JP5454154B2 - Light emitting device and method for manufacturing light emitting device - Google Patents

Light emitting device and method for manufacturing light emitting device Download PDF

Info

Publication number
JP5454154B2
JP5454154B2 JP2010005208A JP2010005208A JP5454154B2 JP 5454154 B2 JP5454154 B2 JP 5454154B2 JP 2010005208 A JP2010005208 A JP 2010005208A JP 2010005208 A JP2010005208 A JP 2010005208A JP 5454154 B2 JP5454154 B2 JP 5454154B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
emitting device
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010005208A
Other languages
Japanese (ja)
Other versions
JP2011146480A (en
Inventor
元量 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2010005208A priority Critical patent/JP5454154B2/en
Publication of JP2011146480A publication Critical patent/JP2011146480A/en
Application granted granted Critical
Publication of JP5454154B2 publication Critical patent/JP5454154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8192Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Description

本発明は、表示装置、照明器具、ディスプレイ、液晶ディスプレイのバックライト光源等に利用可能な発光装置および発光装置の製造方法に関する。   The present invention relates to a light-emitting device that can be used for a display device, a lighting fixture, a display, a backlight light source of a liquid crystal display, and the like, and a method for manufacturing the light-emitting device.

近年、様々な電子部品が提案され、また、実用化されており、これらに求められる性能も高くなっている。特に、電子部品には、厳しい使用環境下でも長時間性能を維持することができるという高信頼性が求められている。発光ダイオード(LED:Light Emitting Diode)をはじめとする発光装置も同様で、一般照明分野、車載照明分野等で求められる性能は日増しに高まっており、更なる高出力(高輝度)化や信頼性の向上が要求されている。さらに、これらの特性を満たしつつ、低価格で供給することも要求されている。   In recent years, various electronic components have been proposed and put into practical use, and the performance required for them has been increased. In particular, electronic components are required to have high reliability that performance can be maintained for a long time even under severe usage environments. The same applies to light emitting devices such as light emitting diodes (LEDs), and the performance required in the general lighting field and in-vehicle lighting field is increasing day by day. There is a demand for improved performance. Furthermore, it is required to supply at a low price while satisfying these characteristics.

一般に、発光装置は、半導体発光素子(以下、発光素子ともいう)や保護素子等の電子部品が搭載される基体と、それら電子部品に電力を供給するための導電部材とを有している。さらに、発光装置は、外部環境から電子部品を保護するための封止部材を有していることが好ましい。   In general, a light-emitting device includes a base on which electronic components such as a semiconductor light-emitting element (hereinafter also referred to as a light-emitting element) and a protective element are mounted, and a conductive member for supplying power to the electronic components. Furthermore, the light emitting device preferably has a sealing member for protecting the electronic component from the external environment.

ここで、発光装置を高出力化するためには、搭載する発光素子自体の出力を向上させることの他に、基体や導電部材、封止部材等の材料の組み合わせやこれらの形状を変更することによって、光の取り出し効率を向上させることが考えられる。   Here, in order to increase the output of the light emitting device, in addition to improving the output of the mounted light emitting element itself, it is necessary to change the combination of materials such as the base, the conductive member, the sealing member, and the shape thereof. Thus, it is conceivable to improve the light extraction efficiency.

例えば、導電部材の材料としては、導電率が高い金属部材が用いられている。この金属部材の表面に反射率が高い部材を鍍金することで発光素子からの光を効率よく反射させることができる。
また、封止部材の材料としては、発光素子からの光を透過しやすい部材が適している。中でも耐候性や耐熱性に優れた樹脂を封止部材に用いることで、発光装置の長寿命化を図ることができる。
For example, a metal member having high conductivity is used as the material of the conductive member. By plating a member having a high reflectance on the surface of the metal member, light from the light emitting element can be efficiently reflected.
As a material for the sealing member, a member that easily transmits light from the light emitting element is suitable. In particular, the use of a resin excellent in weather resistance and heat resistance for the sealing member can extend the life of the light emitting device.

発光装置を構成する基体や導電部材は、これらに用いる材料によっては発光素子からの光を吸収する損失(光の吸収損失)が起こり、光取り出し効率が低下するという課題がある。特に、導電部材は、その表面積が比較的大きいため、光取り出し効率への影響が大きい。   The base and the conductive member constituting the light-emitting device have a problem that a loss (light absorption loss) of absorbing light from the light-emitting element occurs depending on a material used for these, and light extraction efficiency is lowered. In particular, since the conductive member has a relatively large surface area, the influence on the light extraction efficiency is great.

また、発光装置を構成する部材による光吸収を抑制するために、発光装置の内部に反射率の高い部材を搭載することも考えられる。しかしながら、このような反射率の高い材料(例えば、銀)の中には、大気中の硫黄成分等により、硫化やハロゲン化をおこし、長期の信頼性に問題がある材料もある。
そのため、銀の劣化を防止するために、従来から様々な工夫が施されている。例えば、発光素子を搭載したキャビティ内の光反射面である銀鍍金層の上に有機系の銀変色防止剤を用いる技術が知られている(特許文献1参照)。また、発光装置において銀の変色を防止するために、発光素子を搭載したキャビティ内の光反射面である銀鍍金層の上に貴金属鍍金を施す技術(特許文献2参照)や、銀鍍金が施されたリードフレームをゾルゲルガラスで被覆する技術(特許文献3参照)が開示されている。
Further, in order to suppress light absorption by the members constituting the light emitting device, it is conceivable to mount a member having a high reflectance inside the light emitting device. However, some of these highly reflective materials (for example, silver) are problematic in terms of long-term reliability due to sulfidation or halogenation caused by sulfur components in the atmosphere.
For this reason, various devices have been conventionally used to prevent silver deterioration. For example, a technique using an organic silver discoloration preventing agent on a silver plating layer that is a light reflecting surface in a cavity in which a light emitting element is mounted is known (see Patent Document 1). Further, in order to prevent silver discoloration in the light emitting device, a technique for applying a noble metal plating on a silver plating layer which is a light reflecting surface in a cavity where a light emitting element is mounted (see Patent Document 2), or silver plating is applied. A technique (see Patent Document 3) for covering the formed lead frame with sol-gel glass is disclosed.

また、発光装置を高出力化するために、発光装置に搭載される発光素子自体の出力を向上させることに伴い発光素子の発熱量も多くなる。そのため、発光装置において、発光素子の熱を効率良く基体側に放熱するため金属共晶接合も用いられるようになってきた。これに伴い、発光素子/金属共晶界面である発光素子裏面(下面)に反射率の高い材料として銀を成膜し金属共晶による光吸収を低減することで、光取り出し効率を向上させる方法も開示されている(特許文献4参照)。ここで、仮に発光素子の外周にまで銀を成膜すると、多数の発光素子を備えるウェハーから切り離してバー状化またはチップ化等により個々の発光素子に分離する工程において、銀の剥がれが発生することがある。そのため、銀を発光素子の外周にまでは成膜しない場合がある。この場合、発光素子の裏面(下面)に、発光素子の裏面よりも面積が小さくなるように銀を成膜する。これにより、金属共晶接合を行った場合、金属共晶材料は濡れ性の関係により発光素子裏面の銀が成膜された領域に形成されるため、発光素子裏面における外周近傍と導電部材の銀鍍金部分との間に、金属共晶材の厚み分の隙間が生じる。   Further, in order to increase the output of the light emitting device, the amount of heat generated by the light emitting element increases as the output of the light emitting element itself mounted on the light emitting device is improved. Therefore, in the light emitting device, metal eutectic bonding has been used in order to efficiently dissipate the heat of the light emitting element to the substrate side. Accordingly, a method of improving light extraction efficiency by forming a silver film as a highly reflective material on the back surface (lower surface) of the light emitting device / metal eutectic interface and reducing light absorption by the metal eutectic. Is also disclosed (see Patent Document 4). Here, if the silver film is formed even on the outer periphery of the light emitting element, peeling of the silver occurs in the process of separating the light emitting element from a wafer having a large number of light emitting elements and separating it into individual light emitting elements such as bars or chips. Sometimes. For this reason, silver may not be formed up to the outer periphery of the light emitting element. In this case, silver is formed on the back surface (lower surface) of the light emitting element so that the area is smaller than that of the back surface of the light emitting element. As a result, when metal eutectic bonding is performed, the metal eutectic material is formed in the area where the silver on the back surface of the light emitting element is formed due to the wettability relationship. A gap corresponding to the thickness of the metal eutectic material is formed between the plated portions.

また、発光素子の電極と導電部材とを電気的に接続する金線等のワイヤは、発光素子からの光、例えば青色光を吸収する吸収源となる。このようなワイヤによる光吸収を抑制することで、発光装置の光取出し効率を向上させる技術(特許文献5参照)が開示されている。   Further, a wire such as a gold wire that electrically connects the electrode of the light emitting element and the conductive member serves as an absorption source that absorbs light from the light emitting element, for example, blue light. A technique for improving the light extraction efficiency of a light emitting device by suppressing light absorption by such a wire (see Patent Document 5) is disclosed.

特開2006−303092号公報JP 2006-303092 A 特開2006―303069号公報JP 2006-303069 A 特開2007−324256号公報JP 2007-324256 A 特開2007−266338号公報JP 2007-266338 A 特開2009−55006号公報JP 2009-55006 A

発光装置の導電部材等に鍍金された銀等を大気中の硫黄成分等から保護するパッシベーション(passivation)膜を真空プロセスにより成膜すれば、発光装置の信頼性や生産性が向上することが期待される。しかしながら、例えば、発光素子の裏面に、発光素子の幅よりも幅が狭くなるように銀を成膜する発光装置において、パッシベーション膜を真空プロセスで成膜すると、スパッタの直進性のために、導電部材の銀鍍金部分のうち、発光素子の陰となってしまう隙間部分を、パッシベーション膜で覆うことができない。
また、一般的にスパッタリングによる成膜時には、例えば、いわゆるピンホールという部分的に成膜できない箇所が生じることもある。また、スパッタリングによる成膜時に発光装置の表面にごみ等が付着した部分は、スパッタリング工程に続いて行う洗浄工程にて、ごみ等がその上に形成されたパッシベーション膜と共に剥がれて不要な凹部が形成され、ごみ等の下に埋もれていた銀鍍金等が露出してしまう。また、パッシベーション膜を形成する基体側に微小な凹凸があると、成膜できない箇所が生じることもある。そのため、さらなる信頼性や寿命の向上が要望されている。
It is expected that the reliability and productivity of the light-emitting device will be improved if a passivation film that protects silver plated on the conductive member of the light-emitting device from sulfur components in the atmosphere is formed by a vacuum process. Is done. However, for example, in a light-emitting device in which silver is formed on the back surface of the light-emitting element so that the width is narrower than the width of the light-emitting element, if a passivation film is formed by a vacuum process, the conductive property is increased due to the straightness of sputtering. Of the silver-plated portion of the member, the gap portion that becomes the shade of the light emitting element cannot be covered with the passivation film.
In general, when a film is formed by sputtering, for example, a portion such as a so-called pinhole that cannot be partially formed may occur. In addition, in the cleaning process that follows the sputtering process, dust or the like is peeled off along with the passivation film formed on the surface of the light-emitting device when the film is formed by sputtering. As a result, the silver plating buried under the garbage etc. is exposed. Further, if there are minute irregularities on the substrate side on which the passivation film is to be formed, there may be a portion where the film cannot be formed. Therefore, further improvements in reliability and lifespan are demanded.

さらに、青色等の発光素子の電極と導電部材の銀鍍金部分とを電気的に接続する金線等のワイヤを備える発光装置において、発光素子から照射される光がワイヤ裏面に吸収される。そのため、発光素子からの光を発光装置内のワイヤ等の部材で吸収せずに、光取り出し効率を向上させることが要望されている。   Furthermore, in a light emitting device including a wire such as a gold wire that electrically connects the electrode of the light emitting element such as blue and the silver plated portion of the conductive member, light irradiated from the light emitting element is absorbed by the back surface of the wire. Therefore, there is a demand for improving light extraction efficiency without absorbing light from the light emitting element by a member such as a wire in the light emitting device.

本発明は、上述した問題に鑑みてなされたものであり、発光素子からの光を効率良く外部に取り出すことができると共に、信頼性の高い発光装置を提供することを課題とする。また、本発明は、その発光装置の製造方法を提供することを他の課題とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly reliable light-emitting device that can efficiently extract light from a light-emitting element to the outside. Another object of the present invention is to provide a method for manufacturing the light emitting device.

前記課題を解決するために、本発明に係る発光装置は、基体と、前記基体に設けられた導電部材と、前記導電部材の少なくとも一部に設けられた銀含有金属と、前記基体上に載置された発光素子と、前記発光素子および前記銀含有金属の表面において、一部を被覆する絶縁部材と、前記絶縁部材が形成されていない部位を被覆するように設けられる絶縁性のフィラーと、を備えることを特徴とする。   In order to solve the above problems, a light-emitting device according to the present invention is mounted on a base, a conductive member provided on the base, a silver-containing metal provided on at least a part of the conductive member, and the base. In the surface of the light emitting element placed, the light emitting element and the silver-containing metal, an insulating member that covers a part, an insulating filler that is provided so as to cover a portion where the insulating member is not formed, It is characterized by providing.

かかる構成によれば、発光装置は、導電部材に設けられた銀含有金属等に絶縁部材が被覆されている。このように導電部材の表面に、光取り出し効率を高めるために銀含有金属を設けたとしても、絶縁部材により、銀を大気中の硫化ガス等の腐食ガスから保護することができる。そのため、高出力化するために利用する銀が腐食ガスにより変色することを防止し、信頼性や寿命を向上させることができる。また、発光装置は、導電部材の表面において、絶縁部材が形成されていない部位が、絶縁性のフィラーで被覆されている。このような構成にすることで、絶縁部材が形成されていない部位を大気中の硫化ガス等から保護することができる。また、銀含有金属が腐食ガスにより劣化された場合、例えば銀含有金属が硫化された場合であっても、発光素子の発光を絶縁性のフィラーにより反射することで光取り出し効率の低下を抑制することができる。ここで、「基体上」とは、基体の上側にあることを指し、発光素子は導電部材及び/又は銀含有金属を介して載置することができる。   According to this configuration, in the light emitting device, the insulating member is covered with the silver-containing metal or the like provided on the conductive member. Thus, even if a silver-containing metal is provided on the surface of the conductive member in order to increase the light extraction efficiency, the insulating member can protect silver from corrosive gases such as sulfide gas in the atmosphere. Therefore, it is possible to prevent the silver used for increasing the output from being discolored by the corrosive gas, and to improve the reliability and life. Further, in the light emitting device, a portion where the insulating member is not formed is covered with an insulating filler on the surface of the conductive member. By adopting such a configuration, it is possible to protect a portion where the insulating member is not formed from a sulfide gas or the like in the atmosphere. Further, when the silver-containing metal is deteriorated by the corrosive gas, for example, even when the silver-containing metal is sulfided, the light emission efficiency is suppressed by reflecting the light emitted from the light-emitting element by the insulating filler. be able to. Here, “on the substrate” means being on the upper side of the substrate, and the light emitting element can be mounted via a conductive member and / or a silver-containing metal.

また、前記絶縁性のフィラーは、前記発光素子の外周領域を被覆するように設けられていることが好ましい。
かかる構成によれば、光取り出し効率がよくなり光出力を向上させることができる。
Moreover, it is preferable that the said insulating filler is provided so that the outer peripheral area | region of the said light emitting element may be coat | covered.
According to this configuration, the light extraction efficiency is improved and the light output can be improved.

前記絶縁性のフィラーは、前記発光素子の下部領域を被覆するように設けられていることが好ましい。
かかる構成によれば、光取り出し効率がよくなり光出力を向上させることができる。
It is preferable that the insulating filler is provided so as to cover a lower region of the light emitting element.
According to this configuration, the light extraction efficiency is improved and the light output can be improved.

前記導電部材の電極となる部位と前記発光素子の電極端子とを電気的に接続するワイヤを有し、前記ワイヤの上面に前記絶縁部材が形成されており、前記ワイヤの下面に前記絶縁性のフィラーが形成されていることが好ましい。
かかる構成によれば、発光装置は、フィラーがワイヤの裏面(下面)を被覆することにより、発光素子からワイヤ裏面に直接照射される光がワイヤに吸収されることによる光の吸収量を低減することができる。そのため、光取り出し効率がよくなり光出力を向上させることができる。
A wire that electrically connects a portion to be an electrode of the conductive member and an electrode terminal of the light emitting element; the insulating member is formed on an upper surface of the wire; and the insulating material is formed on a lower surface of the wire. It is preferable that a filler is formed.
According to such a configuration, in the light emitting device, the filler covers the back surface (lower surface) of the wire, thereby reducing the amount of light absorbed when the light directly irradiated from the light emitting element to the back surface of the wire is absorbed by the wire. be able to. Therefore, the light extraction efficiency is improved and the light output can be improved.

また、前記ワイヤの下面に形成される絶縁性のフィラーの反射率は、430nm〜490nmの波長域の光に対して50%以上であることが好ましく、70%以上であることがさらに好ましい。   Further, the reflectance of the insulating filler formed on the lower surface of the wire is preferably 50% or more, and more preferably 70% or more with respect to light in the wavelength region of 430 nm to 490 nm.

かかる構成によれば、発光装置は、430nm〜490nmの波長域の光を効率良く反射することができる。そのため、発光スペクトルのピーク波長が上記のような範囲の発光素子を用いる場合に光取り出し効率がよくなり光出力を向上させることができる。   According to this configuration, the light emitting device can efficiently reflect light in the wavelength range of 430 nm to 490 nm. Therefore, when a light emitting element having a peak wavelength of the emission spectrum as described above is used, the light extraction efficiency is improved and the light output can be improved.

また、前記発光素子の下面側に、当該発光素子の下面よりも面積が小さい接着層を備えることが好ましい。ここで、発光素子の下面とは、発光素子を構成する半導体層が積層される基板と言い換えることもできるため、その基板の面積よりも接着層の面積が小さいと言ってもよい。   Moreover, it is preferable that an adhesive layer having a smaller area than the lower surface of the light emitting element is provided on the lower surface side of the light emitting element. Here, the lower surface of the light-emitting element can also be referred to as a substrate on which a semiconductor layer included in the light-emitting element is stacked. Therefore, the area of the adhesive layer may be smaller than the area of the substrate.

かかる構成によれば、たとえ、反射層の側面やその下方の周囲等に絶縁部材を形成することができなかったとしても、その絶縁部材が形成されていない部位が、フィラーで被覆されるため、このフィラーで接着層の側面やその下方の周囲等を保護すると共に、発光素子の下方に進む光を効率よく反射することができる。また、絶縁部材が形成されていない部位における銀含有金属が腐食ガスにより硫化されたとしても、絶縁性のフィラーにより、発光素子からの光を反射することができるため、発光装置の光出力への悪影響を低減し、高出力の発光装置を得ることができる。   According to such a configuration, even if the insulating member could not be formed on the side surface of the reflective layer or the lower periphery thereof, the portion where the insulating member is not formed is covered with the filler. The filler can protect the side surface of the adhesive layer and the surrounding area under the adhesive layer, and can efficiently reflect the light traveling below the light emitting element. In addition, even if the silver-containing metal in the portion where the insulating member is not formed is sulfided by the corrosive gas, the light from the light emitting element can be reflected by the insulating filler, so that the light output to the light emitting device can be reduced. An adverse effect is reduced and a high-output light-emitting device can be obtained.

また、前記課題を解決するために、本発明に係る別の発光装置は、基体と、前記基体に設けられた導電部材と、前記基体上に載置された発光素子と、前記導電部材の電極となる部位と前記発光素子の電極端子とを電気的に接続するワイヤと、前記発光装置を上から被覆するように設けられた絶縁部材と、前記発光装置の表面において前記絶縁部材が形成されていない導電部位を被覆するように設けられる絶縁性のフィラーと、を備えることを特徴とする。ここで、絶縁膜は、発光装置の中で少なくともワイヤの表面を被覆しており、ワイヤの該絶縁部材が形成されていない部位であるワイヤの下面を絶縁性のフィラーで被覆している。   In order to solve the above problems, another light emitting device according to the present invention includes a base, a conductive member provided on the base, a light emitting element placed on the base, and an electrode of the conductive member. A wire for electrically connecting the portion to the electrode terminal of the light emitting element, an insulating member provided to cover the light emitting device from above, and the insulating member formed on the surface of the light emitting device. And an insulating filler provided so as to cover a non-conductive part. Here, the insulating film covers at least the surface of the wire in the light emitting device, and covers the lower surface of the wire, which is a portion where the insulating member of the wire is not formed, with an insulating filler.

かかる構成によれば、発光装置は、フィラーがワイヤの下面を被覆することにより、発光素子からワイヤ裏面に直接照射される光がワイヤに吸収される吸収量を低減することができる。そのため、光取り出し効率がよくなり光出力を向上させることができる。   According to such a configuration, the light emitting device can reduce the amount of absorption by which the light directly irradiated from the light emitting element to the back surface of the wire is absorbed by the wire by covering the lower surface of the wire with the filler. Therefore, the light extraction efficiency is improved and the light output can be improved.

また、前記フィラーは、SiO2、Al23、Al(OH)3、TiO2、ZrO2、ZnO2、Nb25、MgO、MgCO3、Mg(OH)2、SrO、In23、TaO2、HfO、SeO、Y23、SiN、AlN、AlON、MgF2からなる群から選択されることが好ましい。 Further, the filler is, SiO 2, Al 2 O 3 , Al (OH) 3, TiO 2, ZrO 2, ZnO 2, Nb 2 O 5, MgO, MgCO 3, Mg (OH) 2, SrO, In 2 O 3 , preferably selected from the group consisting of TaO 2 , HfO, SeO, Y 2 O 3 , SiN, AlN, AlON, and MgF 2 .

かかる構成によれば、光取り出し効率がよくなり光出力を向上させることができる。   According to this configuration, the light extraction efficiency is improved and the light output can be improved.

また、前記フィラーは、前記絶縁部材と異なる材料からなることが好ましい。絶縁部材には、フィラーよりも屈折率が低いものを用いる。また、フィラーには絶縁部材よりも屈折率が高いものを用いるのがよい。絶縁部材には、発光素子からの光を透過させる部材を用いる。また、フィラーには発光素子からの光を散乱させるものを用いることによって、発光装置の光取り出し効率や信頼性を向上させることができる。   Moreover, it is preferable that the said filler consists of a material different from the said insulating member. An insulating member having a refractive index lower than that of the filler is used. In addition, it is preferable to use a filler having a refractive index higher than that of the insulating member. As the insulating member, a member that transmits light from the light emitting element is used. In addition, by using a filler that scatters light from the light emitting element, light extraction efficiency and reliability of the light emitting device can be improved.

また、前記発光装置は、封止部材により被覆されており、前記絶縁性のフィラーの隙間には該封止部材が含浸していることが好ましい。これによりフィラーと封止部材との密着力を向上させることができる。   Moreover, it is preferable that the light emitting device is covered with a sealing member, and the sealing member is impregnated in a gap between the insulating fillers. Thereby, the adhesive force of a filler and a sealing member can be improved.

また、前記課題を解決するために、本発明の発光装置の製造方法は、銀含有金属で少なくとも一部が被覆された導電部材が設けられた基体に発光素子を接合するダイボンディング工程と、前記発光素子および前記銀含有金属の表面の一部に絶縁部材を形成する絶縁部材形成工程と、前記絶縁部材が形成されていない部位に絶縁性のフィラーを形成するフィラー形成工程と、を有することを特徴とする。   In order to solve the above problems, a method for manufacturing a light-emitting device according to the present invention includes a die bonding step of bonding a light-emitting element to a substrate provided with a conductive member at least partially coated with a silver-containing metal, An insulating member forming step of forming an insulating member on a part of the surface of the light emitting element and the silver-containing metal, and a filler forming step of forming an insulating filler in a portion where the insulating member is not formed. Features.

かかる手順によれば、発光装置の製造方法は、絶縁部材形成工程にて、絶縁部材を形成するので、光取り出し効率を高めるために、導電部材の表面に銀含有金属を用いたとしても、成膜した絶縁部材により、銀を大気中の硫化ガス等から保護することができる。そして、発光装置の製造方法は、絶縁部材の成膜においてピンホール等が生じたとしても、フィラーにより絶縁部材が形成されていない銀含有金属を大気中の硫化ガス等から保護することができる。そのため、発光装置の信頼性や生産性を向上させることができる。さらに、このフィラーは、絶縁部材が形成されていない部位に形成されることにより、この部位においても、発光素子の発光をフィラーにより反射することで光取り出し効率を高めることもできる。   According to such a procedure, the light emitting device manufacturing method forms the insulating member in the insulating member forming step. Therefore, even if a silver-containing metal is used on the surface of the conductive member in order to increase the light extraction efficiency, Silver can be protected from sulfide gas or the like in the atmosphere by the filmed insulating member. And even if a pinhole etc. arise in the film formation of an insulating member, the manufacturing method of a light-emitting device can protect the silver containing metal in which the insulating member is not formed with a filler from the sulfide gas etc. in air | atmosphere. Therefore, the reliability and productivity of the light emitting device can be improved. Furthermore, since the filler is formed in a portion where the insulating member is not formed, the light extraction efficiency can be increased by reflecting the light emitted from the light emitting element by the filler also in this portion.

また、前記ダイボンディング工程の後に、前記銀含有金属を介して前記導電部材の電極となる部位と前記発光素子の電極端子とをワイヤにより電気的に接続するワイヤボンディング工程を有し、前記絶縁部材形成工程において、前記発光素子、前記銀含有金属および前記ワイヤの少なくとも一部を上から被覆するように絶縁部材を形成し、前記フィラー形成工程において、前記絶縁部材が形成されていない部位を被覆するように絶縁性のフィラーを電着塗装法または静電塗装法により形成することが好ましい。ここで、前記絶縁部材が形成されていない部位とは、発光素子の外周部や下部、またはその近傍にある部材、さらには銀含有金属の露出面やワイヤの下面のような絶縁部材が形成されない部位や絶縁部材が形成されにくい部位等である。   In addition, after the die bonding step, the insulating member includes a wire bonding step of electrically connecting a portion serving as an electrode of the conductive member and an electrode terminal of the light emitting element through the silver-containing metal with a wire. In the forming step, an insulating member is formed so as to cover at least a part of the light emitting element, the silver-containing metal, and the wire from above, and in the filler forming step, a portion where the insulating member is not formed is covered. Thus, it is preferable to form the insulating filler by an electrodeposition coating method or an electrostatic coating method. Here, the portion where the insulating member is not formed is a member in the outer peripheral portion or the lower portion of the light emitting element or in the vicinity thereof, and further, the insulating member such as the exposed surface of the silver-containing metal or the lower surface of the wire is not formed. This is a site where it is difficult to form a site or an insulating member.

かかる手順によれば、発光装置の製造方法は、例えば絶縁部材が形成されていないワイヤの下面(裏面)にも、フィラーを形成することができる。これにより、発光素子からワイヤ裏面に直接照射される光がワイヤに吸収される吸収量を低減することができる。そのため、発光装置は、光取り出し効率がよくなり光出力を向上させることができる。   According to such a procedure, the manufacturing method of the light emitting device can form the filler also on the lower surface (back surface) of the wire on which the insulating member is not formed, for example. Thereby, the absorption amount by which the light directly irradiated from the light emitting element to the back surface of the wire is absorbed by the wire can be reduced. Therefore, the light emitting device can improve the light extraction efficiency and improve the light output.

本発明の発光装置によれば、銀含有金属の表面を絶縁部材および絶縁性のフィラーで被覆することで、この銀含有金属を保護すると共に、絶縁性のフィラーを備えることにより発光素子からの光を効率良く外部に取り出すことができるので、高出力かつ高信頼性を実現できる。
本発明の発光装置の製造方法によれば、銀含有金属の表面を絶縁部材で保護すると共に、この絶縁部材で保護されていない部位には絶縁性のフィラーを形成するので、高出力かつ高信頼性の発光装置を製造することができる。
According to the light-emitting device of the present invention, the surface of the silver-containing metal is covered with the insulating member and the insulating filler, thereby protecting the silver-containing metal and providing the insulating filler with the light from the light-emitting element. Can be efficiently taken out to the outside, so that high output and high reliability can be realized.
According to the method for manufacturing a light-emitting device of the present invention, the surface of the silver-containing metal is protected with an insulating member, and an insulating filler is formed in a portion that is not protected with the insulating member. Light-emitting device can be manufactured.

本発明の実施形態に係る発光装置の一例を示す斜視図である。It is a perspective view which shows an example of the light-emitting device which concerns on embodiment of this invention. 図1に示す発光装置を発光面側から一部透過して見た平面図である。FIG. 2 is a plan view of the light emitting device shown in FIG. 1 as seen partially from the light emitting surface side. 図2に示す発光装置のX−X断面矢視図である。FIG. 3 is an XX cross-sectional arrow view of the light emitting device shown in FIG. 2. 本発明の実施形態に係る発光装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の他の変形例を発光面側から一部透過して見た平面図である。It is the top view which permeate | transmitted partially the other modification of the light-emitting device which concerns on embodiment of this invention from the light emission surface side. 図10に示す発光装置のY−Y断面矢視図である。It is a YY cross-sectional arrow view of the light-emitting device shown in FIG.

本発明を実施するための形態を、以下に図面を参照しながら説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための発光装置およびその製造方法を例示するものであって、本発明は、発光装置およびその製造方法を以下に限定するものではない。また、同一の名称、符号については同一または同質の部材を示しており、詳細説明を適宜省略する。   A mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a light emitting device and a manufacturing method thereof for embodying the technical idea of the present invention, and the present invention limits the light emitting device and the manufacturing method thereof to the following. is not. Moreover, the same name and code | symbol have shown the member same or the same quality, and abbreviate | omits detailed description suitably.

以下では、1.発光装置の構成の概略、2.発光装置の製造方法、3.発光装置を構成する各部材の各章に分けて順次説明する。   In the following, 1. 1. Outline of configuration of light emitting device 2. Manufacturing method of light emitting device Each of the members constituting the light-emitting device will be described in order in each chapter.

[1.発光装置の構成の概略]
本発明の実施形態に係る発光装置の構成の概略について図1〜図3を適宜参照して説明する。図1に示す発光装置100は、その基体101が、例えば積層された複数のセラミックスグリーンシートを焼成して構成されている。基体101は、凹部109を有している。凹部109は、上面が開口し、側面と底面とを有する。凹部109に発光素子104(図2参照)が載置されている。また発光素子104が載置された凹部109は、樹脂等からなる封止部材108で封止されている。
[1. Outline of configuration of light emitting device]
An outline of a configuration of a light emitting device according to an embodiment of the present invention will be described with reference to FIGS. In the light emitting device 100 shown in FIG. 1, the base 101 is configured by firing a plurality of laminated ceramic green sheets, for example. The base 101 has a recess 109. Recess 109 has an open top surface and a side surface and a bottom surface. The light emitting element 104 (see FIG. 2) is placed in the recess 109. Further, the recess 109 on which the light emitting element 104 is placed is sealed with a sealing member 108 made of resin or the like.

図2は、発光装置100を発光面側から封止部材108を透過して見た平面図を示す。凹部109の底面には、電極としての導電部材102A、102Bが露出するように配されている。図2に示すように、凹部109の底面に露出した導電部材102Aはカソード(−極)であり、凹部109の底面に露出した導電部材102Bはアノード(+極)である。カソード側の導電部材102Aの上には、電子部品としての半導体発光素子(以下、発光素子)104と保護素子105とが設けられている。発光素子104の正負の電極(電極端子)は、導電性のワイヤ106により、導電部材102A、102Bにそれぞれ電気的に接続されている。   FIG. 2 is a plan view of the light emitting device 100 as seen through the sealing member 108 from the light emitting surface side. Conductive members 102A and 102B as electrodes are disposed on the bottom surface of the recess 109 so as to be exposed. As shown in FIG. 2, the conductive member 102A exposed on the bottom surface of the recess 109 is a cathode (-electrode), and the conductive member 102B exposed on the bottom surface of the recess 109 is an anode (+ electrode). On the cathode-side conductive member 102A, a semiconductor light emitting element (hereinafter referred to as a light emitting element) 104 and a protection element 105 are provided as electronic components. The positive and negative electrodes (electrode terminals) of the light-emitting element 104 are electrically connected to the conductive members 102A and 102B by conductive wires 106, respectively.

保護素子105は、例えば、ツェナーダイオード等から構成される。保護素子105は、その底面側の正極が金属ペースト等の接合部材によって導電部材102Aに固定されて導通し、負極がワイヤ106により導電部材102Bに電気的に接続されている。なお、基体101の上面には、導電部材102A、102Bのいずれがカソード側であるのかを示すためにカソードマーク107が設けられている。なお、カソードマークの代わりにアノードマークを設けて発光装置100の極性を示すようにしてもよい。この保護素子105は、省略することもできる。   The protection element 105 is composed of, for example, a Zener diode. The protective element 105 has a positive electrode on the bottom side thereof fixed to the conductive member 102 </ b> A by a bonding member such as a metal paste, and is electrically connected, and a negative electrode is electrically connected to the conductive member 102 </ b> B by a wire 106. A cathode mark 107 is provided on the upper surface of the base 101 to indicate which of the conductive members 102A and 102B is on the cathode side. Note that an anode mark may be provided instead of the cathode mark to indicate the polarity of the light emitting device 100. The protective element 105 can be omitted.

図3に示すように、導電部材102A、102Bは、外部と電気的に接続する端子として機能させるために、基体101の下面(裏面)にも露出するように設けられている。基体101の裏面に配された導電部材102Aは、凹部109の底面に配された導電部材102Aに基体101内部で電気的に連続するように設けられている。同様に、基体101の裏面に配された導電部材102Bは、凹部109の底面に配された導電部材102Bに基体101内部で電気的に連続するように設けられている。そして、凹部109の底面にそれぞれ露出している導電部材102A、102Bの表面には、反射材としての銀含有金属103が鍍金等により設けられている。また、凹部109の底面に設けられた銀含有金属103の表面には、接着層123を介して発光素子104が設けられており、それ以外の銀含有金属103の表面は絶縁部材110で被覆されている。また、絶縁部材110が成膜されずに銀含有金属103が露出した部位には絶縁性のフィラー112が形成されている。特に発光素子104の下部領域は、銀含有金属103が露出した部位を含めて絶縁性のフィラー112で被覆されている。   As shown in FIG. 3, the conductive members 102 </ b> A and 102 </ b> B are provided so as to be exposed also on the lower surface (back surface) of the base 101 in order to function as terminals electrically connected to the outside. The conductive member 102 </ b> A disposed on the back surface of the base body 101 is provided so as to be electrically continuous with the conductive member 102 </ b> A disposed on the bottom surface of the recess 109 inside the base body 101. Similarly, the conductive member 102 </ b> B disposed on the back surface of the base body 101 is provided so as to be electrically continuous inside the base body 101 with the conductive member 102 </ b> B disposed on the bottom surface of the recess 109. A silver-containing metal 103 as a reflective material is provided by plating or the like on the surfaces of the conductive members 102A and 102B exposed at the bottom surfaces of the recesses 109, respectively. Further, the light-emitting element 104 is provided on the surface of the silver-containing metal 103 provided on the bottom surface of the recess 109 via the adhesive layer 123, and the other surface of the silver-containing metal 103 is covered with the insulating member 110. ing. Further, an insulating filler 112 is formed at a portion where the insulating member 110 is not formed and the silver-containing metal 103 is exposed. In particular, the lower region of the light emitting element 104 is covered with an insulating filler 112 including a portion where the silver-containing metal 103 is exposed.

発光素子104は、例えば、図4に示すように、基板104aと、基板104aに順次積層された発光層等の積層半導体構造104bと、積層半導体構造104bの上に形成された電極端子104cとを有する。なお、発光素子104の正負の電極端子は、異なる半導体層を露出した表面に設けられる。   For example, as shown in FIG. 4, the light emitting element 104 includes a substrate 104a, a laminated semiconductor structure 104b such as a light emitting layer sequentially laminated on the substrate 104a, and an electrode terminal 104c formed on the laminated semiconductor structure 104b. Have. Note that the positive and negative electrode terminals of the light-emitting element 104 are provided on a surface where a different semiconductor layer is exposed.

また、発光素子104の下面(裏面)には、例えば、パターニングされたAg/Pt/AuSn膜を成膜することができる。図3に示す例では、発光素子104と基体101との間には、発光素子104の下面側から順に、例えばAgから成る反射層121と、Ptから成るバリア層122と、ダイボンド部材として金属共晶であるAuSnからなる接着層123とが配されている。発光素子104の下面側に配された反射層121、バリア層122、接着層123の面積は、発光素子104(図4参照)の裏面の面積よりも小さい。   Further, for example, a patterned Ag / Pt / AuSn film can be formed on the lower surface (back surface) of the light emitting element 104. In the example shown in FIG. 3, between the light emitting element 104 and the base 101, in order from the lower surface side of the light emitting element 104, for example, a reflective layer 121 made of Ag, a barrier layer 122 made of Pt, and a metal substrate as a die bond member. An adhesive layer 123 made of AuSn which is a crystal is disposed. The areas of the reflective layer 121, the barrier layer 122, and the adhesive layer 123 arranged on the lower surface side of the light emitting element 104 are smaller than the area of the back surface of the light emitting element 104 (see FIG. 4).

発光素子104は、例えば、凹部109の底面に塗布されたフラックスの上に載置されるダイボンディング工程と、これに続くリフロー工程、洗浄工程を経た後、各ワイヤ106が凹部109の底面に配された導電部材102A、102Bの表面の銀含有金属103とそれぞれ接続される。   For example, after the light emitting element 104 has undergone a die bonding process that is placed on the flux applied to the bottom surface of the recess 109, a subsequent reflow process, and a cleaning process, each wire 106 is arranged on the bottom surface of the recess 109. Are connected to the silver-containing metal 103 on the surfaces of the conductive members 102A and 102B.

発光装置100は、上述したように、基体101の凹部109内に、導電部材102A、102Bの表面上の銀含有金属103を主として保護する絶縁部材110を備えている。この絶縁部材110は、凹部109内において、銀含有金属103に加えて、発光素子104、ワイヤ106、基体101の表面(凹部109の底面や側面)を上から被覆するように設けられている。また、絶縁部材110は、凹部109以外にも基体101の上面を被覆してもよい。   As described above, the light emitting device 100 includes the insulating member 110 that mainly protects the silver-containing metal 103 on the surfaces of the conductive members 102A and 102B in the recess 109 of the base 101. In addition to the silver-containing metal 103, the insulating member 110 is provided so as to cover the surface of the light emitting element 104, the wire 106, and the base 101 (the bottom surface and side surfaces of the recess 109) from above in the recess 109. Further, the insulating member 110 may cover the upper surface of the base 101 in addition to the recess 109.

また、発光装置100は、上述したように、基体101の凹部109に配された銀含有金属103の露出面を被覆するように絶縁性のフィラー112を備えている。この絶縁性のフィラーは、絶縁部材110と異なる製法により形成される。図3においては、絶縁性のフィラー112は、発光素子104、ワイヤ106、銀含有金属103等の導体部の表面において絶縁部材110が形成されていない部位を被覆するように設けられている。絶縁性のフィラー112は、例えば、発光素子104の下方に位置する銀含有金属103と、発光素子104の下方に配された反射層121、バリア層122、接着層123の側面と、ワイヤ106の下面(裏面)とを被覆する。絶縁性のフィラー112は、主に絶縁部材が形成されていない部位を被覆する。また、絶縁性のフィラー112は、基体101の凹部109に載置されている部材の中で導電性部材の露出面を被覆する。絶縁性のフィラー112は、発光素子104の光を反射する反射膜として機能する。また、前述した絶縁部材110と絶縁性のフィラー112との違いは膜構造である。絶縁性のフィラー112の膜構造は、フィラーの粒子が連結して堆積したものであり、堆積したフィラーの間には空隙が形成されている。フィラーの隙間には封止部材が含浸されやすくなり、フィラーと封止部材との密着力を向上させることができる。一方、絶縁部材は、フィラーに比べて密に形成されている。これにより、絶縁部材は、透過率を向上させており、優れたガスバリア性の機能を有している。   Further, as described above, the light emitting device 100 includes the insulating filler 112 so as to cover the exposed surface of the silver-containing metal 103 disposed in the recess 109 of the base 101. This insulating filler is formed by a manufacturing method different from that for the insulating member 110. In FIG. 3, the insulating filler 112 is provided so as to cover a portion where the insulating member 110 is not formed on the surface of the conductor portion such as the light emitting element 104, the wire 106, and the silver-containing metal 103. The insulating filler 112 includes, for example, a silver-containing metal 103 positioned below the light emitting element 104, the side surfaces of the reflective layer 121, the barrier layer 122, and the adhesive layer 123 disposed below the light emitting element 104, and the wire 106. Cover the lower surface (back surface). The insulating filler 112 mainly covers a portion where the insulating member is not formed. The insulating filler 112 covers the exposed surface of the conductive member among the members placed in the concave portion 109 of the base 101. The insulating filler 112 functions as a reflective film that reflects light from the light-emitting element 104. The difference between the insulating member 110 and the insulating filler 112 described above is a film structure. The film structure of the insulating filler 112 is a structure in which filler particles are connected and deposited, and voids are formed between the deposited fillers. The gap between the fillers is easily impregnated with the sealing member, and the adhesion between the filler and the sealing member can be improved. On the other hand, the insulating member is formed denser than the filler. Thereby, the insulating member has improved the transmittance | permeability and has the function of the outstanding gas barrier property.

このように発光装置100は、導電部材102A、102Bに設けられた銀含有金属103が絶縁部材110で被覆され、かつ、絶縁部材110が形成されていない導体部が、絶縁性のフィラー112で被覆されている。そのため、絶縁性のフィラーを1μm以上の膜厚で形成する。この絶縁性のフィラーを10μm以上の膜厚で形成した場合には、銀含有金属を大気中の硫化ガス等の腐食ガスから保護する効果と光の散乱効果を有する。また、絶縁部材が形成されていない部位における銀含有金属が腐食ガスにより硫化されたとしても、絶縁性のフィラーにより、発光素子からの光を反射することができるため、外部に効率よく光を取り出すことができる。   As described above, in the light emitting device 100, the silver-containing metal 103 provided on the conductive members 102A and 102B is covered with the insulating member 110, and the conductor portion where the insulating member 110 is not formed is covered with the insulating filler 112. Has been. Therefore, an insulating filler is formed with a film thickness of 1 μm or more. When this insulating filler is formed with a film thickness of 10 μm or more, it has an effect of protecting the silver-containing metal from a corrosive gas such as sulfide gas in the atmosphere and a light scattering effect. In addition, even if the silver-containing metal in the part where the insulating member is not formed is sulfided by the corrosive gas, the light from the light emitting element can be reflected by the insulating filler, so that the light is efficiently extracted to the outside. be able to.

さらに、発光装置100は、ワイヤ106の裏面が、高反射率の絶縁性のフィラー112により被覆されているので、ワイヤ106の下方に配置された発光素子104を発光させたときに、ワイヤ106の裏面側において光吸収量を低減させることができる。このとき、ワイヤ106の裏面を被覆している絶縁性のフィラー112は、発光素子104の発光を反射するので、外部に効率よく光を取り出すことができる。以上の動作により、高出力、高信頼性、長寿命の発光装置を実現することができる。   Furthermore, since the back surface of the wire 106 is covered with the highly reflective insulating filler 112 in the light emitting device 100, when the light emitting element 104 disposed below the wire 106 is caused to emit light, The amount of light absorption can be reduced on the back side. At this time, the insulating filler 112 covering the back surface of the wire 106 reflects light emitted from the light-emitting element 104, so that light can be efficiently extracted to the outside. Through the above operation, a light-emitting device with high output, high reliability, and long life can be realized.

[2.発光装置の製造方法]
次に、本発明の実施形態に係る発光装置の製造方法について説明する。図1〜図3に示す発光装置100は、例えば、図4〜図8に示す製造工程を経て得ることができる。すなわち、発光装置の製造方法は、主として、ダイボンディング工程(図4参照)と、ワイヤボンディング工程(図5参照)と、フィラー形成工程(図7参照)とを有する。さらに、封止部材108を形成する場合には、封止部材形成工程(図8参照)を行う。
[2. Manufacturing method of light emitting device]
Next, a method for manufacturing a light emitting device according to an embodiment of the present invention will be described. The light emitting device 100 shown in FIGS. 1 to 3 can be obtained through the manufacturing steps shown in FIGS. 4 to 8, for example. That is, the manufacturing method of the light emitting device mainly includes a die bonding step (see FIG. 4), a wire bonding step (see FIG. 5), and a filler forming step (see FIG. 7). Furthermore, when forming the sealing member 108, a sealing member formation process (refer FIG. 8) is performed.

ダイボンディング工程(図4参照)は、発光素子104を基体101に接合するためのダイボンド部材の種類や接合方法等に応じて様々な方法で行うことができる。ここで、ダイボンディング工程は、基体101と、発光素子104とが既に製造されていることを前提としている。ただし、例えば、ダイボンディング工程の前に、基体101に導電部材102A、102Bを設ける工程や、導電部材102A、102B上に銀含有金属103を設ける工程を行ってもよい。このうち、基体101に導電部材102A、102Bを設ける工程は、基体101の材料や導電部材102A、102Bの材料等に応じて様々な方法で行うことができ、かつ、ダイボンディング工程で用いる方法とも密接に関連している。   The die bonding step (see FIG. 4) can be performed by various methods depending on the type of the die bonding member for bonding the light emitting element 104 to the substrate 101, the bonding method, and the like. Here, the die bonding process is based on the premise that the base 101 and the light emitting element 104 have already been manufactured. However, for example, a step of providing the conductive members 102A and 102B on the base 101 or a step of providing the silver-containing metal 103 on the conductive members 102A and 102B may be performed before the die bonding step. Among these, the step of providing the conductive members 102A and 102B on the base 101 can be performed by various methods depending on the material of the base 101, the materials of the conductive members 102A and 102B, and the method used in the die bonding step. Closely related.

ここでは、発光装置100の製造方法を、第1工程〜第6工程に形式的に区分し、銀含有金属形成工程(第1工程)、ダイボンディング工程(第2工程)、ワイヤボンディング工程(第3工程)、絶縁部材形成工程(第4工程)、フィラー形成工程(第5工程)、封止部材形成工程(第6工程)について順次説明する。   Here, the manufacturing method of the light emitting device 100 is formally divided into a first process to a sixth process, and a silver-containing metal forming process (first process), a die bonding process (second process), and a wire bonding process (first process). 3 process), an insulating member formation process (4th process), a filler formation process (5th process), and a sealing member formation process (6th process) are demonstrated one by one.

また、簡便のため、1つの発光装置100を用いて図4〜図8を適宜参照しながら各製造工程を説明するが、これらの製造工程では、複数の発光装置の基体が集合体となっている。そして、基体の集合体を最終工程で分割した後で、各発光装置100の基体101の外側面が表出する。   For convenience, each manufacturing process will be described using one light-emitting device 100 with reference to FIGS. 4 to 8 as appropriate. In these manufacturing processes, a plurality of light-emitting device substrates are aggregated. Yes. Then, after the aggregate of the substrates is divided in the final process, the outer surface of the substrate 101 of each light emitting device 100 is exposed.

<2−1.第1工程(銀含有金属形成工程)>
第1工程は、発光装置100の導電部材102A、102B上に銀含有金属103を設けるまでの工程である。ここでは、2−1−A.導電部材形成工程と、2−1−B.銀鍍金工程とを行う。
<2-1. First step (silver-containing metal forming step)>
The first step is a step until the silver-containing metal 103 is provided on the conductive members 102 </ b> A and 102 </ b> B of the light emitting device 100. Here, 2-1-A. A conductive member forming step, and 2-1-B. The silver plating process is performed.

≪2−1−A.導電部材形成工程≫
図4に示すように、本実施形態において発光装置100の基体101は凹部109を有している。基体101の凹部109の底面には、導電部材102A、102Bが露出するように形成する。
<< 2-1-A. Conductive member formation process >>
As shown in FIG. 4, in this embodiment, the base 101 of the light emitting device 100 has a recess 109. Conductive members 102A and 102B are formed on the bottom surface of the recess 109 of the base 101 so as to be exposed.

なお、この導電部材102A、102Bは、通電させるための電極として用いる以外に、例えば凹部109の内側の側壁に設けて反射部材としての機能を付与させることもできる。また、導電部材102A、102Bは、基体101の裏面から露出させて放熱部材としての機能を付与させることもできる。基体101の裏面から露出させる導電部材102A、102Bは、電極としての機能を兼ね備えることもできる。また、電極として用いる導電部材と、放熱部材として用いる導電部材とを電気的には遮断させることもできる。また、導電部材は、図2に示すように、発光装置100の極性を示すカソードマーク107として設けることもできる。   The conductive members 102A and 102B can be provided on the inner side wall of the recess 109 to provide a function as a reflecting member, in addition to being used as an electrode for energizing. In addition, the conductive members 102A and 102B can be exposed from the back surface of the base 101 to provide a function as a heat radiating member. The conductive members 102A and 102B exposed from the back surface of the substrate 101 can also have a function as an electrode. In addition, the conductive member used as the electrode and the conductive member used as the heat dissipation member can be electrically blocked. The conductive member can also be provided as a cathode mark 107 indicating the polarity of the light emitting device 100 as shown in FIG.

このような導電部材102A、102Bを形成する方法は、基体101の材料等に応じて適宜変更できる。例えばセラミックスからなる基体101を用いる場合、未焼成のセラミックスグリーンシートの段階で、タングステン、モリブデンのような高融点金属の微粒子を含む導体ペーストを所定のパターンに塗布したものを焼成することにより、導電部材102A、102Bを得ることができる。また、予め焼成されたセラミックスの板材に、導電部材102A、102Bを形成することもできる。   The method of forming such conductive members 102A and 102B can be changed as appropriate according to the material of the base 101 and the like. For example, in the case of using the substrate 101 made of ceramic, the conductive paste is applied by baking a conductive paste containing fine particles of a refractory metal such as tungsten or molybdenum at a stage of an unfired ceramic green sheet. The members 102A and 102B can be obtained. Alternatively, the conductive members 102A and 102B can be formed on a pre-fired ceramic plate.

また、例えば、基体101としてガラスエポキシ樹脂基板を用いる場合には、次のようにして導電部材102A、102Bを形成することもできる。この場合、まず、硝子クロス入りエポキシ樹脂やエポキシ樹脂を半硬化させたプリプレグに銅板を貼り付けて熱硬化させる。その後、フォトリソグラフィ法を用いて銅等の金属部材を所定の形状にパターニングする。これにより、基体101中に導電部材102A、102Bを形成することができる。   For example, when a glass epoxy resin substrate is used as the substrate 101, the conductive members 102A and 102B can be formed as follows. In this case, first, a copper plate is attached to a prepreg obtained by semi-curing an epoxy resin containing glass cloth or an epoxy resin and thermally cured. Thereafter, a metal member such as copper is patterned into a predetermined shape using a photolithography method. Thereby, the conductive members 102 </ b> A and 102 </ b> B can be formed in the base 101.

≪2−1−B.銀鍍金工程≫
続いて、前記のようにして形成された導電部材102A、102B上に、銀含有金属103を設ける。なお、基体101内に埋設されている導電部材上にまでは銀含有金属103を設けるものではない。
<< 2-1-B. Silver plating process >>
Subsequently, the silver-containing metal 103 is provided on the conductive members 102A and 102B formed as described above. Note that the silver-containing metal 103 is not provided on the conductive member embedded in the base 101.

銀含有金属103を設ける方法としては、鍍金法を用いるが、その他にも、スパッタ法、蒸着法等を用いることができる。鍍金法を用いる場合、電解鍍金、無電解鍍金いずれの方法でも用いることができる。例えば、導電部材102A、102B上のみに銀含有金属103を設ける場合には、該当部位を電気的に接続した上で、電解鍍金法を用いることが最も簡便である。また、無電解鍍金法やスパッタ法、蒸着法を用いる場合は、フォトリソグラフィ法により、導電部材102A、102B上のみに設けることができる。   As a method for providing the silver-containing metal 103, a plating method is used, but other methods such as a sputtering method and a vapor deposition method can be used. When using the plating method, either electrolytic plating or electroless plating can be used. For example, when the silver-containing metal 103 is provided only on the conductive members 102A and 102B, it is easiest to use the electrolytic plating method after electrically connecting the corresponding parts. In the case of using an electroless plating method, a sputtering method, or a vapor deposition method, it can be provided only on the conductive members 102A and 102B by a photolithography method.

銀含有金属103は、母体となる導電部材102A、102Bの上に直接設けてもよく、または、銀を含まない金属を介して、導電部材102A、102Bの上に間接的に設けてもよい。また、特にパターン形成されていない導電部材102A、102B上に銀含有金属103を設けた後、導電部材102A、102Bと銀含有金属103とを所定の形状にパターニングしてもよい。この銀含有金属103は、導電部材102A、102Bの表面の少なくとも一部が被覆されていればよいが、後の工程であるダイボンディング工程において、発光素子が載置される領域下部に位置する導電部材102の表面には銀含有金属103が全面を被覆していることが好ましい。これにより、発光素子から下方に放出される光を光取り出し面である上方に反射させることができる。   The silver-containing metal 103 may be provided directly on the base conductive members 102A and 102B, or may be indirectly provided on the conductive members 102A and 102B through a metal not containing silver. Further, after the silver-containing metal 103 is provided on the conductive members 102A and 102B that are not particularly patterned, the conductive members 102A and 102B and the silver-containing metal 103 may be patterned into a predetermined shape. The silver-containing metal 103 only needs to cover at least a part of the surface of the conductive members 102A and 102B. However, in the die bonding process, which is a subsequent process, the conductive metal located at the lower part of the region where the light emitting element is placed. The surface of the member 102 is preferably covered with a silver-containing metal 103. Thereby, the light emitted downward from the light emitting element can be reflected upward as the light extraction surface.

<2−2.第2工程(ダイボンディング工程)>
第2工程は、発光装置100の導電部材102A、102B上にダイボンド部材を介して発光素子104を接合する工程である。ここでは、2−2−A.ダイボンド部材形成工程と、2−2−B.加熱工程とを行う。ここで、ダイボンド部材は特に材料を限定するものではないが、樹脂組成物で形成することができる。
<2-2. Second process (die bonding process)>
The second step is a step of bonding the light emitting element 104 to the conductive members 102A and 102B of the light emitting device 100 via a die bond member. Here, 2-2A. A die bonding member forming step, and 2-2B. And heating step. Here, although a die bond member does not specifically limit material, it can be formed with a resin composition.

≪2−2−A.ダイボンド部材形成工程≫
ダイボンド部材は、導電部材102A、102Bと発光素子104との間に介在するように形成すればよい。そのため、ダイボンド部材を形成する部位は、次の(A1)〜(A3)のいずれでもよい。
(A1)導電部材102A、102B上のうち発光素子104を載置する領域
(A2)発光素子104の裏面
(A3)A1とA2の両方
<< 2-2-A. Die bond member formation process >>
The die bond member may be formed so as to be interposed between the conductive members 102A and 102B and the light emitting element 104. Therefore, the site | part which forms a die-bonding member may be any of following (A1)-(A3).
(A1) Region on which the light emitting element 104 is placed on the conductive members 102A and 102B (A2) The back surface of the light emitting element 104 (A3) Both A1 and A2

ダイボンド部材としては、樹脂組成物がある。その樹脂組成物の成分には、例えば、ロジン(松脂)または熱硬化性樹脂を含む。さらに、樹脂組成物に、必要に応じて、粘度調整のための溶剤や各種添加剤、有機酸等の活性剤を含有させてもよい。さらにまた、粉末状の金属を含有させてもよい。また、樹脂組成物の形状は、液状、ペースト状、固体状(シート状、ブロック状、粉末状)のものを用いることができ、樹脂組成物の組成や基体101の形状等に応じて、樹脂組成物の形状を適宜選択することができる。   There exists a resin composition as a die-bonding member. The component of the resin composition includes, for example, rosin (pine resin) or a thermosetting resin. Furthermore, you may make the resin composition contain activators, such as a solvent for viscosity adjustment, various additives, and an organic acid, as needed. Furthermore, a powdered metal may be contained. The resin composition can be in the form of a liquid, paste, or solid (sheet, block, or powder). Depending on the composition of the resin composition or the shape of the substrate 101, the resin composition can be used. The shape of the composition can be appropriately selected.

次に、樹脂組成物を形成する部位が、前記した(A1)導電部材102A、102B上のうち発光素子104を載置する領域である場合について、樹脂組成物の形成方法および樹脂組成物(フラックスまたは半田)を介した接合方法について説明する。   Next, the resin composition forming method and the resin composition (flux) in the case where the portion where the resin composition is formed is a region where the light emitting element 104 is placed on the conductive member 102A or 102B described above (A1). (Or soldering) will be described.

まず、図4に示すように、導電部材102A、102B上に設けられた銀含有金属103上に、ダイボンド部材となる液状またはペースト状の樹脂組成物111が形成される。このように導電部材102A、102B上に、液状またはペースト状の樹脂組成物111を形成する方法は、樹脂組成物111の粘度等に応じて、ポッティング法、印刷法、転写法等の方法から適宜選択することができる。続いて、樹脂組成物111を形成した箇所に発光素子104を載置する。固体状の樹脂組成物を設ける場合も、発光素子104を載置するのと同じ要領で絶縁部材上に設置する等の方法を用いることができる。液状、ペースト状、固体状の樹脂組成物は、加熱等により一度溶融させることで発光素子104を固定させてもよい。また、樹脂組成物は、単独で用いてもよく、または、組み合わせて用いてもよい。   First, as shown in FIG. 4, a liquid or paste-like resin composition 111 to be a die bond member is formed on the silver-containing metal 103 provided on the conductive members 102A and 102B. As described above, a method of forming the liquid or paste-like resin composition 111 on the conductive members 102A and 102B is appropriately selected from methods such as a potting method, a printing method, and a transfer method according to the viscosity of the resin composition 111 and the like. You can choose. Subsequently, the light emitting element 104 is placed on the place where the resin composition 111 is formed. In the case where a solid resin composition is provided, a method such as installation on an insulating member can be used in the same manner as the light-emitting element 104 is mounted. The light-emitting element 104 may be fixed by melting a liquid, paste-like, or solid resin composition once by heating or the like. Moreover, a resin composition may be used independently or may be used in combination.

樹脂組成物の量としては、発光素子104を設置した後に、載置されている発光素子104の接合面積と同等か、それ以上の面積となるように調整して樹脂組成物を形成することが好ましい。また、複数の発光素子104を液状またはペースト状の樹脂組成物111の上に載置する場合には、液状またはペースト状の樹脂組成物111の表面張力等により発光素子104が動いて所定の位置からずれてしまう場合がある。そのため、このような事態を防ぐため、各発光素子104を、個別に独立した樹脂組成物111にそれぞれ載置する方が望ましい。   The amount of the resin composition may be adjusted to be equal to or larger than the bonding area of the mounted light emitting element 104 after the light emitting element 104 is installed to form the resin composition. preferable. Further, when the plurality of light emitting elements 104 are placed on the liquid or paste resin composition 111, the light emitting elements 104 move due to the surface tension of the liquid or paste resin composition 111 and the predetermined position. May be off. Therefore, in order to prevent such a situation, it is desirable to place each light emitting element 104 on the resin composition 111 that is individually independent.

図4に示すように、ダイボンド部材である樹脂組成物111の量は、載置される発光素子104の接合面積よりも広い面積となるように調整して樹脂組成物111を形成した。この場合、発光素子104の載置後には、樹脂組成物111は、発光素子104の下部に設けられた接着層123の接合面積よりも広がった状態となる。   As shown in FIG. 4, the resin composition 111 was formed by adjusting the amount of the resin composition 111 that is a die-bonding member to be larger than the bonding area of the light-emitting element 104 to be mounted. In this case, after the light-emitting element 104 is mounted, the resin composition 111 is in a state of being wider than the bonding area of the adhesive layer 123 provided under the light-emitting element 104.

また、樹脂組成物の厚みについては、樹脂組成物の種類によって適した厚みが異なることを考慮して調整することが好ましい。また、樹脂組成物の厚みについては、発光素子104を載せた際に樹脂組成物が押し潰されてそのまま横に広がる場合や、樹脂組成物が基体101の凹凸に沿って追従して広がる場合等を考慮して調整することが好ましい。   In addition, the thickness of the resin composition is preferably adjusted in consideration that the suitable thickness varies depending on the type of the resin composition. As for the thickness of the resin composition, when the light emitting element 104 is placed, the resin composition is crushed and spreads sideways as it is, or the resin composition follows the unevenness of the base 101 and spreads. It is preferable to adjust in consideration of the above.

また、発光素子104の材料や接合方法等に応じては、樹脂組成物に導電性のある部材を含有させることが好ましい。例えば、次の具体例B1,B2を挙げることができる。
(B1)発光素子の基板104aとして導電性の基板を使用し、窒化ガリウム系半導体層を積層させて積層半導体構造104bを構成して作製された発光素子104を用いて、この窒化ガリウム系半導体発光素子の半導体層に形成された電極または導電性の基板を接合面とする場合
(B2)発光素子の基板104aとして絶縁性の基板を使用し、窒化ガリウム系半導体層を積層させて積層半導体構造104bを構成して作製された発光素子104を用いて、この窒化ガリウム系半導体発光素子の半導体層に形成された電極を接合面とする場合
Further, depending on the material of the light-emitting element 104, the bonding method, and the like, it is preferable to include a conductive member in the resin composition. For example, the following specific examples B1 and B2 can be given.
(B1) Using a conductive substrate as the substrate 104a of the light-emitting element and laminating gallium nitride-based semiconductor layers to form a laminated semiconductor structure 104b, the gallium nitride-based semiconductor light emitting device is used. When an electrode formed on a semiconductor layer of an element or a conductive substrate is used as a bonding surface (B2) An insulating substrate is used as the substrate 104a of the light emitting element, and a gallium nitride based semiconductor layer is stacked to form a stacked semiconductor structure 104b. In the case where the electrode formed on the semiconductor layer of the gallium nitride based semiconductor light-emitting device is used as a bonding surface using the light-emitting device 104 manufactured by forming the structure

前記(B1)や(B2)の場合には、基体101に設けられる導電部材102A、102Bと発光素子104とを、その接合部分で導通させる必要がある。したがって、このような場合には、樹脂組成物中に比較的低い融点を有する金属等の導電性のある部材を混入させておくことが好ましい。   In the case of (B1) and (B2), the conductive members 102A and 102B provided on the base 101 and the light emitting element 104 need to be brought into conduction at the joint portion. Therefore, in such a case, it is preferable to mix a conductive member such as a metal having a relatively low melting point in the resin composition.

≪2−2−B.加熱工程≫
加熱工程は、前記のようにして形成した樹脂組成物の少なくとも一部が揮発する温度より高い温度で加熱するものである。樹脂組成物が含有する物質に応じて加熱温度は異なる。
<< 2-2-B. Heating process >>
In the heating step, heating is performed at a temperature higher than the temperature at which at least a part of the resin composition formed as described above volatilizes. The heating temperature varies depending on the substance contained in the resin composition.

加熱工程において、加熱後に続けて、さらに洗浄工程を行うことができる。特に、ロジンを含有する樹脂組成物の樹脂残渣の大部分または全部を除去したい場合等においては、洗浄工程を行うことが好ましい。   In the heating step, a washing step can be further performed after the heating. In particular, when it is desired to remove most or all of the resin residue of the resin composition containing rosin, it is preferable to perform a washing step.

<2−3.第3工程(ワイヤボンディング工程)>
第3工程は、第2工程において銀含有金属103で被覆された電極としての導電部材102A、102Bと、発光素子104上部にある電極端子とを導電性のあるワイヤ106で電気的に接続する工程であり、図5はこの第3工程が完了した状態を示している。なお、図5に示す接着層123は、図4に示す接着層123が発光素子104の載置により変形したものである。
なお、本形態の発光素子の実装形態は、発光素子の電極を発光観測面方向(支持体と反対側)に向けて実装する形態に限定されることなく、フリップチップ実装でもよい。
<2-3. Third Step (Wire Bonding Step)>
The third step is a step of electrically connecting the conductive members 102 </ b> A and 102 </ b> B as electrodes covered with the silver-containing metal 103 in the second step and the electrode terminals on the light emitting element 104 with a conductive wire 106. FIG. 5 shows a state in which the third step is completed. Note that the adhesive layer 123 illustrated in FIG. 5 is obtained by deforming the adhesive layer 123 illustrated in FIG.
In addition, the mounting form of the light emitting element of this embodiment is not limited to the form in which the electrode of the light emitting element is mounted in the light emission observation surface direction (the side opposite to the support), and may be flip chip mounting.

<2−4.第4工程(絶縁部材形成工程)>
第4工程は、第3工程に続いて、銀含有金属103で被覆された導電部材102A、102B上、発光素子104上部およびワイヤ106を上から被覆するように、絶縁性の保護膜である絶縁部材110を設けるものである(図6)。
<2-4. Fourth step (insulating member forming step)>
In the fourth step, following the third step, the insulating member is an insulating protective film so as to cover the conductive members 102A and 102B covered with the silver-containing metal 103, the light emitting element 104 and the wire 106 from above. The member 110 is provided (FIG. 6).

絶縁部材110で被覆された領域の銀含有金属103は、硫化等による銀の変質を抑制することができる。そのため、この第4工程を行う段階において基体101の上面、側面に露出している銀含有金属103と、基体101に設けられた凹部109の内面(底面、側面)に露出している銀含有金属103とを含めた全露出領域のうち、銀を変質させる成分(硫黄成分含有ガス等)が外部から到達し易い位置を被覆するように絶縁部材110を形成することが好ましい。   The silver-containing metal 103 in the region covered with the insulating member 110 can suppress deterioration of silver due to sulfuration or the like. Therefore, the silver-containing metal 103 exposed on the upper surface and side surface of the base 101 and the silver-containing metal exposed on the inner surface (bottom surface and side surface) of the recess 109 provided in the base 101 in the stage of performing the fourth step. It is preferable to form the insulating member 110 so as to cover a position where a component (such as a sulfur component-containing gas) that alters silver easily reaches from the outside in the entire exposed region including 103.

なお、第4工程を行う段階において基体101中に埋設されている銀含有金属103(発光素子104の載置領域やワイヤ106の接合領域等に埋設されている銀含有金属103)や基体101の下面(裏面)に露出する銀含有金属103にまで絶縁部材110を設けるものではない。   Note that the silver-containing metal 103 (silver-containing metal 103 embedded in the mounting region of the light emitting element 104, the bonding region of the wire 106, or the like) embedded in the substrate 101 or the substrate 101 in the step of performing the fourth step. The insulating member 110 is not provided up to the silver-containing metal 103 exposed on the lower surface (back surface).

この絶縁部材110は、銀含有金属103上以外にも設けられていてもよい。例えば、図6に示すように、絶縁部材110は、基体101に設けられた凹部109の底面において、正負の導電部材102A、102Bの間に基体101が露出している基体露出部101A、凹部109の側壁101B、基体101の上面101C等にも設けることができる。   This insulating member 110 may be provided other than on the silver-containing metal 103. For example, as illustrated in FIG. 6, the insulating member 110 includes a base exposed portion 101 </ b> A and a concave portion 109 where the base 101 is exposed between the positive and negative conductive members 102 </ b> A and 102 </ b> B on the bottom surface of the concave portion 109 provided in the base 101. The side wall 101B and the upper surface 101C of the base 101 can be provided.

絶縁部材110の材料には、後記するように、無機物を用いるのが好ましく、絶縁部材110を形成する方法としては、スパッタ法、蒸着法、イオンプレーティング法等のPVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法、溶射、コーティング処理等の成膜方法を用いることができる。また、例えば、真空プロセスにより絶縁部材110を成膜することができる。   As will be described later, it is preferable to use an inorganic material for the material of the insulating member 110. As a method of forming the insulating member 110, a PVD (Physical Vapor Deposition) method such as a sputtering method, a vapor deposition method, or an ion plating method, A film forming method such as a CVD (Chemical Vapor Deposition) method, thermal spraying, or coating treatment can be used. For example, the insulating member 110 can be formed by a vacuum process.

しかし、図6に示すように発光素子104の裏面外周部の一部が銀含有金属103と接していない場合(発光素子104の裏面において反射層121等が形成されていない部位があり、その部位と銀含有金属103との間に隙間を有する場合等)には、絶縁部材110が銀含有金属103を被覆していない領域がある。この絶縁部材110が被覆していない領域に腐食性ガスが侵入した場合、銀含有金属103は腐食性ガスに晒されるため、腐食する虞がある。
また、図6に示すように、絶縁部材110に、種々の原因によりピンホール131等が発生する場合がある。この場合には、ピンホールから腐食性ガスが侵入し銀含有金属103を腐食させる原因となる。さらには、ワイヤ106の裏面もこの絶縁部材110は被覆されにくいため、ワイヤ106の裏面は発光素子からの光を吸収してしまう。
しかしながら、本実施形態に係る発光装置の製造方法では、第4工程の完了後、凹部109を封止する前に、次の第5工程を有するので、このような事態を防ぐことができる。
However, as shown in FIG. 6, when a part of the outer periphery of the back surface of the light emitting element 104 is not in contact with the silver-containing metal 103 (there is a part where the reflective layer 121 or the like is not formed on the back surface of the light emitting element 104, and that part And the silver-containing metal 103), there is a region where the insulating member 110 does not cover the silver-containing metal 103. When a corrosive gas enters a region not covered with the insulating member 110, the silver-containing metal 103 is exposed to the corrosive gas and may corrode.
In addition, as shown in FIG. 6, pin holes 131 and the like may occur in the insulating member 110 due to various causes. In this case, a corrosive gas enters from the pinhole and corrodes the silver-containing metal 103. Furthermore, since the insulating member 110 is not easily covered on the back surface of the wire 106, the back surface of the wire 106 absorbs light from the light emitting element.
However, since the manufacturing method of the light emitting device according to the present embodiment includes the next fifth step after the fourth step is completed and before the recess 109 is sealed, such a situation can be prevented.

<2−5.第5工程(フィラー形成工程)>
第5工程は、第4工程において成膜した絶縁部材110が形成されていない部位、かつ、銀等の導体部が露出した部位に、フィラーを形成する。
フィラーは、媒質中を電気泳動しやすい形状および大きさとされていることが好ましい。特に、電解液中での電気泳動について、フィラーの形状は、ほぼ球形の粒子状とされていることが好ましい。フィラーの粒径は、10nmから10μmの範囲であることが好ましい。またフィラーの粒径は、100nmから5μmの範囲とすることで、光の散乱の効果が大きくなるため、より好ましい。
<2-5. Fifth step (filler forming step)>
In the fifth step, a filler is formed in a portion where the insulating member 110 formed in the fourth step is not formed and a portion where a conductive portion such as silver is exposed.
The filler is preferably shaped and sized to facilitate electrophoresis in the medium. In particular, for the electrophoresis in the electrolytic solution, it is preferable that the filler has a substantially spherical particle shape. The particle size of the filler is preferably in the range of 10 nm to 10 μm. Moreover, since the effect of light scattering becomes large by making the particle diameter of a filler into the range of 100 nm to 5 micrometers, it is more preferable.

フィラー形成工程は、フィラーを含む溶液中に、発光装置100を配置させる工程と、上記溶液中における電気泳動により、フィラーを上記発光装置に堆積させる工程と、を具備することで形成される。   The filler forming step is formed by including a step of placing the light emitting device 100 in a solution containing the filler and a step of depositing the filler on the light emitting device by electrophoresis in the solution.

電解液によりフィラーを堆積させる方法は、溶液中において、発光装置と対向配置される電極を配置し、この電極に電圧を印加することにより、溶液中で帯電されたフィラーを電気泳動させることで絶縁部材110が形成されていない部位(例えば、発光素子の下部にある接着部材等)や銀含有金属等の導電性部材が露出した部位にフィラーを堆積させるものである。
ここで、フィラーが堆積した厚みは、20μm程度である。
上述したフィラーの電着による形成工程の後、フィラー以外の部材を電着により形成してもよい。
In the method of depositing the filler with the electrolytic solution, an electrode disposed opposite to the light emitting device is disposed in the solution, and voltage is applied to the electrode to cause the filler charged in the solution to be electrophoresed for insulation. The filler is deposited on a portion where the member 110 is not formed (for example, an adhesive member under the light emitting element) or a portion where a conductive member such as a silver-containing metal is exposed.
Here, the thickness on which the filler is deposited is about 20 μm.
After the formation step by electrodeposition of the filler described above, a member other than the filler may be formed by electrodeposition.

フィラーの厚みは、溶液(電解液)中のフィラーの粒径、電気泳動沈着の工程における電圧、その電圧の印加時間などを考慮して決定されるものであるが、本発明の実施形態でのフィラーの堆積する厚みは、1μm以上100μm以下とすることが好ましい。フィラーの堆積する厚みをこの範囲にすることで、フィラーによる散乱効率がよく、光の取り出し効率を向上させることができる。   The thickness of the filler is determined in consideration of the particle size of the filler in the solution (electrolyte), the voltage in the electrophoretic deposition process, the application time of the voltage, and the like in the embodiment of the present invention. The thickness at which the filler is deposited is preferably 1 μm or more and 100 μm or less. By setting the thickness of the filler to be deposited in this range, the scattering efficiency by the filler is good and the light extraction efficiency can be improved.

電着用の電解液には、フィラーを分散させた混合液を用いる。この電解液には、その中を帯電されたフィラーが静電気力を受けて移動することができるものであれば特に材料は限定されない。   As the electrolytic solution for electrodeposition, a mixed solution in which a filler is dispersed is used. The electrolyte is not particularly limited as long as the charged filler can move by receiving electrostatic force.

例えば、電解液にフィラーを溶解させる酸やアルカリ、例えば、アルカリ土類金属のイオン(Mg2+など)を含んだ硝酸を含有させたりすることができる。
また、電解液には金属アルコキシドを含有されてもよい。具体的には、Al、Sn、Si、Ti、Y、Pbあるいはアルカリ土類金属から選択される元素を構成元素として含む有機金属材料である。電解液に含まれる材料としては、その他にも、金属アルコレート、あるいは金属アルコキサイドと有機溶剤とを所定の割合で混合してなるゾル中にフィラーを分散させた混合液を電解液とすることもできる。
その他にも、電解液はイソプロピルアルコールを母液とする溶液に、有機溶剤としてアセトン、有機金属材料としてアルミナゾルおよびフィラーを含有させた混合溶液とすることができる。
For example, an acid or an alkali for dissolving the filler in the electrolytic solution, for example, nitric acid containing ions of alkaline earth metal (such as Mg 2+ ) can be contained.
Further, the electrolytic solution may contain a metal alkoxide. Specifically, it is an organometallic material containing an element selected from Al, Sn, Si, Ti, Y, Pb or an alkaline earth metal as a constituent element. In addition, as a material contained in the electrolytic solution, a mixed solution in which a filler is dispersed in a sol obtained by mixing a metal alcoholate or a metal alkoxide and an organic solvent in a predetermined ratio may be used as the electrolytic solution. it can.
In addition, the electrolytic solution can be a mixed solution in which acetone is used as an organic solvent and alumina sol and a filler are used as an organic metal material in a solution containing isopropyl alcohol as a mother liquor.

<2−6.第6工程(封止部材形成工程)>
第6工程は、発光素子104を被覆する封止部材108を形成し硬化するものである。図8は、凹部109内に封止部材108を充填し、発光素子104を被覆したことを示す図である。このように基体101に凹部109が形成されている場合は、凹部109内に溶融樹脂を注入することで、容易に封止部材108を形成することができる。形成された封止部材108は、加熱や光照射等によって硬化させることができる。封止部材108を硬化する条件は、用いる封止部材108の材料によって適宜選択することができる。なお、封止部材108は単一の部材で形成することもできるし、または、2層以上の複数の層として形成することもできる。
<2-6. Sixth step (sealing member forming step)>
In the sixth step, the sealing member 108 that covers the light emitting element 104 is formed and cured. FIG. 8 is a view showing that the sealing member 108 is filled in the recess 109 and the light emitting element 104 is covered. When the recess 109 is formed in the base 101 as described above, the sealing member 108 can be easily formed by injecting molten resin into the recess 109. The formed sealing member 108 can be cured by heating, light irradiation, or the like. Conditions for curing the sealing member 108 can be appropriately selected depending on the material of the sealing member 108 to be used. Note that the sealing member 108 can be formed of a single member, or can be formed as a plurality of layers of two or more layers.

封止部材108を加熱により硬化する場合には、昇温または降温の温度や時間、雰囲気等について、適宜選択することができる。また、封止部材108を光照射により硬化する場合には、光照射時間や照射光の波長等について、用いる封止部材108の材料に応じて適宜選択することができる。また、加熱と光照射の両方を用いても封止部材108を硬化してもよい。   In the case where the sealing member 108 is cured by heating, the temperature, temperature, time, atmosphere, and the like of temperature increase or decrease can be appropriately selected. Further, when the sealing member 108 is cured by light irradiation, the light irradiation time, the wavelength of the irradiation light, and the like can be appropriately selected according to the material of the sealing member 108 to be used. Further, the sealing member 108 may be cured by using both heating and light irradiation.

[3.発光装置を構成する各部材]
ここでは、3−1.基体、3−2.導電部材、3−3.銀含有金属、3−4.絶縁部材、3−5.フィラー、3−6.ダイボンド部材、3−7.封止部材、3−8.ワイヤ、3−9.波長変換部材、3−10.発光素子、3−11.接着部材、の各節に分けて、発光装置100を構成する各部材について順次説明する。
[3. Each member constituting the light emitting device]
Here, 3-1. Substrate, 3-2. Conductive member, 3-3. Silver-containing metal, 3-4. Insulating member, 3-5. Filler, 3-6. Die bond member, 3-7. Sealing member, 3-8. Wire, 3-9. Wavelength conversion member, 3-10. Light emitting element, 3-11. Each member constituting the light emitting device 100 will be sequentially described in each section of the adhesive member.

<3−1.基体>
本実施形態において、基体101は、発光素子104や保護素子105等の電子部品を保護するとともに、これら電子部品に外部からの電流を供給するための導電部材102A,102Bを備えているものである。基体101の材料としては、絶縁性部材が好ましく、発光素子104からの光や外光等が透過しにくい部材が好ましい。また、ある程度の強度を有するものが好ましく、より具体的には、セラミックス(Al、AlN等)、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン(bismaleimide triazine resin)、PPA(ポリフタルアミド)等の樹脂が挙げられる。基体101の材料が樹脂である場合には、ガラス繊維や無機フィラー(SiO、TiO、Al等)を混合し、機械的強度の向上や熱膨張率の低減、光反射率の向上等を図ることもできる。
<3-1. Base>
In the present embodiment, the base 101 is provided with conductive members 102A and 102B for protecting electronic components such as the light emitting element 104 and the protective element 105 and supplying electric current from the outside to these electronic components. . As a material of the base 101, an insulating member is preferable, and a member that hardly transmits light from the light emitting element 104, external light, or the like is preferable. Moreover, what has a certain amount of strength is preferable, and more specifically, ceramics (Al 2 O 3 , AlN, etc.), phenol resin, epoxy resin, polyimide resin, BT resin (bismaleimide triazine resin), PPA (polyphthalamide) ) And the like. When the material of the substrate 101 is a resin, glass fibers and inorganic fillers (SiO 2 , TiO 2 , Al 2 O 3, etc.) are mixed to improve mechanical strength, reduce thermal expansion, and reflectivity. Improvements can also be achieved.

<3−2.導電部材>
導電部材102A、102Bは、外部と発光素子104とを電気的に接続させるためのものである。導電部材102A、102Bの好ましい材料としては、基体101の材料や基体101の製造方法等に応じて適宜選択することができる。
<3-2. Conductive member>
The conductive members 102A and 102B are for electrically connecting the light emitting element 104 to the outside. A preferable material for the conductive members 102A and 102B can be appropriately selected according to the material of the base 101, the manufacturing method of the base 101, and the like.

例えば、基体101の材料としてセラミックスを用いる場合には、導電部材102A、102Bの材料は、セラミックスシートの焼成温度にも耐え得る高融点を有する部材が好ましく、タングステンやモリブデンのように高融点を有する金属を用いるのが好ましい。   For example, when ceramic is used as the material of the substrate 101, the material of the conductive members 102A and 102B is preferably a member having a high melting point that can withstand the firing temperature of the ceramic sheet, and has a high melting point such as tungsten or molybdenum. It is preferable to use a metal.

また、例えば、基体101の材料としてガラスエポキシ樹脂等を用いる場合には、導電部材102A、102Bの材料は、加工し易い材料が好ましく、具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属または鉄−ニッケル合金、りん青銅、鉄入り銅、モリブデン等が挙げられる。   For example, when glass epoxy resin or the like is used as the material of the substrate 101, the material of the conductive members 102A and 102B is preferably a material that can be easily processed. Specifically, copper, aluminum, gold, silver, tungsten, Examples thereof include metals such as iron and nickel, iron-nickel alloys, phosphor bronze, iron-containing copper, and molybdenum.

また、例えば、基体101が射出成型されたエポキシ樹脂からなる場合には、導電部材102A、102Bの材料は、比較的大きい機械的強度を有する部材が好ましい。また、この場合、導電部材102A、102Bの材料は、打ち抜き加工、エッチング加工、屈曲加工等の加工がし易く、かつ、比較的大きい機械的強度を有する部材が好ましい。具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属または鉄−ニッケル合金、りん青銅、鉄入り銅、モリブデン等が挙げられる。   For example, when the base 101 is made of an injection-molded epoxy resin, the conductive members 102A and 102B are preferably members having a relatively large mechanical strength. In this case, the material of the conductive members 102A and 102B is preferably a member that is easy to be punched, etched, bent, and has a relatively large mechanical strength. Specific examples include metals such as copper, aluminum, gold, silver, tungsten, iron, and nickel, or iron-nickel alloys, phosphor bronze, iron-containing copper, and molybdenum.

<3−3.銀含有金属>
銀含有金属103は、基体101から露出している導電部材102A、102Bの表面に設けられる。銀含有金属103の形成方法は、鍍金法、スパッタ法、蒸着法等を用いることができる。銀含有金属103の材料としては、銀のみでもよいし、銀と、銅、金、アルミニウム、ロジウム等の光反射率の高い金属との合金、もしくは、銀と光反射率の高い金属との多層膜等でもよい。好ましくは、銀単体で構成する。また、銀含有金属103の膜厚は、発光素子104からの光を効率よく反射可能な膜厚とするのが好ましく、具体的には、1nm〜50μm程度が好ましい。なお、銀含有金属103を多層膜とする場合には、多層膜全体の厚さをこの範囲内とすることが好ましい。
<3-3. Silver-containing metal>
The silver-containing metal 103 is provided on the surfaces of the conductive members 102A and 102B exposed from the base 101. As a method for forming the silver-containing metal 103, a plating method, a sputtering method, a vapor deposition method, or the like can be used. The material of the silver-containing metal 103 may be only silver, or an alloy of silver and a metal having a high light reflectance such as copper, gold, aluminum, rhodium, or a multilayer of silver and a metal having a high light reflectance. A film or the like may be used. Preferably, it is composed of silver alone. In addition, the film thickness of the silver-containing metal 103 is preferably a film thickness that can efficiently reflect light from the light emitting element 104, and specifically, about 1 nm to 50 μm is preferable. In addition, when making the silver containing metal 103 into a multilayer film, it is preferable that the thickness of the whole multilayer film shall be in this range.

<3−4.絶縁部材>
絶縁部材110は、主として銀含有金属103上に設けられるものである。絶縁部材110の材料としては、透光性のものが好ましく、また、主として無機化合物を用いることが好ましい。具体的には、SiO、Al、TiO、ZrO、ZnO、Nb、MgO、SrO、In、TaO、HfO、SeO、Y等の酸化物や、SiN、AlN、AlON等の窒化物、MgF等のフッ化物が挙げられる。これらは、単独で用いてもよいし、または、混合して用いてもよい。もしくは、積層させるようにしてもよい。
<3-4. Insulating material>
The insulating member 110 is mainly provided on the silver-containing metal 103. As a material of the insulating member 110, a light-transmitting material is preferable, and it is preferable to mainly use an inorganic compound. Specifically, SiO 2, Al 2 O 3 , TiO 2, ZrO 2, ZnO 2, Nb 2 O 5, MgO, SrO, In 2 O 3, TaO 2, HfO, SeO, oxidation, such as Y 2 O 3 And nitrides such as SiN, AlN, and AlON, and fluorides such as MgF 2 . These may be used alone or in combination. Alternatively, it may be laminated.

絶縁部材110の膜厚については、封止部材108/絶縁部材110の界面や、絶縁部材110/銀含有金属103の界面において多重反射で光の損失が起きないように薄くすることが好ましい一方で、硫黄等のガスが通過しない程度の厚みも必要である。絶縁部材110として用いる材料の種類によって膜厚の好ましい範囲は多少異なるが、絶縁部材110の膜厚は、約1nm〜10μm程度であることが好ましい。絶縁部材110を多層とする場合には、層全体の膜厚がこの範囲内となるようにすることが好ましい。また、硫黄等のガスが通過しにくいよう、絶縁部材110を緻密な膜として形成することが好ましい。   As for the film thickness of the insulating member 110, it is preferable to reduce the film thickness so that light loss does not occur due to multiple reflection at the interface of the sealing member 108 / insulating member 110 and the interface of the insulating member 110 / silver-containing metal 103. Further, a thickness that does not allow gas such as sulfur to pass through is also necessary. Although the preferable range of the film thickness differs somewhat depending on the type of material used for the insulating member 110, the film thickness of the insulating member 110 is preferably about 1 nm to 10 μm. When the insulating member 110 is a multilayer, it is preferable that the film thickness of the entire layer be within this range. In addition, the insulating member 110 is preferably formed as a dense film so that a gas such as sulfur is difficult to pass.

<3−5.フィラー>
フィラー112は、主に銀含有金属103の露出面において、絶縁部材110が形成されていない部位を被覆することで、銀含有金属103の劣化を効果的に抑制するものである。また、絶縁部材が形成されていない部位における銀含有金属が腐食ガスにより硫化されたとしても、フィラーには発光素子からの光や封止樹脂内で波長変換された光に対して反射率が大きいものが用いられるため、銀含有金属103上部のフィラーにより発光素子からの光を反射することができる。
<3-5. Filler>
The filler 112 effectively suppresses the deterioration of the silver-containing metal 103 by covering a portion where the insulating member 110 is not formed mainly on the exposed surface of the silver-containing metal 103. In addition, even if the silver-containing metal in the portion where the insulating member is not formed is sulfided by the corrosive gas, the filler has a high reflectance with respect to light from the light emitting element or light converted in wavelength within the sealing resin. Since those used are used, the light from the light emitting element can be reflected by the filler on the silver-containing metal 103.

フィラーは、白色フィラーであることが好ましく、有機フィラーや無機フィラーを用いることができる。フィラーには、有機フィラーとしては、例えば、ポリスチレン系樹脂、スチレン−アクリル共重合体系樹脂、尿素系樹脂、メラミン系樹脂、アクリル系樹脂、塩化ビニリデン系樹脂、ベンゾグアナミン系樹脂などからなるフィラーが挙げられる。また、無機フィラーとしては、具体的には、例えば、酸化チタン、酸化アルミニウム、水酸化アルミニウム、炭酸マグネシウム、水酸化マグネシウムなどが挙げられる。これらの中でも、隠蔽性が高く、高い拡散反射率が得られる酸化チタンが好ましい。これらは、単一材料を用いてもよいし、または、混合材料として用いてもよい。もしくは、積層させて形成してもよい。
また、ワイヤ106の下面に形成されるフィラー112は、その反射率が、430nm〜490nmの波長域の光(青色光)に対して50%以上であることが好ましい。
The filler is preferably a white filler, and an organic filler or an inorganic filler can be used. Examples of the organic filler include fillers made of polystyrene resin, styrene-acrylic copolymer resin, urea resin, melamine resin, acrylic resin, vinylidene chloride resin, benzoguanamine resin, and the like. . Specific examples of the inorganic filler include titanium oxide, aluminum oxide, aluminum hydroxide, magnesium carbonate, and magnesium hydroxide. Among these, titanium oxide is preferable because of its high concealability and high diffuse reflectance. These may be used as a single material or as a mixed material. Alternatively, they may be laminated.
The filler 112 formed on the lower surface of the wire 106 preferably has a reflectance of 50% or more with respect to light (blue light) in a wavelength region of 430 nm to 490 nm.

<3−6.ダイボンド部材>
ダイボンド工程に用いるダイボンド部材としては、その上に載置される発光素子104を接着固定できるものであれば、特に限定されるものではないが、例えば樹脂組成物を用いる。このダイボンド部材は、基体101の凹部109内の導電部材102A、102B上に銀含有金属103を介して発光素子104や保護素子105等を接合させるための接合部材である。
<3-6. Die Bond Member>
The die bonding member used in the die bonding step is not particularly limited as long as the light emitting element 104 mounted thereon can be bonded and fixed. For example, a resin composition is used. This die bonding member is a bonding member for bonding the light emitting element 104, the protection element 105, and the like to the conductive members 102A and 102B in the concave portion 109 of the base 101 via the silver-containing metal 103.

また、ダイボンド部材に樹脂組成物を用いる場合には、銀、金、パラジウム等の金属の粉末やその他の導電性のある部材を含有させてもよい。このようにすることで、発光素子104を接着固定しつつ、発光素子104と銀含有金属103とを導通させることもできる。   Moreover, when using a resin composition for a die-bonding member, you may contain metal powders, such as silver, gold | metal | money, palladium, and other electroconductive members. In this way, the light emitting element 104 and the silver-containing metal 103 can be electrically connected while the light emitting element 104 is bonded and fixed.

ダイボンド部材としては、例えば発光素子104の材料等に応じて、導電性でも絶縁性でも用いることができる。例えば、発光素子104の基板104a(図4参照)に絶縁性のサファイア基板を用い、この基板上に窒化物半導体層を積層させて積層半導体構造104b(図4参照)を構成して発光素子104を作製した場合、絶縁性のダイボンド部材でも導電性のダイボンド部材でもいずれも用いることができる。また、発光素子104の基板104a(図4参照)に導電性のSiC基板等を用いる場合には、導電性のダイボンド部材を用いることで、銀含有金属103と発光素子104とを導通させることができる。   As the die bond member, for example, depending on the material of the light emitting element 104, the conductive material or the insulating material can be used. For example, an insulating sapphire substrate is used as the substrate 104a (see FIG. 4) of the light-emitting element 104, and a nitride semiconductor layer is stacked on the substrate to form a laminated semiconductor structure 104b (see FIG. 4) to form the light-emitting element 104. In this case, both an insulating die-bonding member and a conductive die-bonding member can be used. When a conductive SiC substrate or the like is used for the substrate 104a (see FIG. 4) of the light-emitting element 104, the silver-containing metal 103 and the light-emitting element 104 can be made conductive by using a conductive die bond member. it can.

絶縁性のダイボンド部材としては、エポキシ樹脂、シリコーン樹脂等を用いることができる。これらの樹脂を用いる場合は、発光素子104からの光や熱による劣化を考慮して、発光素子104裏面に、Ag膜等の反射率の高い金属層を設けることができる。この場合、蒸着法、スパッタリング法、薄膜を接合させる方法等を用いることができる。   An epoxy resin, a silicone resin, or the like can be used as the insulating die bond member. In the case of using these resins, a metal layer having a high reflectance such as an Ag film can be provided on the back surface of the light emitting element 104 in consideration of deterioration due to light or heat from the light emitting element 104. In this case, an evaporation method, a sputtering method, a method for bonding thin films, or the like can be used.

導電性ダイボンド部材としては、銀、金、パラジウム等の導電性ペーストや、Au−Sn共晶等の半田、低融点を有する金属等のろう材を用いることができる。
さらに、これら絶縁性、導電性のダイボンド部材のうち、特に透光性のダイボンド部材を用いる場合は、その中に発光素子104からの光を吸収して異なる波長の光を発光する蛍光部材を含有させることもできる。
As the conductive die bond member, a conductive paste such as silver, gold, or palladium, solder such as Au—Sn eutectic, or a brazing material such as a metal having a low melting point can be used.
Further, among these insulating and conductive die-bonding members, in particular, when a translucent die-bonding member is used, it contains a fluorescent member that absorbs light from the light-emitting element 104 and emits light of different wavelengths. It can also be made.

<3−7.封止部材>
封止部材108は、基体101の凹部109に載置された発光素子104やワイヤ106等を、塵芥、水分や外力等から保護する部材であり、発光素子104からの光を透過可能な透光性を有するものが好ましい。封止部材108の材料としては、具体的には、シリコーン樹脂、エポキシ樹脂、ユリア樹脂等を挙げることができる。このような材料に加え、例えば、着色剤、光拡散剤、フィラー、波長変換部材(蛍光部材)等を含有させることもできる。
<3-7. Sealing member>
The sealing member 108 is a member that protects the light emitting element 104, the wire 106, and the like placed in the concave portion 109 of the base 101 from dust, moisture, external force, and the like, and is a translucent material that can transmit light from the light emitting element 104. Those having properties are preferred. Specific examples of the material of the sealing member 108 include a silicone resin, an epoxy resin, and a urea resin. In addition to such materials, for example, a colorant, a light diffusing agent, a filler, a wavelength conversion member (fluorescent member), and the like can be contained.

封止部材108の充填量は、発光素子104や保護素子105等の電子部品やワイヤ106等が被覆される量であればよい。封止部材108の充填量を必要最小限にする場合には、封止部材108の表面を図示するようにほぼ平坦な形状とする。なお、封止部材108にレンズ機能をもたせる場合には、封止部材108の表面を盛り上がらせて砲弾型形状や凸レンズ形状としてもよい。   The filling amount of the sealing member 108 may be an amount that covers the electronic components such as the light emitting element 104 and the protective element 105, the wire 106, and the like. In the case where the filling amount of the sealing member 108 is minimized, the surface of the sealing member 108 is formed in a substantially flat shape as illustrated. Note that in the case where the sealing member 108 has a lens function, the surface of the sealing member 108 may be raised so as to have a shell shape or a convex lens shape.

<3−8.ワイヤ>
ワイヤ106は、発光素子104の電極端子104c(図4参照)と、基体101の凹部109に配される導電部材102A,102Bとを銀含有金属103を介して接続するものである。ワイヤ106の材料は、金、銅、白金、アルミニウム等の金属およびそれらの合金が挙げられる。特に、熱抵抗等に優れた金を用いることが好ましい。
<3-8. Wire>
The wire 106 connects the electrode terminal 104 c (see FIG. 4) of the light emitting element 104 and the conductive members 102 </ b> A and 102 </ b> B disposed in the recess 109 of the base 101 via the silver-containing metal 103. Examples of the material of the wire 106 include metals such as gold, copper, platinum, and aluminum, and alloys thereof. In particular, it is preferable to use gold having excellent thermal resistance.

<3−9.波長変換部材>
封止部材108中に、波長変換部材として発光素子104からの光の少なくとも一部を吸収して異なる波長を有する光を発する蛍光部材を含有させることもできる。蛍光部材としては、発光素子104からの光を、より長波長に変換させるものの方がよい。蛍光部材は、1種の蛍光物質等を単層で形成してもよいし、2種以上の蛍光物質等が混合された単層を形成してもよいし、1種の蛍光物質等を含有する単層を2層以上積層させてもよいし、2種以上の蛍光物質等がそれぞれ混合された単層を2層以上積層させてもよい。
<3-9. Wavelength conversion member>
The sealing member 108 may include a fluorescent member that emits light having a different wavelength by absorbing at least part of light from the light emitting element 104 as a wavelength conversion member. As the fluorescent member, it is better to convert the light from the light emitting element 104 into a longer wavelength. The fluorescent member may be formed of a single type of fluorescent material or the like, or may be formed of a single layer in which two or more types of fluorescent material are mixed, or contains one type of fluorescent material, etc. Two or more single layers may be stacked, or two or more single layers each of which is mixed with two or more kinds of fluorescent substances may be stacked.

蛍光部材としては、例えば、窒化物系半導体を発光層とする発光素子からの光を吸収し、異なる波長の光に波長変換するものであればよい。
蛍光物質は、例えば、Eu、Ce等のランタノイド系元素で主に賦活される、窒化物系蛍光体、酸窒化物系蛍光体を用いることができる。より具体的には、大別して下記(D1)〜(D3)にそれぞれ記載された中から選ばれる少なくともいずれか1以上であることが好ましい。
(D1)Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活される、アルカリ土類ハロゲンアパタイト、アルカリ土類金属ホウ酸ハロゲン、アルカリ土類金属アルミン酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩等の蛍光体
(D2)Ce等のランタノイド系元素で主に賦活される、希土類アルミン酸塩、希土類ケイ酸塩、アルカリ土類金属希土類ケイ酸塩等の蛍光体
(D3)Eu等のランタノイド系元素で主に賦活される、有機または有機錯体等の蛍光体
As the fluorescent member, for example, any member that absorbs light from a light emitting element having a nitride semiconductor as a light emitting layer and converts the light into light having a different wavelength may be used.
As the fluorescent material, for example, a nitride-based phosphor or an oxynitride-based phosphor that is mainly activated by a lanthanoid element such as Eu or Ce can be used. More specifically, it is preferably at least any one or more selected from the groups described in the following (D1) to (D3).
(D1) Alkaline earth halogen apatite, alkaline earth metal borate, alkaline earth metal aluminate, alkaline earth metal, mainly activated by lanthanoids such as Eu and transition metal elements such as Mn Fluorescent substance such as sulfide, alkaline earth metal thiogallate, alkaline earth metal silicon nitride, germanate, etc. (D2) Rare earth aluminate, rare earth silicate, alkali mainly activated by lanthanoid elements such as Ce Phosphors such as earth metal rare earth silicates (D3) Phosphors such as organic or organic complexes mainly activated by lanthanoid elements such as Eu

中でも、前記(D2)のCe等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体であるYAG(Yttrium Aluminum Garnet)系蛍光体が好ましい。YAG系蛍光体は、次の(D21)〜(D24)などの組成式で表される。
(D21)YAl12:Ce
(D22)(Y0.8Gd0.2Al12:Ce
(D23)Y(Al0.8Ga0.212:Ce
(D24)(Y,Gd)(Al,Ga)12:Ce
Among these, a YAG (Yttrium Aluminum Garnet) phosphor, which is a rare earth aluminate phosphor mainly activated by a lanthanoid element such as Ce in (D2), is preferable. The YAG phosphor is represented by the following composition formula (D21) to (D24).
(D21) Y 3 Al 5 O 12 : Ce
(D22) (Y 0.8 Gd 0.2 ) 3 Al 5 O 12: Ce
(D23) Y 3 (Al 0.8 Ga 0.2) 5 O 12: Ce
(D24) (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce

また、例えば、Yの一部または全部をTb、Lu等で置換してもよい。具体的には、TbAl12:Ce、LuAl12:Ce等でもよい。さらに、前記した蛍光体以外の蛍光体であって、同様の性能、作用、効果を有する蛍光体も使用することができる。 For example, part or all of Y may be substituted with Tb, Lu, or the like. Specifically, Tb 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: may be Ce or the like. Furthermore, phosphors other than the above-described phosphors having the same performance, function, and effect can be used.

<3−10.発光素子>
本実施形態においては、発光素子104として発光ダイオードを用いることが好ましい。発光素子104は、任意の波長のものを選択することができる。例えば、青色(波長430nm〜490nmの光)や緑色(波長490nm〜570nmの光)の発光素子を用いる場合には、ZnSeや窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。また、赤色(波長620nm〜750nmの光)の発光素子としては、GaAlAs、AlInGaP等を用いることができる。さらに、これ以外の材料からなる半導体発光素子を用いることもできる。用いる発光素子の組成や発光色、大きさや、個数等は目的に応じて適宜選択することができる。
<3-10. Light emitting element>
In the present embodiment, it is preferable to use a light emitting diode as the light emitting element 104. The light emitting element 104 can be selected from any wavelength. For example, in the case of using a blue (light with a wavelength of 430 nm to 490 nm) or green (light with a wavelength of 490 nm to 570 nm) light emitting element, ZnSe or a nitride-based semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), and those using GaP can be used. As a red light emitting element (light having a wavelength of 620 nm to 750 nm), GaAlAs, AlInGaP, or the like can be used. Furthermore, a semiconductor light emitting element made of a material other than this can also be used. The composition, emission color, size, number, and the like of the light-emitting element to be used can be appropriately selected depending on the purpose.

発光素子104は、積層半導体構造104b(図4参照)の各半導体層の材料やその混晶比によって発光波長を種々選択することができる。例えば、ダイボンド部材である樹脂組成物111や封止部材108中に蛍光物質を含有させた発光装置を製造する場合には、発光層に用いる半導体として、短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が、その蛍光物質を効率良く励起させる好適なものとして挙げられる。 The light emitting element 104 can select various emission wavelengths depending on the material of each semiconductor layer of the stacked semiconductor structure 104b (see FIG. 4) and the mixed crystal ratio. For example, in the case of manufacturing a light emitting device in which a phosphor material is contained in the resin composition 111 that is a die bond member or the sealing member 108, a nitride semiconductor (In X Al Y Ga 1-X- Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) may be mentioned the fluorescent substance as preferable to efficiently excited.

<3−11.接着部材>
発光素子104の下面(裏面)に成膜する接着部材は、発光素子の電極を発光観測面方向(支持体と反対側)に向けて実装する形態において、例えば、図4に示す反射層121、バリア層122、接着層123等として機能させることができる。
反射層121は、発光素子104によって発光した光を効率的に基板104aや積層半導体構造104bの内部に反射させる層である。このようにすることで、発光素子104の別の露出端面から光を外部に取り出すことができる。具体的な材料としては、Ag、Al、Rh、Pt,Pd等を用いることが好ましい。例えば銀または銀合金を用いると、反射率が高く、光取り出しの良好な素子を得ることができる。
<3-11. Adhesive member>
For example, the reflective member 121 shown in FIG. It can function as the barrier layer 122, the adhesive layer 123, or the like.
The reflective layer 121 is a layer that efficiently reflects the light emitted by the light emitting element 104 to the inside of the substrate 104a or the stacked semiconductor structure 104b. Thus, light can be extracted to the outside from another exposed end surface of the light emitting element 104. As specific materials, Ag, Al, Rh, Pt, Pd, or the like is preferably used. For example, when silver or a silver alloy is used, an element with high reflectivity and good light extraction can be obtained.

バリア層122は、ダイボンド部材を形成するために用いられる成分の拡散を防止するための層である。具体的な材料としては、W,Moなどの高融点を有する材料や、Pt、Ni,Rh、Au等が好ましい。   The barrier layer 122 is a layer for preventing diffusion of components used for forming the die bond member. As specific materials, materials having a high melting point such as W and Mo, Pt, Ni, Rh, Au and the like are preferable.

接着層123は、発光素子104を基体101に接着する層である。具体的な材料としては、In、Pb−Pd系、Au−Ga系、AuとGe,Si,In,Zn,Snとの系、AlとZn,Ge,Mg,Si,Inとの系、CuとGe,Inとの系、Ag−Ge系、Cu−In系の合金を挙げることができる。好ましくは、共晶合金膜が挙げられ、例えば、AuとSnとを主成分とする合金、AuとSiとを主成分とする合金、AuとGeとを主成分とする合金等が挙げられる。中でもAuSnが特に好ましい。   The adhesive layer 123 is a layer that adheres the light emitting element 104 to the base 101. Specific materials include In, Pb—Pd, Au—Ga, Au and Ge, Si, In, Zn, and Sn, Al and Zn, Ge, Mg, Si, and In, Cu And an alloy of Ge and In, an Ag-Ge alloy, and a Cu-In alloy. Preferable examples include eutectic alloy films, such as an alloy mainly composed of Au and Sn, an alloy mainly composed of Au and Si, and an alloy mainly composed of Au and Ge. Of these, AuSn is particularly preferable.

以上、本発明の実施形態について説明したが、本発明は、これに限定されるものではなく、その趣旨を変えない範囲でさまざまに実施することができる。例えば、発光装置100において、発光素子104の下面側に配された反射層121、バリア層122、接着層123の面積は、発光素子104の下面の面積よりも小さいこととしたが、本発明は、これに限定されるものではない。例えば、図9に示す発光装置100Aのように、発光素子104の下面側に配された反射層121、バリア層122、接着層123の面積と、発光素子104の面積とを等しくするように変形することができる。なお、図9では、面積を等しく形成した各層の断面を示したので、断面視で、反射層121、バリア層122、接着層123の幅と、発光素子104の幅とがほぼ等しくなっている。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can implement variously in the range which does not change the meaning. For example, in the light emitting device 100, the areas of the reflective layer 121, the barrier layer 122, and the adhesive layer 123 disposed on the lower surface side of the light emitting element 104 are smaller than the area of the lower surface of the light emitting element 104. However, the present invention is not limited to this. For example, as in the light emitting device 100A illustrated in FIG. 9, the area of the reflective layer 121, the barrier layer 122, and the adhesive layer 123 disposed on the lower surface side of the light emitting element 104 is modified to be equal to the area of the light emitting element 104. can do. Note that FIG. 9 shows a cross section of each layer having the same area, and therefore, the width of the reflective layer 121, the barrier layer 122, and the adhesive layer 123 is substantially equal to the width of the light emitting element 104 in a cross sectional view. .

この変形例の発光装置100Aでは、例えば真空プロセスにより成膜した絶縁部材110が反射層121、バリア層122、接着層123の側面を被覆することが可能である。そのため、フィラー112の被覆領域を低減し、フィラー112の使用量を低減できる。この場合には、フィラー112は、主としてワイヤ106の下面(裏面)と銀含有金属103上に設けた絶縁部材110のピンホール等を被覆する。   In the light emitting device 100A of this modification, for example, the insulating member 110 formed by a vacuum process can cover the side surfaces of the reflective layer 121, the barrier layer 122, and the adhesive layer 123. Therefore, the covering area | region of the filler 112 can be reduced and the usage-amount of the filler 112 can be reduced. In this case, the filler 112 mainly covers the lower surface (back surface) of the wire 106 and the pinhole of the insulating member 110 provided on the silver-containing metal 103.

また、前記実施形態に係る発光装置100は、表面実装型(フェイスアップ)の発光素子104を備えるものとしたが、例えば、図10および図11に示す発光装置100Bのように、フリップチップ型(フェイスダウン)の発光素子104を備えるようにしてもよい。この変形例の発光装置100Bは、2つの発光素子104を備えている。各発光素子104は、金属共晶であるAuSnの接着層123を介して、凹部109内の導電部材102A,102B上の銀含有金属103に固定および導通している。   In addition, the light emitting device 100 according to the embodiment includes the surface mount type (face-up) light emitting element 104. For example, as in the light emitting device 100B illustrated in FIGS. A face-down light emitting element 104 may be provided. The light emitting device 100 </ b> B according to this modification includes two light emitting elements 104. Each light emitting element 104 is fixed and electrically connected to the silver-containing metal 103 on the conductive members 102 </ b> A and 102 </ b> B in the recess 109 through an adhesive layer 123 of AuSn that is a metal eutectic.

また、図11に示すように、例えば、真空プロセスで成膜する絶縁部材110が、スパッタの直進性のために、発光素子104の陰で回り込めない部分には、フィラー112が形成されている。具体的には、発光素子104の陰になって絶縁部材110が成膜されていない導体部として、発光素子104の下面側に配された接着層123の側面等をフィラー112が被覆している。このようなフェイスダウン型の場合、発光素子をワイヤレスにすることができ、ワイヤによる光吸収を防止し、発光面側から光を効率良く取り出すことができる。   In addition, as shown in FIG. 11, for example, a filler 112 is formed in a portion where the insulating member 110 formed by a vacuum process cannot wrap around behind the light emitting element 104 due to the straightness of sputtering. . Specifically, the filler 112 covers the side surface of the adhesive layer 123 disposed on the lower surface side of the light emitting element 104 as a conductor portion where the insulating member 110 is not formed behind the light emitting element 104. . In the case of such a face-down type, the light emitting element can be wireless, light absorption by the wire can be prevented, and light can be efficiently extracted from the light emitting surface side.

また、前記実施形態に係る発光装置100は、可視光領域の光を出力する発光素子104を備えるものとしたが、紫外線や赤外線を出力する発光素子を備える構成とすることもできる。また、前記実施形態に係る発光装置100は、発光素子104および保護素子105を備えるものとしたが、他に受光素子等の電子部品を搭載することもできる。   Moreover, although the light emitting device 100 according to the embodiment includes the light emitting element 104 that outputs light in the visible light region, the light emitting device 100 may include a light emitting element that outputs ultraviolet light or infrared light. Moreover, although the light emitting device 100 according to the embodiment includes the light emitting element 104 and the protection element 105, electronic components such as a light receiving element can also be mounted.

また、前記実施形態に係る発光装置100は、基体101に凹部109が設けられているものとしたが、凹部を設けることなく発光素子104を載置するようにしてもよい。   Further, although the light emitting device 100 according to the above embodiment is provided with the recess 109 in the base 101, the light emitting element 104 may be placed without providing the recess.

また、本明細書は、特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に、実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨で記載されたものではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさ、膜厚、位置関係等は、説明を明確にするため誇張していることがある。   Moreover, this specification does not specify the member shown by the claim as the member of embodiment by any means. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are described with the intention of limiting the scope of the present invention only to that unless otherwise specified. It's just an illustrative example. Note that the size, film thickness, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.

本発明に係る発光装置は、銀含有金属の劣化を抑制することができるため、発光素子からの光を効率良く反射させることができ、光取り出し効率に優れた発光装置であり、各種表示装置、照明器具、ディスプレイ、液晶ディスプレイのバックライト光源、さらには、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置等にも利用することができる。   Since the light emitting device according to the present invention can suppress deterioration of the silver-containing metal, it can efficiently reflect the light from the light emitting element, and is a light emitting device excellent in light extraction efficiency. It can also be used in backlights for lighting fixtures, displays, liquid crystal displays, as well as image reading devices and projector devices in facsimiles, copiers, scanners, and the like.

100,100A,100B 発光装置
101 基体
101A 基体露出部
101B 凹部の側壁
101C 基体の上面
102A、102B 導電部材
103 銀含有金属
104 発光素子
104a 基板
104b 積層半導体構造
104c 電極端子
105 保護素子
106 ワイヤ
107 カソードマーク
108 封止部材
109 凹部
110 絶縁部材
111 ダイボンド部材
112 フィラー
121 反射層
122 バリア層
123 接着層
131 ピンホール
DESCRIPTION OF SYMBOLS 100,100A, 100B Light-emitting device 101 Base | substrate 101A Base | substrate exposed part 101B Side wall of a recessed part 101C Upper surface of base | substrate 102A, 102B Conductive member 103 Silver containing metal 104 Light-emitting element 104a Substrate 104b Laminated semiconductor structure 104c Electrode terminal 105 Protection element 106 Wire 107 Cathode mark 108 Sealing member 109 Recess 110 Insulating member 111 Die bond member 112 Filler 121 Reflective layer 122 Barrier layer 123 Adhesive layer 131 Pinhole

Claims (12)

基体と、
前記基体に設けられた導電部材と、
前記導電部材の少なくとも一部に設けられた銀含有金属と、
前記基体上に載置された発光素子と、
前記基体上に前記発光素子が載置された後に形成される絶縁部材であって、前記発光素子および前記銀含有金属の表面において、一部を被覆する絶縁部材と、前記絶縁部材が形成されていない部位を被覆するように設けられる絶縁性のフィラーと、を備えることを特徴とする発光装置。
A substrate;
A conductive member provided on the substrate;
A silver-containing metal provided on at least a part of the conductive member;
A light emitting element mounted on the substrate;
An insulating member formed after the light emitting element is placed on the base, the insulating member covering a part of the surface of the light emitting element and the silver-containing metal, and the insulating member formed And an insulating filler provided so as to cover a portion that is not present.
前記絶縁性のフィラーは、前記発光素子の外周領域を被覆するように設けられていることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the insulating filler is provided so as to cover an outer peripheral region of the light emitting element. 前記絶縁性のフィラーは、前記発光素子の下部領域を被覆するように設けられていることを特徴とする請求項1又は2に記載の発光装置。 The light-emitting device according to claim 1, wherein the insulating filler is provided so as to cover a lower region of the light-emitting element. 前記導電部材の電極となる部位と前記発光素子の電極端子とを電気的に接続するワイヤを有し、前記ワイヤの上面に前記絶縁部材が形成されており、前記ワイヤの下面に前記絶縁性のフィラーが形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の発光装置。 A wire that electrically connects a portion to be an electrode of the conductive member and an electrode terminal of the light emitting element; the insulating member is formed on an upper surface of the wire; and the insulating material is formed on a lower surface of the wire. The light emitting device according to any one of claims 1 to 3, wherein a filler is formed. 前記ワイヤの下面に形成される絶縁性のフィラーの反射率は、430nm〜490nmの波長域の光に対して50%以上であることを特徴とする請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the reflectance of the insulating filler formed on the lower surface of the wire is 50% or more with respect to light in a wavelength region of 430 nm to 490 nm. 前記発光素子の下面側に、当該発光素子の下面よりも面積が小さい接着層を備えることを特徴とする請求項1ないし請求項5のいずれか一項に記載の発光装置。 The light emitting device according to claim 1, further comprising an adhesive layer having a smaller area than the lower surface of the light emitting element on a lower surface side of the light emitting element. 基体と、
前記基体に設けられた導電部材と、
前記基体上に載置された発光素子と、
前記導電部材の電極となる部位と前記発光素子の電極端子とを電気的に接続するワイヤと、
前記発光装置の少なくとも前記ワイヤを上から被覆するように設けられた絶縁部材と、
前記ワイヤの前記絶縁部材が形成されていない部位を被覆するように設けられる絶縁性のフィラーと、
を備えることを特徴とする発光装置。
A substrate;
A conductive member provided on the substrate;
A light emitting element mounted on the substrate;
A wire for electrically connecting a portion to be an electrode of the conductive member and an electrode terminal of the light emitting element;
An insulating member provided to cover at least the wire of the light emitting device from above;
An insulating filler provided so as to cover a portion of the wire where the insulating member is not formed;
A light emitting device comprising:
前記絶縁性のフィラーは、SiO2、Al23、Al(OH)3、TiO2、ZrO2、ZnO2、Nb25、MgO、MgCO3、Mg(OH)2、SrO、In23、TaO2、HfO、SeO、Y23、SiN、AlN、AlON、MgF2からなる群から選択されることを特徴とする請求項1ないし請求項7のいずれか一項に記載の発光装置。 The insulating filler includes SiO 2 , Al 2 O 3 , Al (OH) 3 , TiO 2 , ZrO 2 , ZnO 2 , Nb 2 O 5 , MgO, MgCO 3 , Mg (OH) 2 , SrO, In 2. 8. The method according to claim 1, wherein the material is selected from the group consisting of O 3 , TaO 2 , HfO, SeO, Y 2 O 3 , SiN, AlN, AlON, and MgF 2 . Light emitting device. 前記絶縁性のフィラーは、前記絶縁部材と異なる材料からなることを特徴とする請求項1ないし請求項8のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 8, wherein the insulating filler is made of a material different from that of the insulating member. 前記発光装置は、封止部材により被覆されており、前記絶縁性のフィラーの隙間には該封止部材が含浸していることを特徴とする請求項1ないし請求項9のいずれか一項に記載の発光装置。 10. The light emitting device according to claim 1, wherein the light emitting device is covered with a sealing member, and the gap between the insulating fillers is impregnated with the sealing member. The light-emitting device of description. 銀含有金属で少なくとも一部が被覆された導電部材が設けられた基体に発光素子を接合するダイボンディング工程と、
前記発光素子および前記銀含有金属の表面の一部に絶縁部材を形成する絶縁部材形成工程と、
前記銀含有金属の表面であって、前記絶縁部材が形成されていない部位に絶縁性のフィラーを形成するフィラー形成工程と、
を有することを特徴とする発光装置の製造方法。
A die bonding step of bonding a light emitting element to a substrate provided with a conductive member at least partially coated with a silver-containing metal;
An insulating member forming step of forming an insulating member on a part of the surface of the light emitting element and the silver-containing metal;
A filler forming step of forming an insulating filler at a portion of the silver-containing metal surface where the insulating member is not formed;
A method for manufacturing a light-emitting device, comprising:
前記ダイボンディング工程の後に、前記銀含有金属を介して前記導電部材の電極となる部位と前記発光素子の電極端子とをワイヤにより電気的に接続するワイヤボンディング工程を有し、
前記絶縁部材形成工程において、前記発光素子、前記銀含有金属および前記ワイヤの少なくとも一部を上から被覆するように絶縁部材を形成し、
前記フィラー形成工程において、前記絶縁部材が形成されていない部位を被覆するように絶縁性のフィラーを電着塗装法または静電塗装法により形成することを特徴とする請求項11に記載の発光装置の製造方法。
After the die bonding step, it has a wire bonding step of electrically connecting a portion to be an electrode of the conductive member via the silver-containing metal and an electrode terminal of the light emitting element with a wire,
In the insulating member forming step, an insulating member is formed so as to cover at least a part of the light emitting element, the silver-containing metal and the wire from above,
12. The light emitting device according to claim 11, wherein, in the filler forming step, an insulating filler is formed by an electrodeposition coating method or an electrostatic coating method so as to cover a portion where the insulating member is not formed. Manufacturing method.
JP2010005208A 2010-01-13 2010-01-13 Light emitting device and method for manufacturing light emitting device Active JP5454154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005208A JP5454154B2 (en) 2010-01-13 2010-01-13 Light emitting device and method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005208A JP5454154B2 (en) 2010-01-13 2010-01-13 Light emitting device and method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2011146480A JP2011146480A (en) 2011-07-28
JP5454154B2 true JP5454154B2 (en) 2014-03-26

Family

ID=44461087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005208A Active JP5454154B2 (en) 2010-01-13 2010-01-13 Light emitting device and method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5454154B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506861A (en) * 2012-10-09 2014-04-16 Oclaro Technology Ltd Optoelectronic assembly
WO2014080583A1 (en) * 2012-11-21 2014-05-30 信越半導体株式会社 Light-emitting apparatus and method for manufacturing same
US11041118B2 (en) 2013-08-29 2021-06-22 Nichia Corporation Fluoride fluorescent material and method for producing the same as well as light emitting device using the same
JP6187509B2 (en) * 2014-03-14 2017-08-30 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US9755116B2 (en) 2014-03-14 2017-09-05 Nichia Corporation Method of manufacturing light emitting device
JP6405810B2 (en) * 2014-09-08 2018-10-17 日本電気株式会社 Module parts manufacturing method
CN104900638B (en) * 2015-05-27 2017-10-24 深圳市华星光电技术有限公司 Light-emitting component package assembly
JP7101455B2 (en) * 2016-01-12 2022-07-15 シチズン電子株式会社 LED package
CN108807645A (en) * 2018-06-26 2018-11-13 江苏罗化新材料有限公司 A kind of LED encapsulation structure and preparation method thereof of flip-chip formal dress

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353858U (en) * 1989-09-29 1991-05-24
JP4069451B2 (en) * 2003-08-26 2008-04-02 セイコーエプソン株式会社 LIGHT SOURCE DEVICE, ITS MANUFACTURING METHOD, AND PROJECTION TYPE DISPLAY DEVICE
JP2007067183A (en) * 2005-08-31 2007-03-15 Showa Denko Kk Led package with compound semiconductor light emitting device
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode
JP5245594B2 (en) * 2007-07-27 2013-07-24 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2009123803A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Light emitting diode device

Also Published As

Publication number Publication date
JP2011146480A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US10230034B2 (en) Light emitting device and method for manufacturing light emitting device
JP5454154B2 (en) Light emitting device and method for manufacturing light emitting device
JP5582048B2 (en) Light emitting device
JP5413137B2 (en) Light emitting device and method for manufacturing light emitting device
JP4858032B2 (en) Light emitting device
JP5747527B2 (en) Method for manufacturing light emitting device
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP4962270B2 (en) Light emitting device and method of manufacturing the same
JP5644352B2 (en) Light emitting device and manufacturing method thereof
JP5724573B2 (en) Light emitting device
JP2011253846A (en) Light emitting device and method for manufacturing the same
JP6102116B2 (en) Method for manufacturing light emitting device
US20160091180A1 (en) Light emitting device, light emitting module, and method for manufacturing light emitting device
US20160053968A1 (en) Light emitting device and method of manufacturing the same
JP5515693B2 (en) Light emitting device
JP7137079B2 (en) Light emitting device and manufacturing method thereof
JP6402914B2 (en) Method for manufacturing light emitting device
JP2008198962A (en) Light emitting device and its manufacturing method
JP2015026872A (en) Light-emitting device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250