JP2012086269A - Rosin-based flux for soldering and solder paste - Google Patents

Rosin-based flux for soldering and solder paste Download PDF

Info

Publication number
JP2012086269A
JP2012086269A JP2011208235A JP2011208235A JP2012086269A JP 2012086269 A JP2012086269 A JP 2012086269A JP 2011208235 A JP2011208235 A JP 2011208235A JP 2011208235 A JP2011208235 A JP 2011208235A JP 2012086269 A JP2012086269 A JP 2012086269A
Authority
JP
Japan
Prior art keywords
component
rosin
flux
soldering
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011208235A
Other languages
Japanese (ja)
Other versions
JP5246452B2 (en
Inventor
Tetsuya Yoshimoto
哲也 吉本
Takashi Nakatani
隆 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2011208235A priority Critical patent/JP5246452B2/en
Publication of JP2012086269A publication Critical patent/JP2012086269A/en
Application granted granted Critical
Publication of JP5246452B2 publication Critical patent/JP5246452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D193/00Coating compositions based on natural resins; Coating compositions based on derivatives thereof
    • C09D193/04Rosin

Abstract

PROBLEM TO BE SOLVED: To provide rosin-based flux for soldering hardly scattered in soldering, and moreover, capable of suppressing heating droop of a solder paste.SOLUTION: As a base material, a rosin derivative hydride including a maleopimaric acid anhydride and having a melt viscosity of 100-1,000 mPa s/180°C is used.

Description

本発明は、ハンダ付用ロジン系フラックスおよびソルダーペーストに関する。   The present invention relates to a rosin flux for soldering and a solder paste.

電子デバイスの高機能化や小型・軽量化が進むにつれ、部品やパターンは以前に増して微小化、高精細化しており、表面実装基板はもはや、マイクロソルダリングと呼ばれる微小ハンダ接合技術なくして製造できない時代となっている。   As electronic devices become more sophisticated, smaller and lighter, components and patterns have become smaller and finer than before, and surface-mount substrates are no longer manufactured without a micro soldering technique called micro soldering. It is an era when it cannot be done.

マイクロソルダリングでは通常、基板に設けた微少な端子電極上に、ペースト状のフラックスと粉末状のハンダ合金との混合物であるソルダーペーストをスクリーン印刷した後、印刷後の基板をリフロー炉と呼ばれる加熱炉に通すことによって、ハンダ付けが行われる。また、リフロー炉では通常、プレヒートと呼ばれる予備加熱の後に、ハンダ合金を溶融させるためのメインヒートと呼ばれる本加熱が行われるが、ハンダ合金として鉛フリー合金を使用した場合には、メインヒートの温度が300℃を超えることもある。   In micro soldering, solder paste, which is a mixture of paste-like flux and powder-like solder alloy, is usually screen-printed on a small terminal electrode provided on the substrate, and then the printed substrate is heated called a reflow oven. Soldering is performed by passing it through a furnace. Also, in a reflow furnace, a main heating called a main heat for melting a solder alloy is usually performed after a preheating called a preheating, but when a lead-free alloy is used as the solder alloy, the temperature of the main heat is increased. May exceed 300 ° C.

前記フラックスとしては一般に、ロジン類やその誘導体をベース材とするロジン系フラックスが使用されることが多い。これは、プレヒート時には端子電極上に載置されたソルダーペーストの形状を維持する作用が、また、メインヒート時には、ハンダ合金と端子電極のぬれを促進する作用(活性作用)が得られるためである。   In general, a rosin flux based on rosins or derivatives thereof is often used as the flux. This is because the action of maintaining the shape of the solder paste placed on the terminal electrode during preheating and the action of promoting the wetting of the solder alloy and the terminal electrode (active action) during the main heating are obtained. .

しかし、ロジン類やその誘導体は一般に熱可塑性の素材であるため、ハンダ付けの際に端子電極上でソルダーペーストが加熱だれすることがある。特に、鉛フリーハンダ合金を使用した場合にはメインヒートの温度が高くなるため加熱だれが生じ易くなり、ひどい場合にはフラックスとともに未溶融のハンダ粉末が端子電極周囲に流れ出し、ハンダボールや端子電極間のブリッジとなって、表面実装基板の絶縁信頼性が著しく損なわれることがある。   However, since rosins and their derivatives are generally thermoplastic materials, the solder paste may be heated on the terminal electrodes during soldering. In particular, when a lead-free solder alloy is used, the temperature of the main heat becomes high, so heating is likely to occur. In severe cases, unmelted solder powder flows out around the terminal electrode together with the flux, and solder balls and terminal electrodes In some cases, the insulation reliability of the surface mount substrate may be significantly impaired.

そこで、ロジン類を使用せずに加熱だれの問題を解消することが検討されており、例えば特許文献1には、アルコール変性ジシクロペンタジエン系樹脂の水素化物を使用したフラックスが開示されている。しかし、その効果は十分でない。   Therefore, it has been studied to solve the problem of heating without using rosins. For example, Patent Document 1 discloses a flux using a hydride of an alcohol-modified dicyclopentadiene resin. However, the effect is not enough.

また、ロジン類は天然物であり様々な低沸点成分を含んでいることから、ロジン系フラックスを使用した場合には、ハンダ付け時にソルダーペーストからフラックス成分が飛散して実装基板表面やリフロー炉内部に多量に付着することがある。特にコネクタパターン等に残渣が付着すると絶縁不良の原因ともなるため、業界では、例えばリフロー炉にフラックス回収装置を組み込んだり、ハンダ付後に実装基板を洗浄したりする等の措置が採られているが、いずれも製造工程の煩雑化やコスト高を招くため望ましくはない。   Also, since rosins are natural products and contain various low-boiling components, when rosin flux is used, the flux components scatter from the solder paste during soldering, and the surface of the mounting board or inside the reflow furnace May adhere to large amounts. In particular, if residue adheres to the connector pattern, etc., it may cause insulation failure, so the industry has taken measures such as incorporating a flux recovery device in a reflow furnace or cleaning the mounting board after soldering. , Both of which are not desirable because they lead to complicated manufacturing processes and high costs.

フラックスの飛散を防止する手段としては種々知られているが、例えば特許文献2には、低沸点成分の含有率を7重量%未満に調整した蒸留ロジンを使用したロジン系フラックスが提案されている。しかし、リフロー炉においてソルダーペーストが加熱だれしやすく、ハンダボールが多く発生するという問題がある。   Various means are known as means for preventing flux scattering. For example, Patent Document 2 proposes a rosin-based flux using distilled rosin in which the content of low-boiling components is adjusted to less than 7% by weight. . However, there is a problem that the solder paste is easily heated in the reflow furnace and a lot of solder balls are generated.

特開2009−154170号公報JP 2009-154170 A 特開2008−62241号公報JP 2008-62241 A

本発明は、ソルダーペーストの加熱だれを抑制でき、かつハンダ付時の飛散が殆どないロジン系フラックスを提供することを主たる課題とする。   It is a main object of the present invention to provide a rosin-based flux that can suppress the solder paste from being heated and has almost no scattering during soldering.

本発明者は、鋭意検討した結果、下記構造式(1)で表されるマレオピマル酸無水物類(a−1)を含み、かつ溶融粘度が100〜1000mPa・s/180℃であるロジン誘導体水素化物(A)を含むフラックスにより前記課題を解決できることを見出した。   As a result of intensive studies, the present inventor has developed a rosin derivative hydrogen containing a maleopimaric anhydride (a-1) represented by the following structural formula (1) and having a melt viscosity of 100 to 1000 mPa · s / 180 ° C. It has been found that the above-mentioned problem can be solved by a flux containing the chemical (A).

(式(1)中、破線部はそこに炭素−炭素結合が存在してよいことを意味する。) (In formula (1), the broken line means that a carbon-carbon bond may exist there.)

本発明のハンダ付用ロジン系フラックス(以下、単にフラックスということがある。)によれば、ハンダ付け時の加熱だれやフラックス成分の飛散が少ないソルダーペーストを得ることができる。また、ハンダ接合部が耐クラック性に優れたフラックス残渣で被覆されるため、例えば水分の付着によるマイグレーションが発生し難いと考えられる。その他、当該皮膜は色調にも優れることから、実装基板の仕上がり感、視認性が良好になる。また、そうした効果は融点が高い鉛フリーハンダ粉を使用した場合にも同様に得られることから、本発明のフラックスは特に鉛フリーハンダ用途に適している。なお、本発明のハンダ付用ロジン系フラックスは、端子電極をコーティングするためのポストフラックスや、やに入りハンダに用いるフラックスとしても好適である。   According to the rosin flux for soldering of the present invention (hereinafter sometimes simply referred to as “flux”), a solder paste can be obtained with little heating dripping and flux component scattering during soldering. Moreover, since the solder joint is covered with a flux residue having excellent crack resistance, it is considered that migration due to adhesion of moisture hardly occurs. In addition, since the film is excellent in color tone, the finished feeling and visibility of the mounting substrate are improved. In addition, since such an effect can be obtained in the same manner when lead-free solder powder having a high melting point is used, the flux of the present invention is particularly suitable for use in lead-free solder. In addition, the rosin flux for soldering of the present invention is also suitable as a post flux for coating the terminal electrode or a flux used for the solder that enters the terminal.

本発明のフラックスは、ベース材として、下記構造式(1)で表されるマレオピマル酸無水物(a−1)(以下、(a−1)成分という)を含むロジン誘導体水素化物(A)(以下、(A)成分という)を使用したものである。   The flux of the present invention comprises, as a base material, a rosin derivative hydride (A) containing a maleopimaric anhydride (a-1) represented by the following structural formula (1) (hereinafter referred to as component (a-1)) ( Hereinafter, (A) component) is used.

(式(1)中、破線部はそこに炭素−炭素結合が存在してよいことを意味する。) (In formula (1), the broken line means that a carbon-carbon bond may exist there.)

式(1)は、具体的には、下記構造式(1−2)で表すジヒドロ無水マレオピマル酸および/または下記構造式(1−3)で表される無水マレオピマル酸を意味する。   Specifically, the formula (1) means dihydromaleopimaric acid represented by the following structural formula (1-2) and / or maleopimaric anhydride represented by the following structural formula (1-3).

(A)成分の製造方法は特に制限されないが、例えば、(ア)α,β不飽和ジカルボン酸類とロジン類とのディールス・アルダー反応物を水素化する方法や、(イ)当該ディールス・アルダー反応物から公知の方法で単離した変性樹脂酸(米国特許2628226号等参照)の水素化物を使用する方法、(ウ)ロジン類から公知の方法で単離したレボピマル酸(J.Am.Chem.Soc.70,334(1948)等参照)とα,β不飽和ジカルボン酸類とのディールス・アルダー反応物の水素化物を使用する方法が挙げられる。工業的には(ア)の方法が簡便であり、以下、この方法について詳述する。   The method for producing the component (A) is not particularly limited. For example, (a) a method of hydrogenating a Diels-Alder reaction product of α, β-unsaturated dicarboxylic acids and rosins, or (a) the Diels-Alder reaction. A method using a hydride of a modified resin acid isolated from a product by a known method (see US Pat. No. 2,628,226, etc.), (u) Levopimaric acid isolated from a rosin by a known method (J. Am. Chem. Soc., 70, 334 (1948), etc.) and a hydride of a Diels-Alder reaction product of α, β unsaturated dicarboxylic acids. Industrially, method (a) is simple and will be described in detail below.

α,β不飽和ジカルボン酸類としては、無水マレイン酸、マレイン酸、フマル酸等が挙げられる。また、ロジン類としては、ガムロジン、ウッドロジン、トール油ロジン等の原料ロジン類が挙げられる。なお、該原料ロジン類は、耐加熱だれ性やハンダボールの抑制、フラックス残渣の色調等の観点より、減圧蒸留法や水蒸気蒸留法、抽出法、再結晶法等の手段で精製し、低沸分を除去したもの(以下、精製ロジンという)として使用するのが好ましい。   Examples of α, β unsaturated dicarboxylic acids include maleic anhydride, maleic acid, fumaric acid and the like. Examples of rosins include raw material rosins such as gum rosin, wood rosin and tall oil rosin. The raw rosins are purified by means of a vacuum distillation method, a steam distillation method, an extraction method, a recrystallization method or the like from the viewpoint of heat dripping resistance, suppression of solder balls, color tone of the flux residue, etc. It is preferably used as a product from which the components have been removed (hereinafter referred to as purified rosin).

前記精製手段の条件は特に制限されず、例えば減圧蒸留法の場合には、温度が通常200〜300℃程度、0.01〜3kPa程度である。また、水蒸気蒸留法の場合には、温度が200〜300℃程度であり、常圧下で0.1〜1MPa程度に加圧した水蒸気を反応系に吹き込む。抽出法の場合には、前記ロジン類をアルカリ水溶液とし、該水溶液中で溶けていない不ケン化物を各種の有機溶媒により抽出した後、残った水層を中和する。再結晶法では、前記ロジン類を良溶媒としての有機溶媒に溶解し、ついで該有機溶媒を留去して濃厚な溶液となし、更に貧溶媒としての有機溶媒を加えることにより、目的とする精製ロジンが得られる。有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン等のケトン類;n−ヘキサン、n−ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロヘキサン、デカリン等の脂環族炭化水素類等が挙げられる。   The conditions of the purification means are not particularly limited. For example, in the case of a vacuum distillation method, the temperature is usually about 200 to 300 ° C. and about 0.01 to 3 kPa. In the case of the steam distillation method, the temperature is about 200 to 300 ° C., and steam that is pressurized to about 0.1 to 1 MPa under normal pressure is blown into the reaction system. In the case of the extraction method, the rosin is used as an alkaline aqueous solution, unsaponifiable matter not dissolved in the aqueous solution is extracted with various organic solvents, and the remaining aqueous layer is neutralized. In the recrystallization method, the rosins are dissolved in an organic solvent as a good solvent, and then the organic solvent is distilled off to form a concentrated solution. Further, an organic solvent as a poor solvent is added to achieve the desired purification. Rosin is obtained. Organic solvents include aromatic hydrocarbons such as benzene, toluene and xylene; ketones such as acetone and methyl ethyl ketone; aliphatic hydrocarbons such as n-hexane, n-heptane and isooctane; alicyclic rings such as cyclohexane and decalin Group hydrocarbons and the like.

ディールス・アルダー反応物は、前記α,β不飽和ジカルボン酸類とロジン類とを、通常180〜240℃程度、1〜9時間程度の条件で反応させることにより得られる。両者の使用量は、(A)成分中の(a−1)成分の含有量を考慮して適宜決定すればよいが、通常は、ロジン類中の全樹脂酸100モル%に対してα,β不飽和ジカルボン酸類が通常30〜100モル%程度、好ましくは55〜70モル%となる範囲である。また、目的とするディールス・アルダー反応物の着色を抑制し、フラックス残渣皮膜の色調を向上させる目的で、反応容器は密閉構造とし、更に窒素等の不活性ガス気流でパージするのが好ましい。また、反応の際には各種公知の触媒、例えば塩化亜鉛、塩化鉄、塩化錫等のルイス酸や、パラトルエンスルホン酸、メタンスルホン酸等のブレンステッド酸を使用でき、その使用量は、前記ロジン類に対して通常0.01〜10重量%程度である。   The Diels-Alder reaction product is obtained by reacting the α, β unsaturated dicarboxylic acids and rosins under conditions of usually about 180 to 240 ° C. and about 1 to 9 hours. The amount used of both may be appropriately determined in consideration of the content of the component (a-1) in the component (A). Usually, α, The β unsaturated dicarboxylic acids are usually in the range of about 30 to 100 mol%, preferably 55 to 70 mol%. In order to suppress coloring of the target Diels-Alder reactant and to improve the color tone of the flux residue film, it is preferable to purge the reaction vessel with an inert gas stream such as nitrogen. In the reaction, various known catalysts, for example, Lewis acids such as zinc chloride, iron chloride and tin chloride, and Bronsted acids such as para-toluenesulfonic acid and methanesulfonic acid can be used. It is usually about 0.01 to 10% by weight based on rosins.

得られたディールス・アルダー反応物を各種公知の方法で水素化することにより、(A)成分が得られる。具体的には、前記ディールス・アルダー反応物を、水素化触媒の存在下、通常100〜300℃程度(好ましくは150〜260℃)の温度で、1〜25MPa程度(好ましくは5〜20MPa)の水素圧下で水素化反応させればよい。水素化触媒としては、例えばパラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、白金カーボンなどの担持触媒や、ニッケル、白金等の金属粉末、ヨウ素、ヨウ素化鉄等のヨウ素化物等が挙げられる。水素化触媒の使用量は、ディールス・アルダー反応物に対して通常0.01〜10重量%程度、好ましくは0.1〜5重量%の範囲である。なお、必要であれば、前記有機溶剤を反応溶媒として利用できる。なお、(A)成分は、フラックス飛散防止等の観点より、前記した精製手段により更に精製するのが好ましい。   The component (A) is obtained by hydrogenating the obtained Diels-Alder reactant by various known methods. Specifically, the Diels-Alder reactant is usually about 1 to 25 MPa (preferably 5 to 20 MPa) at a temperature of about 100 to 300 ° C. (preferably 150 to 260 ° C.) in the presence of a hydrogenation catalyst. What is necessary is just to make a hydrogenation reaction under hydrogen pressure. Examples of the hydrogenation catalyst include supported catalysts such as palladium carbon, rhodium carbon, ruthenium carbon, and platinum carbon, metal powders such as nickel and platinum, and iodides such as iodine and iron iodide. The amount of the hydrogenation catalyst used is usually about 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the Diels-Alder reactant. If necessary, the organic solvent can be used as a reaction solvent. In addition, it is preferable to further refine | purify (A) component from an above-mentioned refinement | purification means from viewpoints, such as flux scattering prevention.

(A)成分は、加熱だれやフラックス飛散、フラックス残渣の耐クラック性等の観点より、溶融粘度が通常100〜1000mPa・s/180℃程度、好ましくは200〜600mPa・s/180℃である。溶融粘度は、例えば(A)成分中の(a−1)成分の含有量等により調節することができる。なお、「溶融粘度」とは、(A)成分を180℃で溶融させた状態におけるB型粘度計による測定値をいう。   The component (A) has a melt viscosity of usually about 100 to 1000 mPa · s / 180 ° C., preferably 200 to 600 mPa · s / 180 ° C. from the viewpoint of heating dripping, flux scattering, crack resistance of the flux residue, and the like. The melt viscosity can be adjusted by, for example, the content of the component (a-1) in the component (A). The “melt viscosity” refers to a value measured by a B-type viscometer in a state where the component (A) is melted at 180 ° C.

(A)成分中の(a−1)成分の含有量は、耐加熱だれ性やフラックス飛散抑制、フラックス残渣の耐クラック性等を考慮すると、通常30重量%以上、好ましくは40〜75重量%程度である。また、(A)成分には、他の樹脂酸、例えばデヒドロアビエチン酸(以下、(a−2)成分ということがある。)が含まれていてもよく、その含有量は、通常70重量%未満、好ましくは10〜25重量%程度である。また、(a−1)成分および(a−2)成分以外の樹脂酸としては、アビエチン酸やマレオピマル酸等が挙げられ、それらの含有量は、通常70重量%未満、好ましくは50重量%未満である。   The content of the component (a-1) in the component (A) is usually 30% by weight or more, preferably 40 to 75% by weight in consideration of heat dripping resistance, flux scattering suppression, flux residue crack resistance, and the like. Degree. Further, the component (A) may contain other resin acid, for example, dehydroabietic acid (hereinafter sometimes referred to as component (a-2)), and the content thereof is usually 70% by weight. Less, preferably about 10 to 25% by weight. Examples of the resin acid other than the components (a-1) and (a-2) include abietic acid and maleopimaric acid, and the content thereof is usually less than 70% by weight, preferably less than 50% by weight. It is.

(A)成分には、各種触媒や、原料ロジン類に由来する夾雑物などの、分子量が通常280以下の低分子量成分(以下、単に低分子量成分という)が含まれていてもよく、その含有量は通常、耐加熱だれ性やフラックス飛散抑制等の観点より、通常3重量%以下である。   Component (A) may contain low molecular weight components (hereinafter simply referred to as low molecular weight components) having a molecular weight of 280 or less, such as various catalysts and impurities derived from raw material rosins. The amount is usually 3% by weight or less from the viewpoint of resistance to heat dripping and suppression of flux scattering.

(A)成分中の各種樹脂酸や低分子量成分の含有量は、各種公知の分析法、例えばゲルパーミエーションクロマトグラフィー(GPC)やガスクロマトグラフィー(GC)法等により特定できる。例えばGPCの場合、樹脂酸類の含有量(X重量%)は、以下の式により得ることができる。   The content of various resin acids and low molecular weight components in the component (A) can be specified by various known analysis methods such as gel permeation chromatography (GPC) and gas chromatography (GC). For example, in the case of GPC, the resin acid content (X wt%) can be obtained by the following formula.

X=〔(測定対象の樹脂酸に帰属するピークの面積)/(当該樹脂酸を含めた樹脂酸成分全体のピーク面積)〕×100   X = [(Area of peak attributed to resin acid to be measured) / (Peak area of the entire resin acid component including the resin acid)] × 100

また、(A)成分中の(a−1)成分や他の樹脂酸の構造は各種公知の手段、例えばIR法やNMR法によって同定することができる。   Further, the structure of the component (a-1) in the component (A) and other resin acids can be identified by various known means such as IR method and NMR method.

(A)成分の他の物性は特に限定されないが、例えば3級カルボキシル基に基づく理論酸価が通常130〜160mgKOH/g程度、好ましくは134〜154mgKOH/gである。当該理論酸価の(A)成分を使用することにより、加熱だれ抑制やフラックス飛散抑制、フラックス残渣皮膜の耐クラック性等の効果がバランスよく得られるようになる。なお、「3級カルボキシル基に基づく理論酸価」とは、(A)成分中の各種樹脂酸に由来する第3級カルボキシル基と等量反応する水酸化カリウムをmg数で表現した計算値である。   Although the other physical property of (A) component is not specifically limited, For example, the theoretical acid value based on a tertiary carboxyl group is about 130-160 mgKOH / g normally, Preferably it is 134-154 mgKOH / g. By using the component (A) having the theoretical acid value, effects such as suppression of heating dripping, suppression of flux scattering, and crack resistance of the flux residue film can be obtained in a balanced manner. The “theoretical acid value based on tertiary carboxyl group” is a calculated value expressed in mg of potassium hydroxide that reacts with a tertiary carboxyl group derived from various resin acids in component (A) in an equivalent amount. is there.

また、(A)成分は、カルボキシル基に基づくモル濃度(以下、単位カルボキシル基モル濃度という)が通常2.2×10−3〜3.2×10−3mol/g程度、好ましくは2.4×10−3〜3×10−3mol/gであるのがよい。当該単位カルボキシル基濃度は、(A)成分1g(固形分換算)あたりのカルボキシル基(−COOH)のモル数を意味し、そうした(A)成分を使用することにより、加熱だれ抑制やフラックス飛散抑制、フラックス残渣皮膜の耐クラック性等の効果がバランスよく得られるようになる。当該単位カルボキシル基濃度は実測値であり、以下のようにして求める。 The component (A) has a molar concentration based on carboxyl groups (hereinafter referred to as unit carboxyl group molar concentration) of usually about 2.2 × 10 −3 to 3.2 × 10 −3 mol / g, preferably 2. 4 × 10 -3 is good is a ~3 × 10 -3 mol / g. The unit carboxyl group concentration means the number of moles of carboxyl group (-COOH) per 1 g of component (A) (in terms of solid content), and by using such component (A), suppression of heat dripping and flux scattering are suppressed. In addition, effects such as crack resistance of the flux residue film can be obtained in a well-balanced manner. The unit carboxyl group concentration is an actual measurement value and is determined as follows.

単位カルボキシル基モル濃度(mol/g)=Y−(Y−Z)×2   Unit carboxyl group molar concentration (mol / g) = Y− (YZ) × 2

(Yの算出法)
(A)成分0.3gをアセトン50mlに溶解させ、アセトン溶液を調製する。次いで、当該アセトン溶液に水酸化カリウム水溶液(濃度1.0×10−4mol/ml;和光純薬工業(株)製、容量分析用試薬)を25ml加え、撹拌したのち10分放置する。次いで、放置後のアセトン溶液にフェノールフタレインを数滴加え、塩酸水溶液(濃度1.0×10−4mol/ml)を用いて中和滴定を行い、当量点(溶液が赤紫色から無色に変化した点)における滴定量(ml)を記録する。そして、以下の式1よりYを算出する。
(Calculation method of Y)
(A) 0.3 g of component is dissolved in 50 ml of acetone to prepare an acetone solution. Next, 25 ml of an aqueous potassium hydroxide solution (concentration 1.0 × 10 −4 mol / ml; manufactured by Wako Pure Chemical Industries, Ltd., volumetric analysis reagent) is added to the acetone solution, and the mixture is stirred and left for 10 minutes. Next, several drops of phenolphthalein are added to the acetone solution after standing, neutralization titration is performed using an aqueous hydrochloric acid solution (concentration: 1.0 × 10 −4 mol / ml), and the equivalence point (from red purple to colorless) Record the titer (ml) at the point of change). Then, Y is calculated from the following formula 1.

式1:Y(mol/g)={〔(水酸化カリウム水溶液量(ml)−塩酸滴定量(ml)〕×水酸化カリウム水溶液濃度(mol/ml)}÷(A)成分使用量(g) Formula 1: Y (mol / g) = {[(potassium hydroxide aqueous solution amount (ml) −hydrochloric acid titration amount (ml)] × potassium hydroxide aqueous solution concentration (mol / ml)} ÷ (A) component usage amount (g )

(Zの算出法)
エタノールとトルエンを重量比=1:2で混合し、エタノール/トルエン溶媒を調製する。次いで、当該エタノール/トルエン溶媒に(A)成分1gを溶解させ、(A)成分のトルエン―エタノール溶液を調製する。次いで、当該溶液にフェノールフタレイン液を数滴加え、エタノール性水酸化カリウム溶液(濃度5.0×10−4mol/ml;和光純薬工業(株)製、容量分析用試薬)を用いて滴定を行い、当量点(溶液が無色から赤紫色に変化した点)における滴定量(ml)を記録する。そして、以下の式2よりZを算出する。
(Calculation method of Z)
Ethanol and toluene are mixed at a weight ratio = 1: 2 to prepare an ethanol / toluene solvent. Next, 1 g of the component (A) is dissolved in the ethanol / toluene solvent to prepare a toluene-ethanol solution of the component (A). Next, several drops of phenolphthalein solution are added to the solution, and an ethanolic potassium hydroxide solution (concentration 5.0 × 10 −4 mol / ml; manufactured by Wako Pure Chemical Industries, Ltd., volumetric analysis reagent) is used. Titrate and record titration (ml) at the equivalence point (the point at which the solution changed from colorless to reddish purple). Then, Z is calculated from the following formula 2.

式2:Z(mol/g)=〔エタノール性水酸化カリウム溶液滴定量(ml)×エタノール性水酸化カリウム溶液濃度(mol/ml)〕÷(A)成分使用量(g) Formula 2: Z (mol / g) = [ethanolic potassium hydroxide solution titration (ml) × ethanolic potassium hydroxide solution concentration (mol / ml)] ÷ (A) component usage (g)

また、耐加熱だれ性やフラックス飛散抑制、フラックス残渣の耐クラック性等の観点より、(A)成分の軟化点(JIS K 59202に規定する環球法により測定した値をいう。以下、同様。)は、通常100〜150℃程度、好ましくは110〜130℃である。   In addition, from the viewpoints of heat dripping resistance, flux scattering suppression, flux residue crack resistance, and the like, the softening point of component (A) (refers to the value measured by the ring and ball method defined in JIS K 59202; the same applies hereinafter). Is usually about 100 to 150 ° C, preferably 110 to 130 ° C.

また、特にフラックス残渣の色調の観点より、(A)成分の色調は通常ガードナー2以下、好ましくはガードナー1以下〜ハーゼン50程度である。(ハーゼン色調は、JIS K 0071−1、ガードナー色調はJIS K 0071−2により測定した値をいう。)   In particular, from the viewpoint of the color tone of the flux residue, the color tone of the component (A) is usually Gardner 2 or less, preferably Gardner 1 or less to Hazen 50 or so. (Hazen color tone is a value measured according to JIS K 0071-1, and Gardner color tone is a value measured according to JIS K 0071-2.)

本発明のフラックスは、(A)成分の他、チキソトロピック剤(B)(以下、(B)成分という。)およびフラックス用溶剤(C)(以下、(C)成分という。)、ならびに必要に応じて活性剤(D)、ならびに(A)成分以外のベース材(E)(以下、(E)成分という。)および各種添加剤(F)(以下、(F)成分という。)を含む。   In addition to the component (A), the flux of the present invention includes a thixotropic agent (B) (hereinafter referred to as component (B)), a flux solvent (C) (hereinafter referred to as component (C)), and as necessary. Accordingly, the base material (E) other than the component (A) (E) (hereinafter referred to as component (E)) and various additives (F) (hereinafter referred to as component (F)) are included.

(B)成分としては、例えば、硬化ひまし油、蜜ロウ、カルナバワックス等の動植物系チキソトロピック剤や、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミド等のアミド系チキソトロピック剤が挙げられ、1種を単独で、または2種以上を組み合わせて使用できる。   Examples of the component (B) include animal and plant thixotropic agents such as hardened castor oil, beeswax and carnauba wax, and amide thixotropic agents such as stearic acid amide and hydroxystearic acid ethylenebisamide. Or in combination of two or more.

(C)成分としては、例えばジエチレングリコールモノヘキシルエーテルやジエチレングリコールモノブチルエーテル等のアルキレングリコールモノエーテル類;ヘキシルグリコール、オクタンジオール、エチルヘキシルグリコール、ベンジルアルコール、1,3−ブタンジオール、1,4−ブタンジオール、2−(2−n−ブトキシエトキシ)エタノール、テルピネオール等の他のアルコール類;安息香酸ブチル、アジピン酸ジエチル、セバシン酸ジオクチル、2−(2−n−ブトキシエトキシ)エチルアセテート等のエステル類;ドデカン、テトラデセン等の炭化水素類;N−メチル−2−ピロリドン等のピロリドン類が挙げられ、1種を単独で、または2種以上を組み合わせて使用できる。これらの中でも前記アルキレングリコールモノエーテル類および/またはエステル類が好ましい。特に、ハンダ付温度を考慮すると、150〜300℃程度、好ましくは220〜270℃の範囲に沸点を有する(C)成分(特にアルキレングリコールモノエーテル類および/またはエステル類)が好ましい。   As the component (C), for example, alkylene glycol monoethers such as diethylene glycol monohexyl ether and diethylene glycol monobutyl ether; hexyl glycol, octanediol, ethylhexyl glycol, benzyl alcohol, 1,3-butanediol, 1,4-butanediol, Other alcohols such as 2- (2-n-butoxyethoxy) ethanol, terpineol; esters such as butyl benzoate, diethyl adipate, dioctyl sebacate, 2- (2-n-butoxyethoxy) ethyl acetate; dodecane , Hydrocarbons such as tetradecene; pyrrolidones such as N-methyl-2-pyrrolidone, and the like can be used singly or in combination of two or more. Among these, the alkylene glycol monoethers and / or esters are preferable. In particular, considering the soldering temperature, the component (C) having a boiling point in the range of about 150 to 300 ° C., preferably 220 to 270 ° C. (particularly alkylene glycol monoethers and / or esters) is preferable.

(D)成分としては、例えば、エチルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩等のアミンのハロゲン化水素酸塩;コハク酸、安息香酸、アジピン酸、グルタル酸、パルミチン酸、ステアリン酸、ピコリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸等のハロゲン原子を含有しない脂肪族有機カルボン酸;N,N’−ビス(4−アミノブチル)−1,2−エタンジアミン、トリエチレンテトラミン、N,N’−(3−アミノプロピル)エチレンジアミン、N,N’−ビス(3−アミノプロピル)ピペラジン等の有機ジアミン類;3−ブロモプロピオン酸、2−ブロモ吉草酸、5−ブロモ−n−吉草酸、2−ブロモイソ吉草酸、2,3−ジブロモコハク酸、2−ブロモコハク酸、2,2−ジブロモアジピン酸等のブロモジカルボン酸類;1−ブロモ−2−ブタノール、1−ブロモ−2−プロパノール、3−ブロモ−1−プロパノール、3−ブロモ−1,2−プロパンジオール、1,4−ジブロモ−2−ブタノール、1,3−ジブロモ−2−プロパノール、2,3−ジブロモ−1−プロパノール、1,4−ジブロモ−2,3−ブタンジオール、2,3−ジブロモ−1,4−ブテンジオール、2,3−ジブロモ−2−ブテン−1,4−ジオール等のブロモジオール類;1,2,3,4−テトラブロモブタン、1,2−ジブロモ−1−フェニルエタン等のブロモアルカン類;1−ブロモ−3−メチル−1−ブテン、1,4−ジブロモブテン、1−ブロモ−1−プロペン、2,3−ジブロモプロペン、1,2−ジブロモスチレン等のブロモアルケン類;4−ステアロイルオキシベンジルブロマイド、4−ステアリルオキシベンジルブロマイド、4−ステアリルベンジルブロマイド、4−ブロモメチルベンジルステアレート、4−ステアロイルアミノベンジルブロマイド、2,4−ビスブロモメチルべンジルステアレート、4−パルミトイルオキシベンジルブロマイド、4−ミリストイルオキシベンジルブロマイド、4−ラウロイルオキシべンジルブロマイド、4−ウンデカノイルオキシベンジルブロマイド等が挙げられる。(D)成分としては、ハロゲン原子を含有しない脂肪族有機カルボン酸、有機ジアミン類、ブロモジカルボン酸類、およびブロモジオール類からなる群より選ばれる少なくとも1種が好ましい。
(追記しました。)
Examples of the component (D) include hydrohalates of amines such as ethylamine hydrobromide and cyclohexylamine hydrobromide; succinic acid, benzoic acid, adipic acid, glutaric acid, palmitic acid, stearic acid , Aliphatic organic carboxylic acids containing no halogen atom such as picolinic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, etc .; N, N′-bis (4-aminobutyl) -1,2-ethanediamine, tri Organic diamines such as ethylenetetramine, N, N ′-(3-aminopropyl) ethylenediamine, N, N′-bis (3-aminopropyl) piperazine; 3-bromopropionic acid, 2-bromovaleric acid, 5-bromo -N-valeric acid, 2-bromoisovaleric acid, 2,3-dibromosuccinic acid, 2-bromosuccinic acid, 2,2-dibromoadipic acid, etc. Dicarboxylic acids; 1-bromo-2-butanol, 1-bromo-2-propanol, 3-bromo-1-propanol, 3-bromo-1,2-propanediol, 1,4-dibromo-2-butanol, 1, 3-dibromo-2-propanol, 2,3-dibromo-1-propanol, 1,4-dibromo-2,3-butanediol, 2,3-dibromo-1,4-butenediol, 2,3-dibromo- Bromodiols such as 2-butene-1,4-diol; Bromoalkanes such as 1,2,3,4-tetrabromobutane and 1,2-dibromo-1-phenylethane; 1-bromo-3-methyl Bromoalkenes such as -1-butene, 1,4-dibromobutene, 1-bromo-1-propene, 2,3-dibromopropene, 1,2-dibromostyrene; 4-stearo Luoxybenzyl bromide, 4-stearyloxybenzyl bromide, 4-stearylbenzyl bromide, 4-bromomethylbenzyl stearate, 4-stearoylaminobenzyl bromide, 2,4-bisbromomethylbenzyl stearate, 4-palmitoyloxy Examples thereof include benzyl bromide, 4-myristoyloxybenzyl bromide, 4-lauroyloxybenzyl bromide, 4-undecanoyloxybenzyl bromide and the like. The component (D) is preferably at least one selected from the group consisting of aliphatic organic carboxylic acids not containing halogen atoms, organic diamines, bromodicarboxylic acids, and bromodiols.
(I added.)

(E)成分としては、例えば前記原料ロジン類や、該原料ロジン類とα,β不飽和モノカルボン酸(アクリル酸、メタクリル酸等)とから得られるディールス・アルダー反応物、その水素化物、前記原料ロジン類の水素化物、不均化ロジン、ホルミル化ロジン、重合ロジン等の、(A)成分以外のロジン系ベース材の他、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂(ナイロン樹脂)、ポリエステル樹脂、ポリアクリロニトリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリオレフイン樹脂、フッ素系樹脂、ABS樹脂等の合成樹脂が挙げられ、これらは1種を単独で、または2種以上を組み合わせて使用できる。   Examples of the component (E) include the raw rosins, Diels-Alder reactants obtained from the raw rosins and α, β unsaturated monocarboxylic acids (acrylic acid, methacrylic acid, etc.), hydrides thereof, Raw material rosin hydrides, disproportionated rosin, formylated rosin, polymerized rosin, and other rosin base materials other than component (A), epoxy resin, acrylic resin, polyimide resin, polyamide resin (nylon resin), Examples thereof include synthetic resins such as polyester resin, polyacrylonitrile resin, vinyl chloride resin, vinyl acetate resin, polyolefin resin, fluorine resin, and ABS resin, and these can be used alone or in combination of two or more.

(F)成分としては、例えば、酸化防止剤、防黴剤、艶消し剤等の添加剤が挙げられる。   Examples of the component (F) include additives such as antioxidants, antifungal agents, and matting agents.

(A)成分〜(D)成分の使用量は特に限定されないが、加熱だれやフラックス飛散、フラックス残渣皮膜の耐クラック性等を考慮すると、通常は以下の通りである。(但し、合計が100重量%を超えない。)
(A)成分:30〜75重量%程度、好ましくは40〜55重量%
(B)成分:0.1〜10重量%程度、好ましくは3〜10重量%
(C)成分:20〜69.9重量%程度、好ましくは30〜56.9重量%
(D)成分:0〜10重量%程度、好ましくは0.1〜5重量%
Although the usage-amount of (A) component-(D) component is not specifically limited, when the heating dripping, flux scattering, the crack resistance of a flux residue film | membrane, etc. are considered, it is as follows normally. (However, the total does not exceed 100% by weight.)
Component (A): about 30 to 75% by weight, preferably 40 to 55% by weight
Component (B): about 0.1 to 10% by weight, preferably 3 to 10% by weight
Component (C): about 20 to 69.9% by weight, preferably 30 to 56.9% by weight
Component (D): about 0 to 10% by weight, preferably 0.1 to 5% by weight

なお、本発明のフラックスにおける(E)成分および(F)成分の使用量も特に限定されないが、通常は以下の通りである。
(E)成分:30重量%程度未満、好ましくは25重量%未満
(F)成分:10重量%未満、好ましくは5重量%未満
In addition, although the usage-amount of the (E) component and (F) component in the flux of this invention is not specifically limited, Usually, it is as follows.
(E) component: less than about 30% by weight, preferably less than 25% by weight (F) component: less than 10% by weight, preferably less than 5% by weight

本発明のソルダーペーストは、本発明のフラックスおよびハンダ粉末を各種公知の手段(プラネタリーミル等)で混合したものであり、使用量は順に、通常5〜20重量部程度および80〜95重量部程度である。   The solder paste of the present invention is obtained by mixing the flux of the present invention and solder powder by various known means (planetary mill, etc.), and the amounts used are usually about 5 to 20 parts by weight and 80 to 95 parts by weight, respectively. Degree.

ハンダ粉末としては、Sn−Pb系ハンダ粉末等の従来の鉛共晶ハンダ粉末や、Snハンダ粉末、Sn−Ag系ハンダ粉末、Sn−Cu系ハンダ粉末、Sn−Zn系ハンダ粉末、Sn−Sb系ハンダ粉末、Sn−Ag−Cu系ハンダ粉末、Sn−Ag−Bi系ハンダ粉末、Sn−Ag−Cu−Bi系ハンダ粉末、Sn−Ag−Cu−In系ハンダ粉末、Sn−Ag−Cu−S系ハンダ粉末、Sn−Ag−Cu−Ni−Ge系ハンダ粉末等の鉛フリーハンダ粉末が挙げられる。なお、本発明に係るフラックスは、鉛フリーハンダの溶融温度においても好適に作用し、加熱だれやハンダボールの発生、フラックス残渣のクラック等を抑制し得ることから、ハンダ粉末としては鉛フリーハンダ粉末、特にSn系鉛フリーハンダ粉末が好ましい。   As the solder powder, conventional lead eutectic solder powder such as Sn-Pb solder powder, Sn solder powder, Sn-Ag solder powder, Sn-Cu solder powder, Sn-Zn solder powder, Sn-Sb Solder powder, Sn-Ag-Cu solder powder, Sn-Ag-Bi solder powder, Sn-Ag-Cu-Bi solder powder, Sn-Ag-Cu-In solder powder, Sn-Ag-Cu- Lead-free solder powders such as S-based solder powder and Sn-Ag-Cu-Ni-Ge solder powder are exemplified. Note that the flux according to the present invention suitably works even at the melting temperature of lead-free solder, and can suppress heating dripping, generation of solder balls, cracks in the flux residue, etc. As a solder powder, lead-free solder powder In particular, Sn-based lead-free solder powder is preferable.

以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

なお、各調製例中、「溶融粘度」は市販のB8M型粘度計(製品名「VISCOMETER」、TOKIMEC(株)製、ローターNo.HM−1)により得た値を、「マレオピマル酸無水物類の含有量」と「低分子量成分の含有量」は、市販のゲルパーミエーションクロマトグラフィー測定装置(製品名「高速GPCシステムHLC−8220」、東ソー(株)製、カラム名「TSK−GEL G1000HXL」、東ソー(株)製、展開溶媒テトラヒドロフラン)による算出値を、「デヒドロアビエチン酸の含有量」は市販のガスクロマトグラフィー装置(製品名「GC7890」、Agilent(株)製)による算出値を意味する。   In each of the preparation examples, “melt viscosity” is a value obtained by using a commercially available B8M type viscometer (product name “VISCOMETER”, manufactured by TOKIMEC, rotor No. HM-1), “maleopimaric anhydrides”. "Content of low molecular weight component" is a commercially available gel permeation chromatography measuring device (product name "High Speed GPC System HLC-8220", manufactured by Tosoh Corporation, column name "TSK-GEL G1000HXL" “Dehydroabietic acid content” means a value calculated with a commercially available gas chromatographic apparatus (product name “GC7890”, manufactured by Agilent). .

<(A)成分の調製>
調製例1
工程(1):精製
未精製のガムロジン(実測酸価171mgKOH/g、単位カルボキシル基モル濃度3.2×10−3mol/g、軟化点74℃、ガードナー6、中国産)を減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジン(実測酸価177、軟化点80℃、ガードナー3)を得た。
<Preparation of component (A)>
Preparation Example 1
Step (1): Purification Unpurified gum rosin (measured acid value: 171 mg KOH / g, unit carboxyl group molar concentration: 3.2 × 10 −3 mol / g, softening point: 74 ° C., Gardner 6, manufactured in China) in a vacuum distillation vessel Preparation and distillation under reduced pressure of 0.4 kPa under a nitrogen seal gave purified rosin (actual acid value 177, softening point 80 ° C., Gardner 3).

工程(2):ディールス・アルダー反応
次いで、別の減圧蒸留容器に当該精製ロジン700gと無水マレイン酸154gを仕込み、窒素気流化に撹拌しながら220℃で4時間反応させた後、4kPaの減圧下に未反応物を除去することによってロジン誘導体(理論酸価144mgKOH/g、単位カルボキシル基モル濃度2.7×10−3mol/g、軟化点121℃、ガードナー8)を得た。
Step (2): Diels-Alder Reaction Next, 700 g of the purified rosin and 154 g of maleic anhydride were charged into another vacuum distillation vessel and reacted at 220 ° C. for 4 hours with stirring in a nitrogen stream, followed by 4 kPa under reduced pressure. The rosin derivative (theoretical acid value 144 mgKOH / g, unit carboxyl group molar concentration 2.7 × 10 −3 mol / g, softening point 121 ° C., Gardner 8) was obtained by removing unreacted product.

工程(3):水素化反応
次いで、当該ロジン誘導体500gと5%パラジウムカーボン(含水率50%)6.0gを1リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、水素にて10MPaに加圧し、220℃まで昇温し、同温度で3時間水素化反応させることにより、ロジン誘導体水素化物(理論酸価144mgKOH/g、単位カルボキシル基モル濃度2.7×10−3mol/g、軟化点120℃)を得た。
Step (3): Hydrogenation Reaction Next, 500 g of the rosin derivative and 6.0 g of 5% palladium carbon (water content: 50%) were charged into a 1 liter rotary autoclave to remove oxygen in the system, and then 10 MPa with hydrogen. The rosin derivative hydride (theoretical acid value 144 mgKOH / g, unit carboxyl group molar concentration 2.7 × 10 −3 mol / g) was heated to 220 ° C. and hydrogenated at the same temperature for 3 hours. A softening point of 120 ° C.).

工程(4):精製
次いで、当該ロジン誘導体水素化物400gとキシレン200gを反応容器に仕込み、加熱下に溶解させた後、キシレン150gを留去した。次いでシクロヘキサン150gを仕込み、室温まで冷却し、結晶の収量が約40gに達したところで上澄み液を別の反応容器に移し、さらに室温で再結晶させた。その後、さらに上澄み液を除去し、シクロヘキサン20gで洗浄した後、このシクロヘキサンを留去することによって、溶融粘度361mPa・s(180℃)、理論酸価144mgKOH/g、単位カルボキシル基モル濃度2.7×10−3mol/g、軟化点120℃、ハーゼンカラー150、マレオピマル酸無水物類(a−1)の含有量が約66重量%、デヒドロアビエチン酸(a−2)の含有量が約17重量%、低分子量成分が0.7重量%であるロジン誘導体水素化物(A−1)(以下、(A−1)成分という)を得た。物性等を表1に示す。
Step (4): Purification Next, 400 g of the rosin derivative hydride and 200 g of xylene were charged into a reaction vessel and dissolved under heating, and then 150 g of xylene was distilled off. Next, 150 g of cyclohexane was charged and cooled to room temperature. When the crystal yield reached about 40 g, the supernatant was transferred to another reaction vessel and recrystallized at room temperature. Then, after further removing the supernatant and washing with 20 g of cyclohexane, the cyclohexane was distilled off to obtain a melt viscosity of 361 mPa · s (180 ° C.), a theoretical acid value of 144 mgKOH / g, and a unit carboxyl group molar concentration of 2.7. × 10 −3 mol / g, softening point 120 ° C., Hazen color 150, maleopimaric anhydride (a-1) content is about 66% by weight, dehydroabietic acid (a-2) content is about 17 A rosin derivative hydride (A-1) (hereinafter referred to as component (A-1)) having a weight percent of 0.7% by weight and a low molecular weight component was obtained. Table 1 shows the physical properties and the like.

調製例2
調製例1の工程(2)において、無水マレイン酸154gを77gとしたほかは同様にして、ロジン誘導体水素化物(A−2)(以下、(A−2)成分という)を得た。物性等を表1に示す。
Preparation Example 2
A rosin derivative hydride (A-2) (hereinafter referred to as component (A-2)) was obtained in the same manner as in Preparation Example 1 except that 154 g of maleic anhydride was changed to 77 g. Table 1 shows the physical properties and the like.

調製例3
調製例1の工程(3)において、5%パラジウムカーボン(含水率50%)6.0gを12.0gとしたほかは同様にして、ロジン誘導体水素化物(A−3)(以下、(A−3)成分という)を得た。物性等を表1に示す。
Preparation Example 3
In the same manner as in Preparation Example 1, except that 6.0 g of 5% palladium carbon (water content 50%) was changed to 12.0 g, rosin derivative hydride (A-3) (hereinafter referred to as (A- 3) Component)) was obtained. Table 1 shows the physical properties and the like.

調製例4
調製例2の工程(3)において、5%パラジウムカーボン(含水率50%)6.0gを12.0gとしたほかは同様にして、ロジン誘導体水素化物(A−4)(以下、(A−4)成分という)を得た。物性等を表1に示す。
Preparation Example 4
In the same manner as in Step (3) of Preparation Example 2, except that 6.0 g of 5% palladium carbon (water content 50%) was changed to 12.0 g, rosin derivative hydride (A-4) (hereinafter referred to as (A- 4) Component)) was obtained. Table 1 shows the physical properties and the like.

調製例5
調製例1の工程(2)において、無水マレイン酸154gを200gとしたほかは同様にして、ロジン誘導体水素化物(A−5)(以下、(A−5)成分という)を得た。物性等を表1に示す。
Preparation Example 5
A rosin derivative hydride (A-5) (hereinafter referred to as component (A-5)) was obtained in the same manner except that 154 g of maleic anhydride was changed to 200 g in the step (2) of Preparation Example 1. Table 1 shows the physical properties and the like.

調製例6
調製例5の工程(3)において、5%パラジウムカーボン(含水率50%)6.0gを12.0gとしたほかは同様にして、ロジン誘導体水素化物(A−6)(以下、(A−6)成分という)を得た。物性等を表1に示す。
Preparation Example 6
In the same manner as in Step 5 of Preparation Example 5 except that 6.0 g of 5% palladium carbon (water content 50%) was changed to 12.0 g, rosin derivative hydride (A-6) (hereinafter referred to as (A- 6) Component)) was obtained. Table 1 shows the physical properties and the like.

調製例7
調製例1の工程(1)の精製を行わずに未精製のガムロジンを工程(2)使用したほかは同様にして、ロジン誘導体水素化物(A−7)(以下、(A−7)成分という)を得た。物性等を表1に示す。
Preparation Example 7
The rosin derivative hydride (A-7) (hereinafter referred to as (A-7) component) was used in the same manner except that unpurified gum rosin was used in step (2) without purification in step (1) of Preparation Example 1. ) Table 1 shows the physical properties and the like.

比較調製例1
調製例1の工程(2)において、無水マレイン酸154gに変えてアクリル酸105gを使用した他は同様にしてロジン誘導体水素化物(X−1)(以下、(X−1)成分という)を得た。(X−1)成分の物性等を表1に示す。
Comparative Preparation Example 1
A rosin derivative hydride (X-1) (hereinafter referred to as component (X-1)) was obtained in the same manner except that 105 g of acrylic acid was used instead of 154 g of maleic anhydride in the step (2) of Preparation Example 1. It was. Table 1 shows the physical properties of the component (X-1).

<フラックスの調製>
実施例1
(A−1)成分を50部、(B)成分として12−ヒドロキシステアリン酸エチレンビスアミドを5部、および(C)成分としてジエチレングリコールモノヘキシルエーテルを45部ビーカーに入れ、加熱溶解させることによって、フラックスを調製した。
<Preparation of flux>
Example 1
Flux by adding 50 parts of (A-1) component, 5 parts of 12-hydroxystearic acid ethylenebisamide as component (B), and 45 parts of diethylene glycol monohexyl ether as component (C), and dissolving by heating. Was prepared.

実施例2
実施例1において、(A−1)成分に代えて(A−2)成分を使用した他は同様にしてフラックスを調製した。
Example 2
A flux was prepared in the same manner as in Example 1 except that the component (A-2) was used instead of the component (A-1).

実施例3
実施例1において、(A−1)成分に代えて(A−3)成分を使用した他は同様にしてフラックスを調製した。
Example 3
In Example 1, a flux was prepared in the same manner except that the component (A-3) was used instead of the component (A-1).

実施例4
実施例1において、(A−1)成分に代えて(A−4)成分を使用した他は同様にしてフラックスを調製した。
Example 4
A flux was prepared in the same manner as in Example 1 except that the component (A-4) was used instead of the component (A-1).

実施例5
実施例1において、(A−1)成分に代えて(A−5)成分を使用した他は同様にしてフラックスを調製した。
Example 5
A flux was prepared in the same manner as in Example 1 except that the component (A-5) was used instead of the component (A-1).

実施例6
実施例1において、(A−1)成分に代えて(A−6)成分を使用した他は同様にしてフラックスを調製した。
Example 6
In Example 1, a flux was prepared in the same manner except that the component (A-6) was used instead of the component (A-1).

実施例7
実施例1において、(A−1)成分に代えて(A−7)成分を使用した他は同様にしてフラックスを調製した。
Example 7
A flux was prepared in the same manner as in Example 1 except that the component (A-7) was used instead of the component (A-1).

実施例8
実施例1において、(B)成分として12−ヒドロキシステアリン酸エチレンビスアミドの代わりに17−ヒドロキシステアリン酸エチレンビスアミドを使用した他は同様にしてフラックスを調製した。
Example 8
A flux was prepared in the same manner as in Example 1 except that 17-hydroxystearic acid ethylene bisamide was used instead of 12-hydroxystearic acid ethylene bisamide as component (B).

実施例9
実施例1において、(B)成分として12−ヒドロキシステアリン酸エチレンビスアミドの代わりに硬化ひまし油を使用した他は同様にしてフラックスを調製した。
Example 9
In Example 1, a flux was prepared in the same manner except that hydrogenated castor oil was used in place of 12-hydroxystearic acid ethylenebisamide as component (B).

実施例10
実施例1で得たフラックスに更に(D)成分としてアジピン酸を5部配合し、フラックスを調製した。
Example 10
The flux obtained in Example 1 was further mixed with 5 parts of adipic acid as component (D) to prepare a flux.

実施例11
実施例1で得たフラックスに更に(D)成分としてトランス2,3ジブロモー1,4−ブタンジオールを1部配合し、フラックスを調製した。
Example 11
The flux obtained in Example 1 was further mixed with 1 part of trans 2,3-dibromo-1,4-butanediol as component (D) to prepare a flux.

実施例12
実施例1において、(D)成分としてN,N−ビス(3−アミノプロピル)エチレンジアミンを3部使用した他は同様にしてフラックスを調製した。
Example 12
In Example 1, a flux was prepared in the same manner except that 3 parts of N, N-bis (3-aminopropyl) ethylenediamine was used as the component (D).

比較例1
実施例1において、(A−1)成分に代えて(X−1)成分を使用した他は同様にしてフラックスを調製した。
Comparative Example 1
In Example 1, a flux was prepared in the same manner except that the component (X-1) was used instead of the component (A-1).

比較例2
実施例1において、(A−1)成分に代えて市販の水素化ロジン(荒川化学工業(株)製、「ハイペールCH」、以下、(X−2)成分という。)を使用した他は同様にして、フラックスを調製した。なお、(X−2)成分の物性等を表1に示す。
Comparative Example 2
In Example 1, it replaced with (A-1) component except having used the commercially available hydrogenated rosin (Arakawa Chemical Industries Co., Ltd. product, "Hyper CH", hereafter, referred to as (X-2) component). Thus, a flux was prepared. The physical properties of the component (X-2) are shown in Table 1.

比較例3
実施例1において、(A−1)成分に代えて調製例1の工程(1)で得られた精製ロジン(以下、(X−3)成分という)を使用した他はと同様にしてフラックスを調製した。なお、(X−3)成分の物性等を表1に示す。
Comparative Example 3
In Example 1, the flux was changed in the same manner as in Example 1 except that the purified rosin obtained in step (1) of Preparation Example 1 (hereinafter referred to as (X-3) component) was used instead of the component (A-1). Prepared. In addition, Table 1 shows the physical properties and the like of the component (X-3).

比較例4
実施例1において、(A−1)成分に代えて調製例1の工程(2)で得られたロジン誘導体(以下、(X−4)成分という)を使用した他は同様にしてフラックスを調製した。なお、(X−4)成分の物性等を表1に示す。
Comparative Example 4
In Example 1, a flux was prepared in the same manner except that the rosin derivative obtained in Step (2) of Preparation Example 1 (hereinafter referred to as (X-4) component) was used instead of the component (A-1). did. In addition, Table 1 shows the physical properties of the component (X-4).

比較例5
実施例1において、(A−1)成分に代えて市販の不均化ロジン(荒川化学工業(株)製、「ロンヂスR」;未蒸留、未水素化、以下、(X−5)成分という)を使用した他は同様にしてフラックスを調製した。なお、(X−5)成分の物性等を表1に示す。
Comparative Example 5
In Example 1, instead of the component (A-1), a commercially available disproportionated rosin (Arakawa Chemical Industries, “Longis R”; undistilled, unhydrogenated, hereinafter referred to as the component (X-5) ) Was used in the same manner except that the above was used. In addition, Table 1 shows the physical properties of the component (X-5).

比較例6
実施例1において、(A−1)成分に代えて市販の重合ロジン(荒川化学工業(株)製、「アラダイムR−140」;未蒸留、未水素化、以下、(X−6)成分という)を使用した他は同様にしてフラックスを調製した。なお、(X−6)成分の物性等を表1に示す。
Comparative Example 6
In Example 1, instead of the component (A-1), a commercially available polymerized rosin (Arakawa Chemical Industries, Ltd., “Aradim R-140”; undistilled, unhydrogenated, hereinafter referred to as the component (X-6) ) Was used in the same manner except that the above was used. In addition, Table 1 shows the physical properties and the like of the component (X-6).

比較例7
実施例1において、(A−1)成分に代えて市販のガムロジン(荒川化学工業(株)製、「CG−WW」;未蒸留、未水素化、以下、(X−7)成分という)を使用した他は同様にしてフラックスを調製した。なお、(X−7)成分の物性等を表1に示す。
Comparative Example 7
In Example 1, instead of the component (A-1), a commercially available gum rosin (Arakawa Chemical Industries, “CG-WW”; undistilled, unhydrogenated, hereinafter referred to as the component (X-7)) was used. A flux was prepared in the same manner except that it was used. In addition, Table 1 shows the physical properties and the like of the component (X-7).

表1中、各記号は以下の意味である。
H:ハーゼンカラー
G:はガードナーカラー
12−HSBA:12−ヒドロキシステアリン酸エチレンビスアミド
17−HSBA:17−ヒドロキシステアリン酸エチレンビスアミド
C−WAX:硬化ひまし油
DEGMHE:ジエチレングリコールモノヘキシルエーテル
AA:アジピン酸
DBBD:トランス2,3ジブロモー1,4−ブタンジオール
BAPED:N,N−ビス(3−アミノプロピル)エチレンジアミン
なお、(X−3)成分〜(X−7)成分はいずれも水素化物ではない。
また、(X−1)成分〜(X−7)成分の単位カルボキシル基モル濃度は、本明細書の段落[0032]〜[0036]に記載の方法に準拠して得た実測値である。
In Table 1, each symbol has the following meaning.
H: Hazen color G: Gardner color 12-HSBA: 12-hydroxystearic acid ethylene bisamide 17-HSBA: 17-hydroxystearic acid ethylene bisamide C-WAX: hardened castor oil DEGMHE: diethylene glycol monohexyl ether AA: adipic acid DBBD: trans 2,3 Dibromo-1,4-butanediol BAPED: N, N-bis (3-aminopropyl) ethylenediamine None of the components (X-3) to (X-7) is a hydride.
Moreover, the unit carboxyl group molar concentration of the component (X-1) to the component (X-7) is an actual measurement value obtained in accordance with the method described in paragraphs [0032] to [0036] of the present specification.

比較例8
実施例1において、(A−1)成分50部に代えて、(X−1)成分45部およびアルコール変性ジシクロペンタジエン樹脂の水素化物5部の混合物(軟化点120℃、色調H200、商品名「KR−1842」、荒川化学工業(株)製、以下、(X−8)成分という)を使用した他は同様にしてフラックスを調製した。
Comparative Example 8
In Example 1, instead of 50 parts of component (A-1), a mixture of 45 parts of component (X-1) and 5 parts of hydride of alcohol-modified dicyclopentadiene resin (softening point 120 ° C., color tone H200, trade name) A flux was prepared in the same manner except that “KR-1842” (manufactured by Arakawa Chemical Industries, Ltd., hereinafter referred to as “component (X-8)”) was used.

(ソルダーペーストの調製)
実施例1のフラックス10部および鉛フリーハンダ粉末(Sn−Ag−Cu合金;96.5重量%/3重量%/0.5重量%、平均粒子径25〜38μm)90部をビーカー内で撹拌してソルダーペーストを調製した。実施例2〜12および比較例1〜8のフラックスについても同様にしてソルダーペーストを調製した。
(Preparation of solder paste)
10 parts of the flux of Example 1 and 90 parts of lead-free solder powder (Sn—Ag—Cu alloy; 96.5 wt% / 3 wt% / 0.5 wt%, average particle size 25 to 38 μm) are stirred in a beaker. A solder paste was prepared. Solder pastes were similarly prepared for the fluxes of Examples 2 to 12 and Comparative Examples 1 to 8.

<性能評価> <Performance evaluation>

(加熱だれ試験)
銅基板上に、「JIS Z3284 附属書8 加熱時のだれ試験」に準拠して、実施例1に係るソルダーペーストを所定の間隔となるよう縦一列にスクリーン印刷し、得られた印刷基板を窒素リフロー炉で160秒加熱(プリヒート条件:180℃で100秒、メインヒート条件:240℃で約60秒)し、ソルダーペーストの形状の変化を目視確認することにより、加熱だれの程度を確認した。実施例2〜12、比較例1〜8に係るソルダーペーストについても同様にして評価した。
4:非常にだれにくい;一体にならない間隔が0.6mm未満
3:だれにくい;一体にならない間隔が0.6mm以上〜0.7mm未満
2:ややだれやすい;一体にならない間隔が0.7mm以上〜0.8mm未満
1:だれやすい;一体にならない間隔が0.8mm以上
(Heating test)
On the copper substrate, the solder paste according to Example 1 was screen-printed in a vertical row so as to be at a predetermined interval in accordance with “JIS Z3284 Annex 8 Sagging test during heating”. Heating was performed for 160 seconds in a reflow furnace (preheating condition: 100 ° C. at 180 ° C., main heating condition: approximately 60 seconds at 240 ° C.), and the degree of heating was confirmed by visually confirming the change in the shape of the solder paste. The solder pastes according to Examples 2 to 12 and Comparative Examples 1 to 8 were similarly evaluated.
4: Very difficult to droop; non-integral spacing less than 0.6 mm 3: Difficult to snag; non-integral spacing of 0.6 mm to less than 0.7 mm 2: Slightly prone; non-integral spacing of 0.7 mm or more Less than ~ 0.8mm 1: Easy to droop; Non-integral spacing is 0.8mm or more

(ハンダ付け性)
実施例1〜12および比較例1〜8の各ソルダーペーストについて、「JIS Z3284 附属書10 ぬれ効力およびディウェッティング試験」に準拠し、ハンダ付け性(濡れ性)を評価したところ、いずれも良好(広がり度合いの区分1または2)であった。表2、3において「3」と示す。
(Solderability)
For each of the solder pastes of Examples 1 to 12 and Comparative Examples 1 to 8, the solderability (wetability) was evaluated in accordance with “JIS Z3284 Annex 10 Wetting Efficacy and Dewetting Test”. (Expansion degree category 1 or 2). In Tables 2 and 3, it is indicated as “3”.

(フラックス飛散、ハンダボール、クラック、色調)
銅基板上に、実施例1に係るソルダーペーストをスクリーン印刷し、ハンダ付部位を顕微鏡VW−6000((株)キーエンス製:30倍)で観察することによって、フラックス飛散の程度、ハンダボールの発生、フラックス残渣におけるクラックの有無、およびフラックス残渣の色調を以下の基準で目視判断した。なお、ハンダボールの発生については「JIS Z3284 附属書11 ソルダーボール試験」に準拠した。実施例2〜12、比較例1〜8に係るソルダーペーストについても同様にして評価した。
(Flux scattering, solder balls, cracks, color tone)
On the copper substrate, the solder paste according to Example 1 was screen-printed, and the soldered part was observed with a microscope VW-6000 (manufactured by Keyence Corporation: 30 times), thereby causing the degree of flux scattering and generation of solder balls. The presence or absence of cracks in the flux residue and the color tone of the flux residue were visually determined according to the following criteria. The generation of solder balls conformed to “JIS Z3284 Annex 11 Solder ball test”. The solder pastes according to Examples 2 to 12 and Comparative Examples 1 to 8 were similarly evaluated.

3:飛散なし
2:飛散がわずかに認められる
1:飛散が多く認められる
3: No scattering 2: Slight scattering is observed 1: Many scattering is observed

2:良好;ハンダボールが10個未満
1:不良;ハンダボールが10個以上
2: Good; less than 10 solder balls 1: Bad; 10 or more solder balls

3:クラック無し
2:クラックがわずかに認められる
1:多くのクラックが認められる
3: No crack 2: Slight cracks are observed 1: Many cracks are observed

3:無色透明
2:若干の着色あり
1:着色あり
3: Colorless and transparent 2: Slightly colored 1: Colored

実施例1〜7より、本発明のフラックスは、マレオピマル酸無水物類を主成分とするロジン誘導体の水素化物をベース材として使用したものであるため、いずれの評価においても良好な結果が得られている。一方、比較例1(アクリル酸変性ロジン水素化物)や比較例2(水素化ロジン)のように、マレオピマル酸無水物を含まないロジン誘導体やロジンは、水素化物であったとしても加熱だれやフラックス飛散、フラックス残渣の耐クラック性、色調において不良であることがわかる。   From Examples 1 to 7, since the flux of the present invention uses a hydride of a rosin derivative mainly composed of maleopimaric anhydride as a base material, good results can be obtained in any evaluation. ing. On the other hand, as in Comparative Example 1 (acrylic acid-modified rosin hydride) and Comparative Example 2 (hydrogenated rosin), rosin derivatives and rosins that do not contain maleopimaric anhydride are heated and fluxed even if they are hydrides. It turns out that it is inferior in scattering, the crack resistance of a flux residue, and a color tone.

実施例8〜12より、本発明のフラックスは(A)成分を使用していることより、他のフラックス材料を変更した場合においても良好な結果が得られていることがわかる。   From Examples 8 to 12, it can be seen that the flux of the present invention uses the component (A), so that good results are obtained even when other flux materials are changed.

比較例3(未水添の精製ロジン)、比較例4(未水添の無水マレイン酸変性ロジン)、比較例5(不均化ロジン)、比較例6(重合ロジン)、および比較例7(ガムロジン)の結果より、それらのロジン系ベース材については、水素化されていない場合には加熱だれの抑制とフラックス飛散防止の両立が困難であり、他の性能においても劣る場合があることがわかる。   Comparative Example 3 (unhydrogenated purified rosin), Comparative Example 4 (unhydrogenated maleic anhydride modified rosin), Comparative Example 5 (disproportionated rosin), Comparative Example 6 (polymerized rosin), and Comparative Example 7 ( From the results of Gum rosin), it is found that for these rosin base materials, it is difficult to achieve both suppression of heating dripping and prevention of flux scattering if they are not hydrogenated, and may be inferior in other performances. .

また、比較例8の結果より、ロジン系ベース材の一部を石油樹脂系のベース材に代えると、加熱だれはやや改善するが、残渣のクラックが生じ易いことがわかる。   From the results of Comparative Example 8, it can be seen that if a part of the rosin-based base material is replaced with a petroleum resin-based base material, heating drooling is slightly improved, but residual cracks are likely to occur.

Claims (15)

下記構造式(1)で表されるマレオピマル酸無水物類(a−1)を含み、かつ溶融粘度が100〜1000mPa・s/180℃であるロジン誘導体水素化物(A)を用いた、ハンダ付用ロジン系フラックス。

(式(1)中、破線部はそこに炭素−炭素結合が存在してよいことを意味する。)
Soldering using a rosin derivative hydride (A) containing maleopimaric anhydrides (a-1) represented by the following structural formula (1) and having a melt viscosity of 100 to 1000 mPa · s / 180 ° C. Rosin flux for use.

(In formula (1), the broken line means that a carbon-carbon bond may exist there.)
(A)成分における(a−1)成分の含有量が30重量%以上である、請求項1のハンダ付用ロジン系フラックス。 The rosin-based flux for soldering according to claim 1, wherein the content of the component (a-1) in the component (A) is 30% by weight or more. (A)成分が更にデヒドロアビエチン酸(a−2)を70重量%未満含有する、請求項2のハンダ付用ロジン系フラックス。 The soldering rosin flux according to claim 2, wherein the component (A) further contains less than 70% by weight of dehydroabietic acid (a-2). (A)成分における分子量が280以下の低分子量成分の含有量が3重量%以下である、請求項1〜3のいずれかのハンダ付用ロジン系フラックス。 The soldering rosin-based flux according to any one of claims 1 to 3, wherein the content of the low molecular weight component having a molecular weight of 280 or less in the component (A) is 3 wt% or less. (A)成分のカルボキシル基モル濃度が2.2×10−3〜3.2×10−3mol/gである、請求項1〜4のいずれかのハンダ付用ロジン系フラックス。 The soldering rosin-based flux according to any one of claims 1 to 4, wherein the carboxyl group molar concentration of the component (A) is 2.2 × 10 −3 to 3.2 × 10 −3 mol / g. (A)成分の軟化点が100〜150℃である、請求項1〜5のいずれかのハンダ付用ロジン系フラックス。 The soldering rosin flux according to any one of claims 1 to 5, wherein the softening point of the component (A) is 100 to 150 ° C. (A)成分のガードナー色調が2以下である、請求項1〜6のいずれかのハンダ付用ロジン系フラックス。 The soldered rosin-based flux according to claim 1, wherein the (A) component has a Gardner color tone of 2 or less. さらにチキソトロピック剤(B)、フラックス用溶剤(C)、および活性剤(D)を含有する、請求項1〜7のいずれかのハンダ付用ロジン系フラックス。 The soldered rosin-based flux according to any one of claims 1 to 7, further comprising a thixotropic agent (B), a flux solvent (C), and an activator (D). (B)成分が動植物系チキソトロピック剤および/またはアミド系チキソトロピック剤である、請求項8のハンダ付用ロジン系フラックス。 The soldering rosin flux according to claim 8, wherein the component (B) is an animal or plant thixotropic agent and / or an amide thixotropic agent. (C)成分が沸点150〜300℃のアルキレングリコールモノエーテル類および/または150〜300℃のエステル類である、請求項8または9のハンダ付用ロジン系フラックス。 The soldering rosin-based flux according to claim 8 or 9, wherein the component (C) is an alkylene glycol monoether having a boiling point of 150 to 300 ° C and / or an ester having a boiling point of 150 to 300 ° C. 活性剤(D)が、ハロゲン原子を含有しない脂肪族有機カルボン酸、有機ジアミン類、ブロモジカルボン酸類、およびブロモジオール類からなる群より選ばれる少なくとも1種である、請求項8〜10のいずれかのハンダ付用ロジン系フラックス。 The activator (D) is at least one selected from the group consisting of aliphatic organic carboxylic acids not containing a halogen atom, organic diamines, bromodicarboxylic acids, and bromodiols. Rosin flux for soldering. (A)成分〜(D)成分をそれぞれ以下の重量%で含む、請求項8〜11のいずれかのハンダ付用ロジン系フラックス。
(A)成分:30〜75重量%
(B)成分:0.1〜10重量%
(C)成分:20〜69.9重量%
(D)成分:0〜10重量%
The rosin-based flux for soldering according to any one of claims 8 to 11, comprising the components (A) to (D) in the following weight percents.
(A) component: 30 to 75% by weight
(B) component: 0.1 to 10% by weight
Component (C): 20 to 69.9% by weight
(D) component: 0 to 10% by weight
請求項1〜12のいずれかのハンダ付用ロジン系フラックスおよびハンダ粉末を含有するソルダーペースト。 A solder paste containing the rosin flux for soldering according to claim 1 and solder powder. ハンダ粉が鉛フリーハンダ粉末である請求項13のソルダーペースト。 The solder paste according to claim 13, wherein the solder powder is lead-free solder powder. 鉛フリーハンダ粉末がSn系鉛フリーハンダ粉末である請求項14のソルダーペースト。
The solder paste according to claim 14, wherein the lead-free solder powder is Sn-based lead-free solder powder.
JP2011208235A 2010-09-24 2011-09-23 Rosin flux and solder paste for soldering Active JP5246452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208235A JP5246452B2 (en) 2010-09-24 2011-09-23 Rosin flux and solder paste for soldering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010214091 2010-09-24
JP2010214091 2010-09-24
JP2011208235A JP5246452B2 (en) 2010-09-24 2011-09-23 Rosin flux and solder paste for soldering

Publications (2)

Publication Number Publication Date
JP2012086269A true JP2012086269A (en) 2012-05-10
JP5246452B2 JP5246452B2 (en) 2013-07-24

Family

ID=46134926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208235A Active JP5246452B2 (en) 2010-09-24 2011-09-23 Rosin flux and solder paste for soldering

Country Status (4)

Country Link
JP (1) JP5246452B2 (en)
KR (1) KR101862723B1 (en)
CN (1) CN102528326B (en)
TW (1) TWI507400B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172295A1 (en) * 2012-05-18 2013-11-21 荒川化学工業株式会社 Base resin for soldering flux, soldering flux and solder paste
JP2014054663A (en) * 2012-09-13 2014-03-27 Tamura Seisakusho Co Ltd Flux composition, solder paste composition and printed wiring substrate
JP2015042419A (en) * 2013-07-25 2015-03-05 山栄化学株式会社 Resin composition for forming solder bump, method for forming solder bump, and member provided with solder bump
JP2015080814A (en) * 2013-10-24 2015-04-27 住友金属鉱山株式会社 Flux for solder and solder paste
JP2015085353A (en) * 2013-10-30 2015-05-07 株式会社タムラ製作所 Flux for solder paste and solder paste
JP2017028166A (en) * 2015-07-24 2017-02-02 積水化学工業株式会社 Semiconductor wafer protection film
CN106514056A (en) * 2016-10-06 2017-03-22 常州市鼎升环保科技有限公司 Preparation method for electronic substrate welding assistant
JP2017064758A (en) * 2015-09-30 2017-04-06 株式会社タムラ製作所 Flux composition, solder composition and electronic substrate
JP2017113776A (en) * 2015-12-24 2017-06-29 荒川化学工業株式会社 Flux for resin flux-cored solder, and resin flux-cored solder
KR20180068972A (en) * 2015-10-14 2018-06-22 교에이샤 케미칼 주식회사 Thixotropic agents and fluxes and solder pastes containing them

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782474B2 (en) * 2013-03-28 2015-09-24 株式会社タムラ製作所 Flux composition and solder composition
JP5490959B1 (en) * 2013-11-18 2014-05-14 ハリマ化成株式会社 Rosin for solder flux and solder flux using the same
CN104148821A (en) * 2014-07-01 2014-11-19 宁国新博能电子有限公司 Soldering paste
KR102040268B1 (en) * 2015-07-10 2019-11-04 재단법인 한국화학융합시험연구원 Anti-cutting and anti-chipping agent for rubber and preparation method thereof
JP6370327B2 (en) * 2016-03-30 2018-08-08 株式会社タムラ製作所 Solder composition for jet dispenser
CN111015010B (en) * 2019-12-27 2021-12-07 苏州优诺电子材料科技有限公司 Solder paste with stable performance and preparation method thereof
CN116529021B (en) * 2020-11-18 2024-03-08 千住金属工业株式会社 Soldering flux and soldering paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586334A (en) * 1991-03-29 1993-04-06 Arakawa Chem Ind Co Ltd Colorless rosin derivative and its production
JPH0639584A (en) * 1992-07-03 1994-02-15 Nippon Handa Kk Cream solder
JP2007111735A (en) * 2005-10-20 2007-05-10 Arakawa Chem Ind Co Ltd Base resin for solder flux, rosin based solder flux and solder paste
JP2007222932A (en) * 2006-02-27 2007-09-06 Arakawa Chem Ind Co Ltd Lead-free solder paste for precoat and flux for use in lead-free solder paste for precoat

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797990B2 (en) * 2003-08-08 2006-07-19 株式会社東芝 Thermosetting flux and solder paste
TW200633810A (en) * 2004-12-28 2006-10-01 Arakawa Chem Ind Lead-free solder flux and solder paste
JP2008062241A (en) * 2006-09-04 2008-03-21 Harima Chem Inc Solder paste composition
JP2008266597A (en) * 2007-03-22 2008-11-06 Arakawa Chem Ind Co Ltd Polymeric rosin, hydrogenated polymeric rosin and production method of these rosins, as well as flux and solder paste using these rosins
CN100532003C (en) * 2007-11-16 2009-08-26 北京工业大学 Colophony type non-halide cleaning-free soldering flux for lead-free solder wire
JP2009154170A (en) * 2007-12-25 2009-07-16 Arakawa Chem Ind Co Ltd Soldering flux and solder paste
JP5019057B2 (en) * 2008-01-31 2012-09-05 荒川化学工業株式会社 Solder flux and cream solder
TWI498184B (en) * 2008-01-31 2015-09-01 Arakawa Chem Ind Solder flux and solder paste
CN101642855B (en) * 2009-08-19 2012-02-22 浙江一远电子材料研究院 Rear-earth-containing halogen free Sn-Ag-C series tinol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586334A (en) * 1991-03-29 1993-04-06 Arakawa Chem Ind Co Ltd Colorless rosin derivative and its production
JPH0639584A (en) * 1992-07-03 1994-02-15 Nippon Handa Kk Cream solder
JP2007111735A (en) * 2005-10-20 2007-05-10 Arakawa Chem Ind Co Ltd Base resin for solder flux, rosin based solder flux and solder paste
JP2007222932A (en) * 2006-02-27 2007-09-06 Arakawa Chem Ind Co Ltd Lead-free solder paste for precoat and flux for use in lead-free solder paste for precoat

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579097B (en) * 2012-05-18 2017-04-21 Arakawa Chemical Industries Ltd Solder flux base resin, welding flux and solder paste
JP5545421B2 (en) * 2012-05-18 2014-07-09 荒川化学工業株式会社 Solder flux base resin, solder flux and solder paste
CN104321387A (en) * 2012-05-18 2015-01-28 荒川化学工业株式会社 Base resin for soldering flux, soldering flux and solder paste
JPWO2013172295A1 (en) * 2012-05-18 2016-01-12 荒川化学工業株式会社 Solder flux base resin, solder flux and solder paste
WO2013172295A1 (en) * 2012-05-18 2013-11-21 荒川化学工業株式会社 Base resin for soldering flux, soldering flux and solder paste
JP2014054663A (en) * 2012-09-13 2014-03-27 Tamura Seisakusho Co Ltd Flux composition, solder paste composition and printed wiring substrate
JP2015042419A (en) * 2013-07-25 2015-03-05 山栄化学株式会社 Resin composition for forming solder bump, method for forming solder bump, and member provided with solder bump
JP2015080814A (en) * 2013-10-24 2015-04-27 住友金属鉱山株式会社 Flux for solder and solder paste
JP2015085353A (en) * 2013-10-30 2015-05-07 株式会社タムラ製作所 Flux for solder paste and solder paste
TWI643694B (en) * 2013-10-30 2018-12-11 田村製作所股份有限公司 Flux for solder paste and solder paste
JP2017028166A (en) * 2015-07-24 2017-02-02 積水化学工業株式会社 Semiconductor wafer protection film
JP2017064758A (en) * 2015-09-30 2017-04-06 株式会社タムラ製作所 Flux composition, solder composition and electronic substrate
KR20180068972A (en) * 2015-10-14 2018-06-22 교에이샤 케미칼 주식회사 Thixotropic agents and fluxes and solder pastes containing them
JPWO2017065076A1 (en) * 2015-10-14 2018-08-09 共栄社化学株式会社 Thixotropic agent and flux and solder paste containing the same
KR102623878B1 (en) 2015-10-14 2024-01-11 교에이샤 케미칼 주식회사 Thixotropic agents and fluxes and solder pastes containing them
JP2017113776A (en) * 2015-12-24 2017-06-29 荒川化学工業株式会社 Flux for resin flux-cored solder, and resin flux-cored solder
CN106514056A (en) * 2016-10-06 2017-03-22 常州市鼎升环保科技有限公司 Preparation method for electronic substrate welding assistant

Also Published As

Publication number Publication date
KR20120031461A (en) 2012-04-03
CN102528326B (en) 2015-07-22
KR101862723B1 (en) 2018-05-30
JP5246452B2 (en) 2013-07-24
TWI507400B (en) 2015-11-11
CN102528326A (en) 2012-07-04
TW201217353A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5246452B2 (en) Rosin flux and solder paste for soldering
TWI481466B (en) Lead-free solder flux composition and lead-free solder composition
JP5019057B2 (en) Solder flux and cream solder
JP5545421B2 (en) Solder flux base resin, solder flux and solder paste
JP6204007B2 (en) Flux composition, solder paste composition, and printed wiring board
CN104439758B (en) Soldering scaling powder rosin and use its soldering scaling powder
JP2016026882A (en) Flux for lead-free solder for clearance resist, and lead-free solder paste for clearance resist
JP6160861B2 (en) Solder flux base resin, solder flux and solder paste
CN103269826B (en) Lead-free solder scaling powder and lead-free solder paste
JP6120139B2 (en) Lead-free solder flux, lead-free solder paste and lead-free thread solder
JP2009154170A (en) Soldering flux and solder paste
JP2022037999A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
JP5776877B2 (en) Solder flux and solder composition
JP6619387B2 (en) Lead-free solder alloy
KR20210074232A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
JP2015006687A (en) Flux for lead-free solder, and lead-free solder paste
JP2021016871A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
KR20090084675A (en) Solder flux and solder paste
JP2024019041A (en) Rosin base resin for lead-free solder flux, manufacturing method of rosin base resin for lead-free solder flux, lead-free solder flux and lead-free solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5246452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250