JP2012086703A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2012086703A
JP2012086703A JP2010235852A JP2010235852A JP2012086703A JP 2012086703 A JP2012086703 A JP 2012086703A JP 2010235852 A JP2010235852 A JP 2010235852A JP 2010235852 A JP2010235852 A JP 2010235852A JP 2012086703 A JP2012086703 A JP 2012086703A
Authority
JP
Japan
Prior art keywords
torque
clutch
engine
motor
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010235852A
Other languages
English (en)
Other versions
JP5223902B2 (ja
Inventor
裕 ▲高▼村
Yutaka Takamura
Hiroyuki Ashizawa
裕之 芦沢
Haruhisa Tsuchikawa
晴久 土川
Hiroshi Arita
寛志 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010235852A priority Critical patent/JP5223902B2/ja
Publication of JP2012086703A publication Critical patent/JP2012086703A/ja
Application granted granted Critical
Publication of JP5223902B2 publication Critical patent/JP5223902B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 安定したクラッチのトルク容量制御を達成可能なハイブリッド車両の制御装置を提供すること。
【解決手段】 モータを回転数制御しつつエンジンとモータを併用して駆動力を出力すると共に、モータと駆動輪との間の発進クラッチの締結容量をスリップ制御するにあたり、運転者の加速意図を検出し、加速意図があるときは実モータトルクが目標モータトルクとなるようにフィードバックするトルクフィードバック制御を実施し、加速意図がないときはトルクフィードバック制御を停止することとした。
【選択図】 図7

Description

本発明は、エンジン及び/又はモータを動力源とするハイブリッド車両の制御装置に関する。
ハイブリッド車両の制御装置として、特許文献1に記載の技術が開示されている。この公報には、モータと駆動輪との間のクラッチをスリップさせつつエンジンとモータを併用して走行するエンジン使用スリップモードにおいて、モータを回転数制御している際に、目標モータトルクと実モータトルクを比較する。そして、実モータトルクが目標モータトルクよりも大きい場合はクラッチのトルク容量を低下させ、実モータトルクが目標モータトルクよりも小さい場合はクラッチのトルク容量を増大させるトルクフィードバック制御を行うことで、クラッチのトルク容量制御の精度を向上している。
特開2010−83417号公報
しかしながら、エンジントルクがばらついているときに上記のようなトルクフィードバック制御を行うと、このばらつきをクラッチ容量にフィードバックすることで、クラッチの容量を上げすぎたり、下げすぎたりしてしまうおそれがあった。具体的には、クラッチの容量を上げすぎた場合には、車両停止時における引きずりトルクが増大してクラッチの耐久性が低下するおそれがあり、クラッチの容量を下げすぎた場合には、車両発進時における締結容量不足によって発進性が低下するおそれがある。
本発明は、上記問題に着目してなされたもので、安定したクラッチのトルク容量制御を達成可能なハイブリッド車両の制御装置を提供することを目的とする。
上記目的を達成するため、本発明では、モータを回転数制御しつつエンジンとモータを併用して駆動力を出力すると共に、モータと駆動輪との間の発進クラッチの締結容量をスリップ制御するにあたり、運転者の加速意図を検出し、加速意図があるときは実モータトルクが目標モータトルクとなるようにフィードバックするトルクフィードバック制御を実施し、加速意図がないときはトルクフィードバック制御を停止することとした。
よって、エンジントルクがばらついたとしても、クラッチの耐久性を向上させつつ、発進性を向上することができる。
実施例1の後輪駆動のハイブリッド車両を示す全体システム図である。 実施例1の統合コントローラにおける演算処理プログラムを示す制御ブロック図である。 図2の目標駆動力演算部にて目標駆動力演算に用いられる目標駆動力マップの一例を示す図である。 図2の目標充放電演算部にて目標充放電電力の演算に用いられる目標充放電量マップの一例を示す図である。 図2のモード選択部にて目標モードの選択に用いられる通常モードマップを示す図である。 実施例1の統合コントローラにて演算される制御処理を表すフローチャートである。 実施例1のトルクフィードバック実施判定演算処理を表すフローチャートである。 実施例1の回転数制御第2クラッチトルク容量目標値演算処理を表す制御ブロック図である。 トルクフィードバック制御を常に実施する比較例において、実モータトルクが目標モータトルクよりも高く出力されている状態を表すタイムチャートである。 トルクフィードバック制御を常に実施する比較例において、実モータトルクが目標モータトルクよりも低く出力されている状態を表すタイムチャートである。 実施例1において、実モータトルクが目標モータトルクよりも高く出力されている状態を表すタイムチャートである。 実施例1において、クリープ走行時にトルクフィードバック制御を停止した状態から加速意図に基づいて加速するときの状態を表すタイムチャートである。 実施例1において、エンジントルクが不安定な状態から加速意図に基づいて加速するときの状態を表すタイムチャートである。
まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1の後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1(エンジンクラッチ)と、モータジェネレータMGと、第2クラッチCL2(発進クラッチ)と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。尚、FLは左前輪、FRは右前輪である。
エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。尚、エンジン出力軸にはフライホイールFWが設けられている。
第1クラッチCL1は、エンジンクラッチとして、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。尚、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
第2クラッチCL2は、発進クラッチとして、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
自動変速機ATは、前進5速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。尚、別途専用のクラッチを自動変速機ATの上流や下流に追加してもよい。
そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。尚、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。
このハイブリッド駆動系には、第1クラッチCL1及び第2クラッチCL2の締結・開放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。この走行モードでは、モータジェネレータMGをトルク制御して走行する。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。この走行モードでも、エンジンE及びモータジェネレータMG共にトルク制御して走行する。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードであり、エンジンEを所定回転数で駆動しながらモータジェネレータMGを回転数制御し、第2クラッチCL2を所望のスリップ率となるように制御する。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
また、路面勾配が所定値以上における上り坂等で、運転者がアクセルペダルを調整し車両停止状態を維持するアクセルヒルホールドが行われるような場合、WSC走行モードでは、第2クラッチCL2のスリップ量が過多の状態が継続されるおそれがある。エンジンEの回転数をアイドル回転数より小さくすることができないからである。そこで、実施例1では、エンジンEを作動させたまま、第1クラッチCL1を解放し、モータジェネレータMG1を回転数制御により作動させつつ第2クラッチCL2をスリップ制御させ、モータジェネレータMGを動力源として走行するモータスリップ走行モード(以下、「MWSC走行モード」と略称する)を更に備える。
上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。
「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。
定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
ハイブリッド車両の制動系の構成を説明する。4つの車輪RL,RR,FL,FRのそれぞれに、ブレーキディスク901、油圧式のブレーキアクチュエータ902が設けられ、更に、4輪に対応して、ブレーキユニット900は、各ブレーキアクチュエータ902に油圧を供給することにより、制動力を発生させる。
次に、ハイブリッド車両の制御系を説明する。実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。尚、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。
エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、スロットルバルブアクチュエータE1へ出力する。
ここで、エンジンコントローラ1は、スロットルバルブアクチュエータE1に限らず、例えば、吸気側もしくは排気側のバルブタイミングを変更可能な可変バルブタイミングアクチュエータや、バルブのリフト量を変更可能なバルブリフト量可変アクチュエータや、燃料噴射に使用するインジェクターや、プラグ点火タイミング変更アクチュエータ等に対して指令を出力してもよい。尚、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。
モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ3へ出力する。尚、このモータコントローラ2では、バッテリ4の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。
第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット6に出力する。尚、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからのセンサ情報を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット8に出力する。尚、アクセルペダル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ブレーキコントローラ9は、4輪のブレーキアクチュエータ902を制御する指令を4輪のブレーキユニット900に出力して、4輪の制動力を各々制御する。具体的には、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ10aと、前後加速度を検出するGセンサ10bからの情報およびCAN通信線11を介して得られた情報を入力する。
また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・開放制御と、を行う。
以下に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。統合コントローラ10は、目標駆動力演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。
目標駆動力演算部100では、図3に示す目標駆動力マップを用いて、アクセルペダル開度APOと車速VSPとから、目標駆動力tFoO(駆動トルク目標値に相当)を演算する。
モード選択部200は、車速とアクセルペダル開度APOに基づいて図5に示すモードマップにより走行モードを選択する。図5は通常モードマップを表す。通常モードマップ内には、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセルペダル開度APOと車速VSPとから、目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」もしくは「WSC走行モード」を目標モードとする。また、モード選択部200内には、路面の勾配を推定し、推定された路面勾配が所定値以上における上り坂等のときは、WSC走行モードに代えて、MWSC走行モードを選択する。
図5の通常モードマップにおいて、HEV→WSC切換線は、所定アクセル開度APO1未満の領域では、自動変速機ATが1速段のときに、エンジンEのアイドル回転数よりも小さな回転数となる下限車速VSP1よりも低い領域に設定されている。また、所定アクセル開度APO1以上の領域では、大きな駆動力を要求されることから、下限車速VSP1よりも高い車速VSP1'領域までWSC走行モードが設定されている。尚、バッテリSOCが低く、EV走行モードを達成できないときには、発進時等であってもWSC走行モードを選択するように構成されている。
アクセルペダル開度APOが大きいとき、その要求をアイドル回転数付近のエンジン回転数に対応したエンジントルクとモータジェネレータMGのトルクで達成するのは困難な場合がある。ここで、エンジントルクは、エンジン回転数が上昇すればより多くのトルクを出力できる。このことから、エンジン回転数を引き上げてより大きなトルクを出力させれば、例え下限車速VSP1よりも高い車速までWSC走行モードを実行しても、短時間でWSC走行モードからHEV走行モードに遷移させることができる。この場合が図5に示す下限車速VSP1'まで広げられたWSC領域である。
目標充放電演算部300では、図4に示す目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。SOC≧50%のときは、図5の通常モードマップにおいてEV走行モード領域が出現する。モードマップ内に一度EV走行モード領域が出現すると、SOCが35%を下回るまでは、この領域は出現し続ける。SOC<35%のときは、図5の通常モードマップにおいてEV走行モード領域が消滅する。モードマップ内からEV走行モード領域が消滅すると、SOCが50%に到達するまでは、この領域は消滅し続ける。
動作点指令部400では、アクセルペダル開度APOと、目標駆動力tFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータジェネレータトルクと目標第2クラッチ伝達トルク容量と自動変速機ATの目標変速段と第1クラッチソレノイド電流指令を演算する。また、動作点指令部400には、EV走行モードからHEV走行モードに遷移するときにエンジンEを始動するエンジン始動制御部が設けられている。以下、動作点司令部400内の制御構成について説明する。
(駆動トルク目標値演算部)
駆動トルク目標値演算部は、アクセルペダル開度APO情報と車体速度Vsp情報とを入力し、第2クラッチCL2の出力軸における駆動トルク目標値Td *を演算する。駆動トルク目標値Td *は、車体速度Vspが大きくなるほど駆動トルク目標値Td *を小さく、またアクセルペダル開度APOが大きいほど駆動トルク目標値Td *を大きく設定する。
(駆動トルク配分演算部)
駆動トルク配分演算部は、駆動トルク目標値Td *を入力し、モータトルク基本目標値TM_base *、エンジントルク基本目標値TE_base *を演算する。モータトルク基本目標値TM_base *、エンジントルク基本目標値TE_base *は第1クラッチCL1、第2クラッチCL2の締結状況や車両状態に応じて設定する。
(第2クラッチトルク容量基本目標値演算部)
第2クラッチトルク容量基本目標値演算部は、駆動トルク目標値Td *を入力し、第2クラッチトルク容量基本目標値TCL2_base *を演算する。第2クラッチトルク容量基本目標値TCL2_base *は、例えば次の式によって求める。
Figure 2012086703
(スリップ量目標値演算部)
スリップ量目標値演算部は、第1クラッチ制御モードフラグfCL1、第2クラッチトルク容量基本目標値TCL2_base *、クラッチ油温TempCL2、エンジン始動時モータ配分トルクTENG_startを入力し、スリップ量目標値ωCL2_slp *を演算する。ここで、第2クラッチCL2の入力軸回転数は、モータ回転数Nmと一致しているため、入力軸回転数センサとしてモータ回転数センサ21の検出値を使用する。また、第2クラッチCL2の出力軸回転数は第2クラッチ出力回転数センサ22の検出値を使用する。
ここで第1クラッチ制御モードフラグfCL1とは、第1クラッチCL1の締結状態および開放状態を示すフラグであり、fCL1==0のときは開放状態を、fCL1==1のときは締結状態を示す。なお、fCL1==0のときはモータ走行モード(EV走行モード)であり、fCL1==1のときはハイブリッド走行モード(HEV走行モード)またはエンジン始動モードである。例えば低加速での発進といった比較的エンジンの効率が良くない走行シーンではEV走行するために、第1クラッチCL1を開放する(fCL1=0)。また、急加速時、バッテリ充電状態SOCがバッテリ充電状態しきい値SOCth1以下のとき、または車体速度Vspが車体速度しきい値Vspth1以上のときにはEV走行が困難となるため、HEV走行をするために、第1クラッチCL1を締結する(fCL1=1)。
スリップ量目標値ωCL2_slp *は、次の式(2),(3)によって求める。
1) EVモード(fCL1==0)の場合
Figure 2012086703
ここで、fCL2_slp_CL1OPは第2クラッチトルク容量基本目標値TCL2_base *、クラッチ油温TempCL2を入力とした関数であり、予め設定されたマップによりスリップ量目標値ωCL2_slp *を求める。尚、この走行モードはMWSC走行モードであり、詳細については後述する。
2) エンジン始動モード(fCL1==1)の場合
Figure 2012086703
ここで、fCL2_Δωslpはエンジン始動時モータ配分トルクTENG_startを入力とした関数であり、予め設定されたマップによりエンジンEの始動のために必要なスリップ増加量目標値ΔωCL2_slp *を求める。
(入力軸回転数目標値演算部)
入力軸回転数目標値演算部は、スリップ量目標値ωCL2_slp *、出力軸回転数ωoを入力し、入力軸回転数目標値ωCL2i *を演算する。入力軸回転数目標値ωCL2i *は、次の式(4)によって求める。
Figure 2012086703
他の演算部の構成については後述する。
変速制御部500では、シフトマップに示すシフトスケジュールに沿って、目標第2クラッチ伝達トルク容量と目標変速段を達成するように自動変速機AT内のソレノイドバルブを駆動制御する。尚、シフトマップは、車速VSPとアクセルペダル開度APOに基づいて予め目標変速段が設定されたものである。
〔WSC走行モードについて〕
次に、WSC走行モードの詳細について説明する。WSC走行モードとは、エンジンEが作動した状態を維持している点に特徴があり、要求駆動力変化に対する応答性が高い。具体的には、第1クラッチCL1を完全締結し、第2クラッチCL2を要求駆動力に応じた伝達トルク容量TCL2としてスリップ制御し、エンジンE及び/又はモータジェネレータMGの駆動力を用いて走行する。
実施例1のハイブリッド車両では、トルクコンバータのように回転数差を吸収する要素が存在しないため、第1クラッチCL1と第2クラッチCL2を完全締結すると、エンジンEの回転数に応じて車速が決まってしまう。エンジンEには自立回転を維持するためのアイドル回転数による下限値が存在し、このアイドル回転数は、エンジンの暖機運転等によりアイドルアップを行っていると、更に下限値が高くなる。また、要求駆動力が高い状態では素早くHEV走行モードに遷移できない場合がある。ここで、「完全締結」とは、クラッチにスリップ(回転差)が生じていない状態のことを指し、具体的には、クラッチの伝達トルク容量を、その時に伝達すべきトルクよりも十分に大きく設定することによって実現される。
一方、EV走行モードでは、第1クラッチCL1を解放するため、上記エンジン回転数による下限値に伴う制限はない。しかしながら、バッテリSOCに基づく制限によってEV走行モードによる走行が困難な場合や、モータジェネレータMGのみで要求駆動力を達成できない領域では、エンジンEによって安定したトルクを発生する以外に手段がない。
そこで、上記下限値に相当する車速よりも低車速領域であって、かつ、EV走行モードによる走行が困難な場合やモータジェネレータMGのみでは要求駆動力を達成できない領域では、エンジン回転数を所定回転数に維持し、第2クラッチCL2を回転数制御によってスリップ制御させ、エンジントルクを用いて走行するWSC走行モードを選択する。
〔MWSC走行モードについて〕
次に、MWSC走行モードについて説明する。推定勾配が所定勾配より大きいときに、例えば、ブレーキペダル操作を行うことなく車両を停止状態もしくは微速発進状態に維持しようとすると、平坦路に比べて大きな駆動力が要求される。自車両の荷重負荷に対向する必要があるからである。
第2クラッチCL2のスリップによる発熱を回避する観点から、バッテリSOCに余裕があるときはEV走行モードを選択することも考えられる。このとき、EV走行モード領域からWSC走行モード領域に遷移したときにはエンジン始動を行う必要があり、モータジェネレータMGはエンジン始動用トルクを確保した状態で駆動トルクを出力するため、駆動トルク上限値が不要に狭められる。
また、EV走行モードにおいてモータジェネレータMGにトルクだけを出力し、モータジェネレータMGの回転を停止もしくは極低速回転すると、インバータのスイッチング素子にロック電流が流れ(電流が1つの素子に流れ続ける現象)、耐久性の低下を招くおそれがある。
また、1速でエンジンEのアイドル回転数に相当する下限車速VSP1よりも低い領域において、エンジンE自体は、アイドル回転数より低下させることができない。このとき、WSC走行モードを選択すると、第2クラッチCL2のスリップ量が大きくなり、第2クラッチCL2の耐久性に影響を与えるおそれがある。
特に、勾配路では、平坦路に比べて大きな駆動力が要求されていることから、第2クラッチCL2に要求される伝達トルク容量は高くなり、高トルクで高スリップ量の状態が継続されることは、第2クラッチCL2の耐久性の低下を招きやすい。また、車速の上昇もゆっくりとなることから、HEV走行モードへの遷移までに時間がかかり、更に発熱するおそれがある。
そこで、エンジンEを作動させたまま、第1クラッチCL1を解放し、第2クラッチCL2の伝達トルク容量を運転者の要求駆動力に制御しつつ、モータジェネレータMGの回転数が第2クラッチCL2の出力回転数よりも所定回転数高い目標回転数にフィードバック制御するMWSC走行モードを設定した。
言い換えると、モータジェネレータMGの回転状態をエンジンのアイドル回転数よりも低い回転数としつつ第2クラッチCL2をスリップ制御するものである。同時に、エンジンEはアイドル回転数を目標回転数とするフィードバック制御に切り換える。WSC走行モードでは、モータジェネレータMGの回転数フィードバック制御によりエンジン回転数が維持されていた。これに対し、第1クラッチCL1が解放されると、モータジェネレータMGによってエンジン回転数をアイドル回転数に制御できなくなる。よって、エンジンE自体によりエンジン回転数フィードバック制御を行う。
図6は実施例1の統合コントローラにて演算される制御処理を表すフローチャートである。
ステップS01では、各コントローラからデータを受信する。
ステップS02では、各種センサ値を読み込む。
ステップS03では、目標駆動力演算部100において、車速、アクセル開度、ブレーキ制動力に応じた目標駆動力を演算する。
ステップS04では、モード選択部200において、目標駆動力,バッテリSOC,アクセル開度APO,車速VSP等に基づいて目標走行モードを選択する。EV走行モード、HEV走行モード、WSC走行モード、MWSC走行モードのいずれかを走行状態に応じて適宜選択する。
ステップS05では、モータ制御モード選択を演算する。WSC走行モードや、MWSC走行モードでは、モータジェネレータMGを回転数制御し、EV走行モードやHEV走行モードではトルク制御を選択する。
ステップS06では、第2クラッチCL2の目標入力回転数を演算する。例えば、EV走行モードからHEV走行モードへのモード遷移時には、第2クラッチCL2をスリップ締結させ、このときのスリップ回転数の回転角加速度が緩やかに変化するように目標入力回転数を演算する。
ステップS07では、トルクフィードバック実施判定演算を実行し、トルクフィードバック実施フラグを実施又は停止に設定する。尚、トルクフィードバック実施判定演算処理の具体的な内容については後述する。
ステップS08では、目標駆動力及び各種デバイス(クラッチ等のパワートレーン構成部品等)の保護を考慮した目標入力トルクを演算する。
ステップS09では、ステップS08で演算した目標入力トルク及び発電要求を考慮してエンジンE及びモータジェネレータMGへのトルク配分を演算し、それぞれの目標値(目標エンジントルク、目標モータジェネレータトルク)を演算する。
ステップS10では、目標駆動力に応じた目標第2クラッチトルク容量に対し、回転数制御時の実モータトルクと目標モータトルクとの偏差に応じて、目標第2クラッチトルク容量を補正する。尚、回転数制御モータトルク目標値演算部26及び回転数制御第2クラッチトルク容量目標値演算部27の構成については後述する。
図7は実施例1のトルクフィードバック実施判定演算処理を表すフローチャートである。
ステップS100では、低駆動トルク状態判定を実施する。具体的には運転者の加速意図を目標駆動力が所定値以下のときに低駆動トルク状態と判定し、所定値よりも大きいときは通常の駆動トルク状態と判定する。これが加速意図検出手段に相当する。低駆動トルク状態と判定したときはステップS104に進んでトルクフィードバック実施フラグを停止に設定し、それ以外のときはステップS101に進む。
ステップS101では、触媒暖気状態判定を実施する。具体的には、エンジン制御状態が触媒の暖気のためにエンジンアイドルアップを行っているような場合か否かを判断する。エンジンアイドルアップが為されているときは、エンジントルクが目標エンジントルクに追従することが困難な状態であり、エンジントルクがばらつくからである。触媒暖気状態と判定されたときはステップS104に進んでトルクフィードバック実施フラグを停止に設定し、それ以外のときはステップS102に進む。
ステップS102では、エンジントルク過渡状態判定を実施する。具体的には、エンジン自立運転状態及び自立運転状態からトルク制御状態へ切り替わる際のトルク変動を考慮して、トルク制御へ切り替わるタイミングから所定時間をエンジントルク過渡状態と判定する。エンジントルク過渡状態と判定されたときはステップS104に進んでトルクフィードバック実施フラグを停止に設定し、それ以外のときはステップS103に進む。
ステップS103では、トルクフィードバック実施フラグを実施に設定する。
次に、ステップS10において実行される回転数制御モータトルク目標値演算及び回転数制御第2クラッチトルク容量目標値演算の構成について図8を用いて説明する。
(回転数制御モータトルク目標値演算部)
回転数制御モータトルク目標値演算部26では、入力軸回転数目標値ωCL2i *、入力軸回転数ωCL2iを入力し、回転数制御モータトルク目標値TM_FB_ON *を演算する。回転数制御モータトルク目標値演算部26では、入力軸回転数ωCL2iが入力軸回転数目標値ωCL2i *となるようにモータジェネレータMGのトルク目標値を演算している。これにより第2クラッチCL2をスリップ制御するときに、第2クラッチCL2のスリップ量を一定としている。
回転数制御モータトルク目標値TM_FB_ON *は、例えば次の式(5)のようにPI制御の式によって演算し、この式(5)は双一次変換等によって離散化して得られた漸化式を用いて算出する。
Figure 2012086703
ここで「KPm」はモータ制御用比例ゲイン、「KIm」はモータ制御用積分ゲインである。
(回転数制御第2クラッチトルク容量目標値演算部)
回転数制御第2クラッチトルク容量目標値演算部27では、回転数制御モータトルク目標値TM_FB_ON *、第2クラッチトルク容量基本目標値TCL2_base *、エンジントルク基本目標値TE_base *を入力し、回転数制御第2クラッチトルク容量目標値TCL2_LAST *を演算する。図8は実施例1の回転数制御第2クラッチトルク容量目標値演算処理を表す制御ブロック図である。回転数制御第2クラッチトルク容量目標値演算は、フィードフォワード補償とフィードバック補償とからなる2自由度制御手法で設計しており、位相補償部40、エンジントルク推定値演算部41、第2クラッチトルク容量補正目標値演算部42、第2クラッチトルク容量規範値演算部43、加減算部44、第2クラッチトルク容量F/B目標値演算部45、第1加算部46、EV走行時第2クラッチトルク容量F/B目標値記憶部47、第2加算部48、第1フィードバック切り換えスイッチSW1、第2フィードバック切り換えスイッチSW2を有する。
<位相補償部>
位相補償部40では、第2クラッチトルク容量基本目標値TCL2_base *を入力し、第2クラッチトルク容量F/F指令値TCL2_FF *を演算する。第2クラッチトルク容量F/F指令値TCL2_FF *は、例えば次の式(2)のように位相補償フィルタGFF(s)を用いて演算し、この式(6)は双一次変換等によって離散化して得られた漸化式を用いて算出する。
Figure 2012086703
ここで「τCL2」はクラッチモデル時定数、「τCL2_ref」はクラッチ制御用規範応答時定数である。
<エンジントルク推定値演算部>
エンジントルク推定値演算部41では、エンジントルク基本目標値TE_base *を入力し、エンジントルク推定値TE_estを演算する。エンジントルク推定値TE_estは、次の式(3)を用いて算出する。
Figure 2012086703
ここで「τe」はエンジン一次遅れ時定数、「-Le」はエンジンむだ時間である。
<第2クラッチトルク容量補正目標値演算部>
第2クラッチトルク容量補正目標値演算部42は、第2クラッチトルク容量基本目標値TCL2_base *、エンジントルク推定値TE_estを入力し、第2クラッチトルク容量補正目標値TCL2_t *を演算する。第2クラッチトルク容量補正目標値TCL2_t *は、次の式(4), (5)を用いて算出する。
1) EVモード(fCL1==0)である場合
Figure 2012086703
2) HEVモード(fCL2==1)である場合
Figure 2012086703
<第2クラッチトルク容量規範値演算部>
第2クラッチトルク容量規範値演算部43は、第2クラッチトルク容量補正目標値TCL2_t *を入力し、第2クラッチトルク容量規範値TCL2_ref *を演算する。第2クラッチトルク容量規範値TCL2_ref *は、次の式(6)を用いて算出する。
Figure 2012086703
<加減算部>
加減算部44は、第2クラッチトルク容量規範値TCL2_ref *、回転数制御モータトルク目標値TM_FB_ON *を入力し、第2クラッチトルク容量規範値TCL2_ref *と回転数制御モータトルク目標値TM_FB_ON *の偏差を演算する。
<第2クラッチトルク容量F/B指令値演算部>
第2クラッチトルク容量F/B目標値演算部45は、第2クラッチトルク容量規範値TCL2_ref *と回転数制御モータトルク目標値TM_FB_ON *との偏差を入力し、第2クラッチトルク容量F/B指令値TCL2_FB_t *を演算する。第2クラッチトルク容量F/B指令値TCL2_FB_t *は次の式(7)を用いて算出する。
Figure 2012086703
ここで「KPCL2」は第2クラッチ制御用比例ゲイン、「KICL2」は第2クラッチ制御用積分ゲインである。尚、後述する第1フィードバック切り換えスイッチSW1がオフ状態からオン状態に切り換わるときは、最終的な第2クラッチトルク容量目標値TCL2_LAST *と回転数制御モータトルク目標値TM_FB_ON *との偏差を入力し、積分器の初期値にして再開する。これにより、切り替わり時のトルク容量不連続に伴う違和感を生じないように制御する。
<第1フィードバック切り換えスイッチ>
第1フィードバック切り換えスイッチSW1は、トルクフィードバック実施判定結果に基づいて作動するスイッチであり、トルクフィードバック実施フラグが実施のときはオン状態となり、トルクフィードバック実施フラグが停止のときはオフ状態となる。これにより、第1加算部46に第2クラッチトルク容量F/B指令値TCL2_FB_t *が指令されるか否かを切り換える。
<第1加算部>
第1加算部46は、第2クラッチトルク容量F/F指令値TCL2_FF *、第2クラッチトルク容量F/B指令値TCL2_FB_t *を入力し、回転数制御第2クラッチトルク容量目標値TCL2_FB_ON *を演算する。回転数制御第2クラッチトルク容量目標値TCL2_FB_ON *は、第2クラッチトルク容量F/F指令値TCL2_FF *と第2クラッチトルク容量F/B指令値TCL2_FB_t *を加算して算出する。尚、第1フィードバック切り換えスイッチSW1がオフ状態のときは、第2クラッチトルク容量F/F指令値TCL2_FF *=回転数制御第2クラッチトルク容量目標値TCL2_FB_ON *となる。
<EV走行時第2クラッチトルク容量F/B目標値記憶部>
EV走行時第2クラッチトルク容量F/B目標値記憶部47は、MWSC走行モードで走行したときに、同じ駆動トルク範囲において演算された第2クラッチトルク容量F/B指令値TCL2_FB_t *をEV走行時第2クラッチトルク容量F/B記憶値として記憶する記憶部である。尚、記憶値はMWSC走行モードで走行したときの最終結果でも良いし、平均した値を参照してもよい。これら値を採用する際、下記に示すローパスフィルタを施した値を参照してもよい。
1/(τLRN・s+1)
τLRN:学習用時定数
これにより、トルクフィードバック停止時であっても、第2クラッチCL2の個体ばらつきを抑制することができ、良好な運転性を実現する。
<第2フィードバック切り換えスイッチ>
第2フィードバック切り換えスイッチSW2は、トルクフィードバック実施判定結果に基づいて作動するスイッチであり、トルクフィードバック実施フラグが実施のときはオフ状態となり、トルクフィードバック実施フラグが停止のときはオン状態となる。これにより、第2加算部48に記憶されたEV走行時第2クラッチトルク容量F/B目標値が指令されるか否かを切り換える。
<第2加算部>
第2加算部48は、トルクフィードバック制御停止時において、回転数制御第2クラッチトルク容量目標値TCL2_FB_ON *と記憶されたEV走行時第2クラッチトルク容量F/B目標値を入力し、トルクフィードバック停止時における最終的な第2クラッチトルク容量目標値TCL2_LAST *を算出する。トルクフィードバック制御実施時は、第2フィードバック切り換えスイッチSW2がオフ状態のため、特に何も加算されない。
(実施例1の作用効果)
次に、実施例1の作用効果について説明する。
〔トルクフィードバック制御の停止による作用効果〕
図9はトルクフィードバック制御を常に実施する比較例において、実モータトルクが目標モータトルクよりも高く出力されている状態を表すタイムチャートである。初期条件は、ブレーキペダルを踏み、車両が停止している状態で、エンジンが駆動し、モータジェネレータは回生トルクを出力してモータジェネレータMGが回転数制御している。このとき、目標モータトルクよりも実モータトルクが大きい場合には、スリップ量が目標スリップ量よりも少ないために、モータジェネレータのトルクが増大していると判断できるため、トルクフィードバック制御により第2クラッチCL2の締結容量を下げ、スリップ量を増大できるように指令する。しかし、実際には、第2クラッチCL2の締結容量はゼロの状態であるため、指令値としては積分器に負の値が蓄積されてしまう。
この状態で、運転者がブレーキペダルを離し、クリープ走行を要求した場合、第2クラッチトルク容量目標値に対し、実際にトルクフィードバック制御による成分が加算された指令値は第2クラッチトルク容量目標値よりも小さな値となってしまい、発進性が得られない。
図10はトルクフィードバック制御を常に実施する比較例において、実モータトルクが目標モータトルクよりも低く出力されている状態を表すタイムチャートである。初期条件は、図9と同じである。モータジェネレータMGが回転数制御しているときに、目標モータトルクよりも実モータトルクが小さい場合には、スリップ量が目標スリップ量よりも多いために、モータジェネレータトルクが減少していると判断できるため、トルクフィードバック制御により第2クラッチCL2の締結容量を上げ、スリップ量を減少できるように指令する。しかし、車両停止状態で第2クラッチCL2の締結容量を上げたとしても、単に引きずりトルクが大きくなるだけであり、発進性は得られるものの、車両停止時におけるクラッチ磨耗が大きくなって、耐久性が得られない。
図11は実施例1において、実モータトルクが目標モータトルクよりも高く出力されている状態を表すタイムチャートである。初期条件は、上記図9と同じである。このとき、トルクフィードバック制御が停止されるため、図9に示す比較例のように第2クラッチCL2の締結容量を過度に下方に修正するようなことがない。よって、エンジントルクばらつきによらず、WSC走行モードにおける発進時を初めとする加速不良や、第2クラッチCL2の耐久性を向上しつつ良好な運転性を実現することができる。
また、トルクフィードバック制御停止時は、トルクフィードバック項に代えて、EV走行中の同じ駆動トルク範囲で記憶しておいたトルクフィードバック量であるEV走行時第2クラッチトルク容量F/B記憶値が反映されるため、トルクフィードバック制御を停止したときであっても、個体ばらつきを抑制することができるものである。
〔トルクフィードバック停止から実施に切り替えるときの作用効果〕
図12は実施例1において、クリープ走行時にトルクフィードバック制御を停止した状態から加速意図に基づいて加速するときの状態を表すタイムチャートである。初期条件は、ブレーキペダルが離され、アクセルペダル開度APOがゼロのクリープ走行時であり、トルクフィードバック制御は停止されている。このとき、運転者がアクセルペダルを踏み込み、目標駆動力が大きくなって加速意図を示すと、トルクフィードバック制御が停止から実施に切り換えられる。このとき、最終的な第2クラッチトルク容量目標値TCL2_LAST *と回転数制御モータトルク目標値TM_FB_ON *との偏差を入力し、積分器の初期値にして再開する。これにより、切り替わり時のトルク容量不連続に伴う違和感を生じないように制御する。
次に、WSC走行モードが選択されるため、エンジンEとモータジェネレータMGの両方の駆動力が出力されつつ、第2クラッチCL2はスリップ制御が行われる。このとき、トルクフィードバック制御を実施することで、目標モータトルクと実モータトルクとを一致させることができ、精度の高い第2クラッチトルク容量を得ることができるため、第2クラッチCL2を完全締結し、エンジン回転数と出力軸回転数とをスムーズに一致させることで締結に伴うショックを抑制することができる。
〔トルクフィードバック制御の停止から実施に切り換える条件による作用効果〕
図13は実施例1において、エンジントルクが不安定な状態から加速意図に基づいて加速するときの状態を表すタイムチャートである。初期条件は、ブレーキペダルが離され、アクセルペダル開度APOがゼロのクリープ走行時であり、トルクフィードバック制御は停止されている。また、エンジン始動直後であり、触媒暖気等によってエンジントルクは不安定な状態である。このとき、運転者がアクセルペダルを踏み込み、加速意図を示すと、WSC走行モードとなり、モータはトルク制御から回転数制御に移行する。しかし、エンジントルクが不安定な過渡状態にあり、モータジェネレータMGの実トルクがエンジントルクの不安定なトルクを吸収するために目標モータトルクと異なるトルクを出力している状態である。この状態が第2クラッチCL2のクラッチトルク容量に反映されてしまうと、運転性が悪化するため、このときもトルクフィードバック制御を停止する。そして、エンジントルクが安定したと判定されると、トルクフィードバック制御の停止から実施に切り替えられ、トルクフィードバック制御が実施されることで、目標第2クラッチトルク容量が適正な値となり、スムーズな発進を達成することができる。
以上、実施例1は、下記に列挙する作用効果を得ることができる。
(1)駆動源としてのエンジンE及びモータジェネレータMG(モータ)と、
モータジェネレータMGと駆動輪との間に設けられた第2クラッチCL2(クラッチ)と、
第2クラッチCL2の駆動輪側であるクラッチ出力軸の目標駆動力tFo0(駆動トルク目標値)を演算する駆動トルク目標値演算部(駆動トルク目標値演算手段)と、
目標駆動力tFo0に応じた第2クラッチCL2の第2クラッチトルク容量基本目標値TCL2_base *を演算する第2クラッチトルク容量基本目標値演算部(トルク容量基本目標値演算手段)と、
第2クラッチCL2のモータジェネレータMG側であるクラッチ入力軸の回転数である入力軸回転数ωCL2iを検出するモータ回転数センサ21(入力軸回転数検出手段)と、
前記発進クラッチ出力軸の回転数である出力軸回転数ωCL2oを検出する第2クラッチ出力回転数センサ22(出力軸回転数検出手段)と、
出力軸回転数ωCL2oに応じて、入力軸回転数の目標値である入力軸回転数目標値ωCL2i *を演算する入力軸回転数目標値演算部(入力軸回転数目標値演算手段)と、
入力軸回転数ωCL2iと入力軸回転数目標値ωCL2i *とが一致するように前記モータを制御する回転数制御を行う際の前記モータの出力トルクである回転数制御モータトルク目標値TM_FB_ON *(モータトルク)を演算する回転数制御モータトルク目標値演算部26(モータトルク演算手段)と、
エンジンEの出力トルクであるエンジントルク推定値TE_estを検出するエンジントルク推定値演算部41(エンジントルク検出手段)と、
駆動トルク目標値からエンジントルク推定値TE_estを差し引いた第2クラッチトルク容量補正目標値TCL2_t *(目標モータトルク)を演算し(目標モータトルク演算手段)、
回転数制御を実施しているときに、回転数制御モータトルク目標値TM_FB_ON *(モータトルク)が第2クラッチトルク容量補正目標値TCL2_t *(目標モータトルク)よりも大きい場合は第2クラッチトルク容量基本目標値TCL2_base *(トルク容量基本目標値)を低下させる補正量を出力し、それ以外のときは第2クラッチトルク容量基本目標値TCL2_base *(トルク容量基本目標値)を上昇させる補正量を出力するトルクフィードバック制御を行うトルクフィードバック制御手段と、
回転数制御モータトルク目標値TM_FB_ON *(モータトルク)と、第2クラッチトルク容量基本目標値TCL2_base *(トルク容量基本目標値)と、前記補正量とに基づいて最終的な第2クラッチトルク容量目標値TCL2_LAST *を出力する第1加算部46(トルク容量演算手段)と、
運転者の加速意図を検出するステップS100(加速意図検出手段)と、
を備え、
トルクフィードバック制御手段は、前記加速意図が検出されないときはトルクフィードバック制御を停止し、前記加速意図が検出されたときはトルクフィードバック制御を実施する。
よって、エンジントルクがばらついたとしても、クラッチの耐久性を向上させつつ、発進性を向上することができる。
(2)エンジンEとモータジェネレータMGの間に設けられた第1クラッチCL1(第2のクラッチ)を有し、この第1クラッチCL1を解放しモータジェネレータの駆動力で走行するMWSC走行モード(電動走行モード)を有し、
トルクフィードバック制御手段は、MWSC走行モードにおいて回転数制御を実施したときの補正量を記憶するEV走行時第2クラッチトルク容量F/B目標値記憶部47(記憶部)を有し、トルクフィードバック制御を停止しているときは、記憶された補正量を出力する。
よって、トルクフィードバック制御を停止しているときであっても、第2クラッチCL2の個体ばらつきを抑制することができ、良好な運転性を実現できる。
(3)トルクフィードバック制御手段は、トルクフィードバック制御を停止から実施に切り替えるときは、第2クラッチトルク容量補正目標値TCL2_t *(目標モータトルク)の初期値として最終的な第2クラッチトルク容量目標値TCL2_LAST *を使用する。
よって、停止から実施への切り換わり時における第2クラッチトルク容量の不連続を無くすことができ、運転者に与える違和感を回避することができる。
(4)トルクフィードバック制御手段は、トルクフィードバック制御を停止しているときに加速意図が検出されたとしても、エンジンのトルクが不安定な状態であると検出したときは、トルクフィードバック制御の停止を継続する(ステップS101,S102)。
よって、エンジントルクの不安定な状態を第2クラッチトルク容量に反映させることを回避することで、安定したクラッチ制御を達成できる。
(5)エンジンのトルクが不安定な状態とは、エンジンが触媒暖気状態である。触媒暖気状態のときにフィードバック制御の停止を継続することで、安定したクラッチ制御を達成できる。
(6)エンジンのトルクが不安定な状態とは、エンジンが自立回転状態、もしくは自立運転状態からトルク制御状態への切り換わりから所定時間である。これらのときにフィードバック制御の停止を継続することで、安定したクラッチ制御を達成できる。
以上、実施例1に基づいて説明したが、上記構成に限られず本発明の範囲を逸脱しない範囲で他の構成を取り得る。実施例1では、FR型のハイブリッド車両について説明したが、FF型のハイブリッド車両であっても構わない。また、第2クラッチCL2を自動変速機内のクラッチを流用する構成を示したが、モータジェネレータと自動変速機との間に発進クラッチを別途設けてもよいし、自動変速機と駆動輪との間に別途設けてもよい。
E エンジン
CL1 第1クラッチ
MG モータジェネレータ
CL2 第2クラッチ
AT 自動変速機
1 エンジンコントローラ
2 モータコントローラ
3 インバータ
4 バッテリ
5 第1クラッチコントローラ
6 第1クラッチ油圧ユニット
7 ATコントローラ
8 第2クラッチ油圧ユニット
9 ブレーキコントローラ
10 統合コントローラ
24 ブレーキ油圧センサ
100 目標駆動力演算部
200 モード選択部
300 目標充放電演算部
400 動作点指令部
900 ブレーキユニット

Claims (6)

  1. 駆動源としてのエンジン及びモータと、
    前記モータと駆動輪との間に設けられた発進クラッチと、
    前記発進クラッチの駆動輪側であるクラッチ出力軸の駆動トルク目標値を演算する駆動トルク目標値演算手段と、
    前記駆動トルク目標値に応じた前記発進クラッチのトルク容量基本目標値を演算するトルク容量基本目標値演算手段と、
    前記発進クラッチの前記モータ側であるクラッチ入力軸の回転数である入力軸回転数を検出する入力軸回転数検出手段と、
    前記発進クラッチ出力軸の回転数である出力軸回転数を検出する出力軸回転数検出手段と、
    前記出力軸回転数に応じて、前記入力軸回転数の目標値である入力軸回転数目標値を演算する入力軸回転数目標値演算手段と、
    前記入力軸回転数と前記入力軸回転数目標値とが一致するように前記モータを制御する回転数制御を行う際の前記モータの出力トルクであるモータトルクを演算するモータトルク演算手段と、
    前記エンジンの出力トルクであるエンジントルクを検出するエンジントルク検出手段と、
    前記駆動トルク目標値から前記エンジントルクを差し引いた目標モータトルクを演算する目標モータトルク演算手段と、
    前記回転数制御を実施しているときに、前記モータトルクが前記目標モータトルクよりも大きい場合は前記トルク容量基本目標値を低下させる補正量を出力し、それ以外のときは前記トルク容量基本目標値を上昇させる補正量を出力するトルクフィードバック制御を行うトルクフィードバック制御手段と、
    前記モータトルクと、前記トルク容量基本目標値と、前記補正量とに基づいて最終的なトルク容量目標値を出力するトルク容量演算手段と、
    運転者の加速意図を検出する加速意図検出手段と、
    を備え、
    前記トルクフィードバック制御手段は、前記加速意図が検出されないときは前記トルクフィードバック制御を停止し、前記加速意図が検出されたときは前記トルクフィードバック制御を実施することを特徴とするハイブリッド車両の制御装置。
  2. 請求項1に記載のハイブリッド車両の制御装置において、
    前記エンジンと前記モータの間に設けられたエンジンクラッチを有し、該エンジンクラッチを解放し前記モータの駆動力で回転数制御により走行する電気自動車走行モードを有し、
    前記トルクフィードバック制御手段は、前記電気自動車走行モードにおいて前記回転数制御を実施したときの前記補正量を記憶する記憶部を有し、前記トルクフィードバック制御を停止しているときは、前記記憶された補正量を出力することを特徴とするハイブリッド車両の制御装置。
  3. 請求項1または2に記載のハイブリッド車両の制御装置において、
    前記トルクフィードバック制御手段は、前記トルクフィードバック制御を停止から実施に切り替えるときは、前記目標モータトルクの初期値として前記最終的なトルク容量目標値を使用することを特徴とするハイブリッド車両の制御装置。
  4. 請求項1ないし3いずれか1つに記載のハイブリッド車両の制御装置において、
    前記トルクフィードバック制御手段は、前記トルクフィードバック制御を停止しているときに前記加速意図が検出されたとしても、前記エンジンのトルクが不安定な状態であると検出したときは、前記トルクフィードバック制御の停止を継続することを特徴とするハイブリッド車両の制御装置。
  5. 請求項4に記載のハイブリッド車両の制御装置において、
    前記エンジンのトルクが不安定な状態とは、前記エンジンが触媒暖気状態であることを特徴とするハイブリッド車両の制御装置。
  6. 請求項4または5に記載のハイブリッド車両の制御装置において、
    前記エンジンのトルクが不安定な状態とは、前記エンジンが自立回転状態、もしくは自立運転状態からトルク制御状態への切り換わりから所定時間であることを特徴とするハイブリッド車両の制御装置。
JP2010235852A 2010-10-20 2010-10-20 ハイブリッド車両の制御装置 Active JP5223902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235852A JP5223902B2 (ja) 2010-10-20 2010-10-20 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235852A JP5223902B2 (ja) 2010-10-20 2010-10-20 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2012086703A true JP2012086703A (ja) 2012-05-10
JP5223902B2 JP5223902B2 (ja) 2013-06-26

Family

ID=46258798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235852A Active JP5223902B2 (ja) 2010-10-20 2010-10-20 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP5223902B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083417A (ja) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd 車両の制御装置
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010202153A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 車両用クラッチ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083417A (ja) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd 車両の制御装置
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010202153A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 車両用クラッチ制御装置

Also Published As

Publication number Publication date
JP5223902B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5454698B2 (ja) ハイブリッド車両の制御装置
JP5401999B2 (ja) 車両のトラクション制御装置
JP5496454B2 (ja) ハイブリッド車両の制御装置
JP5141305B2 (ja) ハイブリッド車両の制御装置
JP5693152B2 (ja) 車両の油圧制御装置
JP5742248B2 (ja) 車両の制御装置
JP2009162291A (ja) 車両の発進制御装置
JP5724291B2 (ja) 車両の制御装置
JP2010155590A (ja) ハイブリッド車両の発進制御装置。
JP5672950B2 (ja) 車両の制御装置
JP6492908B2 (ja) ハイブリッド車両の制御装置
JP2012131497A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法
JP2010269642A (ja) ハイブリッド車両の制動制御装置
JP2012091601A (ja) 車両の制御装置
JP2007099022A (ja) ハイブリッド車両の発電制御装置
JP2012086705A (ja) ハイブリッド車両の制御装置
JP5696430B2 (ja) 車両の制御装置
JP5309676B2 (ja) 車両の発進制御装置
JP5223378B2 (ja) 車両の発進制御装置
JP5223902B2 (ja) ハイブリッド車両の制御装置
JP5251958B2 (ja) ハイブリッド車両の制御装置
JP5590204B2 (ja) 車両のトラクション制御装置
JP5725087B2 (ja) ハイブリッド車両の制御装置
JP5699533B2 (ja) ハイブリッド車両の制御装置
JP5699535B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3