JP2012089539A - Light-emitting device, and method of manufacturing the same - Google Patents

Light-emitting device, and method of manufacturing the same Download PDF

Info

Publication number
JP2012089539A
JP2012089539A JP2010232161A JP2010232161A JP2012089539A JP 2012089539 A JP2012089539 A JP 2012089539A JP 2010232161 A JP2010232161 A JP 2010232161A JP 2010232161 A JP2010232161 A JP 2010232161A JP 2012089539 A JP2012089539 A JP 2012089539A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
emitting device
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010232161A
Other languages
Japanese (ja)
Other versions
JP5644352B2 (en
Inventor
Kazuhiro Kamata
和宏 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2010232161A priority Critical patent/JP5644352B2/en
Publication of JP2012089539A publication Critical patent/JP2012089539A/en
Application granted granted Critical
Publication of JP5644352B2 publication Critical patent/JP5644352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device having a prolonged life time by arranging a high reflectance member in the vicinity of a pole of a light-emitting element without using silver plating and without compromising electrical connection, and capable of efficiently exciting light from the light-emitting element and having a high light extraction efficiency.SOLUTION: A light-emitting device comprises: a substrate 11 consisting of a substrate insulating part 11a having a recess 11c on its surface and a substrate conductive part 11b a part of which is buried in the substrate insulating part 11a and exposed at least on a rear face of the recessed part 11c; a semiconductor light-emitting element 12; a reflective member 13 arranged in the recessed part 11c; a phosphor layer 14 arranged on the reflective member 13; and a sealing member 15 coating the semiconductor light-emitting element 12. The recess 11c has a protrusion 11d having an upper surface equivalent to or smaller than the semiconductor light-emitting element at the center thereof. The semiconductor light-emitting element 12 is mounted on the protrusion 11d. The reflective member 13 coats the inner surface of the recessed part 11c and a lateral face of the protrusion 11d.

Description

本発明は、発光装置及びその製造方法に関する。   The present invention relates to a light emitting device and a method for manufacturing the same.

一般に、発光装置は、半導体発光素子や保護素子等の電子部品と、これら電子部品が載置される基体と、電子部品を保護するために電子部品を被覆する透光性部材とからなる。発光装置の高光出力化及び高信頼性化のためには、用いる発光素子自体の特性を改善するだけでなく、基体の設計や材料、組み立て工程の改善が非常に有効である。
近年、高耐熱、高耐候、低コスト、形状の自由度などから、セラミックを基体とするLEDが一般的に出回っている。セラミック自体は銀などの金属膜に比べて反射率が低いため、発光素子を搭載する基体の凹部底面には銀を鍍金し、基体からの光の取り出しを向上させていることが多い。
In general, a light emitting device includes an electronic component such as a semiconductor light emitting element or a protective element, a base on which the electronic component is mounted, and a translucent member that covers the electronic component to protect the electronic component. In order to increase the light output and the reliability of the light emitting device, not only the characteristics of the light emitting element itself to be used but also the improvement of the design, material and assembly process of the substrate are very effective.
In recent years, LEDs based on ceramics are generally on the market due to high heat resistance, high weather resistance, low cost, freedom of shape, and the like. Since the ceramic itself has a lower reflectance than a metal film such as silver, silver is often plated on the bottom surface of the concave portion of the base on which the light emitting element is mounted to improve light extraction from the base.

しかし、銀は耐候性が低く、有機物で被覆した場合、銀の経時変化によりLEDの光出力の低下を招く原因となる。
そこで、無機膜又は金属膜等で銀をコーティングすることが提案されている(例えば、特許文献1等)が、前者は長期間に渡って銀の反射率を維持するには、未だ十分満足でない。また、後者では、耐候性は問題ないが、銀に比べ反射率の低下が避けられない。
However, silver has low weather resistance, and when coated with an organic substance, it causes a decrease in light output of the LED due to aging of silver.
Thus, it has been proposed to coat silver with an inorganic film or a metal film (for example, Patent Document 1), but the former is still not satisfactory enough to maintain the reflectance of silver over a long period of time. . In the latter case, there is no problem in weather resistance, but a decrease in reflectance is unavoidable compared to silver.

一方、基体の凹部側面は銀を鍍金していない場合が多く、セラミック面による光吸収が起こり、光取り出し効率の低下原因となる。
そこで、反射率の高い材料を含有した樹脂で基体の凹部側面を被覆することもある(例えば、特許文献2等)が、発光素子の極近傍まで樹脂で被覆することは困難である。
On the other hand, the side surface of the concave portion of the substrate is often not plated with silver, and light absorption by the ceramic surface occurs, causing a decrease in light extraction efficiency.
Thus, the side surface of the concave portion of the substrate may be coated with a resin containing a material having high reflectance (for example, Patent Document 2), but it is difficult to cover the resin with the resin up to the very vicinity.

また、発光素子を透光性部材で被覆する場合、蛍光体を透光性部材中に混合し、透光性部材のポッティングから硬化までの間に、蛍光体を透光性部材の下層へ沈降させる方法が提案されている(例えば、特許文献3等)。
しかし、蛍光体の濃度によっては、蛍光体の透光性部材下層への堆積が厚くなり、そのために発光素子の発光層が蛍光体に埋もれ、発光素子からの光取り出しが阻害される。特に、照明用途では、低い色温度を与えるべく、蛍光体濃度を高くすることが求められており、蛍光体濃度の高さと発光効率の向上というトレードオフの関係のバランスを図ることが必要である。
Further, when the light emitting element is covered with a translucent member, the phosphor is mixed in the translucent member, and the phosphor is settled to the lower layer of the translucent member between the potting and curing of the translucent member. There has been proposed a method (for example, Patent Document 3).
However, depending on the concentration of the phosphor, deposition of the phosphor on the lower layer of the translucent member becomes thick, so that the light-emitting layer of the light-emitting element is buried in the phosphor, and light extraction from the light-emitting element is hindered. In particular, in lighting applications, it is required to increase the phosphor concentration in order to provide a low color temperature, and it is necessary to balance the trade-off relationship between a high phosphor concentration and an improvement in luminous efficiency. .

特開2006−351964号公報JP 2006-351964 A 特開2004−40099号公報JP 2004-40099 A 特開2000−315824号公報JP 2000-315824 A

本発明は、上記課題に鑑みなされたものであり、耐候性の低い銀の鍍金に頼らず、電気的接続を損なうことなく発光素子の極近傍に高光反射率の部材を配することにより耐寿命性を高め、さらに、効率よく発光素子からの光を励起し、光取り出し効率の高い発光装置を提供することを目的とする。   The present invention has been made in view of the above problems, and does not rely on silver plating with low weather resistance, and by providing a high light reflectance member in the immediate vicinity of the light emitting element without impairing electrical connection, An object of the present invention is to provide a light-emitting device that enhances the performance, excites light from the light-emitting element efficiently, and has high light extraction efficiency.

本発明は、以下の発明を含む。
表面に凹部を有する基体絶縁部及び一部が前記基体絶縁部に埋め込まれ、かつ少なくとも凹部裏面で露出する基体導電部からなる基体と、
半導体発光素子と、 前記凹部内に配置された反射部材と、
該反射部材上に配置された蛍光体層と、
前記半導体発光素子を被覆する封止部材とを備えており、
前記凹部は、その中央に前記半導体発光素子と同等又はそれより小さい上面を有する凸部を有し、該凸部上に前記半導体発光素子が載置されており、
前記反射部材は、前記凹部内表面及び凸部側面を被覆することを特徴とする発光装置。
The present invention includes the following inventions.
A base body comprising a base body conductive portion that has a concave portion on the surface and a base conductive portion that is partially embedded in the base insulating portion and exposed at least on the back surface of the concave portion;
A semiconductor light emitting element; and a reflective member disposed in the recess;
A phosphor layer disposed on the reflecting member;
A sealing member that covers the semiconductor light emitting element,
The concave portion has a convex portion having an upper surface equal to or smaller than the semiconductor light emitting element at the center thereof, and the semiconductor light emitting element is placed on the convex portion,
The reflection member covers the inner surface of the concave portion and the side surface of the convex portion.

このような発明は、以下の1以上を備えることが好ましい。
(1)前記凸部が、凹部の深さと同等の高さを有する。
(2)前記反射部材が、前記凸部の外縁において、該凸部の上面と同等又はそれより底面側に位置する。
(3)前記反射部材が、前記凹部の外縁から凸部の外縁の間に底面側に凸の曲面を有する。
(4)前記蛍光体層が、前記反射部材の曲面上及び前記半導体発光素子上面に形成されている。
(5)前記蛍光体層は、蛍光体と透光性樹脂とを有してなり、前記蛍光体が前記透光性樹脂中で反射部材側に偏在してなる。
(6)封止部材は、前記基体の凹部上方にのみ配置されている。
Such an invention preferably includes one or more of the following.
(1) The convex portion has a height equivalent to the depth of the concave portion.
(2) The reflective member is located on the outer edge of the convex portion, or is located on the bottom surface side of the convex portion, or the same as the upper surface thereof.
(3) The reflection member has a convex curved surface on the bottom surface side between the outer edge of the concave portion and the outer edge of the convex portion.
(4) The phosphor layer is formed on the curved surface of the reflecting member and on the upper surface of the semiconductor light emitting element.
(5) The phosphor layer includes a phosphor and a translucent resin, and the phosphor is unevenly distributed on the reflecting member side in the translucent resin.
(6) The sealing member is disposed only above the concave portion of the base body.

また、本発明は、以下の発明を含む。
(a)表面に凹部を有する基体絶縁部及び一部が前記基体絶縁部に埋め込まれ、かつ少なくとも凹部裏面で露出する基体導電部からなり、前記凹部中央に凸部を有する基体の該凸部上面に、該凸部の上面の面積と同等又はそれより大きな平面積を有する半導体発光素子を載置し、
(b)該半導体発光素子を、前記基体導電部と電気的に接続し、
(c)前記基体の凸部を囲む凹部内に反射部材を充填して、該反射部材を前記凹部内表面及び凸部側面で被覆し、
(d)蛍光体を含有した蛍光体層材料をポッティング法により塗布して、前記蛍光体を前記反射部材上に配置することを特徴とする発光装置の製造方法。
The present invention includes the following inventions.
(A) A base insulating portion having a concave portion on the surface and a base conductive portion that is partially embedded in the base insulating portion and exposed at least on the back surface of the concave portion, and an upper surface of the convex portion of the base having a convex portion at the center of the concave portion A semiconductor light emitting element having a plane area equal to or larger than the area of the upper surface of the convex part,
(B) electrically connecting the semiconductor light emitting element to the base conductive portion;
(C) filling a reflective member into a concave portion surrounding the convex portion of the base, and covering the reflective member with the inner surface of the concave portion and the side surface of the convex portion;
(D) A method for manufacturing a light emitting device, wherein a phosphor layer material containing a phosphor is applied by a potting method, and the phosphor is disposed on the reflecting member.

このような発明は、以下の1以上を備えることが好ましい。
(1)前記反射部材を、前記凸部の外縁において、該凸部の上面と同等又はそれより底面側に配置する。
(2)前記反射部材を、前記反射部材の上面を前記凹部の外縁から凸部の外縁の間に底面側に凸の曲面に成形する。
(3)前記蛍光体層は、蛍光体と透光性樹脂とを有してなり、前記蛍光体を前記透光性樹脂中で反射部材側に偏在させる。
Such an invention preferably includes one or more of the following.
(1) The reflecting member is disposed on the outer edge of the convex portion, or on the bottom surface side of the convex portion.
(2) The reflecting member is formed into a curved surface convex on the bottom surface side between the outer edge of the concave portion and the outer edge of the convex portion on the upper surface of the reflecting member.
(3) The phosphor layer includes a phosphor and a translucent resin, and the phosphor is unevenly distributed on the reflecting member side in the translucent resin.

本発明の発光装置によれば、耐候性の低い銀の鍍金に頼らず、耐寿命性を高めることができる。また、効率的に発光素子からの光を励起することにより、光取り出し効率のさらなる向上を実現することができる。
また、本発明の発光装置の製造方法によれば、光取り出し効率の高い発光装置を簡便にかつ確実に製造することができる。
According to the light emitting device of the present invention, the life resistance can be improved without relying on silver plating with low weather resistance. Further, by further exciting light from the light emitting element, further improvement in light extraction efficiency can be realized.
Furthermore, according to the method for manufacturing a light emitting device of the present invention, a light emitting device with high light extraction efficiency can be manufactured easily and reliably.

本発明の発光装置の実施形態1を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。BRIEF DESCRIPTION OF THE DRAWINGS (A) Top view which shows Embodiment 1 of the light-emitting device of this invention, (B) A-A 'sectional view, (C) It is a side view. 本発明の発光装置の実施形態2を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 6A is a plan view, FIG. 5B is a cross-sectional view taken along line A-A ′, and FIG. 本発明の発光装置の実施形態3を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 6A is a plan view, FIG. 5B is a cross-sectional view taken along line A-A ′, and FIG. 本発明の発光装置の実施形態4を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 6A is a plan view, FIG. 5B is a cross-sectional view taken along line A-A ′, and FIG. 本発明の発光装置の実施形態5を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 7A is a plan view, FIG. 5B is a cross-sectional view taken along line A-A ′, and FIG. 本発明の発光装置の実施形態6を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 7A is a plan view, FIG. 7B is a cross-sectional view taken along the line A-A ′, and FIG. 本発明の発光装置の実施形態7を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。(A) Top view, (B) A-A 'line sectional view, (C) Side view showing a light emitting device according to a seventh embodiment of the present invention. 本発明の発光装置の実施形態8を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。FIG. 9A is a plan view, FIG. 9B is a cross-sectional view taken along line A-A ′, and FIG. 本発明の発光装置の実施形態9を示す(A)平面図、(B)A−A’線断面図、(C)側面図である。It is (A) top view, (B) A-A 'sectional view, and (C) side view which show Embodiment 9 of the light-emitting device of this invention. 本発明の発光装置を構成する基体を示す(A)平面図、(B)A−A’線断面図、(C)裏面図及び(D)側面図である。1A is a plan view, FIG. 1B is a sectional view taken along line A-A ′, FIG. 2C is a rear view, and FIG. 本発明の発光装置を構成する基体を示す(A)平面図及び(B)A−A’線断面図である。FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line A-A ′ showing a substrate that constitutes the light emitting device of the present invention.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明が、これらに限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the modes described below exemplify a light emitting device for embodying the technical idea of the present invention, and the present invention is not limited to these.

本発明の発光装置は、例えば、図1(A)〜図1(C)等に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15とを備えてなる。   The light emitting device of the present invention includes, for example, a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, and a sealing member as shown in FIGS. 1 (A) to 1 (C). 15.

(基体11、71)
基体11、71は、例えば、図10(A)、(B)及び図11(A)、(B)に示すように、基体絶縁部11a、71a及び基体導電部11b、71bとからなる。
基体絶縁部11a、71aは、その表面に凹部11c、71cを有しており、その凹部11c、71cの中央に凸部11d、71dが配置されている。言い換えると、凸部11c、71cの周囲に凹部11c、71cを有している。そして、この凸部11d、71d上に、半導体発光素子12が搭載される。
(Substrate 11, 71)
For example, as shown in FIGS. 10A and 10B and FIGS. 11A and 11B, the bases 11 and 71 include base insulating parts 11a and 71a and base conductive parts 11b and 71b.
The base insulating portions 11a and 71a have concave portions 11c and 71c on their surfaces, and the convex portions 11d and 71d are arranged at the centers of the concave portions 11c and 71c. In other words, the concave portions 11c and 71c are provided around the convex portions 11c and 71c. The semiconductor light emitting element 12 is mounted on the convex portions 11d and 71d.

凸部11d、71dの形状は特に限定されるものではなく、例えば、凸部上面の平面形状は、通常、半導体発光素子の形状及びそれに近似する形状であることが好ましい。例えば、略四角形が一般的であるが、多角形、略円形、これらの形状に切り欠きを有する形状等、種々のものとすることができる。
凸部の縦断面形状は、四角形、上に向かって幅狭又は幅広の台形状等であってもよいし、その側面に相当する部位が曲面を有していてもよい。凸部の上面の大きさは、半導体発光素子と同等か、それより小さいことが好ましい。ここで、半導体素子と同等とは、半導体発光素子によって、その全てが被覆される大きさであることを意味するが、後述する蛍光体層に含まれる蛍光体の粒径によっては、この蛍光体が、凸部の上面に配置されない程度に凸部の上面が半導体素子よりも若干大きいことは許容される。また、蛍光体の粒径によっては、たとえ凸部の上面に蛍光体が載置されても、後述するように、半導体素子の発光層が蛍光体に埋もれなければ、このような粒径の蛍光体が配置される程度に大きいものも許容される。例えば、半導体発光素子と同等とは、半導体素子の外形よりも50μm大きい程度が挙げられる。これにより、半導体発光素子の発光層が蛍光体に埋もれることがなくなり、基体絶縁部による光の吸収を回避することができる。特に、凸部上面を半導体発光素子より小さな大きさとすることにより、より半導体発光素子の近傍まで、後述する反射部材を配置することができるため、さらなる光取り出し効率及び光品質の向上を図ることができる。
また、凸部の上面は、平坦面であり、凹部の底面に対して略平行であることが好ましい。
凸部の高さは、特に限定されるものではないが、半導体発光素子からの光の指向性を考慮すると、凹部の深さと同等であることが好ましい。ここで同等とは、凹部の深さ±200μm程度を許容することを意味する。
The shape of the convex portions 11d and 71d is not particularly limited. For example, the planar shape of the upper surface of the convex portion is usually preferably the shape of the semiconductor light emitting element and the shape approximate thereto. For example, a generally quadrangle is generally used, but various shapes such as a polygon, a substantially circle, and a shape having a notch in these shapes can be used.
The vertical cross-sectional shape of the convex portion may be a quadrangle, a narrow or wide trapezoidal shape upward, or the like, and the portion corresponding to the side surface may have a curved surface. The size of the upper surface of the convex portion is preferably equal to or smaller than that of the semiconductor light emitting device. Here, “same as a semiconductor element” means that the semiconductor light emitting element is entirely covered with the phosphor, but depending on the particle size of the phosphor contained in the phosphor layer described later, this phosphor However, the upper surface of the convex portion is allowed to be slightly larger than the semiconductor element to the extent that it is not disposed on the upper surface of the convex portion. Further, depending on the particle size of the phosphor, even if the phosphor is placed on the upper surface of the convex portion, as described later, if the phosphor layer of the semiconductor element is not buried in the phosphor, the phosphor having such a particle size is used. Large enough to allow the body to be placed. For example, “equivalent to a semiconductor light emitting device” includes a size that is 50 μm larger than the outer shape of the semiconductor device. As a result, the light emitting layer of the semiconductor light emitting element is not buried in the phosphor, and light absorption by the base insulating portion can be avoided. In particular, by making the upper surface of the convex portion smaller than the semiconductor light emitting element, a reflecting member to be described later can be disposed even closer to the semiconductor light emitting element, thereby further improving the light extraction efficiency and light quality. it can.
Moreover, it is preferable that the upper surface of a convex part is a flat surface and is substantially parallel with the bottom face of a recessed part.
The height of the convex portion is not particularly limited, but is preferably equal to the depth of the concave portion in consideration of the directivity of light from the semiconductor light emitting element. Here, “equivalent” means that a depth of the recess of about ± 200 μm is allowed.

基体絶縁部11a、71aの材料は、特に限定されるものではなく、ガラスエポキシ樹脂、セラミックス、ガラス、樹脂等を挙げることができる。特に、セラミックスとしては、アルミナ、窒化アルミニウム、ムライト、炭化ケイ素あるいは窒化ケイ素などが好ましい。樹脂としては、熱可塑性樹脂として、PPA(ポリフタルアミド)、PPS(ポリフェニレンサルファイド)、液晶ポリマー、ナイロン等、熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、変性エポキシ樹脂、変性シリコーン樹脂、ウレタン樹脂、アクリレート樹脂などが挙げられる。この場合、後述する基体絶縁部11a、71aは、正負一対の基体導電部11b、71bとなる金属部材を用いて樹脂にてインサート成形されたものなどが例示される。
基体11、71は、上述した凹部を無視すると、略板状、直方体又は立方体の部材であることが好ましい。
The material of the base insulating portions 11a and 71a is not particularly limited, and examples thereof include glass epoxy resin, ceramics, glass, and resin. In particular, as the ceramic, alumina, aluminum nitride, mullite, silicon carbide, silicon nitride, or the like is preferable. Examples of the resin include thermoplastic resins such as PPA (polyphthalamide), PPS (polyphenylene sulfide), liquid crystal polymer, and nylon. Thermosetting resins include epoxy resins, silicone resins, modified epoxy resins, modified silicone resins, and urethanes. Examples thereof include resins and acrylate resins. In this case, examples of the base insulating portions 11a and 71a described later include those formed by resin insert molding using a metal member that becomes a pair of positive and negative base conductive portions 11b and 71b.
The bases 11 and 71 are preferably substantially plate-shaped, rectangular parallelepiped, or cubic members when the above-described recesses are ignored.

基体導電部11b、71bは、その一部が基体絶縁部11aに埋め込まれており、かつ少なくとも凹部11cの底面、好ましくはこの底面及び発光装置の裏面で露出し、後述する半導体発光素子を載置することができるものである。通常、半導体発光素子、任意に保護素子等への通電のために、これら素子の電極に接続されて端子として機能する。
図10(A)及び図11(A)に示すように、基体凹部内の凸部の表面にも基体導電部11ba、71ba、71bcが配置されていてもよい。この場合の基体導電部11baは、凸部11d表面において独立し、基体導電部と電気的に接続されていなくてもよいし、凸部71d及び基体絶縁部71a内部又は側面で他の基体導電部71bdと連結されて、凹部71cの底面及び発光装置の裏面側に露出する基体導電部71bを有していてもよい。
なお、凸部11d、71dは、基体絶縁部11a、71aと同じ部材により、一体として形成されていてもよく、凸部11d、71dが別体として形成されて、基体絶縁部11a、71a上に搭載されていてもよい。
例えば、凸部11d、71dを、微細な発光素子載置パターン(例えば、発光素子をフリップチップ実装するための)を形成し得る部材として又はツェナーダイオード等の諸機能をもったサブマウント部材として用いてもよい。
The base conductive portions 11b and 71b are partly embedded in the base insulating portion 11a, and are exposed at least on the bottom surface of the recess 11c, preferably on the bottom surface and the back surface of the light emitting device. Is something that can be done. Usually, in order to energize a semiconductor light emitting element, optionally a protective element, etc., it is connected to the electrodes of these elements and functions as a terminal.
As shown in FIGS. 10A and 11A, the base body conductive portions 11ba, 71ba, and 71bc may be arranged on the surface of the convex portion in the base portion recess. In this case, the base conductive portion 11ba is independent on the surface of the convex portion 11d and may not be electrically connected to the base conductive portion, or another base conductive portion inside or on the side of the convex portion 71d and the base insulating portion 71a. It may be connected to 71bd and may have a base conductive portion 71b exposed on the bottom surface of the recess 71c and the back surface side of the light emitting device.
The convex portions 11d and 71d may be integrally formed by the same member as the base insulating portions 11a and 71a, and the convex portions 11d and 71d are formed as separate bodies on the base insulating portions 11a and 71a. It may be installed.
For example, the protrusions 11d and 71d are used as a member that can form a fine light-emitting element placement pattern (for example, for flip-chip mounting of the light-emitting element) or as a submount member having various functions such as a Zener diode. May be.

基体導電部は、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、コバルト、モリブデン等の金属又は合金等を含んだ材料で形成することができ、単層及び積層構造のいずれでもよい。基体導電部は、その全体において必ずしも同じ材料によって形成されていなくてもよく、部分的に異なる材料等であってもよい。基体導電部は、基体絶縁部から露出する部位であるか否かにかかわらず、その表面に、従来のような光反射性を考慮した銀等による鍍金を施すことは必要ない。これは、後述する反射部材が凹部内に配置されるためである。このように、耐候性の弱い金属膜による鍍金等に頼らないため、耐寿命性の高い発光装置を形成することができる。
基体導電部11b、71bの凹部内における平面形状、裏面における露出形状は、特に限定されず、発光装置の形状、発光素子配列、配置可能なスペース等を考慮して適宜決定することができる。
The base conductive portion can be formed of a material containing a metal or an alloy such as copper, aluminum, gold, silver, tungsten, iron, nickel, cobalt, and molybdenum, and may be either a single layer or a laminated structure. The base conductive portion may not necessarily be formed of the same material as a whole, and may be a partially different material or the like. Regardless of whether or not the base conductive portion is exposed from the base insulating portion, it is not necessary to apply plating with silver or the like in consideration of light reflectivity as in the conventional case. This is because a reflection member described later is disposed in the recess. Thus, since it does not rely on plating or the like with a metal film having low weather resistance, a light-emitting device with high life resistance can be formed.
The planar shape in the recesses of the base body conductive portions 11b and 71b and the exposed shape on the back surface are not particularly limited, and can be appropriately determined in consideration of the shape of the light emitting device, the arrangement of the light emitting elements, the space where the light can be arranged, and the like.

(半導体発光素子12)
半導体発光素子12は、基体11の凹部11c内の凸部11d上に載置される。
半導体発光素子は、いわゆる発光ダイオードと呼ばれる素子であればどのようなものでもよい(以下「発光素子」と記載することがある)。例えば、基板上に、InN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体、III−V族化合物半導体、II−VI族化合物半導体等、種々の半導体によって、発光層を含む積層構造が形成されたものが挙げられる。
(Semiconductor light emitting element 12)
The semiconductor light emitting element 12 is placed on the convex portion 11 d in the concave portion 11 c of the base 11.
The semiconductor light emitting element may be any element as long as it is a so-called light emitting diode (hereinafter sometimes referred to as “light emitting element”). For example, a laminated structure including a light emitting layer is formed on a substrate by various semiconductors such as nitride semiconductors such as InN, AlN, GaN, InGaN, AlGaN, InGaAlN, III-V group compound semiconductors, II-VI group compound semiconductors. What was formed is mentioned.

基板としては、C面、A面、R面のいずれかを主面とするサファイア、スピネル(MgA124)等の絶縁性基板、炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、GaAs、ダイヤモンド等;ニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板;窒化物半導体基板(GaN、AlN等)等が挙げられる。また、基板を剥離して半導体層のみを半導体発光素子12として用いることもできる。
半導体の構造としては、MIS接合、PIN接合、PN接合などのホモ構造、ヘテロ結合あるいはダブルヘテロ結合のものが挙げられる。
発光素子を構成する各半導体層には、Si、Ge等のドナー不純物及び/又はZn、Mg等のアクセプター不純物がドープされていてもよい。
発光層は、量子効果が生ずる薄膜に形成した単一量子井戸構造、多重量子井戸構造としてもよい。
As a substrate, an insulating substrate such as sapphire or spinel (MgA1 2 O 4 ) having any one of C-plane, A-plane, and R-plane as a main surface, silicon carbide (6H, 4H, 3C), silicon, ZnS, ZnO , GaAs, diamond, etc .; oxide substrates such as lithium niobate and neodymium gallate; nitride semiconductor substrates (GaN, AlN, etc.) and the like. Alternatively, the substrate can be peeled off and only the semiconductor layer can be used as the semiconductor light emitting element 12.
Examples of the semiconductor structure include a homostructure such as a MIS junction, a PIN junction, and a PN junction, a hetero bond, and a double hetero bond.
Each semiconductor layer constituting the light emitting element may be doped with a donor impurity such as Si and Ge and / or an acceptor impurity such as Zn and Mg.
The light emitting layer may have a single quantum well structure or a multiple quantum well structure formed in a thin film in which a quantum effect occurs.

発光素子の発光波長は、半導体の材料、混晶比、発光層のInGaNのIn含有量、発光層にドープする不純物の種類を変化させるなどによって、可視光領域の光だけでなく、紫外線から赤外線まで変化させることができる。   The emission wavelength of the light-emitting element varies from not only visible light but also ultraviolet to infrared by changing the semiconductor material, mixed crystal ratio, InGaN In content in the light-emitting layer, and the type of impurities doped in the light-emitting layer. Can vary up to.

発光素子は、上述したように、基体11の凹部11c内の凸部11d上に載置されている。発光素子を凸部11d上に載置するためには、通常、接合部材が用いられる。例えば、絶縁性の基板を接合面とする等、導電性の接合部材を用いる必要のない場合には、エポキシ樹脂、シリコーン樹脂等を用いることができる。また、発光素子からの光及び熱による劣化を考慮して、発光素子裏面にAl、Ag等の金属メッキをしてもよいし、導電性の接合部材を用いる必要のない場合であっても樹脂を使用せず、Au−Sn共晶などの半田、低融点金属等のろう材を用いてもよい。   As described above, the light emitting element is placed on the convex portion 11 d in the concave portion 11 c of the base 11. In order to place the light emitting element on the convex portion 11d, a joining member is usually used. For example, when it is not necessary to use a conductive bonding member such as an insulating substrate as a bonding surface, an epoxy resin, a silicone resin, or the like can be used. In consideration of deterioration due to light and heat from the light emitting element, the back surface of the light emitting element may be plated with metal such as Al or Ag, or even if it is not necessary to use a conductive bonding member. May be used, and solder such as Au—Sn eutectic and brazing material such as low melting point metal may be used.

発光素子は、異なる面(基板に対する両面側)に一対の電極が形成されている場合や、同じ面(基板に対する同一面側)に一対の電極が形成されている場合等、接合面において電気的な接続を取る必要のある場合には、銀、金、パラジウムなどの導電性ペースト等によって、凸部11d上に配置された基体導電部11bに発光素子の電極を接続してもよい。
発光素子を載置した際に、発光素子の上面側から電気的接続を取る場合には、発光素子の電極と、基体導電部11bとを導電性ワイヤによってワイヤボンディングする。
The light-emitting element is electrically connected to the bonding surface when a pair of electrodes are formed on different surfaces (both sides with respect to the substrate) or when a pair of electrodes are formed on the same surface (the same surface with respect to the substrate). When it is necessary to make a simple connection, the electrode of the light emitting element may be connected to the base conductive portion 11b disposed on the convex portion 11d by a conductive paste such as silver, gold, or palladium.
When an electrical connection is established from the upper surface side of the light emitting element when the light emitting element is mounted, the electrode of the light emitting element and the base conductive portion 11b are wire-bonded with a conductive wire.

導電性ワイヤとしては、発光素子の電極とのオーミック性が良好であるか、機械的接続性が良好であるか、電気伝導性及び熱伝導性が良好なものであることが好ましい。作業性などを考慮すると、導電性ワイヤの直径は、10μm〜45μm程度であることが好ましい。このような導電性ワイヤとしては、例えば、金、銅、白金、アルミニウム等の金属及びそれらの合金が挙げられる。   As the conductive wire, it is preferable that the ohmic property with the electrode of the light-emitting element is good, the mechanical connectivity is good, or the electrical conductivity and thermal conductivity are good. Considering workability and the like, the diameter of the conductive wire is preferably about 10 μm to 45 μm. Examples of such conductive wires include metals such as gold, copper, platinum, and aluminum, and alloys thereof.

(反射部材13)
反射部材13は、基体11の凹部11c内に配置されている。
反射部材13を構成する材料は、特に限定されるものではなく、発光素子から出射される波長の光を50%以上、60%以上、好ましくは70%以上、80%以上、より好ましくは90%以上反射させることができる材料である。また、発光素子からの光などが透過、吸収しにくい部材が好ましい。
反射部材13は、基体11の凹部11c底面に露出する基体導電部11bと接触することがあるため、絶縁性の材料であることが好ましい。また、基体11及び基体導電部11b等と、線膨張係数の差が小さいものが好ましい。
(Reflection member 13)
The reflection member 13 is disposed in the recess 11 c of the base body 11.
The material constituting the reflecting member 13 is not particularly limited, and light having a wavelength emitted from the light emitting element is 50% or more, 60% or more, preferably 70% or more, 80% or more, more preferably 90%. This is a material that can be reflected. In addition, a member that hardly transmits or absorbs light from the light emitting element is preferable.
Since the reflecting member 13 may come into contact with the base conductive portion 11b exposed on the bottom surface of the concave portion 11c of the base 11, it is preferably an insulating material. Moreover, the thing with a small difference of a linear expansion coefficient with the base | substrate 11, the base | substrate conductive part 11b, etc. is preferable.

反射部材としては、例えば、光を反射し得る部材などの粉末を分散させた樹脂を用いることができる。樹脂としては、熱硬化性樹脂、熱可塑性樹脂等、具体的には、フェノール樹脂、エポキシ樹脂、BTレジン、PPA、シリコーン樹脂などが挙げられる。これら母体となる樹脂に、発光素子からの光を吸収しにくくかつ母体となる樹脂に対して屈折率差の大きい光を反射し得る部材(例えば、TiO、Al、ZrO、MgO)などの粉末を分散することで、効率よく光を反射させることができる。
これらの材料は単独で又は2種以上を組み合わせて用いてもよい。これにより、光の透過率を調整することができ、また、樹脂の線膨張係数を調整することが可能となる。
As the reflecting member, for example, a resin in which powder such as a member that can reflect light is dispersed can be used. Examples of the resin include a thermosetting resin, a thermoplastic resin, and the like, specifically, phenol resin, epoxy resin, BT resin, PPA, silicone resin, and the like. A member (for example, TiO 2 , Al 2 O 3 , ZrO 2 , MgO) which hardly absorbs light from the light emitting element and can reflect light having a large refractive index difference with respect to the base resin. ) And the like can be dispersed to efficiently reflect light.
These materials may be used alone or in combination of two or more. Thereby, the light transmittance can be adjusted, and the linear expansion coefficient of the resin can be adjusted.

反射部材13は、基体11の凹部11c内表面及び凸部11dの側面を被覆するように配置されている。また、反射部材13は、凸部11dの外縁において、凸部11dの上面より底面側に位置していてもよいが、凸部11dの上面と同等の高さに配置されていることが好ましい。これによって、発光素子から出射された光が、基体絶縁部11aに吸収されることを最小限に止めることができる。なお、反射部材13は、凹部11cの外縁から凸部11dの外縁の間において、その上面が平坦に配置されていてもよいが、底面側に凸の曲面を有するように配置されていることが好ましい。つまり、反射部材13の上面が凹んでいることが好ましい。このような形状によって、後述する蛍光体層を、凹んだ部位を中心に偏在しやすくなり、発光素子から横方向又は下方に出射された光を、より効率的に蛍光体層に照射させることができる。また、蛍光体を載置する表面積を増大させることができる。   The reflecting member 13 is disposed so as to cover the inner surface of the concave portion 11c of the base 11 and the side surface of the convex portion 11d. Moreover, although the reflection member 13 may be located in the bottom face side from the upper surface of the convex part 11d in the outer edge of the convex part 11d, it is preferable to arrange | position at the height equivalent to the upper surface of the convex part 11d. Thereby, it is possible to minimize the light emitted from the light emitting element from being absorbed by the base insulating portion 11a. The reflection member 13 may have a flat upper surface between the outer edge of the concave portion 11c and the outer edge of the convex portion 11d, but may have a convex curved surface on the bottom surface side. preferable. That is, it is preferable that the upper surface of the reflecting member 13 is recessed. With such a shape, the phosphor layer, which will be described later, is likely to be unevenly distributed around the recessed portion, and the phosphor layer can be more efficiently irradiated with light emitted laterally or downward from the light emitting element. it can. Further, the surface area on which the phosphor is placed can be increased.

反射性部材は、例えば、樹脂吐出装置から液体樹脂を吐出するなどの当該分野で公知の方法を利用して、凹部11c内に配置することができる。
光反射性部材の厚さは、最小の部位(つまり、底面側に凸の部位)において、基体絶縁部11aを極薄膜で被覆する程度以上であればよく、最小の部位で、30μm程度以上の厚みを有していることが好ましい。これにより、基体絶縁部11aによる光の吸収を抑制し、効率よく光を取り出すことができる。凹部11cの深さにもよるが、より好ましくは50〜100μm程度であれば、更に効率良く光を反射させることができる。
The reflective member can be disposed in the recess 11c using a method known in the art such as, for example, discharging a liquid resin from a resin discharge device.
The thickness of the light-reflecting member may be at least enough to cover the base insulating portion 11a with an ultrathin film at the minimum part (that is, the part convex to the bottom surface side), and at least about 30 μm at the minimum part. It preferably has a thickness. Thereby, light absorption by the base insulating part 11a can be suppressed, and light can be extracted efficiently. Although it depends on the depth of the recess 11c, the light can be reflected more efficiently if it is more preferably about 50 to 100 μm.

(蛍光体層14)
反射部材13上には、蛍光体層14が配置されている。
蛍光体は、半導体発光素子からの光を、それより短波長に変換させるものでもよいが、光取り出し効率の観点から長波長に変換させるものが好ましい。
(Phosphor layer 14)
A phosphor layer 14 is disposed on the reflecting member 13.
The phosphor may be one that converts light from the semiconductor light-emitting element to a shorter wavelength, but one that converts light to a longer wavelength from the viewpoint of light extraction efficiency is preferable.

蛍光体としては、例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体・酸窒化物系蛍光体、より具体的には、Eu賦活されたα又はβサイアロン型蛍光体、各種アルカリ土類金属窒化シリケート蛍光体、Eu等のランタノイド系の元素、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類金属ハロゲンアパタイト蛍光体、アルカリ土類のハロシリケート蛍光体、アルカリ土類金属シリケート蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類金属ケイ酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩、Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩、希土類ケイ酸塩又はEu等のランタノイド系元素で主に賦活される有機物及び有機錯体等が挙げられる。また、上記蛍光体以外の蛍光体であって、同様の性能、効果を有する蛍光体も使用することができる。
蛍光体の形状は、例えば、球形又はこれに近似する形状が好ましく、1〜100μm程度、5〜50μm程度、さらに10〜20μm程度の粒径を有することがより好ましい。
Examples of the phosphor include nitride-based phosphors / oxynitride-based phosphors mainly activated by lanthanoid elements such as Eu and Ce, and more specifically, Eu-activated α or β sialon type fluorescence. Bodies, various alkaline earth metal nitride silicate phosphors, lanthanoid elements such as Eu, alkaline earth metal halogenapatite phosphors mainly activated by transition metal elements such as Mn, alkaline earth halosilicate fluorescence Body, alkaline earth metal silicate phosphor, alkaline earth metal halogen borate phosphor, alkaline earth metal aluminate phosphor, alkaline earth metal silicate, alkaline earth metal sulfide, alkaline earth metal thiogallate Rare earth aluminates, rare earth silicates mainly activated by lanthanoid elements such as alkaline earth metal silicon nitride, germanate, Ce Examples thereof include organic substances and organic complexes mainly activated by lanthanoid elements such as Eu. Moreover, it is fluorescent substance other than the said fluorescent substance, Comprising: The fluorescent substance which has the same performance and effect can also be used.
The shape of the phosphor is preferably, for example, a spherical shape or a shape similar to this, and more preferably has a particle size of about 1 to 100 μm, about 5 to 50 μm, and further about 10 to 20 μm.

蛍光体は、1種の蛍光体を含有する単層、2種以上の蛍光体が混合された単層、2種以上の蛍光体が別々の層に含有された2層以上の積層、2種以上の蛍光物質等がそれぞれ混合された単層の2層以上の積層のいずれであってもよい。つまり、蛍光体層は、蛍光体、材料又は後述する添加剤の種類又は量等が異なる積層構造として形成してもよい。   Phosphor is a single layer containing one kind of phosphor, a single layer in which two or more kinds of phosphors are mixed, two or more layers in which two or more kinds of phosphors are contained in separate layers, two kinds Any one of two or more single layers in which the above-described fluorescent substances are mixed may be used. In other words, the phosphor layer may be formed as a laminated structure in which the phosphor, the material, or the type or amount of additives described later are different.

蛍光体層は、蛍光体と透光性樹脂とから構成されることが好ましい。
ここでの透光性樹脂とは、発光素子からの光に対して透光性で、かつ、耐光性及び絶縁性を有するものが好ましい。具体的には、シリコーン樹脂組成物、変性シリコーン樹脂組成物、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、フッ素樹脂及びこれらの樹脂を少なくとも1種以上含むハイブリッド樹脂等の有機物が挙げられる。
ここで、透光性とは、発光素子から出射された光を70%程度以上、80%程度以上、90%程度以上、95%程度以上透過させる性質を意味する。
The phosphor layer is preferably composed of a phosphor and a translucent resin.
Here, the light-transmitting resin is preferably a light-transmitting resin with respect to light from the light-emitting element and having light resistance and insulating properties. Specifically, silicone resin composition, modified silicone resin composition, epoxy resin composition, modified epoxy resin composition, acrylic resin composition, etc., silicone resin, epoxy resin, urea resin, fluororesin, and at least these resins An organic substance such as a hybrid resin containing one or more kinds can be given.
Here, the translucency means a property of transmitting light emitted from the light emitting element to about 70% or more, about 80% or more, about 90% or more, or about 95% or more.

蛍光体層は、反射部材の曲面上及び発光素子上面の双方に形成されていることが好ましい。
例えば、青色の光を発光する発光素子と、発光素子からの光を黄色光に変換し、青色光と黄色光を混色させて白色光を取り出す発光装置の場合、発光素子上面から出射される青色の光を波長変換するための蛍光体層が、発光素子上面に有用である。また、反射材の曲面上に形成される蛍光体層は、発光素子側面から出射された青色の光を波長変換するのに有用である。
発光素子からの光は、前者が蛍光体層を透過して蛍光体を励起する(以下、「透過型励起光」ともいう)のに対し、後者は蛍光体層の表面で蛍光体励起を起こす(以下、「表面励起光」ともいう)ことができる。
前者のように、蛍光体層を透過する励起方法では、蛍光体自身に光吸収があるため、励起のロスが生じる。一方、後者のように蛍光体層の表面で励起する場合は、蛍光体自身の光吸収を抑えることができる。つまり、蛍光体層表面で励起する割合が高いほど、発光効率の高い発光装置とすることができる。
本実施形態に係る発光装置では、凸部の上面を半導体発光素子と同等又はそれより小さく設定しているため、発光素子の側面に露出された発光層を、蛍光体層から確実に露出させることができる。さらに、発光素子の下部に蛍光体を多く配置しているため、これにより、発光素子からの光を透過型励起光ではなく、表面励起光として取り出すことができ、発光効率を高くすることができる。
蛍光体層が、蛍光体と透光性樹脂とから構成される場合には、例えば、蛍光体層は、当該分野で公知の方法により形成することができる。なかでも、蛍光体層は、反射部材上に、ポッティングを利用して、蛍光体を沈降させる手法によって形成されることが好ましい。これにより、蛍光体が透光性樹脂中で反射部材側に偏在して配置され、上述したように、発光素子から横方向又は下方に出射された光を、より効率的に蛍光体層に照射させることができる。
The phosphor layer is preferably formed on both the curved surface of the reflecting member and the upper surface of the light emitting element.
For example, in the case of a light-emitting element that emits blue light and a light-emitting device that converts white light from the light-emitting element into yellow light and extracts blue light by mixing blue light and yellow light, blue light emitted from the top surface of the light-emitting element A phosphor layer for converting the wavelength of the light is useful on the upper surface of the light emitting element. In addition, the phosphor layer formed on the curved surface of the reflector is useful for wavelength conversion of blue light emitted from the side surface of the light emitting element.
The light from the light-emitting element passes through the phosphor layer and excites the phosphor (hereinafter also referred to as “transmission excitation light”), whereas the latter causes phosphor excitation on the surface of the phosphor layer. (Hereinafter also referred to as “surface excitation light”).
Like the former, in the excitation method which permeate | transmits a fluorescent substance layer, since the fluorescent substance itself has light absorption, the loss of excitation arises. On the other hand, when excitation is performed on the surface of the phosphor layer as in the latter case, light absorption of the phosphor itself can be suppressed. That is, the higher the rate of excitation on the phosphor layer surface, the higher the light emission efficiency of the light emitting device.
In the light emitting device according to this embodiment, the upper surface of the convex portion is set to be equal to or smaller than that of the semiconductor light emitting element, so that the light emitting layer exposed on the side surface of the light emitting element is surely exposed from the phosphor layer. Can do. In addition, since many phosphors are arranged below the light emitting element, light from the light emitting element can be extracted as surface excitation light instead of transmission excitation light, and luminous efficiency can be increased. .
When the phosphor layer is composed of a phosphor and a translucent resin, for example, the phosphor layer can be formed by a method known in the art. Especially, it is preferable that a fluorescent substance layer is formed on the reflection member by the method of depositing fluorescent substance using potting. Thereby, the phosphor is unevenly distributed on the reflecting member side in the translucent resin, and as described above, the phosphor layer is more efficiently irradiated with the light emitted from the light emitting element in the lateral direction or downward. Can be made.

蛍光体層には、蛍光体の他、着色剤、光拡散剤、光反射材、各種フィラー等の添加剤が含有されていてもよい。   In addition to the phosphor, the phosphor layer may contain additives such as a colorant, a light diffusing agent, a light reflecting material, and various fillers.

(封止部材15)
本発明の発光装置は、発光素子を被覆する封止部材を備えている。この封止部材は、上述した透光性樹脂等の透光性材料によって形成することが好ましい。
その形状は、特に限定されるものではないが、基体の凹部上方にのみ配置されていることが好ましい。つまり、通常、発光素子は、その外周が基体絶縁部の凹部によって壁状に包囲されているため、封止部材は、反射部材及び蛍光体層の上であって、凹部内を埋設する形態で配置されている。
また、配光特性等を考慮して、例えば、板状、上面を凸状レンズ形状、凹状レンズ形状、フレネルレンズ形状等としてもよいし、別個にレンズ形状の部材を併設してもよい。レンズ形状の底面側の端部まで、反射部材が配置されていることにより、レンズ内を伝播した光が基体で吸収されることがなくなり、光取り出し効率をより向上させることができる。
(Sealing member 15)
The light emitting device of the present invention includes a sealing member that covers the light emitting element. This sealing member is preferably formed of a light-transmitting material such as the light-transmitting resin described above.
The shape is not particularly limited, but it is preferably disposed only above the concave portion of the base. That is, normally, since the outer periphery of the light emitting element is surrounded in a wall shape by the concave portion of the base insulating portion, the sealing member is on the reflecting member and the phosphor layer and is embedded in the concave portion. Is arranged.
In consideration of the light distribution characteristics and the like, for example, the plate shape and the upper surface may have a convex lens shape, a concave lens shape, a Fresnel lens shape, or the like, or a lens-shaped member may be provided separately. Since the reflecting member is arranged up to the end portion on the bottom surface side of the lens shape, the light propagating through the lens is not absorbed by the substrate, and the light extraction efficiency can be further improved.

(その他の部品)
本発明の発光装置では、発光素子からの光の取り出しを効率的に行うために、また、その特性及び/又は信頼性を確保するために、保護素子、レンズ部材等、種々の部品が備えられていてもよい。
特に、図4〜6に示すように、基体の凹部上に光透過性の高い樹脂等によってレンズを成形する場合には、蛍光体層の上にのみ、例えば、ポッティング法にて塗布してレンズを成形することとなるが、これにより、レンズ効果による光取り出しの向上を図るのみならず、レンズが基体と接触せずに、基体への光吸収をも防止できる。また、蛍光体層と、レンズとを2層とすることで、内側に蛍光体を沈降させやすい樹脂(例えば、粘度が低い樹脂)を用い、レンズはレンズ形状をもたせるために粘度が高い樹脂を用いる等、それぞれの層に適した材料を用いることができる。
(Other parts)
The light emitting device of the present invention is provided with various components such as a protective element and a lens member in order to efficiently extract light from the light emitting element and to ensure the characteristics and / or reliability. It may be.
In particular, as shown in FIGS. 4 to 6, when a lens is formed on the concave portion of the substrate with a resin having high light transmittance, the lens is applied only on the phosphor layer by, for example, a potting method. However, this not only improves the light extraction due to the lens effect, but also prevents the lens from coming into contact with the substrate and prevents light absorption into the substrate. In addition, by making the phosphor layer and the lens into two layers, a resin (for example, a resin having a low viscosity) that easily settles the phosphor is used on the inside, and the lens is made of a resin having a high viscosity in order to have a lens shape. For example, a material suitable for each layer can be used.

(保護素子)
保護素子は、特に限定されるものではなく、発光装置に搭載される公知のもののいずれでもよい。例えば、発光素子に印加される逆方向の電圧を短絡したり、発光素子の動作電圧より高い所定の電圧以上の順方向電圧を短絡したりさせることができる素子、つまり、過熱、過電圧、過電流、保護回路、静電保護素子等が挙げられる。具体的には、ツェナーダイオード、トランジスタのダイオード等が利用できる。
本発明の発光装置では、保護素子は、発光素子から出射される光の照射範囲外、例えば、光反射性部材内に載置されていることが好ましい。これにより、保護素子における光吸収を抑制できる。
保護素子は、通常、1つのみが搭載されていているが、2つ以上搭載されていてもよい。
(Protective element)
The protective element is not particularly limited, and may be any known element mounted on the light emitting device. For example, an element capable of short-circuiting a reverse voltage applied to the light-emitting element or short-circuiting a forward voltage higher than a predetermined voltage higher than the operating voltage of the light-emitting element, that is, overheating, overvoltage, overcurrent , Protection circuits, electrostatic protection elements and the like. Specifically, a Zener diode, a transistor diode, or the like can be used.
In the light emitting device of the present invention, the protective element is preferably placed outside the irradiation range of the light emitted from the light emitting element, for example, in the light reflective member. Thereby, the light absorption in a protection element can be suppressed.
Normally, only one protective element is mounted, but two or more protective elements may be mounted.

また、本発明の発光装置の製造方法は、
(a)表面に凹部を有する基体絶縁部及び一部が前記基体絶縁部に埋め込まれ、かつ少なくとも凹部裏面で露出する基体導電部からなり、前記凹部中央に凸部を有する基体の該凸部上面に、該凸部の上面の面積と同等又はそれより大きな平面積を有する半導体発光素子を載置し、
(b)該半導体発光素子を、前記基体導電部と電気的に接続し、
(c)前記基体の凸部を囲む凹部内に反射部材を充填して、該反射部材を前記凹部内表面及び凸部側面で被覆し、
(d)蛍光体を含有した蛍光体層材料をポッティング法により塗布して、前記蛍光体を前記反射部材上に配置する。
In addition, the method for manufacturing the light emitting device of the present invention includes:
(A) A base insulating portion having a concave portion on the surface and a base conductive portion that is partially embedded in the base insulating portion and exposed at least on the back surface of the concave portion, and an upper surface of the convex portion of the base having a convex portion at the center of the concave portion A semiconductor light emitting element having a plane area equal to or larger than the area of the upper surface of the convex part,
(B) electrically connecting the semiconductor light emitting element to the base conductive portion;
(C) filling a reflective member into a concave portion surrounding the convex portion of the base, and covering the reflective member with the inner surface of the concave portion and the side surface of the convex portion;
(D) A phosphor layer material containing a phosphor is applied by a potting method, and the phosphor is disposed on the reflecting member.

特に、工程(a)及び(b)においては、発光素子は、上述したように、基体の凸部上面と金属共晶接合法、樹脂接合材料等、上述した材料によって接合し、上述した材料又は方法によって、基体導電体と電気的に接続する。
工程(c)では、反射部材の外縁を、基体の凸部上面と同等の位置に配置するように、意図的に凹部を形成することが好ましい。ここでの凹部の形成は、例えば、基体凹部の容積より、小さい体積の反射部材を塗布することで、毛細管現象により、反射部材は優先的に基体凹部の壁に沿って這い上がり、意図的に反射部材を凹状にすることができる。また、反射部材の凹部は、反射部材の粘度及び基体凹部の材料への反射部材の濡れ性によっても調整することが可能である。
このように、反射部材を半導体発光素子の周囲に配置することで、発光素子からの光が基体によって吸収されるのを防ぐことができる。
工程(d)では、ポッティング法を採用するが、この際、蛍光体層材料は、半導体発光素子と反射部材の上にのみ塗布する。また、蛍光体層材料を硬化させるまで時間をおくことで、蛍光体を蛍光体層の下層へ沈降させることができる。これにより、蛍光体の多くが、半導体発光素子より下に位置することとなるため、半導体発光素子が蛍光体で埋没することがなくなる。また、反射部材の凹部は、蛍光体が配置される表面積を増大させることができる。よって、小型の発光装置であっても、半導体発光素子から出射される光の照射面に蛍光体を多く配置させることができる。蛍光体を多く必要とする色温度の低い色調の光を得るための発光装置ほど、本発明の効率的な蛍光体への光照射を実現することができる。
以下に、本発明の発光装置について図面に基づいて詳細に説明する。
In particular, in the steps (a) and (b), as described above, the light emitting element is bonded to the upper surface of the convex portion of the base by the above-described material such as a metal eutectic bonding method, a resin bonding material, or the like. The substrate conductor is electrically connected by a method.
In the step (c), it is preferable to intentionally form the concave portion so that the outer edge of the reflecting member is disposed at a position equivalent to the upper surface of the convex portion of the base. The formation of the recesses here is, for example, by applying a reflective member having a volume smaller than the volume of the substrate recesses, so that the reflection member preferentially rises along the walls of the substrate recesses by capillarity. The reflecting member can be concave. Further, the concave portion of the reflecting member can be adjusted by the viscosity of the reflecting member and the wettability of the reflecting member to the material of the substrate concave portion.
Thus, by disposing the reflecting member around the semiconductor light emitting element, it is possible to prevent light from the light emitting element from being absorbed by the substrate.
In the step (d), a potting method is adopted. At this time, the phosphor layer material is applied only on the semiconductor light emitting element and the reflecting member. In addition, the phosphor can be settled to the lower layer of the phosphor layer by allowing time to cure the phosphor layer material. As a result, most of the phosphor is positioned below the semiconductor light emitting element, so that the semiconductor light emitting element is not buried with the phosphor. Moreover, the recessed part of a reflection member can increase the surface area where a fluorescent substance is arrange | positioned. Therefore, even in a small light emitting device, a large number of phosphors can be arranged on the irradiation surface of light emitted from the semiconductor light emitting element. The more efficient the light emission to the phosphor of the present invention can be realized with a light emitting device that requires light and has a color tone with a lower color temperature.
Below, the light-emitting device of this invention is demonstrated in detail based on drawing.

<実施の形態1>
この実施形態の発光装置10は、図1(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15とを備えてなる。
基体11は、図10(A)〜(D)に示すように、アルミナセラミックスからなる基体絶縁部11aと、タングステンからなる基体導電部11bとを備えて構成される。
基体絶縁部11aは、その表面に深さ100〜500μm程度の凹部11cを有しており、その凹部11cの中央に、その上面が略凹部11cの深さに相当する高さの凸部11dが配置されている。そして、凹部11c内であって、この凸部11d上に、半導体発光素子12が搭載されている。凸部11dの上面の面積は、略半導体発光素子12の面積と一致している。
基体導電部11bは、その一部が基体絶縁部11aに埋め込まれており、凹部11c底面と基体11の裏面とにおいて、一対としてそれぞれ分離して露出し、半導体発光素子12と外部とを接続する端子として機能している。なお、図1(B)には図示しないが、凸部11dの上面にも、凸部11dの上面と略同じ大きさの基体導電部11baが形成されている。
半導体発光素子12は絶縁性基板上に窒化物半導体が積層された発光素子であり、ワイヤ16によって、発光素子の上面に形成された電極と、基体絶縁部11aの凹部11cの底面に露出した一対の基体導電部11bとが、電気的に接続されている。
<Embodiment 1>
As shown in FIGS. 1A to 1C, the light emitting device 10 of this embodiment includes a base body 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, and a sealing member 15. Prepare.
As shown in FIGS. 10A to 10D, the base 11 includes a base insulating part 11a made of alumina ceramics and a base conductive part 11b made of tungsten.
The base insulating portion 11a has a concave portion 11c having a depth of about 100 to 500 μm on its surface, and a convex portion 11d whose upper surface is substantially equivalent to the depth of the concave portion 11c at the center of the concave portion 11c. Has been placed. The semiconductor light emitting element 12 is mounted on the convex portion 11d in the concave portion 11c. The area of the upper surface of the convex portion 11 d substantially matches the area of the semiconductor light emitting element 12.
A portion of the base conductive portion 11b is embedded in the base insulating portion 11a, and is exposed separately as a pair on the bottom surface of the recess 11c and the back surface of the base 11 to connect the semiconductor light emitting element 12 and the outside. Functions as a terminal. Although not shown in FIG. 1B, the base conductive portion 11ba having the same size as the upper surface of the convex portion 11d is formed on the upper surface of the convex portion 11d.
The semiconductor light emitting element 12 is a light emitting element in which a nitride semiconductor is laminated on an insulating substrate, and a pair of electrodes exposed on the upper surface of the light emitting element and a bottom surface of the recess 11c of the base insulating part 11a by wires 16. The base body conductive portion 11b is electrically connected.

反射部材13は、TiO(平均粒径:0.26μm程度)が含有されたシリコーン樹脂(TiO濃度:0.3g/cm3程度)からなり、凸部11dが形成されている領域以外の凹部11c内表面(つまり、凹部11cの底面、内側面、凸部の側面)を略完全に被覆するように、その上面が底面側に凸の曲面を構成する形状で配置されている。反射部材13の最小膜厚は、50μm程度であり、最大膜厚は、凸部11dの高さと等しく、500μm程度である。
反射部材13は、凸部11dの外縁においては、この凸部11dの上面と同等の高さに位置している。
反射部材13を上述したように形成するためには、反射部材を構成する材料、つまり、樹脂の粘度を調節するとともに、上述した基体における凹部及び凸部の高さ及びその外縁に起因する表面張力を最大限に発揮させ得るように、樹脂を凹部に充填する。
The reflecting member 13 is made of a silicone resin (TiO 2 concentration: about 0.3 g / cm 3 ) containing TiO 2 (average particle diameter: about 0.26 μm), and other than the region where the convex portion 11d is formed. The upper surface of the concave portion 11c is arranged in a shape that forms a convex curved surface on the bottom surface side so as to substantially completely cover the inner surface of the concave portion 11c (that is, the bottom surface, the inner side surface, and the side surface of the convex portion). The minimum film thickness of the reflecting member 13 is about 50 μm, and the maximum film thickness is equal to the height of the convex portion 11 d and is about 500 μm.
The reflecting member 13 is located at the same height as the upper surface of the convex portion 11d at the outer edge of the convex portion 11d.
In order to form the reflecting member 13 as described above, the material constituting the reflecting member, that is, the viscosity of the resin is adjusted, and the surface tension caused by the height of the concave and convex portions and the outer edge of the base described above. The recess is filled with resin so that the maximum can be exhibited.

反射部材13上には、蛍光体層14が配置されている。ここでの蛍光体層14は、蛍光体(例えば、YAG、粒径10〜20μm程度)と透光性樹脂(例えば、シリコーン樹脂)とからなり、蛍光体が透光性樹脂中で反射部材側に偏在している。
つまり、蛍光体層は、蛍光体を含有する透光性樹脂をポッティングによって形成しており、この樹脂を硬化させるまで時間をおくことで、蛍光体を蛍光体層の下層へ沈降させることができ、反射部材13の上面の全体にわたる直上に沈降して配置されている。また、半導体発光素子12の上面の全体にわたる直上にも沈降して配置されている。このとき、発光素子の側面に露出された発光層は、蛍光体が沈降配置されている部分から露出されている。
A phosphor layer 14 is disposed on the reflecting member 13. Here, the phosphor layer 14 is made of a phosphor (for example, YAG, particle size of about 10 to 20 μm) and a translucent resin (for example, a silicone resin), and the phosphor is in the translucent resin on the reflecting member side. Is unevenly distributed.
That is, the phosphor layer is formed by potting a translucent resin containing a phosphor, and the phosphor can settle to the lower layer of the phosphor layer by allowing time for this resin to cure. In addition, the reflecting member 13 is disposed so as to sink immediately above the entire upper surface of the reflecting member 13. In addition, the semiconductor light-emitting element 12 is also disposed so as to sink immediately above the entire top surface of the semiconductor light-emitting element 12. At this time, the light emitting layer exposed on the side surface of the light emitting element is exposed from the portion where the phosphor is set and disposed.

半導体発光素子12、ワイヤ16及び蛍光体層14は、シリコーン樹脂からなる封止部材15によって被覆されている。封止部材15は、その基体11側の平面形状が、基体絶縁部11aの凹部11cの平面形状に一致しており、凹部11c上方にのみ配置されている。この封止部材15は、樹脂のポッティングにより形成されており、表面張力によって、凸形状に成形されている。   The semiconductor light emitting element 12, the wire 16, and the phosphor layer 14 are covered with a sealing member 15 made of silicone resin. The planar shape of the sealing member 15 on the base body 11 side matches the planar shape of the concave portion 11c of the base insulating portion 11a, and is disposed only above the concave portion 11c. The sealing member 15 is formed by resin potting, and is formed into a convex shape by surface tension.

このような構成を有することにより、発光素子上面近傍で蛍光体により励起された光が、封止部材を透過していく過程で、余分な蛍光体により吸収されることが抑制されるため、蛍光体による透過型励起光をより効果的に取出すことができ、光取り出し効率を向上させることができる。
また、半導体発光素子の発光層が蛍光体層に埋まることなく、発光層を蛍光体層から露出させることができるために、蛍光体による表面励起光をより効果的に取り出すことができ、より光取り出し効率を向上させることが可能となる。
半導体発光素子から出射される光が当たる基体が、略全部反射部材に覆われるために、基体材料に起因する光損失を回避することができる。
さらに、反射部材の上面が凹部の底面側に凸の曲面を有しているために、より多くの蛍光体を半導体発光素子の近傍に偏在させることができるとともに、反射部材の上面に蛍光体が偏在していることにより、半導体発光素子近傍において発光素子からの出射光と蛍光体との距離をある程度等しくできるために、効率的に出射光を蛍光体に照射することができ、蛍光体量を低減させることができる。これによって、出射光を最大限蛍光体で励起させることができるとともに、蛍光体による出射光の吸収を最小限に止めることができ、より一層の光取り出し効率の向上を図ることができる。
By having such a configuration, light excited by the phosphor in the vicinity of the upper surface of the light emitting element is suppressed from being absorbed by excess phosphor in the process of passing through the sealing member. Transmission-type excitation light from the body can be extracted more effectively, and light extraction efficiency can be improved.
In addition, since the light emitting layer can be exposed from the phosphor layer without the light emitting layer of the semiconductor light emitting element being embedded in the phosphor layer, surface excitation light from the phosphor can be extracted more effectively, and more light is emitted. The extraction efficiency can be improved.
Since the base to which the light emitted from the semiconductor light emitting element hits is almost entirely covered with the reflecting member, light loss due to the base material can be avoided.
Furthermore, since the upper surface of the reflecting member has a convex curved surface on the bottom surface side of the concave portion, more phosphor can be unevenly distributed in the vicinity of the semiconductor light emitting element, and the phosphor is present on the upper surface of the reflecting member. By being unevenly distributed, the distance between the emitted light from the light emitting element and the phosphor can be made somewhat equal in the vicinity of the semiconductor light emitting element, so that the emitted light can be efficiently irradiated to the phosphor, and the amount of phosphor can be reduced. Can be reduced. As a result, the emitted light can be excited with the fluorescent material to the maximum, and the absorption of the emitted light by the fluorescent material can be minimized, thereby further improving the light extraction efficiency.

また、上述した発光装置の製造方法によって、簡便に光取り出し効率の高い発光装置を確実に製造することができる。   In addition, the above-described method for manufacturing a light emitting device can easily manufacture a light emitting device with high light extraction efficiency easily.

<実施の形態2>
この実施形態の発光装置20は、図2(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層24と、封止部材15とを備えてなる。
この発光装置20では、蛍光体層24における蛍光体が、反射部材14の上面の凹部の底付近にのみ偏在している以外、実施形態1の発光装置10と実質的に同様に形成されている。
凹部の底付近にのみ蛍光体を偏在させるためには、蛍光体層を構成する樹脂の粘度をやや低めに設定して、蛍光体の沈降をより促進させる方法が挙げられる。
このように、蛍光体が反射部材の凹部の底付近に偏在していることにより、発光装置側面方向への光の色温度を高くすることができる。
平坦なキャビティ底面を有するキャビティに、ポッティング法により蛍光体含有樹脂を充填して、白色の発光装置を製作する場合には、蛍光体は発光素子上面及び平坦なキャビティ底面に位置することとなる。このとき、発光装置の視野角が小さい方向への光は、発光素子からの青色の光と、蛍光体励起による黄色の光が合わさって白色として見えるが、視野角が大きくなるとキャビティの壁面によって発光素子が隠れる角度ができ、つまり青色の光が遮られ、極端に色温度が低くなる。
一方、本発光装置は、蛍光体が反射部材の凹部底面に偏在することで、視野角が大きくなると、キャビティの壁面により、逆に蛍光体層が隠れることとなる。つまり黄色の光が遮られ、色温度が高くなる。このようにして、視野角が大きい方向においても、色温度が極端に低くなることを抑制することができる。
<Embodiment 2>
As shown in FIGS. 2A to 2C, the light emitting device 20 of this embodiment includes a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 24, and a sealing member 15. Prepare.
In the light emitting device 20, the phosphor in the phosphor layer 24 is formed in substantially the same manner as the light emitting device 10 of Embodiment 1 except that the phosphor is unevenly distributed only near the bottom of the concave portion on the upper surface of the reflecting member 14. .
In order to make the phosphor unevenly distributed only in the vicinity of the bottom of the concave portion, there is a method in which the viscosity of the resin constituting the phosphor layer is set slightly lower to further promote the sedimentation of the phosphor.
Thus, the phosphor is unevenly distributed in the vicinity of the bottom of the concave portion of the reflecting member, so that the color temperature of the light toward the side surface of the light emitting device can be increased.
When a white light emitting device is manufactured by filling a cavity having a flat bottom surface with a phosphor-containing resin by a potting method, the fluorescent material is positioned on the top surface of the light emitting element and the flat bottom surface of the cavity. At this time, the light in the direction in which the viewing angle of the light emitting device is small appears to be white by combining the blue light from the light emitting element and the yellow light by phosphor excitation, but when the viewing angle increases, the light is emitted by the cavity wall surface. The angle at which the element is hidden is formed, that is, blue light is blocked and the color temperature is extremely lowered.
On the other hand, in the present light emitting device, the phosphor is unevenly distributed on the bottom surface of the concave portion of the reflecting member, so that when the viewing angle is increased, the phosphor layer is concealed by the wall surface of the cavity. That is, yellow light is blocked and the color temperature is increased. In this way, it is possible to suppress the color temperature from becoming extremely low even in the direction where the viewing angle is large.

<実施の形態3>
この実施形態の発光装置30は、図3(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層34と、封止部材15とを備えてなる。
この発光装置30では、蛍光体層34における蛍光体が、反射部材14の上面の凹部の底付近及びその内周にのみ偏在している以外、実施形態1の発光装置10と実質的に同様に形成されている。
凹部の底付近及びその内周にのみ蛍光体を偏在させるためには、蛍光体層を構成する樹脂の粘度を高めに設定して、発光素子の上(中央部)でポッティングする方法が挙げられる。
このように、蛍光体が反射部材の凹部の底付近に偏在していることにより、発光面を小さくすることができ、輝度を向上させることができる。また、発光面を小さくすることにより、2次光学部品で光を集光する場合など、光の操作を容易にすることが可能となる。
<Embodiment 3>
As shown in FIGS. 3A to 3C, the light emitting device 30 of this embodiment includes a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 34, and a sealing member 15. Prepare.
In the light emitting device 30, the phosphor in the phosphor layer 34 is substantially the same as the light emitting device 10 of Embodiment 1 except that the phosphor is unevenly distributed only in the vicinity of the bottom of the concave portion on the upper surface of the reflecting member 14 and the inner periphery thereof. Is formed.
In order to make the phosphor unevenly distributed only in the vicinity of the bottom of the recess and the inner periphery thereof, there is a method in which the viscosity of the resin constituting the phosphor layer is set high and potting is performed on the light emitting element (center portion). .
As described above, the phosphor is unevenly distributed near the bottom of the concave portion of the reflecting member, so that the light emitting surface can be reduced and the luminance can be improved. Further, by reducing the light emitting surface, it becomes possible to facilitate the operation of light, such as when condensing light with a secondary optical component.

<実施の形態4>
この実施形態の発光装置40は、図4(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15と、レンズ17とを備えてなる。
この発光装置40では、レンズ17が、封止部材15の上方に配置されている以外、実施形態1の発光装置10と実質的に同様に形成されている。
このような発光装置は、実施形態1と同様の効果を有するとともに、レンズ17によって、発光素子からの光に対して所望の指向性を付与することができる。
<Embodiment 4>
As shown in FIGS. 4A to 4C, the light emitting device 40 of this embodiment includes a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, a sealing member 15, And a lens 17.
In the light emitting device 40, the lens 17 is formed in substantially the same manner as the light emitting device 10 of Embodiment 1 except that the lens 17 is disposed above the sealing member 15.
Such a light emitting device has the same effect as that of the first embodiment, and can impart desired directivity to the light from the light emitting element by the lens 17.

<実施の形態5>
この実施形態の発光装置50は、図5(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層24と、封止部材15と、レンズ17とを備えてなる。
この発光装置50では、レンズ17が、封止部材15の上方に配置されている以外、実施形態2の発光装置20と実質的に同様に形成されている。
このような発光装置は、実施形態2と同様の効果を有するとともに、レンズ17によって、発光素子からの光に対して所望の指向性を付与することができる。
<Embodiment 5>
As shown in FIGS. 5A to 5C, the light emitting device 50 according to this embodiment includes a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 24, a sealing member 15, And a lens 17.
In the light emitting device 50, the lens 17 is formed in substantially the same manner as the light emitting device 20 of Embodiment 2 except that the lens 17 is disposed above the sealing member 15.
Such a light emitting device has the same effect as that of the second embodiment, and can impart desired directivity to the light from the light emitting element by the lens 17.

<実施の形態6>
この実施形態の発光装置60は、図6(A)〜(C)に示すように、基体11と、半導体発光素子12と、反射部材13と、蛍光体層34と、封止部材15と、レンズ17とを備えてなる。
この発光装置60では、レンズ17が、封止部材15の上方に配置されている以外、実施形態3の発光装置30と実質的に同様に形成されている。
このような発光装置は、実施形態2と同様の効果を有するとともに、レンズ17によって、発光素子からの光に対して所望の指向性を付与することができる。
<Embodiment 6>
As shown in FIGS. 6A to 6C, the light emitting device 60 of this embodiment includes a base 11, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 34, a sealing member 15, And a lens 17.
In the light emitting device 60, the lens 17 is formed in substantially the same manner as the light emitting device 30 of Embodiment 3 except that the lens 17 is disposed above the sealing member 15.
Such a light emitting device has the same effect as that of the second embodiment, and can impart desired directivity to the light from the light emitting element by the lens 17.

<実施の形態7>
この実施形態の発光装置70は、図7(A)〜(C)に示すように、基体71と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15と、レンズ17を備えてなる。
基体71は、図11(A)及び(B)に示すように、基体導電部71ba(図11(A)参照)は、凹部71c内の凸部71dの上面に、2つに分離して形成され、その基体導電部71baが凸部内を通る基体導電部71bbに接続され、凹部11cの底面において露出した基体導電部71bと接続され、基体絶縁部71aの裏面に露出している以外、実質的に実施形態1における基体11と同様に形成されている。
<Embodiment 7>
As shown in FIGS. 7A to 7C, the light emitting device 70 of this embodiment includes a base 71, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, a sealing member 15, A lens 17 is provided.
As shown in FIGS. 11A and 11B, the base body 71 is formed by separating the base conductive portion 71ba (see FIG. 11A) into two on the upper surface of the convex portion 71d in the concave portion 71c. The substrate conductive portion 71ba is connected to the substrate conductive portion 71bb passing through the inside of the convex portion, connected to the substrate conductive portion 71b exposed at the bottom surface of the concave portion 11c, and substantially exposed except on the back surface of the substrate insulating portion 71a. Further, it is formed in the same manner as the base 11 in the first embodiment.

半導体発光素子12は、その表面に形成された一対の電極(図示せず)が、凸部71d上面の一対の基体導電部11baと電気的に接続されている。
このような発光装置は、実施形態1及び実施形態4と同様の効果を有する。
The semiconductor light emitting element 12 has a pair of electrodes (not shown) formed on the surface thereof electrically connected to the pair of base body conductive portions 11ba on the upper surface of the convex portion 71d.
Such a light emitting device has the same effects as those of the first and fourth embodiments.

<実施の形態8>
この実施形態の発光装置80は、図8(A)〜(C)に示すように、基体71と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15と、レンズ17を備えてなる。
この発光装置80では、基体71の凸部71d内に基体導電部71bbが配置されている以外、実施形態5の発光装置50と実質的に同様に形成されている。
このような発光装置は、実施形態2及び実施形態5と同様の効果を有する。
<Eighth embodiment>
As shown in FIGS. 8A to 8C, the light emitting device 80 of this embodiment includes a base 71, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, a sealing member 15, A lens 17 is provided.
The light emitting device 80 is formed in substantially the same manner as the light emitting device 50 of the fifth embodiment, except that the base conductive portion 71bb is disposed in the convex portion 71d of the base 71.
Such a light emitting device has the same effects as those of the second and fifth embodiments.

<実施の形態9>
この実施形態の発光装置90は、図9(A)〜(C)に示すように、基体71と、半導体発光素子12と、反射部材13と、蛍光体層14と、封止部材15と、レンズ17を備えてなる。
この発光装置90では、基体71の凸部71d内に基体導電部71bbが配置されている以外、実施形態6の発光装置60と実質的に同様に形成されている。
このような発光装置は、実施形態3及び実施形態6と同様の効果を有する。
<Embodiment 9>
As shown in FIGS. 9A to 9C, the light emitting device 90 of this embodiment includes a base 71, a semiconductor light emitting element 12, a reflecting member 13, a phosphor layer 14, a sealing member 15, A lens 17 is provided.
The light emitting device 90 is formed in substantially the same manner as the light emitting device 60 of Embodiment 6 except that the base conductive portion 71bb is disposed in the convex portion 71d of the base 71.
Such a light emitting device has the same effects as those of the third and sixth embodiments.

本発明の発光装置は、光吸収を低減し、高出力化が可能な発光装置とすることができ、各種表示装置、照明器具、ディスプレイ、液晶ディスプレイのバックライト光源、さらには、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置など、広範囲の用途に利用することができる。
また、本発明の発光装置の製造方法では、上述した発光装置を簡便かつ確実に製造することができる。
The light-emitting device of the present invention can be a light-emitting device capable of reducing light absorption and increasing output, and various display devices, lighting fixtures, displays, backlight light sources for liquid crystal displays, as well as facsimiles and copiers. It can be used for a wide range of applications such as an image reading device in a scanner, a projector device, and the like.
Moreover, in the manufacturing method of the light-emitting device of this invention, the light-emitting device mentioned above can be manufactured simply and reliably.

10、20、30、40、50、60、70、80、90 発光装置
11、71 基体
11a、71a 基体絶縁部
11b、11ba、71b、71ba、71bc、71bd 基体導電部
11c、71c 凹部
11d、71d 凸部
12 半導体発光素子
13 反射部材
14、24、34 蛍光体層
15 封止部材
16 ワイヤ
17 レンズ
10, 20, 30, 40, 50, 60, 70, 80, 90 Light-emitting device 11, 71 Base 11a, 71a Base insulating part 11b, 11ba, 71b, 71ba, 71bc, 71bd Base conductive part 11c, 71c Recess 11d, 71d Convex part 12 Semiconductor light emitting element 13 Reflective member 14, 24, 34 Phosphor layer 15 Sealing member 16 Wire 17 Lens

Claims (11)

表面に凹部を有する基体絶縁部及び一部が前記基体絶縁部に埋め込まれ、かつ少なくとも凹部裏面で露出する基体導電部からなる基体と、
半導体発光素子と、
前記凹部内に配置された反射部材と、
該反射部材上に配置された蛍光体層と、
前記半導体発光素子を被覆する封止部材とを備えており、
前記凹部は、その中央に前記半導体発光素子と同等又はそれより小さい上面を有する凸部を有し、該凸部上に前記半導体発光素子が載置されており、
前記反射部材は、前記凹部内表面及び凸部側面を被覆することを特徴とする発光装置。
A base body comprising a base body conductive portion that has a concave portion on the surface and a base conductive portion that is partially embedded in the base insulating portion and exposed at least on the back surface of the concave portion;
A semiconductor light emitting device;
A reflective member disposed in the recess;
A phosphor layer disposed on the reflecting member;
A sealing member that covers the semiconductor light emitting element,
The concave portion has a convex portion having an upper surface equal to or smaller than the semiconductor light emitting element at the center thereof, and the semiconductor light emitting element is placed on the convex portion,
The reflection member covers the inner surface of the concave portion and the side surface of the convex portion.
前記凸部が、凹部の深さと同等の高さを有する請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the convex portion has a height equivalent to a depth of the concave portion. 前記反射部材が、前記凸部の外縁において、該凸部の上面と同等又はそれより底面側に位置する請求項1又は2に記載の発光装置。   3. The light emitting device according to claim 1, wherein the reflecting member is located on the outer edge of the convex portion at a position equal to or closer to the bottom surface than the upper surface of the convex portion. 前記反射部材が、前記凹部の外縁から凸部の外縁の間に底面側に凸の曲面を有する請求項1〜3のいずれか1つに記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the reflecting member has a curved surface convex toward the bottom surface between the outer edge of the concave portion and the outer edge of the convex portion. 前記蛍光体層が、前記反射部材の曲面上及び前記半導体発光素子上面に形成されている請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the phosphor layer is formed on a curved surface of the reflecting member and on an upper surface of the semiconductor light emitting element. 前記蛍光体層は、蛍光体と透光性樹脂とを有してなり、前記蛍光体が前記透光性樹脂中で反射部材側に偏在してなる請求項1〜5のいずれか1つに記載の発光装置。   The phosphor layer includes a phosphor and a translucent resin, and the phosphor is unevenly distributed on the reflecting member side in the translucent resin. The light-emitting device of description. 封止部材は、前記基体の凹部上方にのみ配置されている請求項1〜6のいずれか1つに記載の発光装置。   The light emitting device according to claim 1, wherein the sealing member is disposed only above the concave portion of the base body. (a)表面に凹部を有する基体絶縁部及び一部が前記基体絶縁部に埋め込まれ、かつ少なくとも凹部裏面で露出する基体導電部からなり、前記凹部中央に凸部を有する基体の該凸部上面に、該凸部の上面の面積と同等又はそれより大きな平面積を有する半導体発光素子を載置し、
(b)該半導体発光素子を、前記基体導電部と電気的に接続し、
(c)前記基体の凸部を囲む凹部内に反射部材を充填して、該反射部材を前記凹部内表面及び凸部側面で被覆し、
(d)蛍光体を含有した蛍光体層材料をポッティング法により塗布して、前記蛍光体を前記反射部材上に配置することを特徴とする発光装置の製造方法。
(A) A base insulating portion having a concave portion on the surface and a base conductive portion that is partially embedded in the base insulating portion and exposed at least on the back surface of the concave portion, and an upper surface of the convex portion of the base having a convex portion at the center of the concave portion A semiconductor light emitting element having a plane area equal to or larger than the area of the upper surface of the convex part,
(B) electrically connecting the semiconductor light emitting element to the base conductive portion;
(C) filling a reflective member into a concave portion surrounding the convex portion of the base, and covering the reflective member with the inner surface of the concave portion and the side surface of the convex portion;
(D) A method for manufacturing a light emitting device, wherein a phosphor layer material containing a phosphor is applied by a potting method, and the phosphor is disposed on the reflecting member.
前記反射部材を、前記凸部の外縁において、該凸部の上面と同等又はそれより底面側に配置する請求項8に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 8, wherein the reflecting member is disposed on the outer edge of the convex portion at a position equal to or closer to the bottom surface than the top surface of the convex portion. 前記反射部材を、前記反射部材の上面を前記凹部の外縁から凸部の外縁の間に底面側に凸の曲面に成形する請求項8又は9に記載の発光装置の製造方法。   10. The method of manufacturing a light emitting device according to claim 8, wherein the reflecting member is formed such that a top surface of the reflecting member has a curved surface convex toward the bottom surface between the outer edge of the concave portion and the outer edge of the convex portion. 前記蛍光体層は、蛍光体と透光性樹脂とを有してなり、前記蛍光体を前記透光性樹脂中で反射部材側に偏在させる請求項8〜10のいずれか1つに記載の発光装置の製造方法。   The said fluorescent substance layer has fluorescent substance and translucent resin, The said fluorescent substance is unevenly distributed to the reflective member side in the said translucent resin, It is any one of Claims 8-10. Manufacturing method of light-emitting device.
JP2010232161A 2010-10-15 2010-10-15 Light emitting device and manufacturing method thereof Active JP5644352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010232161A JP5644352B2 (en) 2010-10-15 2010-10-15 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010232161A JP5644352B2 (en) 2010-10-15 2010-10-15 Light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014225835A Division JP5949875B2 (en) 2014-11-06 2014-11-06 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012089539A true JP2012089539A (en) 2012-05-10
JP5644352B2 JP5644352B2 (en) 2014-12-24

Family

ID=46260887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232161A Active JP5644352B2 (en) 2010-10-15 2010-10-15 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5644352B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015371A (en) * 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
JP2015154007A (en) * 2014-02-18 2015-08-24 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
US9373767B2 (en) 2013-09-30 2016-06-21 Nichia Corporation Light emitting device with light reflecting member having protrusion over bonding ball of wire
JP2018032655A (en) * 2016-08-22 2018-03-01 豊田合成株式会社 Light-emitting device and manufacturing method thereof
US9978914B2 (en) 2013-11-29 2018-05-22 Nichia Corporation Light emitting device with phosphor layer
JP2019117818A (en) * 2017-12-26 2019-07-18 日亜化学工業株式会社 Mounting substrate, light emitting device, and manufacturing method of light emitting device
JP2020080431A (en) * 2016-07-29 2020-05-28 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US11189765B2 (en) 2018-12-28 2021-11-30 Nichia Corporation Light emitting device and method of manufacturing light emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008648B2 (en) 2015-10-08 2018-06-26 Semicon Light Co., Ltd. Semiconductor light emitting device
KR101824589B1 (en) * 2016-05-31 2018-03-15 주식회사 세미콘라이트 Semiconductor light emitting device structure
WO2017155282A1 (en) 2016-03-07 2017-09-14 주식회사 세미콘라이트 Semiconductor light-emitting element and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315824A (en) * 1999-04-30 2000-11-14 Runaraito Kk Light emitting diode and manufacture thereof
JP2005159059A (en) * 2003-11-26 2005-06-16 Kyocera Corp Package for light housing emitting device, and light emitting device
JP2008060344A (en) * 2006-08-31 2008-03-13 Toshiba Corp Semiconductor light-emitting device
JP2009170824A (en) * 2008-01-19 2009-07-30 Nichia Corp Light-emitting device
JP2010199547A (en) * 2009-01-30 2010-09-09 Nichia Corp Light emitting device and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315824A (en) * 1999-04-30 2000-11-14 Runaraito Kk Light emitting diode and manufacture thereof
JP2005159059A (en) * 2003-11-26 2005-06-16 Kyocera Corp Package for light housing emitting device, and light emitting device
JP2008060344A (en) * 2006-08-31 2008-03-13 Toshiba Corp Semiconductor light-emitting device
JP2009170824A (en) * 2008-01-19 2009-07-30 Nichia Corp Light-emitting device
JP2010199547A (en) * 2009-01-30 2010-09-09 Nichia Corp Light emitting device and method of manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015371A (en) * 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
US9373767B2 (en) 2013-09-30 2016-06-21 Nichia Corporation Light emitting device with light reflecting member having protrusion over bonding ball of wire
US10381525B2 (en) 2013-11-29 2019-08-13 Nichia Corporation Method for manufacturing light emitting device with phosphor layer
US9978914B2 (en) 2013-11-29 2018-05-22 Nichia Corporation Light emitting device with phosphor layer
US10128416B2 (en) 2013-11-29 2018-11-13 Nichia Corporation Method for manufacturing light emitting device with phosphor layer
JP2015154007A (en) * 2014-02-18 2015-08-24 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
JP2020080431A (en) * 2016-07-29 2020-05-28 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2018032655A (en) * 2016-08-22 2018-03-01 豊田合成株式会社 Light-emitting device and manufacturing method thereof
US10566511B2 (en) 2016-08-22 2020-02-18 Toyoda Gosei Co., Ltd. Light-emitting device and method of manufacturing the same
JP2019117818A (en) * 2017-12-26 2019-07-18 日亜化学工業株式会社 Mounting substrate, light emitting device, and manufacturing method of light emitting device
JP7193698B2 (en) 2017-12-26 2022-12-21 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
US11189765B2 (en) 2018-12-28 2021-11-30 Nichia Corporation Light emitting device and method of manufacturing light emitting device
US11616179B2 (en) 2018-12-28 2023-03-28 Nichia Corporation Light emitting device and method of manufacturing light emitting device

Also Published As

Publication number Publication date
JP5644352B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5644352B2 (en) Light emitting device and manufacturing method thereof
US10230034B2 (en) Light emitting device and method for manufacturing light emitting device
JP6515716B2 (en) Light emitting device and method of manufacturing the same
US8922118B2 (en) Light-emitting device
TWI351774B (en) Semiconductor light emitting device
US8525208B2 (en) Light emitting device
US9123867B2 (en) Light emitting device
JP5781741B2 (en) Light emitting device
US20060043407A1 (en) Semiconductor light emitting apparatus
JP6542509B2 (en) Phosphor and light emitting device package including the same
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
TW201042785A (en) LED package with increased feature sizes
JP5413137B2 (en) Light emitting device and method for manufacturing light emitting device
JP2007227791A (en) Luminescent device manufacturing method and light emitting device manufactured thereby
JP2006269778A (en) Optical device
JP5454154B2 (en) Light emitting device and method for manufacturing light emitting device
JP5256591B2 (en) Light emitting device
JP5125060B2 (en) Light emitting device
JP2007294890A (en) Light emitting device
JP2011253846A (en) Light emitting device and method for manufacturing the same
JP2004186309A (en) Semiconductor light emitting device equipped with metal package
JP5786278B2 (en) Light emitting device
JP5472031B2 (en) Light emitting device and manufacturing method thereof
JP6326830B2 (en) Light emitting device and lighting device including the same
JP5949875B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250