの熱処理状態のばらつきを低減することができ、熱処理室10内における位置によらず複数の被加熱物Wを均一に加熱することができる。また、熱風発生循環部20と熱処理室10とは、互いに熱処理室10から独立して設けられた第一給排気流路30及び第二給排気流路40によって接続されている。従って、熱風発生循環部20からの給気熱風PWは、排気側へ漏れることなく、独立した給排気流路を通過して熱処理室10へ供給される。   As described above, according to the heating furnace 1 according to the present embodiment, when the air direction switching valve 60 is switched to the first state, the supply hot air PW from the hot air generation / circulation unit 20 causes the first supply / exhaust flow in the heat treatment chamber 10. It passes from the path 30 toward the second air supply / exhaust flow path 40. When the air direction switching valve 60 is switched to the second state, the supply hot air PW from the hot air generation / circulation unit 20 is directed from the second supply / exhaust flow path 40 to the first supply / exhaust flow path 30 in the heat treatment chamber 10. pass. Thus, since the direction of the supply air hot air PW is switched in the heat treatment chamber 10, variation in the heat treatment state of the article to be heated W depending on the supply direction of the supply air hot air PW can be reduced, and the position in the heat treatment chamber 10 can be reduced. Regardless of this, a plurality of articles to be heated W can be heated uniformly. The hot air generating / circulating unit 20 and the heat treatment chamber 10 are connected to each other by a first air supply / exhaust flow channel 30 and a second air supply / exhaust flow channel 40 that are provided independently from the heat treatment chamber 10. Therefore, the supply hot air PW from the hot air generation / circulation unit 20 is supplied to the heat treatment chamber 10 through the independent supply / exhaust flow path without leaking to the exhaust side.

また、本実施形態に係る加熱炉1の構成によれば、熱風PW,EWの循環方向は、風向切換弁60よりも下流側の熱処理室10、第一給排気流路30及び第二給排気流路40のみで切り換わり、熱風発生循環部20では循環方向は常に一定とすることができる。例えば、送風手段において風向きを変化させる構成や循環方向に応じて複数の熱供給源及び給排気経路を設けるような場合は、構成が複雑化する。しかし、本実施形態の加熱炉1では、熱風発生循環部20で常に一定方向で熱風PW,EWを循環さる構成としておき、風向切換弁60を切り換えるだけで被加熱物Wを均一に加熱することができるため、構造の複雑化を抑制できる。   Moreover, according to the structure of the heating furnace 1 which concerns on this embodiment, the circulation direction of hot air PW and EW is the heat processing chamber 10, the 1st air supply / exhaust flow path 30, and the 2nd air supply / exhaust downstream of the wind direction switching valve 60. The flow direction is switched only in the flow path 40, and the circulation direction can always be constant in the hot air generation circulation section 20. For example, in the case where a plurality of heat supply sources and supply / exhaust paths are provided according to the configuration in which the air direction is changed or the circulation direction in the blowing unit, the configuration becomes complicated. However, in the heating furnace 1 of the present embodiment, the hot air PW and EW are always circulated in a constant direction in the hot air generating and circulating unit 20, and the object to be heated W is uniformly heated only by switching the wind direction switching valve 60. Therefore, the complexity of the structure can be suppressed.

また、例えば、風向切換弁からの排気熱風EWが熱供給源に至るまでの排気流路が二つ存在し、一方の排気流路を排気熱風EWが通過しているときは他方の排気流路に排気熱風EWが通過していない構成とした場合、排気熱風EWが通過していない他方の排気流路は熱が失われ温度低下してしまう。この状態で循環方向を切り換えて他方の排気流路に排気熱風EWを通過させると、温度低下した排気流路にて熱損失が発生する。一方、本実施形態に係る加熱炉1においては、熱風発生循環部20は常に同じ状態で熱風PW,EWを循環させることができ、第一状態及び第二状態において同一の排気流路22を用いることができるため、排気流路22での熱損失を抑制することができる。以上によって、構成を複雑化させることなく、且つ、熱損失を抑制しつつ、被加熱物Wを熱処理室内における位置によらず均一に加熱することができる。   Further, for example, when there are two exhaust passages from which the exhaust hot air EW from the wind direction switching valve reaches the heat supply source, and the exhaust hot air EW passes through one exhaust passage, the other exhaust passage When the exhaust hot air EW does not pass through the other exhaust passage, the other exhaust passage through which the exhaust hot air EW does not pass loses heat and the temperature decreases. If the circulation direction is switched in this state and the exhaust hot air EW is passed through the other exhaust passage, heat loss occurs in the exhaust passage whose temperature has decreased. On the other hand, in the heating furnace 1 according to the present embodiment, the hot air generating and circulating unit 20 can always circulate hot air PW and EW in the same state, and the same exhaust flow path 22 is used in the first state and the second state. Therefore, heat loss in the exhaust passage 22 can be suppressed. As described above, the object to be heated W can be uniformly heated regardless of the position in the heat treatment chamber without complicating the configuration and suppressing heat loss.

ここで、例えば、熱処理室での熱風の風向きを変える加熱炉の比較例として、熱処理室の上部に一つの大きな開口部を設けておき、当該開口部の位置で傾斜方向を切換可能な切換板を配置し、熱処理室の外側であって開口部及び切換板に対向する位置に熱風発生源を配置し、熱処理室及び熱風発生源全体を壁面で取り囲んだ加熱炉を考慮する。熱風発生源は、切換板の表面(熱処理室から見て外側の面)に熱風を当てるように熱風を発生し、切換板を開口部で回動させることで、熱処理室内での風向きを切り換える。具体的には、切換板が一方に傾く(切換板の一端側が熱処理室内に入り込み、他端側が熱処理室内部から遠ざかるように傾く)と、給気熱風は切換板の表面に案内されて、切換板の一端側より熱処理室内へ入り込む。入り込んだ熱風は熱処理室内を一方側から他方側へ流れて熱処理を行い、切換板の裏面に案内されて、切換板の他端側より熱処理室の外側へ排出される。熱処理室から排出された排気熱風は、加熱炉の他方側の壁面で案内されながら移動(このときの移動経路が、一つ目の排気流路として機能する)し、再び熱風発生源に戻される。切換板が他方に傾く(切換板の他端側が熱処理室内に入り込み、一端側が熱処理室内部から遠ざかるように傾く)と、給気熱風は切換板の表面に案内されて、切換板の他端側より熱処理室内へ入り込む。入り込んだ熱風は熱処理室内を他方側から一方側へ流れて熱処理を行い、切換板の裏面に案内されて、切換板の一端側より熱処理室の外側へ排出される。熱処理室から排出された排気熱風は、加熱炉の一方側の壁面で案内されながら移動(このときの移動経路が、二つ目の排気流路として機能する)し、再び熱風発生源に戻される。   Here, for example, as a comparative example of a heating furnace that changes the direction of hot air in the heat treatment chamber, a switching plate that has one large opening at the top of the heat treatment chamber and can switch the inclination direction at the position of the opening. Considering a heating furnace in which a hot air generation source is disposed outside the heat treatment chamber at a position facing the opening and the switching plate, and the heat treatment chamber and the entire hot air generation source are surrounded by wall surfaces. The hot air generating source generates hot air so that hot air is applied to the surface of the switching plate (the outer surface as viewed from the heat treatment chamber), and rotates the switching plate through the opening to switch the direction of the air in the heat treatment chamber. Specifically, when the switching plate tilts to one side (one end of the switching plate enters the heat treatment chamber and the other end tilts away from the heat treatment chamber), the supply hot air is guided to the surface of the switching plate and switched. Enter the heat treatment chamber from one end of the plate. The hot air that has entered enters the heat treatment chamber from one side to the other side to perform heat treatment, is guided by the back surface of the switching plate, and is discharged from the other end side of the switching plate to the outside of the heat treatment chamber. The exhaust hot air discharged from the heat treatment chamber moves while being guided by the wall surface on the other side of the heating furnace (the movement path at this time functions as the first exhaust flow path) and is returned to the hot air generation source again. . When the switching plate tilts to the other side (the other end of the switching plate enters the heat treatment chamber and one end tilts away from the heat treatment chamber), the supply air hot air is guided to the surface of the switching plate and the other end of the switching plate Enter the heat treatment chamber. The hot air that has entered enters the heat treatment chamber from the other side to the one side, performs heat treatment, is guided to the back surface of the switching plate, and is discharged from the one end side of the switching plate to the outside of the heat treatment chamber. The exhaust hot air discharged from the heat treatment chamber moves while being guided by the wall surface on one side of the heating furnace (the moving path at this time functions as a second exhaust flow path) and is returned to the hot air generation source again. .

しかしながら、比較例に係る加熱炉では、熱風発生源からの給気熱風を切換板の表面に当てたとき、一部の熱風は熱処理室内へ案内されることなく他の部分へ流れてしまい、給気熱風の全量を熱処理室へ供給することができない。更に、排気のための流路を確保する必要があるため、熱風発生源と切換板との間を管などによって塞いで気密に接続することで、給気熱風の逃げ道を無くすこともできない。従って、給気側において熱損失が発生する。また、上述のように、熱処理室から排出された排気熱風に対しては、風向きによって二つの排気流路が存在する。一方の排気流路に排気熱風が通過しているときは、他方の排気流路の温度が低下する。従って、排気側においても熱損失が発生する。一方、本実施形態に係る加熱炉1においては、熱風発生循環部20の給気流路21と風向切換弁60とを気密に接続することができる上、風向切換弁60と熱処理室10との間も独立した給排気流路30,40にて気密に接続することが可能である。従って、給気熱風PWの全量を熱処理室10に供給することが可能となり、給気側における熱損失を抑制することができる。更に、風向切換弁60から熱供給源23へ至る排気熱風EWの移動経路も、風向きによらず熱風発生循環部20の排気流路22の一本にまとめることができる。従って、排気熱風EWの温度低下が抑制され、排気側における熱損失を抑制することができる。   However, in the heating furnace according to the comparative example, when the supply hot air from the hot air generation source is applied to the surface of the switching plate, some of the hot air flows to other parts without being guided into the heat treatment chamber. The entire amount of hot air cannot be supplied to the heat treatment chamber. Furthermore, since it is necessary to secure a flow path for exhaust, it is not possible to eliminate the escape path of the supplied hot air by closing the hot air generating source and the switching plate with a pipe or the like and making an airtight connection. Therefore, heat loss occurs on the supply side. As described above, there are two exhaust flow paths depending on the direction of the exhaust hot air exhausted from the heat treatment chamber. When exhaust hot air is passing through one exhaust passage, the temperature of the other exhaust passage is lowered. Therefore, heat loss also occurs on the exhaust side. On the other hand, in the heating furnace 1 according to the present embodiment, the air supply flow path 21 of the hot air generation and circulation unit 20 and the air direction switching valve 60 can be connected in an airtight manner, and between the air direction switching valve 60 and the heat treatment chamber 10. In addition, the air supply and exhaust passages 30 and 40 can be connected in an airtight manner. Accordingly, it becomes possible to supply the entire amount of the supply air hot air PW to the heat treatment chamber 10, and heat loss on the supply side can be suppressed. Furthermore, the movement path of the exhaust hot air EW from the wind direction switching valve 60 to the heat supply source 23 can also be integrated into one exhaust flow path 22 of the hot air generation / circulation unit 20 regardless of the wind direction. Therefore, the temperature drop of the exhaust hot air EW is suppressed, and heat loss on the exhaust side can be suppressed.

本実施形態に係る加熱炉1において、熱処理室10は、水平な仕切壁11で仕切られ形成される複数段の熱処理空間13a〜13eを有し、熱風発生循環部20からの給気熱風PWを各段の熱処理空間13a〜13eに分岐させて通過させることができる。また、各段の熱処理空間13a〜13eにおける第一給排気流路30との接続部31には、熱供給源23からの距離が大きいほど第一給排気流路30側に長く突出する湾曲形状の第一熱損失調整板A51a〜A51eが配置され、各段の熱処理空間13a〜13eにおける第二給排気流路40との接続部41には、熱供給源23からの距離が大きいほど第二給排気流路40側に長く突出する湾曲形状の第二熱損失調整板B51a〜B51eが配置され、第一熱損失調整板A51a〜A51eと第二熱損失調整板B51a〜B51eとは、熱処理室を介して対称に配置されている。   In the heating furnace 1 according to the present embodiment, the heat treatment chamber 10 includes a plurality of heat treatment spaces 13 a to 13 e that are partitioned and formed by horizontal partition walls 11, and supplies the supplied hot air PW from the hot air generation circulation unit 20. The heat treatment spaces 13a to 13e of each stage can be branched and passed. In addition, the connection portion 31 of each stage of the heat treatment spaces 13a to 13e with the first supply / exhaust flow path 30 has a curved shape that protrudes longer toward the first supply / exhaust flow path 30 as the distance from the heat supply source 23 increases. The first heat loss adjusting plates A51a to A51e are arranged, and the connection portion 41 with the second air supply / exhaust flow path 40 in each stage of the heat treatment spaces 13a to 13e has a second distance as the distance from the heat supply source 23 increases. Curved second heat loss adjustment plates B51a to B51e that protrude long on the air supply / exhaust flow path 40 side are arranged, and the first heat loss adjustment plates A51a to A51e and the second heat loss adjustment plates B51a to B51e are heat treatment chambers. Are arranged symmetrically.

このような構成により、各熱損失調整板A51a〜A51e,B51a〜B51eは蓄熱材として機能し、熱供給源23からの流路長が長いほど熱損失調整板A51a〜A51e,B51a〜B51eが長く設定されており熱容量が大きくなる。従って、各段の熱処理空間13a〜13eには、熱風の熱損失量が大きいほど、大きい熱容量の熱損失調整板A51a〜A51e,B51a〜B51eに接触した熱風が導入されることになる。例えば、一番下の熱処理空間13aに導入される熱風は、熱供給源23からの流路長が長いことから、熱損失も大きい。この熱風が、熱容量が大きい熱損失調整板A51a,B51aに接触し、温度が補われた状態で熱処理空間13aに熱風が導入される。このように、各段ごとに長さを変え熱容量を変えた熱損失調整板A51a〜A51e,B51a〜B51eによって、各段の熱処理空間13a〜13eに導入される熱風の温度が均一化され、熱処理空間13a〜13eごとの温度分布が均一化される。また、第一熱損失調整板A51a〜A51eと第二熱損失調整板B51a〜B51eとは熱処理室10を介して対称に配置されているため、第一状態と第二状態を切り換えても、給気熱風PWの供給状態を第一給排気流路30側と第二給排気流路40側において同じにすることができる。   With such a configuration, each of the heat loss adjustment plates A51a to A51e and B51a to B51e functions as a heat storage material. It is set and heat capacity increases. Accordingly, the hot air in contact with the heat loss adjusting plates A51a to A51e and B51a to B51e having larger heat capacities is introduced into the heat treatment spaces 13a to 13e of the respective stages as the amount of heat loss of the hot air is larger. For example, the hot air introduced into the lowermost heat treatment space 13a has a large heat loss because the flow path length from the heat supply source 23 is long. The hot air comes into contact with the heat loss adjusting plates A51a and B51a having a large heat capacity, and the hot air is introduced into the heat treatment space 13a in a state where the temperature is compensated. As described above, the heat loss adjusting plates A51a to A51e and B51a to B51e having different lengths and different heat capacities for the respective stages make the temperature of the hot air introduced into the heat treatment spaces 13a to 13e of the respective stages uniform and perform the heat treatment. The temperature distribution for each of the spaces 13a to 13e is made uniform. In addition, since the first heat loss adjustment plates A51a to A51e and the second heat loss adjustment plates B51a to B51e are arranged symmetrically via the heat treatment chamber 10, even if the first state and the second state are switched, the supply is not performed. The supply state of the hot air PW can be made the same on the first supply / exhaust flow channel 30 side and the second supply / exhaust flow channel 40 side.

本実施形態に係る加熱炉1において、風向切換弁60は、一枚の切換板61を備え、切換板61は、熱風発生循環部20の給気流路21からの給気熱風PWを第一面61aに当てることによって第一給排気流路30及び第二給排気流路40のいずれか一方へ案内し、排気熱風EWを第二面61bに当てることによって熱風発生循環部20の排気流路22へ案内することができる。切換板61の第二面61bに排気熱風EWが当たることによって、第二面61bにおける温度低下が抑制される。従って、切換板61に当たったときの給気熱風PWの熱損失を抑制することができる。   In the heating furnace 1 according to the present embodiment, the air direction switching valve 60 includes a single switching plate 61, and the switching plate 61 receives the supply hot air PW from the supply air passage 21 of the hot air generation circulation unit 20 on the first surface. The exhaust air flow 22 of the hot air generating and circulating unit 20 is guided to either the first air supply / exhaust flow channel 30 or the second air supply / exhaust flow channel 40 by hitting 61a, and the hot exhaust air EW is applied to the second surface 61b. Can be guided to. By the exhaust hot air EW hitting the second surface 61b of the switching plate 61, the temperature drop in the second surface 61b is suppressed. Therefore, the heat loss of the supply hot air PW when it hits the switching plate 61 can be suppressed.

本実施形態に係る加熱炉1において、第一給排気流路30の長さと第二給排気流路40の長さは同一である。これによって、第一状態と第二状態を切り換えても、給気側と排気側のそれぞれの流路長を不変とすることができるため、給気熱風PWの供給状態を第一給排気流路30側と第二給排気流路40側において同じにすることができる。   In the heating furnace 1 according to the present embodiment, the length of the first air supply / exhaust flow path 30 and the length of the second air supply / exhaust flow path 40 are the same. Accordingly, even if the first state and the second state are switched, the flow path lengths on the air supply side and the exhaust side can be made unchanged, so the supply state of the supply air hot air PW is changed to the first air supply / exhaust flow path. It can be made the same on the 30 side and the second air supply / exhaust flow path 40 side.

本発明は、上述の実施形態に限定されるものではない。例えば、熱風発生循環部や給排気流路30,40の配管長や形状、配置は実施形態に示すものに限定されず、適宜変更してもよい。また、熱風発生循環部20と熱処理室10の位置関係も適宜変更してもよく、熱風発生循環部20を熱処理室10の横側に配置してもよく、下側に配置してもよい。また、上述の実施形態では、特に好ましい例として加熱炉1を左右対称な構成としたが、左右対称でなくともよい。例えば、第一給排気流路30と第二給排気流路40の長さや太さが異なっていてもよい。   The present invention is not limited to the embodiment described above. For example, the pipe length, shape, and arrangement of the hot air generating / circulating part and the supply / exhaust flow paths 30 and 40 are not limited to those shown in the embodiment, and may be changed as appropriate. In addition, the positional relationship between the hot air generation / circulation unit 20 and the heat treatment chamber 10 may be changed as appropriate, and the hot air generation / circulation unit 20 may be disposed on the side of the heat treatment chamber 10 or on the lower side. Moreover, in the above-mentioned embodiment, although the heating furnace 1 was made into the left-right symmetric structure as a particularly preferable example, it does not need to be left-right symmetric. For example, the length and thickness of the first air supply / exhaust flow path 30 and the second air supply / exhaust flow path 40 may be different.

1…加熱炉、10…熱処理室、20…熱風発生循環部、21…給気流路、22…排気流路、23…熱供給源(熱供給源、送風手段)、24…ブロワ(送風手段)、30…第一給排気流路、40…第二給排気流路、A51a〜A51e…第一熱損失調整板、B51a〜B51e…第二熱損失調整板、60…風向切換弁、61…切換板、61a…第一面(一方の面)、61b…第二面(他方の面)、W…被加熱物。   DESCRIPTION OF SYMBOLS 1 ... Heating furnace, 10 ... Heat processing chamber, 20 ... Hot air generation circulation part, 21 ... Supply air flow path, 22 ... Exhaust flow path, 23 ... Heat supply source (heat supply source, blowing means), 24 ... Blower (blowing means) 30 ... 1st air supply / exhaust flow path, 40 ... 2nd air supply / exhaust flow path, A51a-A51e ... 1st heat loss adjustment plate, B51a-B51e ... 2nd heat loss adjustment plate, 60 ... Airflow direction switching valve, 61 ... Switching Plate, 61a ... first surface (one surface), 61b ... second surface (the other surface), W ... object to be heated.

Claims (4)

被加熱物の熱処理を行う熱処理室と、
熱風を発生させると共に、前記熱処理室に対する給排気を行う熱風発生循環部と、
前記熱処理室から独立して設けられると共に、前記熱処理室の一方側に連結され、前記熱処理室と前記熱風発生循環部とを接続する第一給排気流路と、
前記熱処理室及び前記第一給排気流路から独立して設けられると共に、前記熱処理室の他方側に連結され、前記熱処理室と前記熱風発生循環部とを接続する第二給排気流路と、
前記第一給排気流路と前記第二給排気流路との間に配置されると共に、前記第一給排気流路と前記熱風発生循環部、及び前記第二給排気流路と前記熱風発生循環部とを接続する風向切換弁と、を備え、
前記熱風発生循環部は、
前記熱処理室へ給気される熱風を通過させる給気流路と、
前記熱処理室から排気される熱風を通過させる排気流路と、
前記給気流路と前記排気流路との間に配置される熱供給源と、
前記給気流路及び前記排気流路における何れかの位置に配置される送風手段と、を備え、
前記風向切換弁は、
前記熱風発生循環部の前記給気流路と前記排気流路との間に配置され、
前記第一給排気流路を給気側とすると共に前記第二給排気流路を排気側とする第一状態と、前記第一給排気流路を排気側とすると共に前記第二給排気流路を給気側とする第二状態とを切り換えることを特徴とする加熱炉。
A heat treatment chamber for heat-treating an object to be heated;
A hot air generating and circulating unit for generating hot air and supplying and exhausting the heat treatment chamber;
A first air supply / exhaust flow path that is provided independently from the heat treatment chamber and is connected to one side of the heat treatment chamber and connects the heat treatment chamber and the hot air generation circulation section;
A second air supply / exhaust flow path that is provided independently from the heat treatment chamber and the first air supply / exhaust flow path, is connected to the other side of the heat treatment chamber, and connects the heat treatment chamber and the hot air generation circulation section;
The first air supply / exhaust flow path and the hot air generation / circulation part, and the second air supply / exhaust flow path and the hot air generation are disposed between the first air supply / exhaust flow path and the second air supply / exhaust flow path. A wind direction switching valve for connecting the circulation part,
The hot air generating and circulating part is
An air supply passage for passing hot air supplied to the heat treatment chamber;
An exhaust passage for passing hot air exhausted from the heat treatment chamber;
A heat supply source disposed between the air supply channel and the exhaust channel;
Air blowing means disposed at any position in the air supply flow path and the exhaust flow path,
The wind direction switching valve is
Arranged between the air supply flow path and the exhaust flow path of the hot air generating and circulating section,
A first state in which the first air supply / exhaust flow path is the air supply side and the second air supply / exhaust flow path is the exhaust side, and the first air supply / exhaust flow path is the exhaust side and the second air supply / exhaust flow A heating furnace characterized by switching between a second state in which the passage is on the supply side.
前記熱処理室は、水平な仕切壁で仕切られ形成される複数段の熱処理空間を有し、前記熱風発生循環部からの熱風を各段の前記熱処理空間に分岐させて通過させ、
各段の前記熱処理空間における前記第一給排気流路との接続部には、前記熱供給源からの距離が大きいほど前記第一給排気流路側に長く突出する湾曲形状の第一熱損失調整板が配置され、
各段の前記熱処理空間における前記第二給排気流路との接続部には、前記熱供給源からの距離が大きいほど前記第二給排気流路側に長く突出する湾曲形状の第二熱損失調整板が配置され、
前記第一熱損失調整板と前記第二熱損失調整板とは、前記熱処理室を介して対称に配置されていることを特徴とする請求項1記載の加熱炉。
The heat treatment chamber has a plurality of stages of heat treatment spaces formed by being partitioned by a horizontal partition wall, and the hot air from the hot air generation circulation section is branched and passed through the heat treatment spaces of the respective stages,
A curved first heat loss adjustment that protrudes longer toward the first air supply / exhaust flow path as the distance from the heat supply source is larger at a connection portion with the first air supply / exhaust flow path in the heat treatment space of each stage The board is placed,
A second heat loss adjustment having a curved shape that protrudes longer toward the second air supply / exhaust flow path as the distance from the heat supply source is larger at a connection portion with the second air supply / exhaust flow path in the heat treatment space of each stage The board is placed,
2. The heating furnace according to claim 1, wherein the first heat loss adjusting plate and the second heat loss adjusting plate are arranged symmetrically via the heat treatment chamber.
前記風向切換弁は、一枚の切換板を備え、
前記切換板は、前記熱風発生循環部の前記給気流路からの熱風を一方の面に当てることによって前記第一給排気流路及び前記第二給排気流路のいずれか一方へ案内し、前記第一給排気流路及び前記第二給排気流路の他方から排気される熱風を他方の面に当てることによって前記熱風発生循環部の前記排気流路へ案内することを特徴とする請求項1または2記載の加熱炉。
The wind direction switching valve includes a single switching plate,
The switching plate guides one of the first air supply / exhaust flow path and the second air supply / exhaust flow path by applying hot air from the air supply flow path of the hot air generating and circulating part to one surface, The hot air exhausted from the other of the first air supply / exhaust flow channel and the second air supply / exhaust flow channel is applied to the other surface of the hot air generation / circulation unit so as to be guided to the exhaust flow channel. Or the heating furnace of 2.
前記第一給排気流路の長さと前記第二給排気流路の長さは同一であることを特徴とする請求項1〜3の何れか一項記載の加熱炉。
The length of said 1st air supply / exhaust flow path and the length of said 2nd air supply / exhaust flow path are the same, The heating furnace as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2010246248A 2010-11-02 2010-11-02 heating furnace Active JP5408106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246248A JP5408106B2 (en) 2010-11-02 2010-11-02 heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246248A JP5408106B2 (en) 2010-11-02 2010-11-02 heating furnace

Publications (2)

Publication Number Publication Date
JP2012097969A true JP2012097969A (en) 2012-05-24
JP5408106B2 JP5408106B2 (en) 2014-02-05

Family

ID=46390080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246248A Active JP5408106B2 (en) 2010-11-02 2010-11-02 heating furnace

Country Status (1)

Country Link
JP (1) JP5408106B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152407A (en) * 2018-03-06 2019-09-12 エスペック株式会社 Environment formation device, environment formation unit and thermal treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203888A (en) * 1988-02-05 1989-08-16 Murata Mfg Co Ltd Heat treating furnace
JPH051887A (en) * 1991-06-22 1993-01-08 Daido Steel Co Ltd Heat treatment device
JPH0518682A (en) * 1991-07-11 1993-01-26 Daido Steel Co Ltd Hot air circulating furnace
JPH09178354A (en) * 1995-12-28 1997-07-11 Nippon Furnace Kogyo Kaisha Ltd Air flow furnace
JP2001340958A (en) * 2000-05-30 2001-12-11 Oak Nippon Co Ltd Convection type soldering method and it's apparatus for metallic work-piece
JP2005049010A (en) * 2003-07-28 2005-02-24 Mitsubishi Electric Corp Hot air circulation incineration kiln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203888A (en) * 1988-02-05 1989-08-16 Murata Mfg Co Ltd Heat treating furnace
JPH051887A (en) * 1991-06-22 1993-01-08 Daido Steel Co Ltd Heat treatment device
JPH0518682A (en) * 1991-07-11 1993-01-26 Daido Steel Co Ltd Hot air circulating furnace
JPH09178354A (en) * 1995-12-28 1997-07-11 Nippon Furnace Kogyo Kaisha Ltd Air flow furnace
JP2001340958A (en) * 2000-05-30 2001-12-11 Oak Nippon Co Ltd Convection type soldering method and it's apparatus for metallic work-piece
JP2005049010A (en) * 2003-07-28 2005-02-24 Mitsubishi Electric Corp Hot air circulation incineration kiln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152407A (en) * 2018-03-06 2019-09-12 エスペック株式会社 Environment formation device, environment formation unit and thermal treatment device

Also Published As

Publication number Publication date
JP5408106B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP6306151B2 (en) Substrate processing apparatus, heat insulating structure, and method for manufacturing semiconductor device
JP6170847B2 (en) Thermal insulation structure, heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
TWI376723B (en) Verfahren und vorrichtung zum thermischen behandeln von substraten
US9625162B2 (en) Heating cooker
US10840118B2 (en) Substrate processing apparatus and method for assembling tube assembly
JP2006029775A (en) Grate panel, incineration grate and waste incineration plant
US20010051323A1 (en) Convection-type brazing method and its apparatus for metal workpieces
JP4736000B2 (en) Heat treatment furnace
JP5408106B2 (en) heating furnace
JP2001012870A (en) Batch type oven
TWI695152B (en) Ovens, discharge nozzle plates for distribution of gas through an oven, and methods to operate an oven
JP5136543B2 (en) heating furnace
JP2017032233A (en) Hot blast drying furnace
JP2014216092A (en) Electricity storage device
JP4493775B2 (en) Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
JP4781317B2 (en) Oven equipment
JP5407118B2 (en) Dehumidifier
JP2000297989A (en) Hot gas circulation type heating furnace and method for inspecting sodium-sulfer electric cell using the same
KR100630430B1 (en) An oven for bake or dry of wide LCD glass
JP5215430B2 (en) Oven equipment
JP7261573B2 (en) Heat treatment equipment
KR102011146B1 (en) Epitaxial wafer manufacturing apparatus
JP2021183873A (en) Heat treatment furnace
KR20000046685A (en) Structure of microwave oven
JP2024024563A (en) Constant temperature and humidity device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5408106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150